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In [13] we give a constructive description of an impulse-trajectory extension (re-
laxation) of system (1.1)–(1.3). Under some natural convexity assumptions, it is
shown that such an extension can be described by a certain measure driven dynam-
ical system, which is traditionally abbreviated to the following symbolic measure
differential equation:

dx = f0(x, u)dt+
∑

q∈Q\{p}

fq(x, u) l
q dt+ fp(x, u)ϑ(dt), x(0−) = x0,(1.4)

where ϑ is an impulsive control in the sense to be specified below, at this point it
can be roughly thought of as a signed Borel measure.

Definition 1.1 ([13]). A function x ∈ BV is said to be a generalized solution to
system (1.1)–(1.3) if and only if there exists a sequence {(uk, vk)| k ∈ N} of controls
uk ∈ UT , vk ∈ VT such that the respective sequence of Carathéodory solutions
xk = x[uk, vk] of (1.1) converges to x in the weak* topology of BV (i.e., at all
points of continuity, and at t = T ).

Denote by X the set of generalized solutions to (1.1)–(1.3). In [13] we prove that
X coincides with the set of solutions to the measure differential equation (1.4) in
the sense of the concept specified below.

The model of our consideration is weighted with the mixed asymptotic constraints

x(t−) ∈ Z−, x(t) ∈ Z+ |ϑ|-a.e. on [0, T ],(1.5)

used in the formalization of hybrid dynamical systems by means of the impulsive
control theory [11, 14]. Here Z± ⊆ Rn are given closed sets playing the part of
“jump permitting” and “jump destination” domains (in terms of the hybrid system
theory, see, e.g., [3,8]). With respect to the mathematical impulsive control theory,
constraints (1.5) are of particular interest. Indeed, we note the following:

• For impulsive systems driven by measures, conditions of this sort represent a
natural type of mixed constraints as constraints imposed on both trajectory
and control measure.

• Inclusions (1.5) give a fruitful mathematical formalization of switching rules
in a wide class of hybrid systems. The evaluation of models with such
constraints contributes to the unification of the impulsive control and hybrid
system theories [2, 3, 11,16,18,20,21].

• Finally, conditions (1.5) can be thought of as a certain form of impulsive
feedback.

The theory of affine (linear) impulsive control and respective non-regular varia-
tional problems are relatively well studied (see, e.g., [9,10,15,19,20,24–28] and the
bibliography therein).

Our interest to dynamical systems with nonlinear impulses is inspired by the
quadratic case (p = 2), which seems to be typical for some problems from La-
grangean mechanics [4–7]. A polynomial case was addressed (in different contexts)
by [13,22,23], and impulse extensions of general nonlinear systems with unbounded
control sets were studied in [15,20,25–27].

One of the simplest model of the sort (1.4), (1.5) with nonlinear impulses can be
found in [12], while the case p = 1 was investigated in [14].
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The purpose of the paper is to derive first order necessary optimality conditions
in the form of impulsive maximum principle for control problems with dynamical
systems (1.4), (1.5).

2. Optimal control problem for hybrid systems with polynomial
impulses

In this section we give a formal statement of the optimization problem of our
interest. Beforehand, we specify the notion of control (input signal) ϱ

.
= (u, ϑ) and

introduce the space P of admissible controls.
Let λ denote the Lebesgue measure on R, i.e., λ(dt) = dt.
1) The “usual” part u of control input ϱ is played by Borel measurable (B-

measurable) functions u : [0, T ] → Rm such that

(2.1) u(t) ∈ U λ-almost everywhere (a.e.) on [0, T ].

We denote the set of all such controls by UT .
2) The impulsive control ϑ is defined similarly to [1] as a collection

ϑ
.
=

(
ν, µ, l, {eτ , uτ}τ∈∆ν(T )

)
.

Here,

• ν, µ ∈ C∗([0, T ],R) are Lebesgue-Stieltjes measures (the Lebesgue-Stieltjes
extensions of the Borel measures induced by functions of bounded variation;
in what follows, we identify Borel measures with their unique Lebesgue-
Stieltjes extensions and call them simply “measures”) with

|µ| ≤ ν, |µ|c = νc, and ν([0, T ]) ≤M(2.2)

(in respect of a measure, | · | makes sense of its total variation; by definition
|ϑ| = ν; νc

.
= νac + νsc, where the summands represent the absolutely con-

tinuous and singular continuous components of the Lebesgue decomposition
of ν).

• l : [0, T ] → R is a B-measurable function with∫ t

0
lp(θ)dθ = µac([0, t]) for all t ∈ [0, T ].(2.3)

• {eτ , uτ}τ∈∆ν(T ) is a family of B-measurable functions

eτ : [0, Tτ ] → R, uτ : [0, Tτ ] → Rm

parameterized by atoms of ν and such that

|eτ (θ)| = 1, uτ (θ) ∈ U λ-a.e. on [0, Tτ ],(2.4) ∫ Tτ

0
eτ (θ)dθ = µ({τ}),(2.5)

with ∆ν(t)
.
= {τ ∈ [0, t]| ν({τ}) > 0}, and Tτ

.
= ν({τ}).

Let Θ denote the set of impulsive controls satisfying constraints (2.1)–(2.5). Finally,
we set

P = UT ×Θ.
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Remark 2.1 ([13]). If v 7→ vp is an even function, then µ = ν, and eτ (θ) = 1 on

[0, Tτ ] for any atom τ of µ; and if the mapping v 7→ vp is odd, then l =
(
Ḟµac

)1/p
,

where Fµac is the distribution function of µac.

Assume that

• the functions fq, q ∈ Q∪{0}, are continuous in all variables, uniformly Lip-
schitz continuous in x, and satisfy the linear growth condition with respect
to (wrt) x;

• the set F(x) of vectors

(ap, apf0(x,w) +
∑

q∈Q\{p}

ap−qbqfq(x,w) + bpfp(x,w), |b|p) ∈ Rn+2

such that (a, b) ∈ A, and w ∈ U is convex for any x ∈ Rn. Here, A
.
=

co{(a, b) ∈ R2| a ≥ 0, ap + |b|p = 1}, and coA denotes the convex hull of a
set A.

Remark 2.2. One can lift the latter convexity assumption and consider the impul-
sive dynamical system to be described below, regardless of its usual prototype.

Given a lower semicontinuous function φ : Rn → R, consider the following prob-
lem (P ) of optimal impulsive control:

Minimize I = φ(x(T ))

over the right continuous arcs x : [0, T ] → Rn of bounded variation
(x ∈ BV +([0, T ],Rn)) satisfying the integral relation

x(t) = x0 +

∫ t

0
f0(x(θ), u(θ)) dθ +(2.6)

+
∑

q∈Q\{p}

∫ t

0
fq(x(θ), u(θ)) l

q(θ) dθ +

+

∫ t

0
fp(x(θ), u(θ))µc(dθ) +

∑
τ∈∆ν(t)

[κτ (Tτ )− x(τ−)]

together with condition (1.5), and with control inputs

ϱ
.
= (u, ϑ) ∈ P.(2.7)

In (2.6), for each τ ∈ ∆ν(T ), κτ is a solution to the “limit” system [15]

d

dθ
κ = fp(κ, uτ )eτ , κ(0) = x(τ−).(2.8)

The functions κτ present the behavior of the system’s state in a “fast tempo”
along jumps, and the intervals [0, Tτ ] can be thought of as intervals of such “fast
motions” [20].

The existence and uniqueness of a solution x[ϱ] to (2.6)–(2.8) under any ϱ ∈ P
are implied by the general result [20, Theorem 8.22]. One can refer to the measure
differential equation (1.4) as to a symbolic form of (2.6), (2.8), or, equivalently, can
consider relations (2.6), (2.8) as a concept of solution to (1.4).
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Given a control ϱ, we call the family X = X [ϱ]
.
= {κτ}τ∈∆ν(T ) of solutions to

the limit system a graph completion of a trajectory x[ϱ]. Clearly, such a graph
completion is generically not unique.

A couple σ
.
= (x, ϱ) = (x[ϱ], ϱ) with ϱ ∈ P is said to be an admissible control

process, and Σ(P ) denotes the set of all admissible processes. We assume Σ(P ) ̸= ∅.

3. Problem transformation

In this section we present a technique for equivalent transformation of problem
(P ) to a standard problem of dynamic optimization. This technique will serve
us later to derive first order necessary optimality conditions in the form of the
Maximum Principle.

On a time interval [0, S], S ≥ T , consider the following reduced problem (RP ):

Minimize J = φ(y+(S))

subject to the constraints

(3.1)

d

ds
y± = αpf0(y±, ω) +

∑
q∈Q, q<p

γ
q/p
± αp−qβqfq(y±, ω)

+ γ±β
pfp(y±, ω), y±(0) = x0,

d

ds
ξ = αp,

d

ds
(η, ζ)± = γ±(β

p, |β|p),(3.2)

ξ(0) = η±(0) = ζ±(0) = 0,(3.3)

y+(S) = y−(S), η+(S) = η−(S),(3.4)

ξ(S) = T, ζ+(S) = ζ−(S) ≤M,(3.5)

ζ− − ζ+ ≤ 0,(3.6) ∫ S

0
Γ(α, β, γ, y, η, ζ)ds = 0,(3.7)

ω ∈ US , (α, β, γ) ∈ AS , γ = (γ+, γ−).(3.8)

Here, US is defined similarly to UT in Section 1, AS denotes the set of control
functions (α, β, γ) with B-measurable components α, β, γ± : [0, S] → R such that

(α, β, γ)(s) ∈ Ã for λ-a.a. s ∈ [0, S], where Ã denotes the set of vectors ã =
(a, b, c+, c−) ∈ R4 such that

(3.9) a, c± ≥ 0, ap + |b|p ≤ 1, and c+ + c− = 1.

The state variables are y, ξ, η, and ζ with y = (y+, y−), η = (η+, η−), ζ = (ζ+, ζ−),
where ξ, η±, ζ± ∈ R+, and y± ∈ Rn (R+ is the set of nonnegative reals).

We denote ∆ζ
.
= ζ+ − ζ− and take similar notations for the other state compo-

nents. The function Γ in (3.7) takes the form

Γ = αp
{
∆ζ +WRn+2

{0} (∆(y, η))}+ |β|p {γ+WRn

Z−
(y−) + γ−W

Rn

Z+
(y+)

}
.

Here WX
Y : X → R+ is a given (conveniently chosen) continuous function which

vanishes only on a given subset Y of a finite-dimensional space X (such a function,
even a smooth one, does exist for any closed subset of Rn and can be defined, say,
as in classical partition of unity).
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As is easily observed, the reduced problem (RP ) implies the minimization over
absolutely continuous arcs (elements of AC([0, S],R2n+5)) satisfying a “usual” (non-
impulsive) dynamical system under pointwise state, terminal and functional con-
straints.

A collection ς = (y, ξ, η, ζ, α, β, γ, ω;S) enjoying (3.1)–(3.8) is said to be an ad-
missible process for (RP ). By Σ(RP ) we denote the set of all admissible processes.

Remark 3.1. In general, the discontinuous time changing method is a way to put
the system’s fast- and usual-tempo motions in a common time scale by extending
instants of impulses into intervals of the length proportional to the intensity of the
applied impulsive control. The original idea of the proposed space-time reparame-
terization consists in the following: In order to evaluate constraint (1.5), the left and
right one-sided limits are regarded as different state trajectories, and the lengths
of the fast time intervals are duplicated. The state trajectory marked with “+” —
corresponding to the right limit — evolves over the first half of an interval of fast
motion while the “minus”-trajectory, associated with the left limit, stays fixed in
Z−. Once the “plus”-branch reaches Z+, we keep it fixed during the second half of
the interval and let the “minus”-component catch up the “plus” one. So, both the
branches coincide with each other by the end of the interval of fast motion.

The realization of this idea assumes an extension of the dimension of the state
space: The states y± correspond to x, η± are associated with µ, and ζ± correspond
to ν (the measures are formally considered as extra trajectories). Constraints (3.4)–
(3.7) also serve this idea.

Given ϱ = (u, ϑ) ∈ P with ϑ =
(
ν, µ, l, {eτ , uτ}τ∈∆ν(T )

)
, define a function Υ :

[0, T ] → [0, T + 2ν([0, T ])] by

Υ(t) = t+ 2ν([0, t]), t ∈ [0, T ), Υ(T ) = T + 2ν([0, T ]),

and denote by υ : [0, T + 2ν([0, T ])] → [0, T ] the inverse of Υ.
Given S ∈ [T, T + 2M ], and (α, β, γ) ∈ AS such that the respective solution ξ

of (3.2), (3.3) meets constraint (3.5), and ω ∈ US , we introduce the following map
Ξ : [0, T ] → [0, S],

Ξ(t) = inf{s ∈ [0, T ]| ξ(s) > t}, t ∈ [0, T ), Ξ(T ) = S.(3.10)

Problems (P ) and (RP ) are equivalent to each other in the following sense.

Proposition 3.2. 1) For any control process σ ∈ Σ(P ), there exists a process
ς = (y, ξ, η, ζ, α, β, γ, ω;S) ∈ Σ(RP ), y = (y+, y−), η = (η+, η−), ζ = (ζ+, ζ−),
γ = (γ+, γ−) such that

υ = ξ on [0, S];(3.11)

x = y± ◦Υ, Fµ = η± ◦Υ, Fν = ζ± ◦Υ on [0, T ].(3.12)

Here, Fµ, Fν are the distribution functions of the measures, and “◦” denotes the
composition of functions.

2) For any process ς ∈ Σ(RP ), there exists a process σ = (x, ϱ) ∈ Σ(P ), ϱ =
(u, ϑ) ∈ P, ϑ =

(
ν, µ, l, {eτ , uτ}τ∈∆ν(T )

)
, such that

y± ◦ Ξ = x, η± ◦ Ξ = Fµ, ζ± ◦ Ξ = Fν on [0, T ].(3.13)
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3) Solutions for problems (P ) and (RP ) can exist only simultaneously. For opti-
mal processes σ∗ ∈ σ(P ) and ς∗ ∈ Σ(RP ) we get

I(σ∗) = J(ς∗).(3.14)

The proof is similar to [14], and is based on the following considerations.

1) Direct transform. Set S = T + 2ν([0, T ]) and define the functions

(3.15) ω(s) =

{
(uτ ◦ θτ±)(s), if ∃ τ ∈ DΥ such that (s.t.) s ∈ Υτ±,

(u ◦ υ)(s), otherwise,

α(s) =

{
(m

1/p
1 ◦ υ)(s), if υ(s) ∈ supp νac,

0, otherwise,
(3.16)

β(s) =


(eτ ◦ θτ±)(s), if ∃ τ ∈ DΥ s.t. s ∈ Υτ±,

21/p (l ◦ υ)(s) · α(s), if υ(s) ∈ supp νac,

21/p (m
1/p
2 ◦ υ)(s), if υ(s) ∈ supp νsc.

(3.17)

γ+(s) =


1, if ∃ τ ∈ DΥ s.t. s ∈ Υτ+,

0, if ∃ τ ∈ DΥ s.t. s ∈ Υτ−,

1/2, otherwise,

(3.18)

and γ−(s) = 1− γ+(s), s ∈ [0, S]. Here,

m1 =
dλ

d(λ+ 2ν)
, and m2 =

dµsc
2ν

,

where the fractions denote the Radon-Nikodym derivatives of the measures;

θτ+(s) = s−Υ(τ−), θτ−(s) = θτ+(s)− ν({τ}) for s ∈ Υτ ,

Υτ
.
= [Υ(τ−),Υ(τ)], Υτ+ = Υ(τ−) + [0, Tτ ), Υτ− = Υτ \Υτ+,

DΥ = {τ ∈ [0, T ]| Υ(τ)−Υ(τ−) > 0},

and “supp ν” is the set where a measure ν is concentrated. As above, Tτ
.
= ν({τ}).

The defined control (ω, α, β, γ) is of the class US ×AS . Indeed, one can observe
the following:

i) The component ω is B-measurable as a composition of B-measurable functions
and takes values in U .

ii) For the just defined (α, β), the following implications hold:

– If υ(s) ∈ supp νac, then |l|p .
= d|µac|

dλ = dνac
dλ , and

αp + |β|p = m1(1 + 2|l|p) ◦ υ =
dλ

d(λ+ 2νac)

(
1 + 2

dνac
dλ

)
◦ υ = 1.

– If υ(s) ∈ supp νsc, then α(s) = 0, and

αp + |β|p = 2(|m2| ◦ υ), and |m2| =
d|µsc|
2dν

=
1

2
.
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Thus,

αp + |β|p = 1 over {s ∈ [0, S]| υ(s) ∈ supp νsc}.

– Assume that s ∈ Υτ± for some τ ∈ DΥ. Then α(s) = 0, and from (2.4) it
follows that

αp + |β|p = |(eτ ◦ θτ±)| = 1.

Thus, α2 + β2 = 1 λ-a.e. over [0, S].

iii) Finally, α, γ± are nonnegative and γ+ + γ− = 1 by their definitions.

2) Inverse transform.
Define a desired control ϱ = (u, ϑ) ∈ P, ϑ =

(
ν, µ, l, {eτ , uτ}τ∈∆ν(T )

)
through the

formulas

u
.
= ω ◦ Ξ;(3.19)

µ = dFµ, ν = dFν ,(3.20)

where the functions Fµ, Fν of bounded variation are introduced as

Fµ(t)
.
= (η+ ◦ Ξ)(t), Fν(t)

.
= (ζ+ ◦ Ξ)(t), t ∈ [0, T ],

with Fµ(0−) = 0, Fν(0−) = 0;

l = (γ
1/p
+ α⊕β) ◦ Ξ,(3.21)

where ⊕ denotes the operation of pseudoinversion, i.e., α⊕ = 0, if α = 0, and
α⊕ = α−1, otherwise.

For each τ ∈ ∆ν(T ), we can set

eτ = β ◦ sτ , uτ = ω ◦ sτ ,(3.22)

Here, sτ (θ)
.
= inf{s ∈ [Ξ(τ−),Ξ(τ)] : θτ (s) > θ} for θ ∈ [0, Tτ ) with θτ (s)

.
=

ζ+(s)− ν([0, τ)), sτ (Tτ )
.
= Ξ(τ), and Tτ

.
= ν({τ}).

The control ϱ = (u, ϑ) with u and ϑ
.
=

(
ν, µ, l, {eτ , uτ}τ∈∆ν(T )

)
defined by formu-

las (3.19)–(3.22) is of the class P:
1) It is clear that u ∈ UT .
2) For t ∈ (0, T ], we have∫ t

0
lp(θ)dθ =

∫ Ξ(t)

0
lp(ξ(s)) dξ(s)

=

∫ Ξ(t)

0

[
α(s)⊕α(s)

]p
γ+(s)β

p(s) ds

=

∫ Ξ(t)

0
I{s∈[0,S]| α(s)>0}(s) dη+(s)

.
=

∫ Ξ(t)

0
dFµac(ξ(s))

= µac([0, t]).

Here, IA : [0, S] → {0, 1} denotes the characteristic function of a set A, i.e. IA(s) = 1
if s ∈ A, and IA(s) = 0, otherwise.
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3) By definition of the function Ξ, α(s) = 0 λ-a.e. on [Ξ(τ−),Ξ(τ)]. Then
|β(s)| = 1 λ-a.e. on this interval, and therefore |eτ | = |β ◦ sτ | = 1. Furthermore,∫ Tτ

0
eτ (θ)dθ =

∫ θτ (Ξ(τ))

θτ (Ξ(τ−))
βp(sτ (θ))dθ

=

∫ Ξ(τ)

Ξ(τ−)
βp(s)dθτ (s) =

∫ Ξ(τ)

Ξ(τ−)
βp(s) dζ+(s)

=

∫ Ξ(τ)

Ξ(τ−)
dη+(s) = (η+ ◦ Ξ)(τ)− (η+ ◦ Ξ)(τ−)

.
= Fµ(τ)− Fµ(τ−) = µ({τ}),

which proves (2.5).

Under the defined controls, this is a rather standard exercise to prove equalities
(3.11)–(3.13) by virtue of change of variable under the sign of Lebesgue-Stieltjes
integral, see, e.g., [20]. Finally, one can ensure the inclusions (1.5) hold by the
arguments similar to [14].

4. Necessary optimality condition

For simplicity, let problem (P ) be free of “ordinary” control u. It implies that
the reduced problem (RP ) gets rid of dependence upon ω.

Assume that the function φ is continuously differentiable, fq, q ∈ Q ∪ {0}, are
continuously differentiable in x, and all the functions WX

{0} that appear in this

section are continuously differentiable and such that ∇WX
{0}(0) = 0.

Introduce some necessary objects related to the formalism of the Maximum Prin-
ciple:

• The vector ψ = (ψt, ψx, ψν) of variables dual to (t, x, ν) (t and ν are formally
regarded as state variables).

• The “partial” Hamiltonians Hq(x, ψx) = ⟨ψx, fq(x)⟩, q ∈ Q ∪ {0}.

Theorem 4.1 (Maximum Principle). Let σ = (x,X , ϱ) ∈ Σ with x = x[ϱ] ∈
BV +([0, T ],Rn), X = X [ρ] = {κτ}τ∈∆ν(T ), κτ ∈ AC([0, Tτ ],Rn), Tτ = ν({τ}), and
ϱ = (u, ϑ) ∈ P, ϑ = (ν, µ, l, {eτ , uτ}), be an optimal control process for problem (P ).
Then, there exists a collection

Λ = (ϖI , ϖν ;ψt, (ψx,Ψx), ψν ;π)

of “Lagrange multipliers”: ϖI , ϖν ≥ 0, ψt ∈ R, ψx ∈ BV +([0, T ],Rn), Ψx =
{ϕτ}τ∈∆ν(T ), ϕτ ∈ AC([0, Tτ ],Rn), ψν = (ψ+, ψ−)ν with ψ±

ν ∈ BV +([0, T ],R),
and a nondecreasing π ∈ BV +([0, T ],R) with π(0−) = 0, such that the following
conditions (C1)–(C4) hold true.

(C1) Nontriviality: ϖI +ϖν + |ψt|+ π(T ) > 0.

(C2) Complementary slackness condition, associated with the constraint
on the total impulse of control: ϖν(ν([0, T ])−M) = 0.
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(C3) Adjoint equations and transversality conditions (below, ∇x denotes
the partial derivative wrt x ∈ Rn, and dπ is the Lebesgue-Stieltjes measure
induced by the function π): The functions ψ±

ν are of the form

ψ±
ν (t) = ± (dπ − ψtλ) ([t, T ])∓ ψt −ϖν ,(4.1)

and ψx is a solution to the following Cauchy problem for the measure dif-
ferential equation (in the integral form)

(4.2)

ψx(t) = −ϖI∇φ(x(T )) +
∫ T

t
∇xH0 dt+

∑
q∈Q\{p}

∫ T

t
∇xHq l

q dt

+

∫ T

t
∇xHp µc(dt) +

∑
τ∈∆ν(t)

[ψ(τ)− ϕτ (Tτ )]

(the derivatives of the functions Hq are computed along respective trajec-
tories (x, ψx)) with the graph completion Ψx = {ϕτ}τ∈∆ν(T ). For every
τ ∈ ∆ν(T ), the functions ϕτ satisfy the “adjoint limit system”

− d

dθ
ϕ = ∇xHp(κτ , ϕ) eτ , ϕ(Tτ ) = ψx(τ),(4.3)

θ ∈ [0, Tτ ], τ ∈ ∆ν(T ).

(C4) Optimality conditions:

– Optimality beyond the support of the control measure.
For λ-almost all (a.a.) t ∈ [0, T ] \ supp νc, it holds

H0(x, ψx) = H(x, ψx, ψν),(4.4)

where

H = max
ã∈Ã

Ĥ,

Ĥ
.
= apH0 +

1

2

∑
q∈Q, q<p

ap−qbq[c
q/p
+ + c

q/p
− ]Hq +

1

2
bp[c+ + c−]Hp+

+ |b|p
[
c+ (ψ+

ν + ψtW
Rn

Z− (x)) + c− (ψ−
ν + ψtW

Rn

Z+
(x))

]}
,

ã = (a, b, c+, c−), and Ã is defined in (3.9).

– Optimality with respect to the support of the absolutely contin-
uous part of the control measure.
For νac-a.a. t ∈ supp νac, the function l satisfies

l = 1
21/p

ā⊕b̄(4.5)

where ā and b̄ are the first two components of an argument ã of max
ã∈Ã

Ĥ(x, ψx, ψν ; a, b)

(note that WRn

Z−
(x) = WRn

Z+
(x) = 0 over supp νac); µac = lpλ, and νac =

|µac|.

– Optimality of the graph completion.
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For all instants τ ∈ ∆ν(T ) of impulses, we have

eτ ∈ SignHp(κτ , ϕτ ), and

|Hp(κτ , ϕτ )| −ϖν = max
ã∈Ã

[
H+ +H−]

λ-a.e. over the intervals [0, Tτ ] of fast motions. The multifunction Sign
denotes the signature with Sign(0) = [−1, 1]. Above,

H+(θ, x, ϕ; ã)
.
= ap/2

{
H0 (x, ϕ) +H0 (x(τ−), ϕ(τ−))

+ ψt

[
θ +WR

{0}

(∫ θ

0
eτ (ϵ)dϵ

)
+WRn

{0} (κτ (θ)− x(τ−))
]}

+ 1/2
∑

q∈Q, q<p

ap−qbq
[
c
q/p
+ Hq (x, ϕ) + c

q/p
− Hq (x(τ−), ϕ(τ−))

]
+ bp/2 [c+Hp (x, ϕ) + c−Hp (x(τ−), ϕ(τ−))]

+ |b|p
[
c+ψ

+
ν (τ) + c−[ψ

−
ν (τ) + ψtW

Rn

Z+
(κτ (θ))]

]
,

and

H− .
= ap/2

{
H0 (x, ϕ) +H0 (x(τ), ϕ(τ)) + ψt

[
ν({τ})− θ

+ WR
{0}

(
µ({τ})−

∫ θ

0
eτ (ϵ)dϵ

)
+WRn

{0} (x(τ)− κτ (θ))
]}

+ 1/2
∑

q∈Q, q<p

ap−qbq
[
c
q/p
+ Hq (x, ϕ) + c

q/p
− Hq (x(τ), ϕ(τ))

]
+ bp/2 [c+Hp (x, ϕ) + c−Hp (x(τ), ϕ(τ))]

+ |b|p
[
c+[ψ

+
ν (τ) + ψtW

Rn

Z− (κτ (θ))] + c−ψ
−
ν (τ)

]
.

– Optimality with respect to the support of the singular continuous
part of the control measure.
For νsc-a.a. t ∈ supp νsc, it holds

msc ∈ SignHp(x, ψx),
|Hp(x, ψx)| −ϖν = H(x, ψx, ψν),

(4.6)

where msc stands for the Radon-Nikodym derivative of the measure µsc wrt
ν, and we stress that WRn

Z−
(x) =WRn

Z+
(x) = 0 over supp νsc.

Remark 4.2. A rather general form of the right-hand side of system (3.1)–(3.8)
does not let us go deeper in the representation of conditions (C4). For the linear
and square cases, the conditions can be further detalized similarly to [14] or [13].

The main technical difference of the presented necessary optimality conditions
compared to the impulsive maximum principles for different classes of state and
mixed constrained impulsive and hybrid control problems [10, 20, 21] consists in
“doubling” the space of dual trajectories ψ±

ν . The reason is the way we handle
constraint (1.5) in the process of the reduction, when applied the time reparame-
terization. In fact, the one-sided limits of solutions x to the measure differential
equations are considered as different state trajectories (see Remark 3.1).
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Theorem 4.1 is an interpretation of the Maximum Principle [17] for problem (RP )
by virtue of the proposed direct time-spatial transform. To ease the exposition of
the proof, let us preliminarily make the following modifications of (RP ):

• Reduce the functional constraint to a terminal one by introducing an extra
trajectory z : [0, S] → R+ as a solution to

d

ds
z = Γ, z(0) = 0.(4.7)

Then constraint (3.7), obviously, equals

z(S) = 0.(4.8)

• Rewrite the terminal block (3.5) of the problem together with (4.8) as fol-
lows:

(4.9) T ((ξ, y, η, ζ)(S)) = 0,

(4.10) ζ+(S) + ζ−(S)− 2M ≤ 0,

with

T (ξ, y, η, ζ)
.
= ∆ζ +WRn+1

{0} (∆(y, η)) +WR
{0}(ξ − T ) + z.

• In order to bring a symmetry to the problem we also replace the original
cost with the functional

J̃ = φ

(
y+(S) + y−(S)

2

)
,

which equals J over Σ(RP ).

Proof. Introduce ψξ, ψ
±
y , ψ

±
η , ψ

±
ζ , and ψz as dual to the respective state variables

ξ, y±, η±, ζ±, and z. Let h denote the standard Pontryagin function for (RP ):

h
.
= αp

[
H+

0 +H−
0 + ψz[∆ζ +WRn+1

{0} (∆(y, η))]
]

+
∑

q∈Q, q<p

αp−qβq
[
γ
q/p
+ H+

q + γ
q/p
− H−

q

]
+ βp

[
γ+[H

+
p + ψ+

η ] + γ−[H
−
p + ψ−

η ]
]

+ |β|p
[
γ+[ψ

+
ζ + ψzW

Rn

Z− (y−)] + γ−[ψ
−
ζ + ψzW

Rn

Z+
(y+)]

]
and h̃ be the (maximized) Hamiltonian:

h̃
.
= max

ã
.
=(a,b,c+,c−)∈Ã

h

(we use the abbreviation H±
q

.
= Hq(y±, ψ

±
y ) for q ∈ Q ∪ {0}). The terminal La-

grangian is of the form

L(ξ, y, η, ζ) = ϖJ φ

(
y+ + y−

2

)
+ϖT T (ξ, y, η, ζ) +ϖζ(ζ+ + ζ− − 2M).

Let ς = (ξ, y, η, ζ, α, β, γ;S) ∈ Σ(RP ), y = (y+, y−), η = (η+, η−), ζ = (ζ+, ζ−),
γ = (γ+, γ−), be the process of the reduced system obtained by formulas (3.16)–
(3.18) from an optimal for (P ) process σ. By Proposition 3.2, γ is optimal for
(RP ) and satisfies (3.14). Then, γ satisfies the Maximum Principle [17] for control
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problems under pointwise state and terminal constraints with a collection of La-
grange multipliers ϖJ , ϖζ and b such that ϖJ , ϖζ ≥ 0, ϖT ∈ R, ρ ∈ BV+([0, T ],R),
ρ(0−) = 0, ρ is nondecreasing, and the respective differential measure dρ is concen-
trated on {s ∈ [0, S]| ∆ζ(s) = 0}.

1) Set

ϖI
.
= ϖJ , ψt

.
= −ϖT , ϖν

.
= ϖζ , and π = ρ ◦ Ξ(4.11)

with Ξ(= Υ for ς) defined by (3.10).
The nontriviality of the collection (ϖJ , ϖζ , ϖT , ρ) then gives (C1).

2) The complementary slackness condition

0 = ϖζ (ζ+(S)−M) = ϖζ (ζ+(Ξ(T ))−M) = ϖν (ν([0, T ])−M) ,

leads to (C2). Observe that the measure da assumes no restriction on its support
due to the definition.

3) Clearly, ψz ≡ −ϖT , and therefore ψt = ψz.
The function ψξ meets the relations:

− d

ds
ψξ = ∇ξh = 0, −ψξ(S) = ϖT ∇ξT ((ξ, y, η, ζ)(S)).

By the assumption ∇WR
{0}(0) = 0, made in the beginning of the section, we obtain

that ψξ ≡ 0.
The functions ψ±

η solve the respective systems

− d

ds
ψ±
η = αp∇WR

{0}(∆η) = 0, −ψ±
η (S) = ∇WR

{0}(∆η(S)).

Since ∆η = 0 for s such that α(s) > 0, and, again, by the assumption∇WR
{0}(0) = 0,

we get ψ±
η ≡ 0.

The functions ψ±
ζ satisfy

−dψ±
ζ = ∇ζ±hds± dρ = −ϖT ∇ζ±Γds± dρ = ∓(ϖT · αpds)± dρ,

and −ψ±
ζ (S) = ∇ζ±L((ξ, y, η, ζ)(S)) = ±ϖT +ϖζ . Thus,

ψ±
ζ (s) = ± [ρ(S)− ρ(s)−ϖT (ξ(S)− ξ(s))]∓ϖT −ϖζ ,

and the substitution ψ±
ν
.
= ψ±

ζ ◦ Ξ combined with (4.11) brings us to (4.1).

Now consider the functions ψ±
y . They solve the following Cauchy problems:

− d

ds
ψ±
y = ∇y±h = αp

[
∇xH0(y±, ψ

±
y )∓ ϖT ∇WRn

{0}(∆y)
]

+
∑

q∈Q, q<p

γ
p/q
± αp−qβq ∇xHq(y±, ψ

±
y )

+ γ±β
p∇xHp(y±, ψ

±
y )− γ∓|β|pϖT ∇WRn

Z± (y±),

with

−ψ±
y (S) = 1/2ϖJ ∇φ

(
y+ + y−

2
(S)

)
+ϖT ∇WRn

{0}(∆y(S)).

Remind that ∆y(s) = 0 over s such that α(s) > 0, and y+(s) = y−(s) ∈ Z+ ∩
Z− along s such that β(s) ∈ (0, 1). On the other hand, for each interval Υτ

.
=
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[Υ(τ−),Υ(τ)], τ ∈ ∆ν(T ), we have α(s) = 0 and |β(s)| = 1, while γ+(s) = 1 on
Υ+

τ
.
= Υ(τ−) + [0, ν({τ})), and γ+(s) = 0 on the remainder Υ−

τ . Then, for any
atom τ of ν, we have

− d

ds
ψ+
y =

{
βp∇xHp(y+, ψ

+
y ), s ∈ Υ+

τ ,

−ϖT ∇WRn

Z+
(y+(Υ(τ))), s ∈ Υ−

τ ,

}
=

{
βp∇xHp(y+, ψ

+
y ), s ∈ Υ+

τ ,
0, s ∈ Υ−

τ ,

since y+(Υ(τ))
.
= x(τ) ∈ Z+. The “negative” branch ψ−

y enjoys the symmetric
property:

− d

ds
ψ−
y =

{
0, s ∈ Υ+

τ ,
βp∇xHp(y−, ψ

−
y ), s ∈ Υ−

τ .

Thus, ψ+
y and ψ−

y coincide with each other beyond the intervals Υτ , and ψ
+
y (S) =

ψ−
y (S). Then, ψ

+
y ◦Ξ = ψ−

y ◦Ξ. Setting ψ .
= (ψ+

y +ψ−
y )◦Ξ and ϕτ

.
= ψ+

y ◦s+τ +ψ−
y ◦s−τ ,

τ ∈ ∆ν(T ), the integration now leads to (4.2), (4.3) thanks to (3.13). Here, s±τ (θ)
.
=

inf{s ∈ [Ξ(τ−),Ξ(τ)] : θ±τ (s) > θ} for θ ∈ [0, ν({τ})), θ±τ (s)
.
= ζ±(s) − ν([0, τ)),

and s±τ (ν({τ}))
.
= Ξ(τ). Note that ψ = (ψ+

y + ψ−
y ) ◦ Ξ = 2ψ+

y ◦ Ξ = 2ψ−
y ◦ Ξ, and

ϕτ = 2ψ±
y ◦ s±τ .

4) The optimality conditions (C4) are an interpretation of the standard maximum

condition for (RP ): h = h̃.
– For s ∈ [0, S] such that υ(s) ∈ [0, T ] \ suppµc, we have α(s) = 1, β(s) = 0, and

∆y(s) = 0. Then, the maximum condition gives

h̃ = h
.
= H0(y+, ψ

+
y ) +H0(y−, ψ

−
y ) + ψz[∆ζ +WRn+1

{0} (∆(y, η))]

= H0(y+, ψ
+
y ) +H0(y−, ψ

−
y )

= H0(y+, ψ
+
y + ψ−

y ) = H0(y−, ψ
+
y + ψ−

y ),

which is (4.4) up to the time reparameterization s = Ξ(t).

– Consider an interval Υτ
.
= Υ+

τ ∪ Υ−
τ , τ ∈ ∆ν(T ). By (3.16), (3.17), α(s) = 0

and |β(s)| = 1 λ-a.e. on Υτ . Hence, the maximum condition yields

h̃ = h
.
=

[
[Hp(y±, ψ

±
y ) + ψ±

η ]β + ψ±
ζ + ψzW

Rn

Z∓ (y∓)
]

= Hp(y±, ψ
±
y )β + ψ±

ζ

on Υ±
τ . Then, the expression

h ◦ s+τ + h ◦ s−τ = h̃ ◦ s+τ + h̃ ◦ s−τ
coincides with (4.6) on [0, Tτ ].

– Finally, for {s| υ(s) ∈ supp νc}, it holds β(s) > 0 and ∆(y, η, ζ)(s) = 0. In
particular, α(s) = 0 over {s| υ(s) ∈ supp νsc}. Then, the time change ◦Ξ in the
maximum condition achieves (4.6), and the optimality of control (α, β, γ) leads to

(4.5) due to the definition l
.
= (γ

1/p
+ α⊕β) ◦ Ξ. □
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5. Conclusion

The paper exhibits a, to some extent, straightforward generalization of results
[14] for the case of mixed constrained polynomial impulses. A practically more
interesting situation appears, when a system dynamics involves impulsive signals of
various powers, and some of them are subject to conditions like (1.5), say, there are
mixed constrained affine impulses and state-free square ones. Models of this sort
can be met in control of mechanical systems driven by both active state constraints
and blocking/releasing certain degrees of freedom. Models of this kind will be the
subject of our next study.
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