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where I is either R1 or [T1,∞) or [T1, T2] (here −∞ < T1 < T2 < ∞), n,m are
natural numbers, x : I → Rn is an absolutely continuous (a. c.) function and
the control function u : I → Rm is Lebesgue measurable, and A and B are given
matrices of dimensions n× n and n×m with integrands f : Rn ×Rm → R1.

Note that if I is an unbounded interval, then x : I → Rn is an absolutely
continuous function if and only if it is an absolutely continuous function on any
bounded subinterval of I.

We assume that the linear system (1.1) is controllable and that the integrand f
is a continuous function.

We denote by | · | the Euclidean norm and by ⟨·, ·⟩ the inner product in the k-
dimensional Euclidean space Rk. For every s ∈ R1 set s+ = max{s, 0}. For every
nonempty set X and every function h : X → R1 ∪ {∞} set

inf(h) = inf{h(x) : x ∈ X}.

Let a0 be a positive number and ψ : [0,∞) → [0,∞) be an increasing function
such that

(1.2) lim
t→∞

ψ(t) = ∞.

Suppose that f : Rn × Rm → R1 is a continuous function such that the following
assumption holds:

(A1)

(i) for every point (x, u) ∈ Rn ×Rm,

f(x, u) ≥ max{ψ(|x|), ψ(|u|),

(1.3) ψ([|Ax+Bu| − a0|x|]+)[|Ax+Bu| − a0|x|]+} − a0;

(ii) for every point x ∈ Rn the function f(x, ·) : Rm → R1 is convex;
(iii) for every pair of positive numbersM, ϵ there exist positive numbers Γ, δ such

that

|f(x1, u1)− f(x2, u2)| ≤ ϵmax{f(x1, u1), f(x2, u2)}

for each u1, u2 ∈ Rm and each x1, x2 ∈ Rn which satisfy

|xi| ≤M, |ui| ≥ Γ, i = 1, 2,

max{|x1 − x2|, |u1 − u2|} ≤ δ;

(iv) for every positive number K there exists a positive constant aK and an
increasing function

ψK : [0,∞) → [0,∞)

such that

ψK(t) → ∞ as t→ ∞
and

f(x, u) ≥ ψK(|u|)|u| − aK

for every point u ∈ Rm and every point x ∈ Rn satisfying |x| ≤ K.
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Let T1 ∈ R1 and T2 > T1. A pair of an absolutely continuous function x :
[T1, T2] → Rn and a Lebesgue measurable function u : [T1, T2] → Rm is called an
(A,B)-trajectory-control pair if (1.1) holds with I = [T1, T2]. Denote by
X(A,B, T1, T2) the set of all (A,B)-trajectory-control pairs x : [T1, T2] → Rn,
u : [T1, T2] → Rm.

Let T ∈ R1 and I = [T,∞) be an infinite closed subinterval of R1. Denote by
X(A,B, T,∞) the set of all pairs of a.c. functions x : [T,∞) → Rn and Lebesgue
measurable functions u : [T,∞) → Rm satisfying (1.1).

Note that a function h satisfies (A1) if h ∈ C1(Rn × Rm), (A1)(i), (A1)(ii),

(A1)(iv) hold, and for each K > 0 there exists an increasing function ψ̃ : [0,∞) →
[0,∞) such that for each x ∈ Rn satisfying |x| ≤ K and each u ∈ Rm,

max{|∂h/∂x(x, u)|, |∂h/∂u(x, u)|} ≤ ψ̃(|x|)(1 + ψK(|u|)|u|).
The performance of the above control system is measured on any finite interval

[T1, T2] ⊂ [0,∞) and for any (x, u) ∈ X(A,B, T1, T2) by the integral functional

(1.4) If (T1, T2, x, u) =

∫ T2

T1

f(x(t), u(t))dt.

We consider the following optimal control problems

(P1) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ) such that x(0) = y, x(T ) = z,

(P2) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ) such that x(0) = y,

(P3) If (0, T, x, u) → min,

(x, u) ∈ X(A,B, 0, T ),

(P4) If (0, T, x, u) + g(x(T )) → min,

(x, u) ∈ X(A,B, 0, T ) such that x(0) = y,

(P5) If (0, T, x, u) + g(x(T )) + h(x(0)) → min,

(x, u) ∈ X(A,B, 0, T ),

where y, z ∈ Rn, T > 0 and g : Rn → R1 and h : Rn → R1 are lower semicontinuous
functions which are bounded on bounded sets. The study of these problems is based
on the properties of solutions of the corresponding infinite horizon optimal control
problem associated with the control system (1.1) and the integrand f . Problems
(P1)− (P3) where analyzed in [45] while in this paper we study problems (P4) and
(P5).

We establish the turnpike property for the approximate solutions of problems
(P4) and (P5). For problems (P4) and (P5) we show that in regions close to the
right endpoint T of the time interval their approximate solutions are determined
only by the pair (f, g) and are essentially independent of the choice of interval and
the endpoint value y. For problems (P5), approximate solutions are determined only
by the pair (f, h) also in regions close to the left endpoint 0 of the time interval.
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A number

(1.5) µ(f) := inf{lim inf
T→∞

T−1If (0, T, x, u) : (x, u) ∈ X(A,B, 0,∞)}

is called the minimal long-run average cost growth rate of f . In view of (A1)(i), we
have −∞ < µ(f).

We say that a pair (x̃, ũ) ∈ X(A,B, 0,∞) is (f,A,B)-overtaking optimal [39,44]
if for every pair (x, u) ∈ X(A,B, 0,∞) such that x(0) = x̃(0) the inequality

lim sup
T→∞

[If (0, T, x̃, ũ)− If (0, T, x, u)] ≤ 0

holds.
We say that a pair (x, u) ∈ X(A,B, 0,∞) is (f,A,B)-minimal [39,44] if for every

positive number T ,

If (0, T, x, u) ≤ If (0, T, y, v)

for every pair (y, v) ∈ X(A,B, 0, T ) such that y(0) = x(0), y(T ) = x(T ).
Let (xf , uf ) ∈ Rn ×Rm satisfy

(1.6) Axf +Buf = 0.

It is clear that µ(f) ≤ f(xf , uf ). It is not difficult to see that the following result
holds.

Proposition 1.1 (Proposition 3.1 of [45]). Assume that µ(f) = f(xf , uf ) and let
x(t) = xf , u(t) = uf for all t ∈ [0,∞). Then the pair (x, u) ∈ X(A,B, 0,∞) is
(f,A,B)-minimal.

We suppose that the following assumption holds.
(A2) µ(f) = f(xf , uf ) and if (x, u) ∈ Rn ×Rm satisfies

Ax+Bu = 0, µ(f) = f(x, u),

then x = xf .
In [45] we proved the following result.

Proposition 1.2 (Proposition 3.4 of [45]). For every trajectory-control pair (x, u) ∈
X(A,B, 0,∞) either

If (0, T, x, u)− Tµ(f) → ∞ as T → ∞

or sup{|If (0, T, x, u)− Tµ(f)| : T > 0} <∞.

A trajectory-control pair (x, u) ∈ X(A,B, 0,∞) is called (f,A,B)-good [39,44] if

sup{|If (0, T, x, u)− Tµ(f)| : T > 0} <∞.

We have the following result.

Proposition 1.3 (Proposition 3.5 of [45]). For any (f,A,B)-good pair

(x, u) ∈ X(A,B, 0,∞)

the inequality

sup{|x(t)| : t ∈ [0,∞)} <∞
holds.
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We suppose that the following assumption holds.
(A3) For every (f,A,B)-good trajectory-control pair

(x, u) ∈ X(A,B, 0,∞)

the equality limt→∞ x(t) = xf holds.
Assumptions (A1)-(A3) were introduced in Section 3.1 of [45] which also contains

several examples of integrands satisfying these assumptions. These assumptions are
common in the turnpike theory [39, 41, 43, 44]. In particular, we need the growth
condition (A1)(i) and the convexity assumption (A1)(ii) in order to guarantee the
existence of solutions of optimal control problems on finite intervals. Assumptions
(A2) means that there exists a unique good stationary trajectory-control pair. This
assumption is necessary if one intends to obtain a turnpike property for which the
turnpike is a singleton. Assumption (A3) is called in the literature as the asymptotic
turnpike [39,41,43–45]. It is also necessary for turnpike properties on finite intervals.
It was shown in Chapter 7 of [45] that in the space of integrands satisfying (A1)
and (A2) most integrands satisfy also (A3).

2. Turnpike results for problems (P1) and (P2)

We use the notation, definitions and assumptions introduced in Section 1.
Let T > 0 and y, z ∈ Rn. Set

σ(f, y, z, T ) = inf{If (0, T, x, u) :

(2.1) (x, u) ∈ X(A,B, 0, T ) and x(0) = y, x(T ) = z},

(2.2) σ(f, y, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T ) and x(0) = y},

(2.3) σ̂(f, z, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T ) and x(T ) = z},

(2.4) σ(f, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(A,B, 0, T )}.

The results of this section were obtained in [45]. The following theorem establishes
the turnpike property of approximate solutions of problems (P1) and (P2).

Theorem 2.1 (Theorem 3.7 of [45]). Let ϵ, M0,M1 > 0. Then there exist L > 0,
δ ∈ (0, ϵ) such that for each T > 2L and each (x, u) ∈ X(A,B, 0, T ) which satisfies
for each S ∈ [0, T − L],

If (S, S + L, x, u) ≤ σ(f, x(S), x(S + L), L) + δ

and satisfies at least one of the following conditions below

(a) |x(0)|, |x(T )| ≤M0, I
f (0, T, x, u) ≤ σ(f, x(0), x(T ), T ) +M1;

(b) |x(0)| ≤M0, I
f (0, T, x, u) ≤ σ(f, x(0), T ) +M1;

(c) If (0, T, x, u) ≤ σ(f, T ) +M1

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .
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Theorem 2.2 (Theorem 3.8 of [45]). Let x0 ∈ Rn. Then there exists an (f,A,B)-
overtaking optimal trajectory-control pair (x, u) ∈ X(A,B, 0,∞) satisfying x(0) =
x0.

The next result describes the limit behavior of overtaking optimal trajectories.

Theorem 2.3 (Theorem 3.9 of [45]). Let M, ϵ > 0. Then there exists L >
0 such that for any (f,A,B)-overtaking optimal trajectory-control pair (x, u) ∈
X(A,B, 0,∞) which satisfies |x(0)| ≤M the inequality

|x(t)− xf | ≤ ϵ

holds for all numbers t ≥ L. Moreover, there exists δ > 0 such that for any (f,A,B)-
overtaking optimal trajectory-control pair (x, u) ∈ X(A,B, 0,∞) satisfying |x(0) −
xf | ≤ δ, the inequality

|x(t)− xf | ≤ ϵ

holds for all numbers t ≥ 0.

The next result shows the equivalence of the optimality criterions introduced
above.

Theorem 2.4 (Theorem 3.10 of [45]). Assume that (x, u) ∈ X(A,B, 0,∞). Then
the following conditions are equivalent:

(i) (x, u) is (f,A,B)-overtaking optimal;
(ii) (x, u) is (f,A,B)-minimal and (f,A,B)-good;
(iii) (x, u) is (f,A,B)-minimal and

lim
t→∞

x(t) = xf ;

(iv) (x, u) is (f,A,B)-minimal and lim inft→∞ |x(t)| <∞.

3. Auxiliary results

We use the notation, definitions and assumptions introduced in Sections 1 and 2.
For every point z ∈ Rn denote by Λ(z) the collection of all (f,A,B)-overtaking

optimal pairs (x, u) ∈ X(A,B, 0,∞) such that x(0) = z, which is nonempty in view
of Theorem 2.2.

Let z ∈ Rn. Define

(3.1) πf (z) = lim inf
T→∞

[If (0, T, x, u)− Tµ(f)],

where (x, u) ∈ Λ(z). By Proposition 1.2 and Theorem 2.4, πf (z) is finite, well
defined and does not depend on the choice of (x, u) ∈ Λ(z). The following results
were obtained in Section 3.3 of [45].

Proposition 3.1 (Proposition 3.11 of [45]). 1. Let (x, u) ∈ X(A,B, 0,∞) be
(f,A,B)-good. Then

πf (x(0)) ≤ lim inf
T→∞

[If (0, T, x, u)− Tµ(f)]

and for each pair of numbers S > T ≥ 0,

(3.2) πf (x(T )) ≤ If (T, S, x, u)− (S − T )µ(f) + πf (x(S)).

2. Let S > T ≥ 0 and (x, u) ∈ X(A,B, T, S). Then (3.2) holds.
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Proposition 3.2 (Proposition 3.12 of [45]). Let (x, u) ∈ X(A,B, 0,∞) be an
(f,A,B)-overtaking optimal pair. Then for each pair of numbers S > T ≥ 0,

πf (x(T )) = If (T, S, x, u)− (S − T )µ(f) + πf (x(S)).

Proposition 3.3 (Propositions 3.13, 3.14, 3.16 and 3.17 of [45]). πf (xf ) = 0, the

function πf is continuous at xf , the function πf is lower semicontinuous and for

each M > 0 the set {x ∈ Rn : πf (x) ≤M} is bounded.

Proposition 3.4 (Proposition 3.15 of [45] ). Let (x, u) ∈ X(A,B, 0,∞) be (f,A,B)-
overtaking optimal. Then

πf (x(0)) = lim
T→∞

[If (0, T, x, u)− Tµ(f)].

Proposition 3.5 (Proposition 3.18 of [45]). Let (x, u) ∈ X(A,B, 0,∞) be (f,A,B)-
good pair such that for all T > 0,

If (0, T, x, u)− Tµ(f) = πf (x(0))− πf (x(T )).

Then (x, u) ∈ X(A,B, 0,∞) is (f,A,B)-overtaking optimal.

Consider a linear control system

(3.3) x′(t) = −Ax(t)−Bu(t),

x(0) = x0

which is also controllable. For the triplet (f,−A,−B) we use all the notation
and definitions introduced for the triplet (f,A,B). It is not difficult to see that
assumption (A1) holds for the triplet (f,−A,−B).

Let T1 ∈ R1, T2 > T1. A pair of an absolutely continuous function x : [T1, T2] →
Rn and a Lebesgue measurable function u : [T1, T2] → Rm is called an
(−A,−B)-trajectory-control pair if (3.3) holds for a. e. t ∈ [T1, T2]. Denote by
X(−A,−B, T1, T2) the set of all (−A−B)-trajectory-control pairs x : [T1, T2] → Rn,
u : [T1, T2] → Rm.

Let T ∈ R1. Denote by X(−A,−B, T,∞) the set of all pairs of a. c. functions
x : [T,∞) → Rn and Lebesgue measurable functions u : [T,∞) → Rm satisfying
(3.3) for a. e. t ≥ T , which are called (−A,−B)-trajectory-control pairs.

Assume that S1 ∈ R1, S2 > S1 and that (x, u) ∈ X(A,B, S1, S2). For all t ∈
[S1, S2] set

(3.4) x̄(t) = x(S2 − t+ S1), ū(t) = u(S2 − t+ S1).

By (1.1) and (3.4) for a. e. t ∈ [S1, S2],

(3.5)
x̄′(t) = −x′(S2 − t+ S1) = −Ax(S2 − t+ S1)−Bu(S2 − t+ S1)

= −Ax̄(t)−Bū(t), (x̄, ū) ∈ X(−A,−B,S1, S2).

In view of (3.4),

(3.6)

∫ S2

S1

f(x̄(t), ū(t))dt =

∫ S2

S1

f(x(S2 − t+ S1), u(S2 − t+ S1))dt

=

∫ S2

S1

f(x(t), u(t))dt.
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For every pair of numbers T2 > T1 and every trajectory-control pair (x, u) ∈
X(−A,−B, T1, T2) define

(3.7) If (T1, T2, x, u) =

∫ T2

T1

f(x(t), u(t))dt.

For every pair of points y, z ∈ Rn and every positive number T define

σ−(f, y, z, T ) = inf{If (0, T, x, u) :

(3.8) (x, u) ∈ X(−A,−B, 0, T ) and x(0) = y, x(T ) = z},
σ−(f, y, T ) = inf{If (0, T, x, u) :

(3.9) (x, u) ∈ X(−A,−B, 0, T ) and x(0) = y},
σ̂−(f, z, T ) = inf{If (0, T, x, u) :

(3.10) (x, u) ∈ X(−A,−B, 0, T ) and x(T ) = z},

(3.11) σ−(f, T ) = inf{If (0, T, x, u) : (x, u) ∈ X(−A,−B, 0, T )}.
The following auxiliary results were proved in Section 3.3 of [45].

Proposition 3.6. Let S2 > S1 be real numbers, M ≥ 0 and that (xi, ui) ∈
X(A,B, S1, S2), i = 1, 2. Then

If (S1, S2, x1, u1) ≥ If (S1, S2, x2, u2)−M

if and only if If (S1, S2, x̄1, ū1) ≥ If (S1, S2, x̄2, ū2)−M.

Proposition 3.7. Let S2 > S1 be real numbers and

(x, u) ∈ X(A,B, S1, S2).

Then the following assertions hold:

If (S1, S2, x, u) ≤ σ(f, S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ(f, x(S1), x(S2), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, x̄(S1), x̄(S2), S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ(f, x(S1), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ̂−(f, x̄(S2), S2 − S1) +M ;

If (S1, S2, x, u) ≤ σ̂(f, x(S2), S2 − S1) +M

if and only if If (S1, S2, x̄, ū) ≤ σ−(f, x̄(S1), S2 − S1) +M.

Define

(3.12) µ−(f) = inf{lim inf
T→∞

T−1If (0, T, x, u) ∈ X(−A,−B, 0,∞)}.

Proposition 3.8. µ−(f) = µ(f) = f(xf , uf ).

Proposition 3.9. For any (f,−A,−B)-good trajectory-control pair (x, u) ∈
X(−A,−B, 0,∞),

lim
t→∞

x(t) = xf .
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Therefore (f,−A,−B) satisfies all the assumptions posed for the triplet (f,A,B)
and all the results stated above for the triplet (f,A,B) are also true for (f,−A,−B).

For every point z ∈ Rn define

πf−(z) = lim inf
T→∞

[If (0, T, x, u)− Tµ(f)],

where (x, u) ∈ X(−A,−B, 0,∞) is an (f,−A,−B)-overtaking optimal pair such
that x(0) = z.

4. Spaces of integrands

We use the notation, definitions and assumptions introduced in Sections 1-3.
Recall that a0 > 0 and ψ : [0,∞) → [0,∞) is an increasing function such that

lim
t→∞

ψ(t) = ∞.

We continue to study the structure of optimal trajectories of the controllable linear
control system

x′ = Ax+Bu,

where A and B are given matrices of dimensions n×n and n×m, with the continuous
integrand f : Rn ×Rm → R1 which satisfy assumptions (A1)-(A3) and (1.6).

Denote by M the set of all borelian functions g : Rn+m+1 → R1 which satisfy

g(t, x, u) ≥ max{ψ(|x|), ψ(|u|),

(4.1) ψ([|Ax+Bu| − a0|x|]+)[|Ax+Bu| − a0|x|]+} − a0

for each (t, x, u) ∈ Rn+m+1.
We equip the set M with the uniformity which is determined by the following

base:
E(N, ϵ, λ) = {(f, g) ∈ M×M : |f(t, x, u)− g(t, x, u)| ≤ ϵ

for each (t, x, u) ∈ Rn+m+1 satisfying |x|, |u| ≤ N}
∩{(f, g) ∈ M×M : (|f(t, x, u)|+ 1)(|g(t, x, u)|+ 1)−1 ∈ [λ−1, λ]

(4.2) for each (t, x, u) ∈ Rn+m+1 satisfying |x| ≤ N},
where N > 0, ϵ > 0 and λ > 1.

It is clear that the uniform space M is Hausdorff and has a countable base.
Therefore M is metrizable. It is not difficult to show that the uniform space M is
complete.

Denote by Mb the set of all functions g ∈ M which are bounded on bounded
subsets of Rn+m+1. Clearly, Mb is a closed subset of M. We consider the topological
subspace Mb ⊂ M equipped with the relative topology.

For each a pair of numbers T1 ∈ R1, T2 > T1, each (x, u) ∈ X(A,B, T1, T2) and
each borelian bounded from below function g : [T1, T2]×Rn ×Rm → R1 set

Ig(T1, T2, x, u) =

∫ T2

T1

g(t, x(t), u(t))dt.

We consider the following optimal control problems

Ig(T1, T2, x, u) → min,
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(x, u) ∈ X(A,B, T1, T2) such that x(T1) = y, x(T2) = z,

Ig(T1, T2, x, u) → min,

(x, u) ∈ X(A,B, T1, T2) such that x(T1) = y,

Ig(T1, T2, x, u) → min,

(x, u) ∈ X(A,B, T1, T2),

where y, z ∈ Rn, ∞ > T2 > T1 > −∞ and g ∈ M.
Let y, z ∈ Rn, T1 ∈ R1, T2 > T1 and g : [T1, T2] × Rn × Rm → R1 be a borelian

bounded from below function. Set

σ(g, y, z, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.3) (x, u) ∈ X(A,B, T1, T2) and x(T1) = y, x(T2) = z},

σ(g, y, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.4) (x, u) ∈ X(A,B, T1, T2) and x(T1) = y},

σ̂(g, z, T1, T2) = inf{Ig(T1, T2, x, u) :

(4.5) (x, u) ∈ X(A,B, T1, T2) and x(T2) = z},

(4.6) σ(g, T1, T2) = inf{Ig(T1, T2, x, u) : (x, u) ∈ X(A,B, T1, T2)}.
Recall that f : Rn ×Rm → R1 is a continuous function which satisfies (1.6) and

assumptions (A1), (A2) and (A3). For each (t, x, u) ∈ Rn+m+1 set

(4.7) F (t, x, u) = f(x, u).

The following stability results were obtained in Chapter 4 of [45]. They show that
the turnpike phenomenon, for approximate solutions on large intervals, is stable
under small perturbations of the objective function (integrand) f .

Theorem 4.1. Let ϵ,M > 0. Then there exist L0 ≥ 1 and δ0 > 0 such that for each
L1 ≥ L0 there exists a neighborhood U of F in Mb such that the following assertion
holds.

Assume that T > 2L1, g ∈ U , (x, u) ∈ X(A,B, 0, T ) and that a finite sequence of
numbers {Si}qi=0 satisfy

S0 = 0, Si+1 − Si ∈ [L0, L1], i = 0, . . . , q − 1, Sq ∈ (T − L1, T ],

Ig(Si, Si+1, x, u) ≤ (Si+1 − Si)µ(f) +M

for each integer i ∈ [0, q − 1],

Ig(Si, Si+2, x, u) ≤ σ(g, x(Si), x(Si+2), Si, Si+2) + δ0

for each nonnegative integer i ≤ q − 2 and

Ig(Sq−2, T, x, u) ≤ σ(g, x(Sq−2), x(T ), Sq−2, T ) + δ0.

Then there exist p1, p2 ∈ [0, T ] such that p1 ≤ p2, p1 ≤ 2L0, p2 > T − 2L1 and that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .
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Theorem 4.2. Let ϵ ∈ (0, 1), M0,M1 > 0. Then there exist L > 0, δ ∈ (0, ϵ) and
a neighborhood U of F in Mb such that for each T > 2L, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies for each S ∈ [0, T − L],

Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ

and satisfies at least one of the following conditions below

(a) |x(0)|, |x(T )| ≤M0, Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1;
(b) |x(0)| ≤M0, Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) +M1;
(c) Ig(0, T, x, u) ≤ σ(g, 0, T ) +M1

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

Theorem 4.3. Let ϵ ∈ (0, 1), M0,M1 > 0. Then there exist l > 0, an integer
Q ≥ 1 and a neighborhood U of F in Mb such that for each T > lQ, each g ∈ U and
each (x, u) ∈ X(A,B, 0, T ) which satisfies at least one of the following conditions
below

(a) |x(0)|, |x(T )| ≤M0, Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1;
(b) |x(0)| ≤M0, Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) +M1;
(c) Ig(0, T, x, u) ≤ σ(g, 0, T ) +M1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}qi=1 ⊂ [0, T ] such
that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

In Chapter 4 of [45] we also prove the following two stability results. They show
that the convergence of approximate solutions on large intervals, in the regions
close to the end points, is stable under small perturbations of the objective function
(integrand) f .

Theorem 4.4. Let L0 > 0, ϵ ∈ (0, 1), M > 0. Then there exist δ > 0, a neighbor-
hood U of F in Mb and L1 > L0 such that for each T ≥ L1, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies

|x(0)| ≤M, Ig(0, T, x, u) ≤ σ(g, x(0), 0, T ) + δ

there exists an (f,−A,−B)-overtaking optimal pair

(x∗, u∗) ∈ X(−A,−B, 0,∞)

such that

πf−(x∗(0)) = inf(πf−),

|x(T − t)− x∗(t)| ≤ ϵ for all t ∈ [0, L0].
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Theorem 4.5. Let L0 > 0, ϵ ∈ (0, 1). Then there exist δ > 0, a neighborhood
U of F in Mb and L1 > L0 such that for each T ≥ L1, each g ∈ U and each
(x, u) ∈ X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) ≤ σ(g, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) and an
(f,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X(−A,−B, 0,∞) such that

πf (x∗(0)) = inf(πf ),

πf−(x̄∗(0)) = inf(πf−)

and for all t ∈ [0, L0],

|x(t)− x∗(t)| ≤ ϵ, |x(T − t)− x̄∗(t)| ≤ ϵ.

5. Bolza optimal control problems

We use the notation, definitions and assumptions introduced in Sections 1-4.
Recall that f : Rn × Rm → R1 is a continuous function which satisfy assumptions
(A1)-(A3) and (1.6).

Let a1 > 0. Denote by A(Rn) the set of all lower semicontinuous functions
h : Rn → R1 which are bounded on bounded subsets of Rn and satisfy

(5.1) h(z) ≥ −a1 for all z ∈ Rn.

For simplicity we set A = A(Rn). We equip the set A with the uniformity which is
determined by the following base:

E(N, ϵ) = {(h1, h2) ∈ A× A : |h1(z)− h2(z)| ≤ ϵ

(5.2) for each z ∈ Rn satisfying |z| ≤ N},
where N > 0, ϵ > 0. Clearly, the uniform space A is metrizable and complete.

We consider the following optimal control problems

Ig(T1, T2, x, u) + h(x(T2)) → min,

(x, u) ∈ X(A,B, T1, T2) such that x(T1) = y

and
Ig(T1, T2, x, u) + h(x(T2)) + ξ(x(T1)) → min,

(x, u) ∈ X(A,B, T1, T2),

where y ∈ Rn, ∞ > T2 > T1 > −∞, g ∈ M and h, ξ ∈ A.
Let y, z ∈ Rn, T1 ∈ R1, T2 > T1, g : [T1, T2] × Rn × Rm → R1 be a borelian

bounded from below function and h, ξ ∈ A. Set

σ(g, h, y, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2)) :

(5.3) (x, u) ∈ X(A,B, T1, T2) and x(T1) = y},

σ(g, h, ξ, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2)) + ξ(x(T1)) :

(5.4) (x, u) ∈ X(A,B, T1, T2)},

σ̂(g, ξ, z, T1, T2) = inf{Ig(T1, T2, x, u) + ξ(x(T1)) :
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(5.5) (x, u) ∈ X(A,B, T1, T2) and x(T2) = z},

σ(g, h, ξ, y, z, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2))

(5.6) +ξ(x(T1)) : (x, u) ∈ X(A,B, T1, T2), x(T2) = z, x(T1) = y}.

We prove the following turnpike results for our Bolza optimal control problems
which show that the turnpike phenomenon, for approximate solutions on large in-
tervals, is stable under small perturbations of the objective functions.

Theorem 5.1. Let ϵ ∈ (0, 1), M0,M1,M2 > 0. Then there exist l > 0, an integer
Q ≥ 1 and a neighborhood U of F in Mb such that for each T > lQ, each g ∈ U ,
each h, ξ ∈ A satisfying

|h(xf )|, |ξ(xf )| ≤M2

and each (x, u) ∈ X(A,B, 0, T ) which satisfies at least one of the following condi-
tions below

(a) |x(0)| ≤M0, Ig(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) +M1;
(b) Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≤ σ(g, h, ξ, 0, T ) +M1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}qi=1 ⊂ [0, T ] such
that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Theorem 5.2. Let ϵ ∈ (0, 1), M0,M1,M2 > 0. Then there exist L > 0, δ ∈ (0, ϵ)
and a neighborhood U of F in Mb such that for each T > 2L, each g ∈ U , each
h, ξ ∈ A satisfying

|h(xf )|, |ξ(xf )| ≤M2

and each (x, u) ∈ X(A,B, 0, T ) which satisfies for each S ∈ [0, T − L],

Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ

and satisfies at least one of the following conditions below

(a) |x(0)| ≤M0,I
g(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) +M1;

(b) Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≤ σ(g, h, ξ, 0, T ) +M1

there exist p1 ∈ [0, L], p2 ∈ [T − L, T ] such that

|x(t)− xf | ≤ ϵ for all t ∈ [p1, p2].

Moreover if |x(0)− xf | ≤ δ, then p1 = 0 and if |x(T )− xf | ≤ δ, then p2 = T .

In this paper we also prove the following two stability results for our Bolza optimal
control problems. They show that the convergence of approximate solutions on large
intervals, in the regions close to the end points, is stable under small perturbations
of the objective functions.
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Theorem 5.3. Let L0 > 0, ϵ ∈ (0, 1), M > 0 and h ∈ A. Then there exist δ > 0, a
neighborhood U of F in Mb, a neighborhood V of h in A and L1 > L0 such that for
each T ≥ L1, each g ∈ U , each ξ ∈ V and each (x, u) ∈ X(A,B, 0, T ) which satisfies

|x(0)| ≤M,

Ig(0, T, x, u) + ξ(x(T )) ≤ σ(g, ξ, x(0), 0, T ) + δ

there exists an (f,−A,−B)-overtaking optimal pair

(x∗, u∗) ∈ X(−A,−B, 0,∞)

such that
(πf− + h)(x∗(0)) = inf(πf− + h),

|x(T − t)− x∗(t)| ≤ ϵ for all t ∈ [0, L0].

Theorem 5.4. Let L0 > 0, ϵ ∈ (0, 1), h1, h2 ∈ A. Then there exist δ > 0, a
neighborhood U of F in Mb, a neighborhood Vi of hi, i = 1, 2 in A and L1 > L0

such that for each T ≥ L1, each g ∈ U , each ξi ∈ Vi, i = 1, 2 and each (x, u) ∈
X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) + ξ1(x(T )) + ξ2(x(0)) ≤ σ(g, ξ1, ξ2, 0, T ) + δ

there exist an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) and an
(f,−A,−B)-overtaking optimal pair (x̄∗, ū∗) ∈ X(−A,−B, 0,∞) such that

(πf + h2)(x∗(0)) = inf(πf + h2),

(πf− + h1)(x̄∗(0)) = inf(πf− + h1)

and for all t ∈ [0, L0],

|x(t)− x∗(t)| ≤ ϵ, |x(T − t)− x̄∗(t)| ≤ ϵ.

6. Auxiliary results for Theorems 5.1 and 5.2

In the sequel we use the following auxiliary results.

Proposition 6.1 (Proposition 3.27 of [45]). Let T > 0 and y, z ∈ Rn. Then there
exists (x, u) ∈ X(A,B, 0, T ) such that

x(0) = y, x(T ) = z,

If (0, T, x, u) = σ(f, y, z, T ).

Proposition 6.2 (Proposition 4.5 of [43], Proposition 3.28 of [45]). Let M, τ > 0.
Then

sup{|σ(f, y, z, τ)| : y, z ∈ Rn, |y|, |z| ≤M} <∞.

Proposition 6.3 (Proposition 2.9 of [43]). Let g ∈ M, 0 < c1 < c2 and D, ϵ > 0.
Then there exists a neighborhood U of g in M such that for each h ∈ U , each T1 ∈ R1,
each T2 ∈ [T1 + c1, T1 + c2] and each trajectory-control pair (x, u) ∈ X(A,B, T1, T2)
which satisfies

min{Ig(T1, T2, x, u), Ih(T1, T2, x, u)} ≤ D

the inequality
|Ig(T1, T2, x, u)− Ih(T1, T2, x, u)| ≤ ϵ

holds.
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Proposition 6.4 (Proposition 4.2 of [43]). Let T2 > T1 be real numbers,
{(xj , uj)}∞j=1 ⊂ X(A,B, T1, T2) and let the sequence {If (T1, T2, xj , uj)}∞j=1 be

bounded. Then there exist a subsequence {(xjk , ujk)}∞k=1 and (x, u) ∈ X(A,B, T1, T2)
such that

xjk(t) → x(t) as k → ∞ uniformly in [T1, T2],

ujk → u as k → ∞ weakly in L1(Rm; (T1, T2)),

If (T1, T2, x, u) ≤ lim inf
k→∞

If (T1, T2, xjk , ujk).

Proposition 6.5 (Proposition 4.6 of [43]). Let M, τ, ϵ > 0. Then there exists a
number δ > 0 such that for each y1, y2, z1, z2 ∈ Rn satisfying

|yi|, |zi| ≤M, i = 1, 2, |y1 − y2|, |z1 − z2| ≤ δ

the following relation holds:

|σ(f, y1, z1, τ)− σ(f, y2, z2, τ)| ≤ ϵ.

Proposition 6.6 (Proposition 2.7 of [43]). LetM1 > 0 and 0 < τ0 < τ1. Then there
exists a positive number M2 such that for each T1 ∈ R1, each T2 ∈ [T1 + τ0, T1 + τ1]
and each (x, u) ∈ X(A,B, T1, T2) satisfying

If (T1, T2, x, u) ≤M1

the inequality |x(t)| ≤M2 holds for all t ∈ [T1, T2].

Lemma 6.7. Let M0,M1,M2 > 0. Then there exist L0 > 0, M3 > M0 and a
neighborhood U of F in Mb such that for each T ≥ L0, each g ∈ U , each h, ξ ∈ A
satisfying

|h(xf )|, |ξ(xf )| ≤M2,

each (x, u) ∈ X(A,B, 0, T ) and each T1, T2 ∈ [0, T ] which satisfy T1 < T2 and satisfy
at least one of the following conditions below

(a) |x(0)| ≤M0, Ig(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) +M1,
|x(t)| ≥M3, t ∈ [T1, T2], T2 = T, |x(T1)| =M3;

(b) Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≤ σ(g, h, ξ, 0, T ) +M1, |x(t)| ≥M3, t ∈
[T1, T2]

and either T1 = 0, |x(T2)| =M3 or T2 = T, |x(T1)| =M3 or T1 = 0, T2 = T .
Then T2 − T1 ≤ L0.

Proof. By (1.2) there exists a number M3 such that

M3 > M0 + |xf |,

(6.1) ψ(M3) > |f(xf , uf )|+ 2 + a0.

There exists a neighborhood U0 of F in Mb such that

(6.2) |g(t, xf , uf )− f(xf , uf )| ≤ 4−1 for all t ∈ R1 and all g ∈ U0.

By Proposition 6.2, there exists M4 > 0 such that

(6.3) |σ(f, y, z, 1)| ≤M4 for all y, z ∈ Rn satisfying |y|, |z| ≤M3.
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By Proposition 6.3, there exists a neighborhood

(6.4) U ⊂ U0

of F in Mb such that for each h ∈ U , each τ ∈ R1and each trajectory-control pair
(x, u) ∈ X(A,B, τ, τ + 1) which satisfies

min{Ih(τ, τ + 1, x, u), If (τ, τ + 1, x, u)} ≤M4 + 1

the inequality

(6.5) |Ih(τ, τ + 1, x, u)− If (τ, τ + 1, x, u)| ≤ 1

holds.
Fix

(6.6) L0 > 4 + 2M2 + 2a1 + 2M1 + 2M4.

Assume that

(6.7) T ≥ L0, g ∈ U , h, ξ ∈ A, |h(xf )|, |ξ(xf )| ≤M2,

(x, u) ∈ X(A,B, 0, T ), T1, T2 ∈ [0, T ], T1 < T2,

(6.8) |x(t)| ≥M3, t ∈ [T1, T2]

and that at least one of the conditions (a), (b) holds. We show that T2 − T1 ≤ L0.
Assume the contrary. Then

(6.9) T2 − T1 > L0.

We construct (y, v) ∈ X(A,B, T1, T2). If (b) holds and

T1 = 0, T2 = T,

then we set

(6.10) y(t) = xf , v(t) = uf , t ∈ [0, T ].

If

T2 = T, |x(T1)| =M3,

then in view of Proposition 6.1 there exists (y, v) ∈ X(A,B, T1, T ) such that

y(T1) = x(T1), y(T1 + 1) = xf ,

(6.11) If (T1, T1 + 1, y, v) = σ(f, x(T1), xf , 1),

y(t) = xf , v(t) = uf , t ∈ [T1 + 1, T ].

If (b) holds and T1 = 0, |x(T2)| =M3, then in view of Proposition 6.1, there exists
(y, v) ∈ X(A,B, 0, T2) such that

y(T2) = x(T2), y(T2 − 1) = xf ,

If (T2 − 1, T2, y, v) = σ(f, xf , x(T2), 1),

(6.12) y(t) = xf , v(t) = uf , t ∈ [T1, T2 − 1].

Set

(6.13) y(t) = x(t), v(t) = u(t) for all t ∈ [0, T ] \ [T1, T2].
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Clearly,

(6.14) (y, v) ∈ X(A,B, 0, T ).

It follows from (4.1), (6.1) and (6.8) that for all t ∈ [T1, T2],

(6.15) g(t, x(t), u(t)) ≥ ψ(M3)− a0 > |f(xf , uf )|+ 2.

Relations (6.2), (6.4) and (6.7) imply that

(6.16) |g(t, xf , uf )| ≤ |f(xf , uf )|+ 4−1 for all t ∈ R1.

Assume that (b) holds and T1 = 0, T2 = T . Then by (6.10), (6.15) and (6.16),

Ig(0, T, x, u) ≥ T (|f(xf , uf )|+ 2),

Ig(0, T, y, v) ≤ T (|f(xf , uf )|+ 4−1).

By the relations above, condition (b), (5.1), (6.7) and (6.10),

T (|f(xf , uf )|+ 2)− 2a1 ≤ Ig(0, T, x, u) + h(x(T )) + ξ(x(0))

≤ Ig(0, T, y, v) + h(y(T )) + ξ(y(0)) +M1

≤ T (|f(xf , uf )|+ 4−1) + 2M2 +M1

and in view of (6.6),

T2 − T1 = T ≤ 2M2 + 2a1 +M1 < L0.

This contradicts (6.9).
Assume that

(6.17) T2 = T, |x(T1)| =M3.

By (6.1), (6.3), (6.11) and (6.17),

(6.18) |If (T1, T1 + 1, y, v)| = |σ(f, x(T1), xf , 1)| ≤M4.

In view of the choice of U , (6.5), (6.7) and (6.18),

(6.19) Ig(T1, T1 + 1, y, v) ≤M4 + 1.

In the case (a), it follows from (5.1), (6.7), (6.15) and (6.17) that

(6.20)
Ig(0, T, x, u) + h(x(T )) ≥ Ig(0, T1, x, u) + Ig(T1, T, x, u)− a1

≥ Ig(0, T1, x, u)− a1 + (T − T1)(|f(xf , uf )|+ 2),

by (6.6), (6,7), (6.9), (6.11), (6.13), (6.17) and (6.19),

(6.21)

Ig(0, T, y, v) + h(y(T )) = Ig(0, T1, x, u) + Ig(T1, T, y, v) + h(xf )

≤ Ig(0, T1, x, u) + Ig(T1, T1 + 1, y, v)

+ Ig(T1 + 1, T, y, v) +M2

≤ Ig(0, T1, x, u) +M4 + 1

+ (T − T1 − 1) sup{g(t, xf , uf ) : t ∈ [T1 + 1, T ]}
+M2

≤ Ig(0, T1, x, u) +M4 + 1

+ (T − T1 − 1)(|f(xf , uf )|+ 4−1) +M2,
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and in view of condition (a), (6.11), (6.13), (6.20) and (6.21),

M2 + Ig(0, T1, x, u) +M4 + 1 + (T − T1 − 1)(|f(xf , uf )|+ 4−1)

≥ Ig(0, T, y, v) + h(y(T ))

≥ −M1 + Ig(0, T, x, u) + h(x(T ))

≥ −M1 − a1 + Ig(0, T1, x, u) + (T − T1)(|f(xf , uf )|+ 2)

and
T2 − T1 = T − T1 ≤M2 +M4 + 1 + a1 < L0.

This contradicts (6.9).
In the case (b), it follows from (5.1), (6.7), (6.15) and (6.17) that

(6.22)

Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≥ Ig(0, T1, x, u)

+ Ig(T1, T, x, u)− a1 + ξ(x(0))

≥ Ig(0, T1, x, u)− a1

+ (T − T1)(|f(xf , uf )|+ 2) + ξ(x(0)),

by (6.11), (6,13), (6.16) and (6.19),

(6.23)

Ig(0, T, y, v) + h(y(T )) + ξ(y(0)) = Ig(0, T1, x, u) + Ig(T1, T, y, v)

+ h(xf ) + ξ(x(0))

≤ Ig(0, T1, x, u) + Ig(T1, T1 + 1, y, v)

+ Ig(T1 + 1, T, y, v) +M2 + ξ(x(0))

≤ Ig(0, T1, x, u) +M4 + 1

+

∫ T

T1+1
g(t, xf , uf )dt+M2 + ξ(x(0))

≤ Ig(0, T1, x, u) +M4 + 1

+ (T − T1 − 1)(|f(xf , uf )|+ 4−1)

+M2 + ξ(x(0)),

and in view of condition (b), (6.22) and (6.23),

Ig(0, T1, x, u) + ξ(x(0)) +M4 + 1 + (T − T1 − 1)(|f(xf , uf )|+ 4−1) +M2

≥ Ig(0, T, y, v) + h(y(T )) + ξ(y(0))

≥ −M1 + Ig(0, T, x, u) + h(x(T )) + ξ(x(0))

≥ −M1 + Ig(0, T1, x, u) + ξ(x(0))− a1 + (T − T1)(|f(xf , uf )|+ 2)

and by (6.17),

T2 − T1 = T − T1 ≤M1 + a1 +M4 + 1 +M2 < L0.

This contradicts (6.9).
Assume that

(6.24) T1 = 0, |x(T2)| =M3.

We need to consider only the case (b). By (6.3), (6.12), (6.14) and (6.24),

(6.25) |If (T2 − 1, T2, y, v)| = |σ(f, xf , x(T2), 1)| ≤M4.
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In view of the choice of U , (6.5), (6.7) and (6.25),

(6.26) Ig(T2 − 1, T2, y, v) ≤M4 + 1.

It follows from (5.1), (6.15) and (6.24) that

(6.27)

Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≥ Ig(0, T2, x, u) + Ig(T2, T, x, u)

+ h(x(T ))− a1

≥ h(x(T ))− a1 + Ig(T2, T, x, u)

+ T2(|f(xf , uf )|+ 2),

by (6.7), (6.12), (6.13), (6.16), (6.24) and (6.26),

(6.28)

Ig(0, T, y, v) + h(y(T )) + ξ(y(0)) = Ig(0, T2 − 1, y, v) + Ig(T2 − 1, T2, y, v)

+ Ig(T2, T, x, u) + h(x(T ))) + ξ(xf )

≤ (T2 − 1)(|f(xf , uf )|+ 4−1)

+M4 + 1 + Ig(T2, T, x, u)

+ h(x(T )) +M2.

It follows from (6.27) and (6.28) that

h(x(T ))−a1 + Ig(T2, T, x, u) + T2(|f(xf , uf )|+ 2)

≤ Ig(0, T, x, u) + h(x(T )) + ξ(x(0))

≤M1 + Ig(0, T, y, v) + h(y(T )) + ξ(y(0))

≤M1 + (T2 − 1)(|f(xf , uf )|+ 4−1)

+M4 + 1 + Ig(T2, T, x, u) + h(x(T )) +M2

and

T2 ≤ a1 +M1 +M4 + 1 +M2 < L0.

This contradicts (6.9).
Thus in all the cases we have reached the contradiction which shows that T2−T1 ≤

L0. Lemma 6.7 is proved. □

7. Proof of Theorem 5.1

By Lemma 6.7, there exist L0 > 0, M3 > M0 and a neighborhood U1 of F in Mb

such that the following property holds:
(P1) for each T ≥ L0, each g ∈ U1, each h, ξ ∈ A satisfying

|h(xf )|, |ξ(xf )| ≤M2,

each (x, u) ∈ X(A,B, 0, T ) and each T1, T2 ∈ [0, T ] which satisfies T1 < T2 and
satisfies at least one of the following conditions below

(i) |x(0)| ≤M0, Ig(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) +M1,
|x(t)| ≥M3, t ∈ [T1, T2], T2 = T, |x(T1)| =M3;

(ii) Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≤ σ(g, h, ξ, 0, T ) +M1

|x(t)| ≥M3, t ∈ [T1, T2]
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and either T1 = 0, |x(T2)| =M3 or T2 = T, |x(T1)| =M3 or T1 = 0, T2 = T ,
then T2 − T1 ≤ L0.
By Theorem 4.3, there exist l > L0, an integer Q > 2 and a neighborhood U ⊂ U1

of F in Mb such that the following property holds:
(P2) for each T > l(Q − 2), each g ∈ U and each (x, u) ∈ X(A,B, 0, T ) which

satisfies
|x(0)|, |x(T )| ≤M3,

Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}
q
i=1 ⊂ [0, T ] such

that q ≤ Q− 2, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Assume that

(7.1) T > lQ, g ∈ U , h, ξ ∈ A, |h(xf )|, |ξ(xf )| ≤M2

and (x, u) ∈ X(A,B, 0, T ) satisfies at least one of the conditions (a), (b) of Theorem
5.1.

Assume that (a) holds. Set T1 = 0,

(7.2) T2 = sup{t ∈ [0, T ] : |x(t)| ≤M3}.
In view of (a) and the relationM3 > M0, T2 is well-defined. Property (P1), condition
(a), (7.1), (7.2) and the inequality l > L0 imply that

(7.3) T − T2 ≤ L0.

In view of condition (a),

(7.4) Ig(T1, T2, x, u) ≤ σ(g, x(T1), x(T2), T1, T2) +M1.

Assume that (b) holds. If |x(t)| ≥M3 for all t ∈ [0, T ], then by (7.1) and property
(P1), T ≤ L0 < l, a contradiction. Thus there exists t0 ∈ [0, T ] such that

|x(t0)| < M3.

Set
T1 = min{t ∈ [0, T ] : |x(t)| ≤M3},

(7.5) T2 = max{t ∈ [0, T ] : |x(t)| ≤M3}.
Clearly, T1, T2 are well-defined and T1 < T2. Relations (7.1) and (7.5) imply that

(7.6) T1 ≤ L0, T − T2 ≤ L0.

By (7.5), (7.6) and condition (b),

(7.7) Ig(T1, T2, x, u) ≤ σ(g, x(T1), x(T2), T1, T2) +M1.

Hence (7.7) is true in the both cases. In view of (7.1), (7.7) and property (P2),
there exist strictly increasing sequences of numbers {ai}qi=1, {bi}

q
i=1 ⊂ [T1, T2] such

that q ≤ Q− 2, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l,
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bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ ϵ for all t ∈ [T1, T2] \ ∪q
i=1[ai, bi].

This completes the proof of Theorem 5.1.

8. Proof of Theorem 5.2

By Theorem 4.2, there exist L0 > 0, δ ∈ (0, ϵ) and a neighborhood U1 of F in
Mb such that the following property holds:

(P3) For each T > 2L0, each g ∈ U1 and each (x, u) ∈ X(A,B, 0, T ) which
satisfies for each S ∈ [0, T − L0],

Ig(S, S + L0, x, u) ≤ σ(g, x(S), x(S + L0), S, S + L0) + δ

and satisfies

Ig(0, T, x, u) ≤ σ(g, x(0), x(T ), 0, T ) +M1,

|x(0)− xf | ≤ δ, |x(T )− xf | ≤ δ

we have

|x(t)− xf | ≤ ϵ for all t ∈ [0, T ].

By Theorem 5.1, there exist l0 > 0, an integer Q ≥ 1 and a neighborhood U ⊂ U1

of F in Mb such that the following property holds:
(P4) for each T > l0Q, each g ∈ U , each h, ξ ∈ A satisfying

|h(xf )|, |ξ(xf )| ≤M2

and each (x, u) ∈ X(A,B, 0, T ) which satisfies at least one of the following condi-
tions below

|x(0)| ≤M0, I
g(0, T, x, u) + h(x(T )) ≤ σ(g, h, x(0), 0, T ) +M1;

Ig(0, T, x, u) + h(x(T )) + ξ(x(0)) ≤ σ(g, h, ξ, 0, T ) +M1

there exist strictly increasing sequences of numbers {ai}qi=1, {bi}
q
i=1 ⊂ [0, T ] such

that q ≤ Q, for all i = 1, . . . , q,

0 ≤ bi − ai ≤ l0,

bi ≤ ai+1 for all integers i satisfying 1 ≤ i < q and that

|x(t)− xf | ≤ δ for all t ∈ [0, T ] \ ∪q
i=1[ai, bi].

Set

(8.1) L = 2L0 + 2l0Q.

Assume that

(8.2) T > 2L, g ∈ U , h, ξ ∈ A

satisfy

(8.3) |h(xf )|, |ξ(xf )| ≤M2,

(x, u) ∈ X(A,B, 0, T ) satisfies for each S ∈ [0, T − L],

(8.4) Ig(S, S + L, x, u) ≤ σ(g, x(S), x(S + L), S, S + L) + δ
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and satisfies at least one of the conditions (a), (b) of Theorem 5.2. By (8.1),
(8.3), (8.21), property (P4) and conditions (a), (b) of Theorem 5.2 there exist
S1, S2 ∈ [0, T ] such that

(8.5) S1 ≤ Ql0, S2 ≥ T −Ql0,

(8.6) |x(Si)− xf | ≤ δ, i = 1, 2.

In view of (8.1), (8.2) and (8.5),

(8.7) S2 − S1 ≥ 2L− 2Ql0 > L > 2L0.

If |x(0) − xf | ≤ δ, we may assume that S1 = 0 and if |x(T ) − xf | ≤ δ, we may
assume that S2 = T . It follows from (8.1)-(8.4), (8.6), (8.7), conditions (a), (b) and
property (P3) that

|x(t)− xf | ≤ ϵ, t ∈ [S1, S2].

Theorem 5.2 is proved.

9. Auxiliary results for Theorem 5.3

The following result easily follows from Proposition 3.3.

Lemma 9.1. Let h ∈ A. Then the function πf + h is lower semicontinuous and
bounded from below, for every number M the set

{z ∈ Rn : (πf + h)(z) ≤M}
is bounded and there exists z∗ ∈ Rn satisfying

(πf + h)(z∗) = inf(πf + h).

Lemma 9.2. Let h ∈ A, S0 > 0, ϵ ∈ (0, 1). Then there exists δ ∈ (0, ϵ) such that
for each (x, u) ∈ X(A,B, 0, S0) which satisfies

(πf + h)(x(0)) ≤ inf(πf + h) + δ,

If (0, S0, x, u)− S0µ(f)− πf (x(0)) + πf (x(S0)) ≤ δ

there exists an (f,A,B)-overtaking optimal pair (x∗, u∗) ∈ X(A,B, 0,∞) such that

(πf + h)(x∗(0)) = inf(πf + h),

|x(t)− x∗(t)| ≤ ϵ for all t ∈ [0, S0].

Proof. Assume that the lemma does not hold. Then there exist a sequence {δk}∞k=1 ⊂
(0, 1] and a sequence {(xk, uk)}∞k=1 ⊂ X(A,B, 0, S0) such that

(9.1) lim
k→∞

δk = 0

and that for all integer k ≥ 1,

(9.2) (πf + h)(xk(0)) ≤ inf(πf + h) + δk,

(9.3) If (0, S0, xk, uk)− S0µ(f)− πf (xk(0)) + πf (xk(S0)) ≤ δk

and that the following property holds:
(i) for each (f,A,B)-overtaking optimal pair (y, v) ∈ X(A,B, 0,∞) satisfying

(πf + h)(y(0)) = inf(πf + h)
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we have
sup{|xk(t)− y(t)| : t ∈ [0, S0]} > ϵ.

In view of (9.2) and (9.3) and the boundedness from below of the functions πf , h
the sequences {πf (xk(0))}∞k=1, {h(xk(0))}∞k=1, {If (0, S0, xk, uk)}∞k=1 are bounded.
By Proposition 6.4, extracting a subsequence and re-indexing if necessary, we may
assume without loss of generality that there exists (x, u) ∈ X(A,B, 0, S0) such that

(9.4) xk(t) → x(t) as k → ∞ uniformly on [0, S0],

(9.5) If (0, S0, x, u) ≤ lim inf
k→∞

If (0, S0, xk, uk).

It follows from (9.2), (9.4) and the lower semicontinuity of πf , h that

πf (x(0)) ≤ lim inf
k→∞

πf (xk(0)), h(x(0)) ≤ lim inf
k→∞

h(xk(0)),

(9.6) (πf + h)(x(0)) ≤ lim inf
k→∞

(πf + h)(xk(0)) = inf(πf + h).

In view of (9.2) and (9.6),

(9.7) πf (x(0)) = lim
k→∞

πf (xk(0)), h(x(0)) = lim
k→∞

h(xk(0)).

By (9.4) and the lower semicontinuity of πf ,

(9.8) πf (x(S0)) ≤ lim inf
k→∞

πf (xk(S0)).

It follows from (9.1), (9.3), (9.5) and (9.7) that

If (0, S0, x, u)− S0µ(f)− πf (x(0)) + πf (x(S0))

≤ lim inf
k→∞

[If (0, S0, xk, uk)− S0µ(f)]− lim
k→∞

πf (xk(0)) + lim inf
k→∞

πf (xk(S0))

≤ lim inf
k→∞

[If (0, S0, xk, uk)− S0µ(f)− πf (xk(0)) + πf (xk(S0))] ≤ 0.

In view of the inequality above and Proposition 3.1,

(9.9) If (0, S0, x, u)− S0µ(f)− πf (x(0)) + πf (x(S0)) = 0.

Theorem 2.2 implies that there exists an (f,A,B)-overtaking optimal pair (x̃, ũ) ∈
X(A,B, 0,∞) such that

(9.10) x̃(0) = x(S0).

For all t > S0 set

(9.11) x(t) = x̃(t− S0), u(t) = ũ(t− S0).

It is not difficult to see that the pair (x, u) ∈ X(A,B, 0,∞) is an (f,A,B)-good
pair. By (9.11), (9.9) and Propositions 3.1 and 3.2,

If (0, S, x, u)− Sµ(f)− πf (x(0)) + πf (x(S)) = 0 for all S > 0.

Combined with Proposition 3.5 and (9.6) this implies that

(x, u) ∈ X(A,B, 0,∞)

is an (f,A,B)-overtaking optimal pair satisfying

(πf + h)(x(0)) = inf(πf + h).
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By (9.4), for all sufficiently large natural numbers k,

|xk(t)− x(t)| ≤ ϵ/2 for all t ∈ [0, S0].

This contradicts the property (i). The contradiction we have reached proves Lemma
9.2. □

Note that Lemma 9.2 can also be applied for the triplet (f,−A,−B).
Assume that S1 ∈ R1, S2 > S1 and g ∈ M. For each (x, u) ∈ Rn ×Rm and each

t ∈ [S1, S2] set

(9.12) LS1,S2(g)(t, x, u) = g(S2 − t+ S1, x, u),

for each (t, x, u) ∈ (−∞, S1)×Rn ×Rm set

LS1,S2(g)(t, x, u) = LS1,S2(g)(S1, x, u)

and for each (t, x, u) ∈ (S2,∞)×Rn ×Rm set

LS1,S2(g)(t, x, u) = LS1,S2(g)(S2, x, u).

It is clear that LS1,S2(g) ∈ M, if g ∈ Mb, then LS1,S2(g) ∈ Mb and that LS1,S2 is a
self-mapping of M and of Mb.

It is not difficult to see that the following result holds.

Proposition 9.3 (Proposition 4.10 of [45]). Let V be a neighborhood of F in M.
Then there exists a neighborhood U of F in M such that LS1,S2(g) ∈ V for each
g ∈ U , each S1 ∈ R1 and each S2 > S1.

Let S1 ∈ R1, S2 > S1, g ∈ M and

(x, u) ∈ X(A,B, S1, S2) (X(−A,−B,S1, S2) respectively).
Recall that

(9.13) x̄(t) = x(S2 − t+ S1), ū(t) = u(S2 − t+ S1), t ∈ [S1, S2].

In view of (9.12) and (9.13),

(9.14)

∫ S2

S1

LS1,S2(g)(t, x̄(t), ū(t))dt

=

∫ S2

S1

g(S2 − t+ S1, x(S2 − t+ S1), u(S2 − t+ S1))dt

=

∫ S2

S1

g(t, x(t), u(t))dt.

Let T2 > T1 be a pair of real numbers, y, z ∈ Rn, h, ξ ∈ A and g ∈ Mb. For each
(x, u) ∈ X(−A,−B, T1, T2) set

Ig(T1, T2, x, u) =

∫ T2

T1

g(t, x(t), u(t))dt

and set

σ−(g, h, ξ, y, z, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2)) + ξ(x(T1)) :

(9.15) (x, u) ∈ X(−A,−B, T1, T2) and x(T1) = y, x(T2) = z},
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σ−(g, h, y, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2)) :

(9.16) (x, u) ∈ X(−A,−B, T1, T2) and x(T1) = y},

σ̂−(g, ξ, z, T1, T2) = inf{Ig(T1, T2, x, u) + ξ(x(T1)) :

(9.17) (x, u) ∈ X(−A,−B, T1, T2) and x(T2) = z},

σ−(g, h, ξ, T1, T2) = inf{Ig(T1, T2, x, u) + h(x(T2)) + ξ(x(T1)) :

(9.18) (x, u) ∈ X(−A,−B, T1, T2)}.

Relations (9.14) implies the following result.

Proposition 9.4. Let S2 > S1 be real numbers, M ≥ 0, g ∈ Mb and that (xi, ui) ∈
X(A,B, S1, S2), i = 1, 2. Then

Ig(S1, S2, x1, u1) ≥ Ig(S1, S2, x2, u2)−M

if and only if

I ḡ(S1, S2, x̄1, ū1) ≥ I ḡ(S1, S2, x̄2, ū2)−M,

where ḡ = LS1,S2(g).

Proposition 9.4 implies the following result.

Proposition 9.5. Let S2 > S1 be real numbers, M ≥ 0, g ∈ Mb, ḡ = LS1,S2(g),
h, ξ ∈ A and

(x, u) ∈ X(A,B, S1, S2).

Then the following assertions hold:

Ig(S1, S2, x, u) + h(x(S2)) + ξ(x(S1)) ≤ σ(g, h, ξ, S1, S2) +M

if and only if

I ḡ(S1, S2, x̄, ū) + h(x̄(S1)) + ξ(x̄(S2)) ≤ σ−(ḡ, ξ, h, S1, S2) +M ;

Ig(S1, S2, x, u) + h(x(S2)) ≤ σ(g, h, x(S1), S1, S2) +M

if and only if

I ḡ(S1, S2, x̄, ū) + h(x̄(S1)) ≤ σ̂−(ḡ, x̄(S2), S1, S2) +M ;

Ig(S1, S2, x, u) + h(x(S1)) ≤ σ̂(g, h, x(S2), S1, S2) +M

if and only if

I ḡ(S1, S2, x̄, ū) + h(x̄(S2)) ≤ σ−(ḡ, h, x̄(S1), S1, S2) +M.
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10. Proof of Theorem 5.3

Lemma 10.1. Let L0 > 0, γ ∈ (0, 1), M > 0 and h ∈ A. Then there exist δ > 0, a
neighborhood U of F in Mb, a neighborhood V of h in A and L1 > L0 such that for
each T ≥ L1, each g ∈ U , each ξ ∈ V and each (x, u) ∈ X(A,B, 0, T ) which satisfies

|x(0)| ≤M,

Ig(0, T, x, u) + ξ(x(T )) ≤ σ(g, ξ, x(0), 0, T ) + δ

the pair of functions

(10.1) x̃(t) = x(T − t), ũ(t) = u(T − t), t ∈ [0, T ]

satisfies
(x̃, ũ) ∈ X(−A,−B, 0, T ),

(πf− + h)(x̃(0)) ≤ inf(πf− + h) + γ

and
If (0, L0, x̃, ũ)− L0µ(f)− πf−(x̃(0)) + πf−(x̃(L0)) ≤ γ.

Proof. In view of Propositions 3.3, 3.8 and 6.5, there exists δ1 ∈ (0, γ/4) such that:
for each z ∈ Rn satisfying |z − xf | ≤ 2δ1,

(10.2) |πf−(z)| = |πf−(z)− πf−(xf )| ≤ γ/8;

for each y, z ∈ Rn satisfying

|y − xf | ≤ 2δ1, |z − xf | ≤ 2δ1

we have

(10.3) |σ(f, y, z, 1)− µ(f)| ≤ γ/8.

By Theorem 5.2, there exist l0 > 0, δ2 ∈ (0, δ1/8), a neighborhood U1 of F in Mb

and a neighborhood V1 of h in A such that the following property holds:
(P5) for each T > 2l0, each g ∈ U1, each ξ ∈ V1 and each

(x, u) ∈ X(A,B, 0, T )

such that
|x(0)| ≤M,

Ig(0, T, x, u) + ξ(x(T )) ≤ σ(g, ξ, x(0), 0, T ) + δ2

we have

(10.4) |x(t)− xf | ≤ δ1 for all t ∈ [l0, T − l0].

By Theorem 2.2, there exists an (f,−A,−B)-overtaking optimal pair

(x̄∗, ū∗) ∈ X(−A,−B, 0,∞)

such that

(10.5) (πf− + h)(x̄∗(0)) = inf(πf− + h).

Assumption (A3) implies that there exists l1 > 0 such that

(10.6) |x̄∗(t)− xf | ≤ δ1 for all t ≥ l1.

By Proposition 6.3, there exists a neighborhood U ⊂ U1 of F in Mb such that
the following property holds:
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(P6) for each g ∈ U , each T1 ∈ R1, each T2 ∈ [T1 + 1, T1 + 2L0 + 2l0 + 2l1 + 4]
and each trajectory-control pair (x, u) ∈ X(A,B, T1, T2) which satisfies

min{If (T1, T2, x, u), Ig(T1, T2, x, u)} ≤ (|µ(f)|+ 2)(2L0 + 2l0 + 2l1 + 6) + 2

+ |πf−(x̄∗(0))|+ |h(x̄∗(0))|+ a1

the inequality
|If (T1, T2, x, u)− Ig(T1, T2, x, u)| ≤ δ2/8

holds.
By Proposition 6.6, there exists ∆0 > 0 such that such that the following property

holds:
(P7) for each T1 ∈ R1, each T2 ∈ [T1 + 1, T1 + 2L0 + 2l0 + 2l1 + 4] and each

(x, u) ∈ X(A,B, T1, T2) satisfying

If (T1, T2, x, u) ≤ (|µ(f)|+ 2)(2L0 + 2l0 + 2l1 + 6)

+ 2|πf−(x̄∗(0))|+ |h(x̄∗(0))|+ a1 + 4

the inequality |x(t)| ≤ ∆0 holds for all t ∈ [T1, T2].
Let

V = {ξ ∈ V1 : |ξ(z)− h(z)| ≤ δ1/16

(10.6) for all z ∈ Rn satisfying |z| ≤ 2 + |x̄∗(0)|+∆0}.
Choose δ > 0 and L1 > 0 such that

(10.7) δ ≤ δ2/4, L1 ≥ 2L0 + 2l0 + 2l1 + 4.

Assume that

(10.8) T ≥ L1, g ∈ U , ξ ∈ V, (x, u) ∈ X(A,B, 0, T ),

(10.9) |x(0)| ≤M,

(10.10) Ig(0, T, x, u) + ξ(x(T )) ≤ σ(g, ξ, x(0), 0, T ) + δ

and that (x̃, ũ) is defined by (10.1).
It follows from property (P5), (10.10) and (10.6)-(10.8) that relation (10.4) is

true. By (10.7) and (10.8),

(10.11) [T − l0 − l1 − L0 − 4, T − l0 − l1 − L0] ⊂ [l0, T − l0 − l1 − L0].

Relations (10.4) and (10.11) imply that

(10.12) |x(t)− xf | ≤ δ1 for all t ∈ [T − l0 − l1 − L0 − 4, T − l0 − l1 − L0].

By Proposition 6.1, there exists a trajectory-control pair

(x1, u1) ∈ X(A,B, 0, T )

such that
x1(t) = x(t), u1(t) = u(t), t ∈ [0, T − l0 − l1 − L0 − 4],

x1(t) = x̄∗(T − t), u1(t) = ū∗(T − t), t ∈ [T − l0 − l1 − L0 − 3, T ],

If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1)

(10.13) = σ(f, x(T − l0 − l1 − L0 − 4), x̄∗(l0 + l1 + L0 + 3), 1).
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It follows from (10.10) and (10.13) that

(10.14)

−δ ≤ Ig(0, T, x1, u1) + ξ(x1(T ))− (Ig(0, T, x, u) + ξ(x(T ))

= Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1)

+ Ig(T − l0 − l1 − L0 − 3, T, x1, u1) + ξ(x1(T ))

− Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u)

− Ig(T − l0 − l1 − L0 − 3, T, x, u)− ξ(x(T )).

It follows from (10.3), (10.6), (10.12) and (10.13) that

(10.15)

If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1)

= σ(f, x(T − l0 − l1 − L0 − 4), x̄∗(l0 + l1 + L0 + 3), 1)

≤ µ(f) + γ/8.

Together with (10.8) and property (P6) this implies that

(10.16)

Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1)

≤ If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1) + δ2/8

≤ µ(f) + γ/8 + δ2/8.

By (10.3) and (10.12),

(10.17)

If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u)

≥ σ(f, x(T − l0 − l1 − L0 − 4), x(T − l0 − l1 − L0 − 3), 1)

≥ µ(f)− γ/8.

We show that

(10.18) Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u) ≥ µ(f)− γ/2.

Assume the contrary. Then

(10.19) Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u) < µ(f)− γ/2.

By property (P6), (10.8) and (10.19),

If (T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u)

≤ Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u) + δ2/8

< µ(f)− γ/2 + δ2/8 < µ(f)− 3γ/8.

This contradicts (10.17). The contradiction we have reached proves (10.18).
By (10.14), (10.16) and (10.18),

(10.20)

Ig(T − l0 − l1 − L0 − 3, T, x1, u1) + ξ(x1(T ))

− Ig(T − l0 − l1 − L0 − 3, T, x, u)− ξ(x(T ))

≥ −δ − Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x1, u1)

+ Ig(T − l0 − l1 − L0 − 4, T − l0 − l1 − L0 − 3, x, u)

≥ −δ + µ(f)− γ/2− µ(f)− γ/8− δ2/8

≥ −δ − γ/2− γ/8− δ2/8.
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In view of (10.6) and the choice of δ1 (see (10.2)),

(10.21) |πf−(x̄∗(l0 + l1 + L0 + 3))| ≤ γ/8.

Since (x̄∗, ū∗) is an (f,−A,−B)-overtaking optimal pair it follows from (3.6), (10.13)
and Proposition 3.2 that

(10.22)

If (T − l0 − l1 − L0 − 3, T, x1, u1) = If (0, l0 + l1 + L0 + 3, x̄∗, ū∗)

= µ(f)(l0 + l1 + L0 + 3)

+ πf−(x̄∗(0))

− πf−(x̄∗(l0 + l1 + L0 + 3)).

Combined with (10.21) this implies that

(10.23) If (T − l0− l1−L0−3, T, x1, u1) ≤ πf−(x̄∗(0))+µ(f)(l0+ l1+L0+3)+γ/8.

By (P6), (10.8) and (10.23),

(10.24)

Ig(T − l0 − l1 − L0 − 3, T, x1, u1) ≤ If (T − l0 − l1 − L0 − 3, T, x1, u1)

+ δ2/8

≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ γ/8 + δ2/8.

It follows from (10.6)-(10.8), (10.13), (10.20) and (10.24) that

(10.25)

Ig(T − l0 − l1 − L0 − 3, T, x, u) + ξ(x(T ))

≤ Ig(T − l0 − l1 − L0 − 3, T, x1, u1)

+ ξ(x1(T )) + δ + δ2/8 + (5/8)γ

≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ ξ(x1(T )) + δ2/8 + δ + δ2/8 + (3/4)γ

≤ µ(f)(l0 + l1 + L0 + 3) + πf−(x̄∗(0))

+ ξ(x̄∗(0)) + δ1/16 + (3/4)γ

≤ µ(f)(l0 + l1 + L0 + 3) + πf−(x̄∗(0))

+ h(x̄∗(0)) + δ1/8 + (3/4)γ.

By (5.1), (10.8) and (10.25),

(10.26)

Ig(T − l0 − l1 − L0 − 3, T, x, u) ≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ h(x̄∗(0))

+ δ1/8 + (3/4)γ + a1.

Property (P6), (10.8) and (10.26) imply that

(10.27) |Ig(T − l0 − l1 −L0 − 3, T, x, u)− If (T − l0 − l1 −L0 − 3, T, x, u)| ≤ δ2/8.

In view of (10.26) and (10.27),

(10.28)
If (T − l0 − l1 − L0 − 3, T, x, u) ≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ h(x̄∗(0)) + a1 + 4.
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Property (P7) and (10.28) imply that

(10.29) |x(t)| ≤ ∆0, t ∈ [T − l0 − l1 − L0 − 3, T ].

By (10.6), (10.8) and (10.29),

(10.30) |h(x(T ))− ξ(x(T ))| ≤ δ1/16.

It follows from (10.25), (10.27) and (10.30) that

(10.31)

If (T − l0 − l1 − L0 − 3, T, x, u) + h(x(T ))

≤ Ig(T − l0 − l1 − L0 − 3, T, x, u)

+ ξ(x(T )) + δ2/8 + δ1/16

≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ h(x̄∗(0)) + (3/4)γ + δ1/2.

It is clear that (x̃, ũ) ∈ X(−A,−B, 0, T ) and by (3.6), (10.1) and (10.31),

(10.32)

If (0, l0 + l1 + L0 + 3, x̃, ũ) + h(x̃(0))

= If (T − l0 − l1 − L0 − 3, T, x, u) + h(x(T ))

≤ πf−(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ h(x̄∗(0)) + (3/4)γ + δ1/2.

In view of (10.1) and (10.12),

|x̃(l0 + l1 + L0 + 3)− xf | ≤ δ1.

By the relation above and the choice of δ1 (see (10.2)),

(10.33) |πf−(x̃(l0 + l1 + L0 + 3))| ≤ γ/8.

By (10.32), (10.33), (f,−A,−B)-overtaking optimality of (x̄∗, ū∗) and Proposition
3.1, which implies that the function

If (0, s, x̃, ũ)− sµ(f)− πf−(x̃(0)) + πf−(x̃(s)), s ∈ (0,∞)

is increasing, we have

(πf− + h)(x̃(0))− (πf− + h)(x̄∗(0)) + If (0, L0, x̃, ũ)

− L0µ(f)− πf−(x̃(0)) + πf−(x̃(L0))

≤ (πf− + h)(x̃(0))− (πf− + h)(x̄∗(0)) + If (0, l0 + l1 + L0 + 3, x̃, ũ)

− µ(f)(l0 + l1 + L0 + 3)− πf−(x̃(0)) + πf−(x̃(l0 + l1 + L0 + 3))

≤ πf−(x̃(0))− πf−(x̄∗(0))− h(x̄∗(0)) + µ(f)(l0 + l1 + L0 + 3)

+ πf−(x̄∗(0)) + h(x̄∗(0)) + (3/4)γ + δ1/2− µ(f)(l0 + l1 + L0 + 3)

− πf−(x̃(0)) + πf−(x̃(l0 + l1 + L0 + 3))

≤ (3/4)γ + δ1/2 + γ/8 ≤ γ.

It follows from the relation above, (10.5) and Proposition 3.1 that

(πf− + h)(x̃(0)) ≤ (πf− + h)(x̄∗(0)) + γ = inf(πf− + h) + γ,
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If (0, L0, x̃, ũ)− L0µ(f) + πf−(x̃(0)) + πf−(x̃(L0)) ≤ γ.

Lemma 10.1 is proved. □
Completion of the proof of Theorem 5.3
By Lemma 9.2 applied to the triplet (f,−A−B) there exist

γ ∈ (0, ϵ/4)

such that the following property holds:
(P8) for each (x, u) ∈ X(−A,−B, 0, L0) which satisfies

(πf− + h)(x(0)) ≤ inf(πf− + h)) + γ,

If (0, L0, x, u)− L0µ(f)− πf−(x(0)) + πf−(x(L0)) ≤ γ

there exists an (f,−A,−B)-overtaking optimal pair

(x∗, u∗) ∈ X(−A,−B, 0,∞)

such that

(10.34) (πf− + h)(x∗(0)) = inf(πf− + h),

(10.35) |x(t)− x∗(t)| ≤ ϵ holds for all t ∈ [0, L0].

By Lemma 10.1, there exist δ > 0, a neighborhood U of F in Mb, a neighborhood
V of h in A and a number L1 > L0 such that the following property holds:

(P9) for each T ≥ L1, each g ∈ U , each ξ ∈ V and each

(x, u) ∈ X(A,B, 0, T )

which satisfies

(10.36) |x(0)| ≤M, Ig(0, T, x, u) + ξ(x(T )) ≤ σ(g, ξ, x(0), 0, T ) + δ,

the pair of functions

(10.37) x̃(t) = x(T − t), ũ(t) = u(T − t), t ∈ [0, T ]

satisfies

(10.38) (x̃, ũ) ∈ X(−A,−B, 0, T ),

(10.39) (πf− + h)(x̃(0)) ≤ inf(πf− + h) + γ

and

(10.40) If (0, L0, x̃, ũ)− L0µ(f)− πf−(x̃(0)) + πf−(x̃(L0)) ≤ γ.

Let
T ≥ L1, g ∈ U , ξ ∈ V, (x, u) ∈ X(A,B, 0, T )

satisfy (10.36) and let x̃, ũ be defined by (10.37). Property (P9) imply (10.38)-
(10.40). By relations (10.38)-(10.40) and property (P8), there exists an (f,−A,−B)-
overtaking optimal pair

(x∗, u∗) ∈ X(−A,−B, 0,∞)

such that (10.34) holds and

|x̃(t)− x∗(t)| ≤ ϵ holds for all t ∈ [0, L0].
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Together with (10.37) this implies that

|x(T − t)− x∗(t)| ≤ ϵ holds for all t ∈ [0, L0].

Theorem 5.3 is proved.

11. Proof of Theorem 5.4

Theorems 5.2 and 5.3 imply the following result.

Theorem 11.1. Let L0 > 0, ϵ > 0, h1, h2 ∈ A. Then there exist δ > 0, a
neighborhood U of F in Mb, a neighborhood Vi of hi, i = 1, 2 in A and L1 > L0

such that for each T ≥ L1, each g ∈ U , each ξi ∈ Vi, i = 1, 2 and each (x, u) ∈
X(A,B, 0, T ) which satisfies

Ig(0, T, x, u) + ξ1(x(T )) + ξ2(x(0)) ≤ σ(g, ξ1, ξ2, 0, T ) + δ

there exists an (f,−A,−B)-overtaking optimal pair

(x̄∗, ū∗) ∈ X(−A,−B, 0,∞)

such that

(πf− + h1)(x̄∗(0)) = inf(πf− + h1)

and for all t ∈ [0, L0],

|x(T − t)− x̄∗(t)| ≤ ϵ.

Note that Theorem 5.3 is applied to the restriction of (x, u) to the interval [L, T ]
with L as in Theorem 5.2.

Theorem 5.4 easily follows from Theorem 11.1 and Proposition 9.3.
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