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Problem 1.2 (LLP(y)).

Minimize φ(x(T ))(1.6)

subject to ẋ(t) = f(x(t), u(t)) a.e. in (0, T ),(1.7)

u(t) ∈ U a.e. in (0, T ),(1.8)

x(0) = x0,(1.9)

ψ(x(T ), y) = 0.(1.10)

The functions in ULP and LLP (y) are defined as follows:

Φ : Rnx × Rny → R, φ : Rnx → R,
F : Rnx × Rny × Rnv → Rny , f : Rnx × Rnu → Rnx ,
ψ : Rnx × Rny → Rnψ .

Moreover, V ⊂ Rnv and U ⊂ Rnu are given control sets, the final time T > 0 is
supposed to be fixed, and y0 ∈ Rny and x0 ∈ Rnx are given vectors.

Bilevel optimal control problems occur in various applications, e.g. in locomotion
and biomechanics, see [1, 2, 16, 20], in optimal control under safety constraints, see
[13, 18, 19], or in Stackelberg dynamic games, compare [24, 12].

Bilevel optimization problems turn out to be very challenging with regard to
both, the investigation of theoretical properties and numerical methods, compare
[10]. Necessary conditions have been investigated, e.g., in [11, 27]. Typical solution
approaches aim at reducing the bilevel structure into a single stage optimization
problem, where the lower level problem is replaced by its first order necessary op-
timality conditions, compare [1, 4, 31]. The reduction is equivalent only when the
lower level problem is convex, since in that case the first order necessary conditions
are also sufficient. Furthermore, the reduction to a single stage problem leads to
an increase of the dimensions of the problem, since minimization is performed on
the original states as well as on the multipliers, and to complementarity constrains.
Nevertheless, this approach is often used, especially for finite dimensional prob-
lems, owing to a well-established theory and the availability of numerical methods
for mathematical programs with complementarity constraints.

In this paper, we focus on an equivalent transformation of the bilevel problem
to a single level one. To this end we exploit the value function of the lower level
problem, compare [9, 21, 27, 30]. It has been shown in [27, 30] that the reduced
problem is equivalent to the original bilevel optimal control problem. The drawback
is that the value function is nonsmooth, even in the case where the problem data
is smooth. We prove the Lipschitz continuity of the value function and a repre-
sentation of its subgradient by means of the Lagrange multipliers of the lower level
problem (compare Theorem 2.2). This enables us to formulate a nonsmooth mini-
mum principle, taylored to the reformulated single level problem (see Problem 3.1),
together with conditions for normality of the solution (Theorem 3.3). Finally, we
provide a numerical example in which the nonsmoothness effect of the value function
is emphasized and the optimal solution is found by means of necessary optimality
conditions.
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Let us first define the value function for the lower level problem. For a given
y ∈ Rny , let A(y) denote the set of admissible controls for LLP (y), i.e.

A(y) :=

{
u ∈ L∞([0, T ], U)

∣∣∣∣ ∃ xu ∈W 1,∞([0, T ],Rnx) such that
(1.7)-(1.10) are satisfied

}
.

Then the value function, related to LLP (y), is defined as

(1.11) V(y) := inf
u∈A(y)

φ(xu(T ))

with the convention inf ∅ := +∞. The value function provides the best cost that
can be achieved, given the parameter y. Throughout this paper, we will assume that
the following assumptions hold:

(A1) The functions Φ, F, φ and f are continuously differentiable and ψ is twice
continuously differentiable with respect to all arguments.

(A2) V and U are compact and convex subsets of Rnv and Rnu respectively.
(A3) There exists an integrable function k : [0, T ] → R such that

∥f(x, u)∥ ≤ k(t)(1 + ∥x∥) ∀ (t, x, u) ∈ [0, T ]× Rnx × U.

(A4) f(x,U) is a convex subset of Rnx for every x ∈ Rnx .
(A5) ∇yψ(x, y) has a full rank for every (x, y) ∈ Rnx × Rny .

Finally, we say that (x, u) is a local minimum of LLP (y) if (x, u) satisfies (1.7)-
(1.10) and there exists C > 0, such that for any (x′, u′) satisfying (1.7)-(1.10)
and max

{
∥x− x′∥W 1,∞ , ∥u− u′∥L∞

}
≤ C it holds φ(x(T )) ≤ φ(x′(T )). The global

minimum principle, see [14, Theorem 7.1.6], implies that if (x, u) is a local solution of
LLP (y), then there exist nontrivial multipliers λ0 ≥ 0, (λ, σ) ∈W 1,∞([0, T ],Rnx)×
Rnψ such that

λ̇(t) = −∇xf(x(t), u(t))
⊤λ(t) a.e. in (0, T )(1.12)

min
u∈U

{
λ(t)⊤f(x(t), u)

}
= λ(t)⊤f(x(t), u(t)) a.e. in (0, T )(1.13)

λ(T ) = λ0∇φ(x(T )) +∇xψ(x(T ), y)
⊤σ.(1.14)

We will refer to (λ0, λ, σ) as (Lagrange) multipliers associated with (x, u). The
multiplier λ0 can be normalized to one, if a constraint qualification is satisfied. In
the sequel we assume throughout that the lower level problem LLP (y) satisfies a
constraint qualification.

Remark 1.3. Note that in LLP (y), we have assumed that the objective function
in (1.6) is of Mayer-type (i.e. depends only of the state at the final time T ). In

fact, in case an additional Lagrange term
∫ T
0 l(x(t), u(t))dt is present in (1.6), it is

sufficient to introduce the new state variable ξ with ξ̇(t) = l(x(t), u(t)) in (0, T ) and
ξ(0) = 0, in order to obtain

φ(x(T )) +

∫ T

0
l(x(t), u(t))dt = φ(x(T )) + ξ(T ).

The same observation holds also for ULP.
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2. Differentiability of the value function

Let us now focus on the differentiability of the value function, defined in (1.11).
First, we need to introduce the notion of proximal, limiting and generalized subgra-
dients, compare [5, 6]. Let X be a general Hilbert space, let f : X → R ∪ {+∞}
be a lower semicontinuous functional and let x ∈ X be a point, where f is finite.
A vector ζ ∈ X is called proximal subgradient of f at x if and only if there exist
M, δ > 0 such that

f(x′)− f(x) +M∥x′ − x∥2 ≥ ⟨ζ, x′ − x⟩ ∀ x′ ∈ Bδ(x).

The set of all proximal subgradients of f at x is denoted with ∂P f(x). The limiting
subgradient of f at x is the set

∂Lf(x) :=

{
weak lim

i→+∞
ζi

∣∣ ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)

}
.

Assume now that f is Lipschitz continuous in x and let v be any other vector in X.
The generalized directional derivative of f at x in the direction v is defined as

f◦(x; v) := lim sup
x′→x t↘0

f(x′ + tv)− f(x′)

t
.

Finally, the generalized gradient of f at x is the subset of X given by

∂f(x) :=
{
ζ ∈ X

∣∣ f◦(x; v) ≥ ⟨ζ, v⟩ for all v in X
}
.

For properties of the previously stated sets, we refer the readers to [5] and [6]
Before stating the main result in this section, we need the following theorem, a

proof can be found in [6, Theorem 23.2]:

Theorem 2.1. Let (f, U) be a control system on the interval [a, b] for which:

(a) f(t, x, u) is measurable in t and continuous in (x, u);
(b) U(·) is measurable and compact valued;
(c) f has linear growth: there is an integrable function M such that

(t, x) ∈ [a, b]× Rn, u ∈ U(t) =⇒ ∥f(t, x, u)∥ ≤M(t)(1 + ∥x∥);

(d) The set f(t, x, U) is convex for each (t, x).

Let (xi, ui) be a sequence of processes for the control system (f, U) such that the set
{xi(a)}i∈N is bounded. Then there exists a subsequence of {xi} converging uniformly
to a state trajectory x∗ of the system.

Theorem 2.2. Let (A1) − (A5) hold and let y ∈ Rny be such that there exists
a neighborhood Iy of y and a constant Cy > 0, such that for every y′ ∈ Iy with
non-empty S(y) and every solution (x′, u′) of LLP (y′) with associated multipliers
(λ′0, λ

′, σ′), it holds λ′0 = 1 and ∥σ′∥ ≤ Cy. Then V is Lipschitz continuous in y and

(2.1) ∂V(y) ⊆ co
∪

(x,u)∈S(y)

ζ ∈ Rny

∣∣∣∣∣∣∣∣
∃ λ ∈W 1,∞([0, T ],Rnx), σ ∈ Rnψ :

λ̇(t) = −∇xf(x(t), u(t))
⊤λ(t)

λ(T ) = ∇φ(x(T )) +∇xψ(x(T ), y)
⊤σ

ζ = ∇yψ(x(T ), y)
⊤σ

 .
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Proof. Let us first prove that the value function V is lower semicontinuous in y. Let
{yi}i∈N be a sequence in Rny converging to y. For each i ∈ N, let (xi, ui) ∈ S(yi),
hence V(yi) = φ(xi(T )) and

ẋi(t) = f(xi(t), ui(t)) a.e. in (0, T ),(2.2)

ui(t) ∈ U a.e. in (0, T ),(2.3)

xi(0) = x0,(2.4)

ψ(xi(T ), yi) = 0.(2.5)

We observe that the control system (2.2)-(2.4) satisfies the hypothesis of Theo-
rem 2.1. In fact, assumption (A1)− (A4) imply (a)− (d) respectively. Hence there
exist (x∗, u∗) such that xi → x∗ uniformly in [0, T ] and

ẋ∗(t) = f(x∗(t), u∗(t)) a.e. in (0, T ),

u∗(t) ∈ U a.e. in (0, T ),

x∗(0) = x0.

Furthermore, by the uniform convergence of xi to x
∗ and by the continuity of ψ we

get

0 = lim
i→∞

ψ(xi(T ), yi) = ψ(x∗(T ), y).

Hence we obtain

lim inf
i→+∞

V(yi) = lim inf
i→+∞

φ(xi(T )) = φ(x∗(T )) ≥ inf
u∈A(y)

{φ(xu(T ))} = V(y)

which implies that V is lower semicontinuous in y.
We now focus on computing the proximal subgradient of V. Let ζ ∈ ∂PV(y), by

definition there exist M, δ > 0 such that

V(y′)− V(y) +M∥y′ − y∥2 ≥ ⟨ζ, y′ − y⟩ ∀ y′ ∈ Bδ(y)

or equivalently

(2.6) V(y′)− ⟨ζ, y′⟩+M∥y′ − y∥2 ≥ V(y)− ⟨ζ, y⟩ ∀ y′ ∈ Bδ(y).

Let (x, u) ∈ S(y). For every feasible point (x′, u′) of LLP (y′), inequality (2.6) be-
comes

φ(x′(T ))− ζ⊤y′ +M∥y′ − y∥2 ≥ φ(x(T ))− ζ⊤y.

It follows that (x, u, y) ∈W 1,∞([0, T ],Rnx)× L∞([0, T ],Rnu)× Rny is a solution of
the following optimal control problem:

min φ(x′(T ))− ζ⊤y′(T ) +M∥y′(T )− y∥2(2.7)

s.t. ẋ′(t) = f(x′(t), u′(t)) a.e. in (0, T ),(2.8)

ẏ′(t) = 0 a.e. in (0, T ),(2.9)

u′(t) ∈ U a.e. in (0, T ),(2.10)

x′(0) = x0,(2.11)

ψ(x′(T ), y′(T )) = 0.(2.12)
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Note that y′ appears as parameter in (2.7)-(2.12), due to equation (2.9). From the
global minimum principle (with λ0 = 1 as assumed), see [14, Theorem 7.1.6], it
follows that there exist λ ∈W 1,∞([0, T ],Rnx) and σ ∈ Rnψ such that

λ̇(t) = −∇xf(x(t), u(t))
⊤λ(t) a.e. in (0, T ),(2.13)

min
u∈U

{
λ(t)⊤f(x(t), u)

}
= λ(t)⊤f(x(t), u(t)) a.e. in (0, T ),(2.14)

λ(T ) = ∇φ(x(T )) +∇xψ(x(T ), y)
⊤σ,(2.15)

ζ = ∇yψ(x(T ), y)
⊤σ.(2.16)

Let us now consider ζ ∈ ∂LV(y). By the definition of the limiting subgradient,
there exist sequences {yi} and {ζi} in Rny , such that yi → y, V(yi) → V(y), ζi ∈
∂PV(yi) and ζi → ζ. From (2.13)-(2.16) it follows that for each i ∈ N there exist a
solution (xi, ui) of LLP (yi), λi ∈W 1∞([0, T ],Rnx) and σi ∈ Rnψ such that

ẋi(t) = f(xi(t), ui(t)) a.e. in (0, T ),(2.17)

λ̇i(t) = −∇xf(xi(t), ui(t))
⊤λi(t) a.e. in (0, T ),(2.18)

ui(t) ∈ U a.e. in (0, T ),(2.19)

λi(T ) = ∇φ(xi(T )) +∇xψ(xi(T ), yi)
⊤σi,(2.20)

ζi = ∇yψ(xi(T ), yi)
⊤σi.(2.21)

We now apply Theorem 2.1 to the control system (2.17)-(2.21). Note that points
(a) and (b) are satisfied due to assumption (A1) and (A2), while (d) holds due to
(A4). Observe now that due to (A3) and the Gronwall’s lemma, for each i ∈ N and
t ∈ [0, T ] it holds

∥xi(t)− x0∥ ≤
∫ t

0
exp

(∫ t

s
k(τ)dτ

)
k(s)∥x0∥ds

≤
∫ T

0
exp

(∫ T

s
k(τ)dτ

)
k(s)∥x0∥ds ≤ ∥x0∥∥k∥1 exp(∥k∥1).

With δ1 := (1 + ∥x0∥)∥k∥1 exp(∥k∥1) we get

(2.22) xi(t) ∈ Bδ1(x0) ∀ t ∈ [0, T ], i ∈ N,

and the linear growth requirement (c) is satisfied, since

∥f(xi(t), ui(t))∥ ≤ k(t)∥xi(t)∥

and

∥∇xf(xi(t), ui(t))
⊤λi(t)∥ ≤ sup

(x,u)∈Bδ1 (x0)×U
∥∇xf(x, u)∥∥λi(t)∥.

Let us now show that {λi(0)} is bounded. Note that by (A5), ∇yψ(xi(T ), yi) is of full

rank. Hence, if we denote with Ai = ∇yψ(xi(T ), yi)
⊤ and with A+

i := (A⊤
i Ai)

−1A⊤
i

its pseudoinverse, by (2.21) we obtain σi = A+
i ζi, which substituted in (2.20) leads

to

(2.23) λi(T ) = ∇φ(xi(T )) +∇xψ(xi(T ), yi)
⊤A+

i ζi.
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Note that all the terms in the right hands side of (2.23) are converging as i→ +∞,
hence {λi(T )} is convergent and in particular it remains bounded. Then it is easy
to show by means of Gronwall’s lemma that also {λi(0)} is bounded and application
of Theorem 2.1 leads to the existence of a converging subsequence of {(xi, λi, σi)},
functions x, λ ∈ W 1,∞([0, T ],Rnx) and σ ∈ Rnψ , such that xi → x and λi → λ
uniformly in [0, T ] and σi → σ. Hence we conclude that

(2.24) ∂LV(y) ⊆
∪

(x,u)∈S(y)

ζ ∈ Rny

∣∣∣∣∣∣∣∣
∃ λ ∈W 1,∞([0, T ],Rnx), σ ∈ Rnψ :

λ̇(t) = −∇xf(x(t), u(t))
⊤λ(t)

λ(T ) = ∇φ(x(T )) +∇xψ(x(T ), y)
⊤σ

ζ = ∇yψ(x(T ), y)
⊤σ

 .

It remains to prove that the value function V is Lipschitz continuous in y. We
will use the following characterization for Lipschitz continuity in y (the proof can
be found in [8, Theorem 3.6]): V is Lipschitz continuous of rank C in y if and only
if

sup
{
∥ζ∥

∣∣ ζ ∈ ∂PV(y′)
}
≤ C ∀ y′in a neighborhood of y.

Let y′ ∈ Iy and let ζ ′ ∈ ∂PV(y′), then according to (2.13)-(2.16) there exist a
solution (x′, u′) of LLP (y′) with associated multipliers (λ′, σ′), such that ζ ′ =
∇yψ(x

′(T ), y′)⊤σ′. Since σ′ is bounded, it follows that

∥ζ ′∥ = ∥∇yψ(x
′(T ), y′)⊤σ′∥ ≤ sup

(x′,y′)∈Bδ1 (x0)×Iy
∥∇yψ(x

′, y′)∥ · Cy.

Hence

sup
{
∥ζ ′∥

∣∣ ζ ′ ∈ ∂PV(y′)
}
≤ sup

(x′,y′)∈Bδ1(x0)×Iy
∥∇yψ(x

′, y′)∥ · Cy ∀ y′ ∈ Iy

which leads to the Lipschitz continuity of V in y. Finally, we note that ∂V(y) =
co ∂LV(y), according to [6, Proposition 11.23]. Hence inclusion (2.24) leads to

∂V(y) ⊆ co
∪

(x,u)∈S(y)

ζ ∈ Rny

∣∣∣∣∣∣∣∣
∃ λ ∈W 1,∞([0, T ],Rnx), σ ∈ Rnψ

λ̇(t) = −∇xf(x(t), u(t))
⊤λ(t)

λ(T ) = ∇φ(x(T )) +∇xψ(x(T ), y)
⊤σ

ζ = ∇yψ(x(T ), y)
⊤σ

 .

□

3. Single level transformation

In this section, we provide a single level reformulation of the initial ULP via the
value function V of LLP (y). This method has been already investigated in [27] and
[30], where the equivalence between the initial and the reformulated problem has
been proven. The main drawback is the loss of regularity (by Theorem 2.2 we know
that the value function of LLP (y) is only Lipschitz continuous in y), hence results
from nonsmooth analysis have to be used.

Exploiting the value function V defined in (1.11), we can reformulate ULP as the
following single-level optimal control problem:
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Problem 3.1 (SLOCP).

Minimize Φ(x(T ), y(T ))(3.1)

subject to ẋ(t) = f(x(t), u(t)) a.e. in (0, T ),(3.2)

ẏ(t) = F (x(t), y(t), v(t)) a.e. in (0, T ),(3.3)

u(t) ∈ U, v(t) ∈ V a.e. in (0, T ),(3.4)

x(0) = x0, y(0) = y0,(3.5)

ψ(x(T ), y(T )) = 0,(3.6)

φ(x(T ))− V(y(T )) ≤ 0.(3.7)

We derive now necessary optimality conditions for SLOCP. It has been shown in
[28] and [29] that the equivalent single level optimal control problem SLOCP has
always nontrivial abnormal multipliers, i.e. functions px ∈ W 1,∞([0, T ],Rnx), py ∈
W 1,∞([0, T ],Rny), and ξ ∈ Rnψ such that equations (3.8)-(3.13) are satisfied with
λ0 = 0. Furthermore, standard constraint qualifications such as linear independence
constraint qualification and Mangasarian-Fromowitz constraint qualification are not
sufficient to guarantee the existence of normal multipliers. For the bilevel optimal
control problem, the right constraint qualification to assume is the calmness-type
constraint qualification, compare [28, 29]:

Definition 3.2. Let (x̂, ŷ, û, v̂) be an optimal solution for ULP (equivalently
SLOCP ). SLOCP is said to be partially calm in (x̂, ŷ, û, v̂) with modulus µ ≥ 0 if
for every (x, y, u, v) satisfying

ẋ(t) = f(x(t), u(t)) a.e. in (0, T ),

ẏ(t) = F (x(t), y(t), v(t)) a.e. in (0, T ),

u(t) ∈ U, v(t) ∈ V a.e. in (0, T ),

x(0) = x0, y(0) = y0,

ψ(x(T ), y(T )) = 0,

we have

Φ(x(T ), y(T ))− Φ(x̂(T ), ŷ(T )) + µ (φ(x(T ))− V(ŷ(T ))) ≥ 0.

Theorem 3.3. Let (A1)−(A5) hold and let (x̂, ŷ, û, v̂) be a local solution of SLOCP,
such that it is partially calm in (x̂, ŷ, û, v̂) with modulus µ ≥ 0. Then there exist
λ0 ≥ 0, px ∈ W 1,∞([0, T ],Rnx), py ∈ W 1,∞([0, T ],Rny), ξ ∈ Rnψ , and h ∈ R, such
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that

ṗx(t) = −∇xf(x̂(t), û(t))
⊤px(t)−∇xF (x̂(t), ŷ(t), v̂(t))

⊤py(t),(3.8)

ṗy(t) = −∇yF (x̂(t), ŷ(t), v̂(t))
⊤py(t),(3.9)

min
u∈U

{
f(x̂(t), u)⊤px(t)

}
= f(x̂(t), û(t))⊤px(t),(3.10)

min
v∈V

{
F (x̂(t), ŷ(t), v)⊤py(t)

}
= F (x̂(t), ŷ(t), v̂(t))⊤py(t),(3.11)

px(T ) = λ0∇xΦ(x̂(T ), ŷ(T )) + λ0µ∇xφ(x̂(T ))

+∇xψ(x̂(T ), ŷ(T ))
⊤ξ,(3.12)

py(T ) ∈ λ0∇yΦ(x̂(T ), ŷ(T ))− λ0µ∂V(ŷ(T ))

+∇yψ(x̂(T ), ŷ(T ))
⊤ξ,(3.13)

f(x̂(t), û(t))⊤px(t) + F (x̂(t), ŷ(t), v̂(t))⊤py(t) = h.(3.14)

Furthermore, if the hypothesis from Theorem 2.2 hold in ŷ(T ), then ∂V(ŷ(T )) is
given by (2.1).

In addition, if the matrix[
∇uf(x̂(t), û(t)) 0

0 ∇vF (x̂(t), ŷ(t), v̂(t))

]
is of full rank almost everywhere in (0, T ) and there exist a solution d̂ =

(d̂x, d̂y, d̂u, d̂v) ∈ W 1,∞([0, T ],Rnx) × W 1,∞([0, T ],Rny) × L∞([0, T ],Rnu)×
L∞([0, T ],Rnv) of the system

ḋx(t) = ∇xf(x̂, û)dx(t) +∇uf(x̂, û)du(t),

ḋy(t) = ∇xF (x̂, ŷ, v̂)dx(t) +∇yF (x̂, ŷ, v̂)dy(t) +∇vF (x̂, ŷ, v̂)dv(t),

dx(0) = 0, dy(0) = 0

∇xψ(x̂(T ), ŷ(T ))dx(T ) +∇yψ(x̂(T ), ŷ(T ))dy(T ) = 0,

such that d̂u(t)+û(t) ∈ int(U) and d̂v(t)+ v̂(t) ∈ int(V ) almost everywhere in (0, T ),
equation (3.8)-(3.14) hold with λ0 = 1.

Proof. Since SLOCP is partially calm in (x̂, ŷ, û, v̂) with modulus µ ≥ 0, it is easy
to see that (x̂, ŷ, û, v̂) is also solution of the following optimal control problem

min Φ(x(T ), y(T )) + µ(φ(x(T ))− V(y(T )))(3.15)

s.t. ẋ(t) = f(x(t), u(t)) a.e. in (0, T ),(3.16)

ẏ(t) = F (x(t), y(t), v(t)) a.e. in (0, T ),(3.17)

u(t) ∈ U, v(t) ∈ V a.e. in (0, T ),(3.18)

x(0) = x0, y(0) = y0,(3.19)

ψ(x(T ), y(T )) = 0.(3.20)

The Hamiltonian function, related to problem (3.15)-(3.20) is defined as H : Rnx ×
Rny × Rnu × Rnv × Rnx × Rny → R such that

H(x, y, u, v, px, py) := f(x, u)⊤px + F (x, y, v)⊤py.
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Since the objective function of the problem is non differentiable (due to the presence
of the value function V), we apply results from nonsmooth analysis, in order to derive
necessary optimality conditions for (3.15)-(3.20). Extensive studies in this direction
can be found in [5],[7], [8], and [26]. According to [26, Theorem 6.2.3], there exist
λ0 ≥ 0, px ∈ W 1,1([0, T ],Rnx), py ∈ W 1,1([0, T ],Rny), ξx ∈ Rnx , ξy ∈ Rny , ξ ∈ Rnψ ,
and h ∈ R,

λ0 + ∥px∥L∞ + ∥py∥L∞ + ∥ξx∥+ ∥ξy∥+ ∥ξ∥ > 0,

such that

ṗx(t) = −∇xH(x̂(t), ŷ(t), û(t), v̂(t), px(t), py(t)),(3.21)

ṗy(t) = −∇yH(x̂(t), ŷ(t), û(t), v̂(t), px(t), py(t)),(3.22)

min
u∈U,v∈V

H(x̂(t), ŷ(t), u, v, px(t), py(t))

= H(x̂(t), ŷ(t), û(t), v̂(t), px(t), py(t))(3.23)

(px, py)(0) = −(ξx, ξy),(3.24)

(px, py)(T ) ∈ ∂
{
λ0

[
Φ(x̂(T ), ŷ(T )),

+ µ(φ(x̂(T ))− V(ŷ(T )))
]
+ ξ⊤ψ(x̂(T ), ŷ(T ))

}
,(3.25)

H(x̂(t), ŷ(t), û(t), v̂(t), px(t), py(t)) = h.(3.26)

Note that equation (3.24) does not imply any constraints on px(0) and py(0). This

is reasonable since the values of x and y are fixed at t = 0. If we denote with f̂ [·],
F̂ [·], φ̂, Φ̂, ψ̂ and V̂ the values of f, F, φ, Φ, ψ and V in (x̂, ŷ, û, v̂), equations (3.21),
(3.22), (3.23), (3.25), and (3.26) become

ṗx(t) = −∇xf̂ [t]
⊤px(t)−∇xF̂ [t]

⊤py(t) a.e. in (0, T ),(3.27)

ṗy(t) = −∇yF̂ [t]
⊤py(t) a.e. in (0, T ),(3.28)

min
u∈U

{
f(x̂(t), u)⊤px(t)

}
= f̂ [t]⊤px(t) a.e. in (0, T ),(3.29)

min
v∈V

{
F (x̂(t), ŷ(t), v)⊤py(t)

}
= F̂ [t]⊤py(t) a.e. in (0, T ),(3.30)

px(T ) = λ0∇xΦ̂ + λ0µ∇xφ̂+ (∇xψ̂)
⊤ξ,(3.31)

py(T ) ∈ λ0∇yΦ̂− λ0µ∇yV̂ + (∇yψ̂)
⊤ξ,(3.32)

f̂ [t]⊤px(t) + F̂ [t]⊤py(t) = h a.e. in (0, T ).(3.33)

Note that (3.27)-(3.33) are exactly equations (3.8)-(3.14). Furthermore, by (3.27)-
(3.28) follows that px and py are functions in W 1,∞.

We prove now the existence of normal multipliers. Let us assume that
equations (3.27)-(3.33) are satisfied with λ0 = 0. Define z := (x, y, u, v) and
the spaces X := W 1,∞([0, T ],Rnx) × W 1,∞([0, T ],Rny) × L∞([0, T ],Rnu)×
L∞([0, T ],Rnv), Y := L∞([0, T ],Rnx) × L∞([0, T ],Rny) × Rnx × Rny × Rnψ , S :={
z ∈ X

∣∣ u(t) ∈ U, v(t) ∈ V a.e. in (0, T )
}
and the operator H : X → Y defined
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as

H(z) :=


ẋ− f(x, u)
ẏ − F (x, u, v)
x(0)− x0
y(0)− y0

ψ(x(T ), y(T ))

 .
Let us first prove that H ′(ẑ) is surjective. This is equivalent of finding a solution
(dx, dy, du, dv) ∈ X of the following system

ḋx(t) = ∇xf̂ [t]dx(t) +∇uf̂ [t]du(t) + αx(t),(3.34)

ḋy(t) = ∇xF̂ [t]dx(t) +∇yF̂ [t]dy(t) +∇vF̂ [t]dv(t) + αy(t),(3.35)

dx(0) = βx,(3.36)

dy(0) = βy,(3.37)

∇xψ̂dx(T ) +∇yψ̂dy(T ) = γ(3.38)

for any (αx, αy, βx, βy, γ) ∈ Y. If we denote with

Â(t) :=

[
∇xf̂ [t] 0

∇xF̂ [t] ∇yF̂ [t]

]
, B̂(t) :=

[
∇uf̂ [t] 0

0 ∇vF̂ [t]

]
and with dxy := (dx, dy), duv := (du, dv), α := (αx, αy), β := (βx, βy), equations
(3.34)-(3.38) become

ḋxy(t) = Â(t)dxy(t) + B̂(t)duv(t) + α,(3.39)

dxy(0) = β,(3.40)

∇ψ̂dxy(T ) = γ.(3.41)

Let Γ(t) be the solution of the Cauchy problem{
Γ̇(t) = Â(t)Γ(t) a.e. in (0, T ),

Γ(0) = Inx+ny .

Then the solution of (3.39)-(3.40) is given by

dxy(t) = Γ(t)

{
β +

∫ t

0
Γ(τ)−1

[
B̂(τ)duv(τ) + α(τ)

]
dτ

}
,

which, as substituted in (3.41), gives

∇ψ̂Γ(T )
{
β +

∫ T

0
Γ(τ)−1

[
B̂(τ)duv(τ) + α(τ)

]
dτ

}
= γ

or

(3.42) ∇ψ̂Γ(T )
∫ T

0
Γ(τ)−1B̂(τ)duv(τ)dτ = γ̃

where

γ̃ := γ −∇ψ̂Γ(T )
{
β +

∫ T

0
Γ(τ)−1α(τ)dτ

}
.
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Hence, for every γ̃ ∈ Rnψ , we have to find duv ∈ L∞([0, T ],Rnu+nv) such that (3.42)
is satisfied. Let is define for each γ̃ ∈ Rnψ

(3.43) duv(τ) :=
1

T
B̂(τ)+Γ(τ)Γ(T )−1∇ψ̂+γ̃ for a.e. τ ∈ (0, T ).

We have denoted with B̂(τ)+ and ∇ψ̂+ the pseudoinverse matrices of B̂(τ) and ∇ψ̂,
defined as

B̂(τ)+ = B̂(τ)⊤(B̂(τ)B̂(τ)⊤)−1 and ∇ψ̂+ = ∇ψ̂⊤(∇ψ̂∇ψ̂⊤)−1.

Note that duv defined in (3.43) satisfies (3.42).

Observe now that by definition d̂ ∈ int(S − {ẑ}). From the Open Map Theorem

follows that there exist δ, ε > 0 such that Bδ(d̂) ⊆ int(S − {ẑ}) and Bε(0Y ) ⊆
H ′(ẑ)(Bδ(d̂)), which implies that

(3.44) 0Y ∈ int
{
H ′(ẑ)(z − ẑ)

∣∣ z ∈ S
}
.

Consider now λ∗ = (px, py, px(0), py(0),−ξ) ∈ Y ∗. We observe that
⟨λ∗,H ′(ẑ)(z − ẑ)⟩ ≤ 0 for each z ∈ S. In fact, by denoting with dx = x − x̂ and
dy = y − ŷ, we get

⟨λ∗,H ′(ẑ)(z − ẑ)⟩ =
∫ T

0
px(t)

⊤
{
ḋx(t)−∇xf̂ [t]dx(t)−∇uf̂ [t](u− û)(t)

}
dt

+

∫ T

0
py(t)

⊤
{
ḋy(t)−∇xF̂ [t]dx(t)−∇yF̂ [t]dy(t)−∇vF̂ [t](v − v̂)(t)

}
dt

+ px(0)
⊤dx(0) + py(0)

⊤dy(0)− ξ⊤
{
∇xψ̂dx(T ) +∇yψ̂dy(T )

}
=

{
px(T )

⊤ − ξ⊤∇xψ̂
}
dx(T ) +

{
py(T )

⊤ − ξ⊤∇yψ̂
}
dy(T )

−
∫ T

0

{
ṗx(t)

⊤ + px(t)
⊤∇xf̂ [t] + py(t)

⊤∇xF̂ [t]
}
dx(t)dt

−
∫ T

0

{
ṗy(t)

⊤ + py(t)
⊤∇yF̂ [t]

}
dy(t)dt

−
∫ T

0

{
px(t)

⊤∇uf̂ [t](u(t)− û(t)) + py(t)
⊤∇vF̂ [t](v(t)− v̂(t))

}
dt

= −
∫ T

0

{
px(t)

⊤∇uf̂ [t](u(t)− û(t)) + py(t)
⊤∇vF̂ [t](v(t)− v̂(t))

}
dt ≤ 0.

Note that we have used (3.27)-(3.33) in order to obtain the last estimate. It follows
that the functional λ∗ separates 0Y from

{
H ′(ẑ)(z − ẑ)

∣∣ z ∈ S
}
what contradicts

(3.44). Hence, the assumption λ0 = 0 has to be wrong. □

Remark 3.4. It remains an open question and a subject of future research to
investigate the meaning of ∂V(y), if the assumptions in Theorem 3.3 do not hold.

4. Application to a Pursuer-Evader problem

In order to illustrate the method we developed in the previous sections, we con-
sider a pursuer-evader scenario in the two dimensional plane (the generalization
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to the three dimensional case is straightforward). Pursuer-evader problems have
been widely studied in literature (compare [3, 15, 17, 25]) by means of different
techniques. For instance, in [17] a differential game approach was adopted, where
the key idea is to solve the Isaacs equations, which provides necessary and suf-
ficient optimality conditions. Different techniques, based on probability analysis
and Bayesian reasoning was used in [25]. In this paper, we consider the bilevel
optimization approach, in order to solve the problem.

The idea behind the problem is the following: The pursuer (P) aims to reach the
position of the evader (E) in a minimum time T, while the evader aims to maximize
the final time T reduced by a term representing its control effort. The problem
can be formulated as a bilevel optimal control problem, where the solution of the
lower level problem describes the pursuer’s optimal strategy, while the solution of
the upper level problem describes the evader’s optimal strategy. The upper level
problem reads as follows:

(PEu) min − T +

∫ T

0

1

2
uE(t)2dt

s.t. ẋE(t) = vE(t) ∀ t ∈ (0, T ),

v̇E(t) = uE(t) ∀ t ∈ (0, T ),

uEi (t) ∈ [−uEmax, u
E
max] ∀ t ∈ (0, T ), i ∈ {1, 2},

xE(0) = xE0 , v
E(0) = 0,

T ∈ S(xE(T )),

where S(xE(T )) is the set of optimal objective function values of the lower level
problem:

(PEl) min T

s.t. ẋP (t) = vP (t) ∀ t ∈ (0, T ),

v̇P (t) = uP (t) ∀ t ∈ (0, T ),

uPi (t) ∈ [−uPmax, u
P
max] ∀ t ∈ (0, T ), i ∈ {1, 2},

xP (0) = xP0 , x
P (T ) = xE(T ),

vP (0) = vP (T ) = 0.

Note that the final time T can be considered as a state of the lower level problem
with Ṫ = 0 and free initial value.

Using similar techniques as in [14, Example 7.1.15] it can be shown that the value
function of (PEl) is given by

(4.1) V(y) = max

2

√
|y1 − xP0,1|
uPmax

, 2

√
|y2 − xP0,2|
uPmax

 ,

where y = (y1, y2)
⊤ ∈ R2 and xP0 = (xP0,1, x

P
0,2)

⊤. Note that V is not Lipschitz-

continuous at y = xP0 . However, in this case the minimum time T of the pursuer
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is zero since the pursuer can capture the evader immediately. Hence, only the case
y ̸= xP0 is relevant and V is locally Lipschitz in this case.

4.1. Reformulated single stage problem. In this section, we exploit the value
function of (PEl), provided by (4.1) in order to reformulate the original bilevel
optimal control problem (PEu) as a single level optimal control problem. Notice
that in our settings, it is not required to include the differential equations and
constraints of the lower level problem, since the coupling is only present through
the final time T. Hence, the reformulated problem reads as

(PE) min

∫ T

0
−1 +

1

2
uE(t)2dt

s.t. ẋE(t) = vE(t) ∀ t ∈ (0, T ),

v̇E(t) = uE(t) ∀ t ∈ (0, T ),

uEi (t) ∈ [−uEmax, u
E
max] ∀ t ∈ (0, T ), i ∈ {1, 2},

xE(0) = xE0 , v
E(0) = 0,

T − V(xE(T )) ≤ 0.

Instead of evaluating the necessary conditions of Theorem 3.3 we apply the necessary
optimality conditions in [26, Theorem 6.2.3] directly to (PE) as it was done in the
proof of Theorem 3.3 in the general case. The Hamiltonian function, relative to
(PE) is given by

H(x, u, v, λx, λv) = 1− 1

2
u2 + λ⊤x v + λ⊤v u.

The necessary optimality conditions for a minimum (x̂, v̂, û) of (PE) yield the ex-
istence of multipliers (λx, λv) and h ∈ R, such that

λ̇x(t) = −H′
x[t] = 0R2(4.2)

λ̇v(t) = −H′
v[t] = −λx(t)(4.3)

ûi(t) = arg max
ui∈[−uEmax,u

E
max]

{
1− 1

2
u2i + λx,i(t)v̂i(t) + λv,i(t)ui

}
= arg max

ui∈[−uEmax,u
E
max]

{
−1

2
u2i + λv,i(t)ui

}
, i ∈ {1, 2}(4.4)

h = H(x̂(t), v̂(t), û(t), λx(t), λv(t))(4.5)

(h,−λx(T )) ∈ NL
S (T, x̂(T ))(4.6)

λv(T ) = 0R2 .(4.7)

Note that in (4.6), we have introduced the set S :=
{
(t, x)

∣∣ t − V(x) ≤ 0
}
and

denoted with NL
S (T, x̂(T )) its limiting normal cone in the point (T, x̂(T )).

The adjoint equations (4.2)-(4.3) imply that there exist cx, cv ∈ R2, such that

λx(t) = cx and λv(t) = −cxt+ cv.

Furthermore, by the transversality condition (4.7), we have cv = cxT and so λv(t) =
cx(T − t). Let us now investigate (4.6). Note that S is the set of all (t, x) ∈ R×R2,
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for which φ(t, x) ≤ 0 where

φ(t, x) := t− V(x) = t−max

2

√
|x1 − xP0,1|
uPmax

, 2

√
|x2 − xP0,2|
uPmax


Since φ is locally Lipschitz function in R×

(
R2 \ {xP0 }

)
, assuming that x̂(T ) ̸= xP0 ,

its subdifferential in (T, x̂(T )) is given by

(4.8) ∂φ(T, x̂(T )) =

{
(1,−ω1k̂1, ω2k̂2)

∣∣∣∣ ω1, ω2 ∈ [0, 1]
ω1 + ω2 = 1

}
where

k̂1 :=
x̂1(T )− xP0,1√

uPmax|x̂1(T )− xP0,1|3
and k̂2 :=

x̂2(T )− xP0,2√
uPmax|x̂2(T )− xP0,2|3

.

Note that in case |x̂1(T )− xP0,1| > |x̂2(T )− xP0,2|, the set ∂φ(T, x̂(T )) reduces to the

single element
{
(1, k̂1, 0)

}
which is captured by (4.8) by setting ω1 = 1 and ω2 = 0.

In the same way, when |x̂1(T ) − xP0,1| < |x̂2(T ) − xP0,2| we obtain ∂φ(T, x̂(T )) ={
(1, 0,−k̂2) for ω1 = 0 and ω2 = 1. By (4.8) it follows that the limiting normal cone

NL
S (T, x̂(T )) is given by the set

α
(
1,−ω1k̂1,−ω2k̂2

)
∣∣∣∣∣∣∣∣∣∣∣∣

α ≥ 0
φ(T, x̂(T )) ≤ 0
αφ(T, x̂(T )) = 0
ω1, ω2 ∈ [0, 1], ω1 + ω2 = 1
ω2 = 0 if |x̂1(T )− xP0,1| > |x̂2(T )− xP0,2|
ω1 = 0 if |x̂1(T )− xP0,1| < |x̂2(T )− xP0,2|


.

Hence by (4.6) it follows that there exist α ≥ 0, αφ(T, x̂(T )) = 0 and ω1, ω2 ∈ [0, 1],
ω1 + ω2 = 1 such that for i ∈ {1, 2} we have

λx,i(t) = αωik̂i and λv,i(t) = αωik̂i(T − t).

Exploiting (4.5) we can derive the optimal control ûi :

ûi(t) =


−uEmax if λv,i(t) < −uEmax

αωik̂i(T − t) if λv,i(t) ∈ [−uEmax, u
E
max]

uEmax if λv,i(t) > uEmax

.

Since λv,i(t) is a linear function of t and λv,i(T ) = 0, it follows that λv,i and thus ûi
have constant sign in (0, T ), depending on the sign of x̂i(T )− xP0,i. Let us suppose

that x̂i(T ) − xP0,i > 0 (the other case can be treated in the same way) and let us
define

(4.9) ts,i =

{
max

{
T − uEmax

αωik̂i
, 0
}

if ωi > 0

0 if ωi = 0
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i.e. the projection of the instance at which λv,i(t) = uEmax on the interval [0, T ]. The
optimal control ûi is given by

ûi(t) =

{
uEmax t ∈ (0, ts,i)

αωik̂i(T − t) t ∈ [ts,i, T )
.

We obtain v̂i by integrating ûi over [0, T ] :

v̂i(t) =

{
uEmaxt t ∈ [0, ts,i)

uEmaxts,i +
1
2αωik̂i

{
(T − ts,i)

2 − (T − t)2
}

t ∈ [ts,i, T ]

and x̂i by integrating v̂i :

x̂i(t) =


xE0,i +

1
2u

E
maxt

2 t ∈ [0, ts,i)

xE0,i + uEmaxts,i(t− 1
2 ts,i)

+1
6αωik̂i(T − ts,i)

2(3t− 2ts,i − T )

+1
6αωik̂i(T − t)3 t ∈ [ts,i, T ]

.

Let us now consider the Hamiltonian function H. Note that it can be written as

H[t] = 1 +H1[t] +H2[t]

where

Hi[t] := −1

2
(ûi(t))

2 + λx,i(t)v̂i(t) + λv,i(t)ûi(t) ∀ t ∈ [0, T ], i ∈ {1, 2}.

We observe that when ωi = 0 we have Hi ≡ 0. Hence we suppose that ωi > 0, we
can distinguish two cases: ts,i = 0 and ts,i > 0.

Let us first suppose that ts,i = 0. Then for every t ∈ [0, T ] Hi becomes

Hi[t] = −1

2

(
αωik̂i(T − t)

)2
+ αωik̂i

{
1

2
αωik̂i

[
T 2 − (T − t)2

]}
+ α2ω2

i k̂
2
i T

2 =
1

2
α2ω2

i k̂
2
i T

2.

Suppose now that ts,i > 0. For each t ∈ [0, ts,i) Hi becomes

Hi(t) = −1

2

(
uEmax

)2
+ αωik̂iu

E
maxt+ αωik̂i(T − t)uEmax

= −1

2

(
uEmax

)2
+ αωik̂iu

E
maxT
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while in [ts,i, T ] we have

Hi[t] =− 1

2

(
αωik̂i(T − t)

)2
+ α2ω2

i k̂
2
i (T − t)2

+ αωik̂i

{
uEmaxts,i +

1

2
αωik̂i

[
(T − ts,i)

2 − (T − t)2
]}

=
1

2
α2ω2

i k̂
2
i (T − ts,i)

2 + αωik̂iu
E
maxts,i

=
1

2
α2ω2

i k̂
2
i

(
uEmax

αωik̂i

)2

+ αωik̂iu
E
max

(
T − uEmax

αωik̂i

)
(4.10)

=− 1

2

(
uEmax

)2
+ αωik̂iu

E
maxT.

Note that in (4.10) we have substituted the value of ts,i from (4.9). Summarizing

(4.11) Hi[t] =


0 if ωi = 0
1
2α

2ω2
i k̂

2
i T

2 if ωi > 0 and ts,i = 0

−1
2

(
uEmax

)2
+ αωik̂iu

E
maxT if ωi > 0 and ts,i > 0

.

Thus in order to compute the optimal solution of (PE) we have to solve the
(possibly underdetermined) system:

1 +H1[t] +H2[t] = α(4.12)

ω1, ω2 ≥ 0 i = 1, 2(4.13)

ω1 + ω2 = 1(4.14)

ts,i =

{
max

{
T − uEmax

αωik̂i
, 0
}

if ωi > 0

0 if ωi = 0
i = 1, 2(4.15)

φ(T, x̂(T )) ≤ 0(4.16)

α ≥ 0(4.17)

αφ(T, x̂(T )) = 0(4.18)

with respect to α, T, ts,1, ts,2, ω1 and ω2. Once solution of (4.12)-(4.18) is found,
we compute the optimal solution of (PE) by substituting the respective values in
the expressions of x̂, v̂ and û.

4.2. Numerical Results. Let us now provide a concrete numerical scenario. We
set the starting position of the pursuer (P) at the origin xP0 = (0, 0) and uPmax =
4. Furthermore, let the evader (E) start from the point xE0 = (3, 2) with initial
velocity vE0 = (0, 0) and uEmax = 1. Applying the same reasoning as in the previous
subsection, leads to the results in Figure 1.

5. Conclusions and Outlook

This paper suggests a general approach for solving a class of bilevel optimal con-
trol problems, exploiting the value function of the lower level problem and necessary
optimality conditions. Necessary optimality conditions are obtained via single level
reformulation and generalized subgradient of the value function. If it is impossible
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Figure 1. Trajectories of the pursuer and evader

to obtain an explicit formulation of the value function, its generalized subgradient
is characterized in terms of Lagrange multipliers of the lower level problem.

Naturally several issues have to be addressed in further studies, for instance
the treatment of state constraints in the lower level problem or the incorporation
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of a general (numerical) approach for computing the value function as a viscosity
solution of a Hamilton-Jacobi-Bellman equation. We leave these topics open for
future research.
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