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morbidity level; and assessing the consequences of various management actions. To-
gether with modern information computer systems, mathematical models provide
a powerful basis for effective monitoring and incidence analysis, epidemiological
risk assessment, forecasting of possible consequences, and management of the epi-
demiological situation. Following [51], models are distinguished by four different
categories related to increasing levels of epidemiological realism and, consequently,
increasing difficulties in the systematic analysis ([15, 19, 51]):

(i) deterministic models in the form of ordinary differential or partial differential
equations, which describe the coarse-grained dynamics of Ebola epidemics
at the population level;

(ii) stochastic models, which include stochastic parameters and variables;
(iii) individual-based models with ”memory”, which introduce the uniqueness of

the individual behavior in a general population ([20]);
(iv) dynamic ”social” network-based or agent-based models, which include de-

layed effects of the interactions between individuals ([29, 47, 52]).

Deterministic and stochastic mathematical models are most frequently used to
describe the transmission and spread of the Ebola virus as well as the impact of
intervention control measures. Two types of so-called compartment models, namely,
SIR and SEIR models ([6, 7, 13, 26, 63]), define these models. In such models, the
studied human population is divided into compartments. For the SIR model, the
population consists of the susceptible, infectious and recovery compartments. In
addition to the already mentioned compartments, the SEIR model also contains
the exposed compartment. The interactions between the compartments in both
models are described by mathematical relations in accordance with their categories.
Moreover, for a more precise description of the transmission and spread of the
Ebola virus in SIR and SEIR models, the auxiliary compartments, such as isolated,
hospitalized, buried, removed, etc can be added. Such models are still considered
SIR and SEIR models.

Considerable attention has been and continues to be given to the calculation of a
threshold, also called a basic reproductive number for deterministic and stochastic
SIR and SEIR models. At the same time, the dynamics of transmission of the Ebola
disease have been studied in terms of the reduction of the basic reproductive number.
For stochastic models such investigations are present in [12, 14, 31, 36, 54, 60], and
for deterministic models in [1, 2, 9, 18, 34, 59].

In recent years, much attention has been given to the so-called deterministic
SIR and SEIR control models. They include a variety of control functions, which
reflect practical measures of a manageable impact on the Ebola epidemic. In turn,
optimal control problems associated with such models are an important tool to de-
velop the most effective measures against the epidemic. These problems, for exam-
ple, determine the optimal schedules for vaccine of susceptible individuals, treatment
of exposed and infected individuals, and produce the best modes of distribution of
public funds related to the educational, quarantine, and other large-scale preventive
measures ([3, 5, 10, 24, 27, 32, 41, 44, 46]).

Next, we focus our attention only on such deterministic SIR and SEIR con-
trol models in which the interactions between their compartments are described
by ordinary differential equations. The set of admissible controls consists of all
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possible Lebesgue measurable and bounded functions in these models. Tradition-
ally, available controls describe treatment, detection, and isolation of the exposed
and infectious individuals; vaccination of susceptible individuals; and other indirect
epidemiological measures, such as quarantine and educational campaigns. Finally,
each optimal control problem contains an objective function (functional) that math-
ematically represents a goal that allows deducing the optimal strategies aimed at
curtailing the spread and transmission of an Ebola disease. Typically, an objective
function is a sum of the total fractions (or the quantities) of exposed and infected,
or only infected individuals (depending on the model), and the total weighted costs
of the control constraints on the given time interval. The cost of the control con-
straints represents either the integral of this control, the integral of the square of
this control, or the integral of the product of this control and the corresponding
phase variable. Further, we will analyze the optimal control problems depending
on the type of integrals used for the description of the total weighted costs of the
control constraints.

Let for SIR or SEIR control model the corresponding functional contains inte-
grals of controls for describing the total weighted costs of the control constraints.
It is shown in [27, 32, 41] that the corresponding optimal controls can contain so-
called singular portions, when the value of the optimal control cannot be determined
uniquely from the used as necessary condition Pontryagin maximum principle ([48]).
As it was noted in [49], in this case the problem of finding optimal solutions becomes
complex mathematical problem. In [49], the authors discuss all possible difficulties
of the search of such solutions. After establishing the fact that an optimal control
can have singular portions, after checking for these portions the corresponding opti-
mality conditions ([48]), finding the ways of possible concatenations of singular and
nonsingular portions, finding specific optimal solutions in the considered optimal
control problem can be done only numerically ([49]).

Let us now consider such SIR or SEIR control model for which the corresponding
functional contains integrals from the squares of controls in order to describe the to-
tal weighted costs of the control constraints. It is emphasized in [49] that such terms
in the functional, do not reflect any better the total weighted costs of the control con-
straints than integrals of controls. After application of the Pontryagin maximum
principle, the optimal control problem is reduced to a two point boundary value
problem for the maximum principle, which can be easily solved numerically because
the right hand sides of the corresponding differential equations of the boundary value
problem are Lipschitz functions of the phase and adjoint variables. Methods of nu-
merical solution of such boundary value problems are well-developed ([4, 28, 35, 43]).
A drawback here is the lack of theoretical investigation of the uniqueness of a solu-
tion of the considered boundary value problem. Uniqueness is established only for
small time intervals ([22, 28]). Though, the techniques and methods are proposed,
allowing to study such uniqueness numerically ([4, 39]). A great existing mathe-
matical software along with big memory computers allow this problem to be the
most popular among the researchers modeling epidemics ([8, 22, 50, 53, 61, 62]), in
particular Ebola epidemics ([5, 40, 43, 44, 45, 46]).

Finally, let us consider an optimal control problem for SIR or SEIR control model,
the corresponding functional for which either does not have any integrals related
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to controls or contains integrals of controls or integrals of product of controls and
corresponding phase variables. The latter integrals, as it was mentioned in [10],
also determine the total weighted costs of the control constraints. In this case,
such optimal control problems are considered for which the optimal controls have
no singular portions, so the number of switchings of such controls can be estimated
using either by analysis of the switching functions or by analysis of the differential
equations for these functions ([3, 10, 23, 24, 25, 38, 55, 56]). After analysis of the
number of switchings of the optimal controls, the original optimal control problem
is reduced to a simpler problem of the finite dimensional optimization, for which
numerical methods are well-known ([23, 24]). The problem considered in this paper
and all investigations related to it, concern the latter type of the optimal control
problems.

This paper is organized as follows. In Section 2 we describe two different SEIR con-
trol models describing Ebola epidemics in a population of a constant size. Each of
these models contains four bounded controls. Two of them reflect the efforts to
protect susceptible individuals from infected and exposed individuals. Other two
controls depending on the model define the efforts either for the treatment, or for
the detection and isolation of exposed and infected individuals. Then, a common
SEI control subsystem is extracted in these models. For this subsystem, an optimal
control problem of minimizing the total fractions of exposed and infected individu-
als and the total weighted costs of the control constraints on the given time interval
is stated. A discussion of the existence of the optimal controls in the considered
minimization problem is also provided in this Section. For the analysis of the cor-
responding optimal controls, the Pontryagin maximum principle is used, which is
formulated in Section 3. Regarding this principle, the behavior of the optimal con-
trols is completely determined by the behavior of the switching functions. Therefore,
in this Section we also give a Cauchy problem for such functions. The correspond-
ing system of differential equations is linear non-homogeneous and non-autonomous.
Using analysis of this Cauchy problem, in Section 4, we establish some important
properties of the switching functions and the corresponding optimal controls. Sec-
tion 5 is a main section of this article because it contains a detailed discussion of the
two new approaches for estimating the number of zeros of the switching functions.
The first approach, described in detail in Subsection 5.1, is based on the analysis
of the Cauchy problems for the derivatives of the switching functions. It is shown
that each switching function has at most one zero on the given time interval, which
means that the corresponding optimal control has at most one switching. The sec-
ond approach described in Subsection 5.2, concerns with the usage of constancy of
the Hamiltonian on the optimal solution of the original problem for reducing by one
of the order of the system of differential equations for the switching functions. This
approach results in obtaining the linear non-homogeneous non-autonomous system
of differential equations for each switching function and its corresponding auxiliary
function. Then, in each such a system the special substitutions of variables are
made in order to reduce its matrix to an upper-triangular form on the entire time
interval. The functions that perform such substitutions, satisfy the corresponding
non-autonomous differential Riccati equations. Therefore, there is the problem to
prove the existence of such solutions of these equations that are defined on the entire
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time interval as well. The considered differential Riccati equations are of the same
type: the coefficient of square of a function and the free coefficient are definite sign
on the given interval, and furthermore, opposite in sign functions. Such properties
of the coefficients of the Riccati equations are sufficient to prove the existence of the
required solutions. Then, the corresponding to each Riccati equation transformed
linear system is also defined on the entire time interval. Application to it of the
generalized Rolle’s theorem allows us to find the estimate of the number of zeros for
each switching function. It is shown that each such a function has at most one zero
on the given time interval and hence, the corresponding optimal control has at most
one switching as well. Moreover, the results obtained for each switching function
using the first and second approaches coincide. This means that if as the result
of using the first approach it is obtained that the optimal control is constant over
the entire time interval, then, this optimal control would have the same type after
application of the second approach. On the other hand, if the first approach shows
that the optimal control is piecewise constant function with at most one switching,
then this type of the optimal control is confirmed by the second approach and vise
versa. This conclusion is the main result of Section 6. Additionally, in this Section,
there are other conclusions related to the behavior of the optimal controls of the
original problem.

2. SEIR models and problem formulation

Over a given time interval [0, T ] let us consider a SEIR model described by the
following system of differential equations:

(2.1)



Ṡ(t) = −N−1 (βI(t) + αE(t))S(t),

Ė(t) = N−1 (βI(t) + αE(t))S(t)− (σ + λ)E(t),

İ(t) = σE(t)− (γ + ν)I(t),

Ṙ(t) = λE(t) + (γ + ν)I(t),
S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0;
S0, E0, I0, R0 > 0.

Such model describes the spread of an Ebola epidemic in a population of constant
size N . Indeed, considering that the equality

(2.2) S0 + E0 + I0 +R0 = N

holds, we add together the equations of system (2.1). Then, using equality (2.2),
we find the relationship:

(2.3) S(t) + E(t) + I(t) +R(t) = N.

Let us note that if α = 0, then system (2.1) is a standard SEIR model. Therefore,
further we focus on the case α > 0.

As it follows from system (2.1) and formula (2.3), the total host population is
partitioned into susceptible, exposed, infectious, and removed (recovery or died)
individuals, respectively denoted by S(t), E(t), I(t), and R(t) at time t, which form
the compartments of the same names. After one unit time, a susceptible individual
can be infected through contacting with the exposed or infectious individuals and
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enter the exposed compartment, or is still in the susceptible compartment. An ex-
posed individual may become infectious and enter the infectious compartment, or
may be treated and enter the removed compartment, or still stay in the exposed
compartment. An infectious individual may be treated and enter the removed com-
partment, or die because of disease and enter the removed compartment as well, or
stay in the infectious compartment. A treated individual may recover by effective
treatment. The individual recovery from Ebola depends on good supportive care
and the patients immune response. People who recover from an Ebola infection
develop antibodies and are not susceptible to this disease in the future. Therefore,
a recovery individual only may stay in removed compartment. Here, we unite the
recovered and deceased individuals in one compartment, R(t), because there has
not been a case in which an individual who survived Ebola contracts this disease
again.

At system (2.1) the positive parameters α and β are the rates of the effective
contact between susceptible and exposed, between susceptible and infectious indi-
viduals, respectively, and β ≥ α; σ denotes the transfer rate between the exposed
and infectious compartments; γ is the rate of disease-caused death; λ and ν denote
the rates of the treatment effectiveness in the exposed and infectious compartments,
respectively. Moreover, in the equations of system (2.1) there are no the terms re-
lated to the natural mortality or fertility because of the short time-span of an Ebola
epidemic.

Now, we will make controlled the SEIR model described by system (2.1). For
this, we introduce four control functions: two of which, u(t) and v(t), define the
efforts of preventing susceptible individuals from becoming infectious individuals as
a result of contact with infectious and exposed ones, respectively; the other two,
w(t) and z(t), imply the corresponding efforts for the treatment of exposed and
infectious individuals. For these controls we have the following constraints:

(2.4)
0 < umin ≤ u(t) ≤ umax, 0 < vmin ≤ v(t) ≤ vmax,
wmin ≤ w(t) ≤ wmax < 1, zmin ≤ z(t) ≤ zmax < 1,

where umax = β, vmax = α, wmin = λ, zmin = ν.
Thus, we have the following control model:

(2.5)


Ṡ(t) = −N−1 (u(t)I(t) + v(t)E(t))S(t), t ∈ [0, T ],

Ė(t) = N−1 (u(t)I(t) + v(t)E(t))S(t)− (σ + w(t))E(t),

İ(t) = σE(t)− (γ + z(t))I(t),
S(0) = S0, E(0) = E0, I(0) = I0,
S0, E0, I0 > 0; S0 + E0 + I0 < N,

in which the equation for the function R(t) is excluded, and this function easily can
be found from equality (2.3).
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Now, let us consider over a given time interval [0, T ] another SEIR model de-
scribed by the following system of differential equations:

(2.6)



Ṡ(t) = −N−1 (βI(t) + αE(t))S(t),

Ė(t) = N−1 (βI(t) + αE(t))S(t)− (σ + λ)E(t),

İ(t) = σE(t)− (γ + ν)I(t),

Ḣ(t) = λE(t) + νI(t)− µH(t),

Ṙ(t) = γI(t) + µH(t),
S(0) = S0, E(0) = E0, I(0) = I0, H(0) = H0, R(0) = R0;
S0, E0, I0, H0, R0 > 0.

Such model also describes the spread of an Ebola epidemic in a population of con-
stant size N ([30, 37]). Similar to (2.2) we consider that the equality

(2.7) S0 + E0 + I0 +H0 +R0 = N

holds. Adding together the equations of system (2.6) and then using equality (2.7),
we obtain the relationship:

(2.8) S(t) + E(t) + I(t) +H(t) +R(t) = N.

Comparing systems (2.1), (2.6) and formulas (2.2), (2.8), we see that one more
compartment is added to the original SEIR model, namely H(t), uniting individu-
als from exposed and infectious compartments, which are isolated from susceptible
individuals at time t. It is called the isolated compartment. Next, we specify the dif-
ferences between the SEIR models given by systems (2.1) and (2.6). The arguments
related to the susceptible compartment are the same. Then, after one unit time, an
exposed individual may become infectious and enter the infectious compartment,
or may be detected and enter the isolated compartment, or still stay in the exposed
compartment. An infectious individual may be detected and enter the isolated com-
partment, or die because of disease and enter the removed compartment, or stay in
the infectious compartment. An isolated individual may die because of disease and
enter the removed compartment, or stay in the isolated compartment. Finally, a
recovery individual only may stay in the removed compartment.

In system (2.6) the meaning of the parameters α, β, σ, γ is the same. Positive
parameter µ, as well as γ, denotes the rate of disease-caused death; the parameters
λ and ν are the detection-isolation rates for exposed and infectious individuals,
respectively.

Now, we will also make controlled the SEIR model described by system (2.6).
For this, we introduce four control functions: u(t), v(t), w(t), z(t) as well. The
first two functions, u(t) and v(t), have the same meaning as in model (2.5). The
meaning of the other two functions, w(t) and z(t), changes. They define the efforts
for the detection and isolation of exposed and infectious individuals, respectively.
Restrictions (2.4) are imposed on these controls. As a result, we have the control
model of type (2.5) in which the equation for the function R(t) is excluded, and
this function easily can be found from equality (2.8). Moreover, in the first three
equations of system (2.6) the function H(t) is absent. Therefore, this function is
excluded from system (2.5) as well. It is obtained separately as the solution of the
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following Cauchy problem:{
Ḣ(t) = w(t)E(t) + z(t)I(t)− µH(t), t ∈ [0, T ],
H(0) = H0

after the controls w(t), z(t) are defined, and the functions E(t), I(t) are found from
system (2.5).

Thus, from the SEIR models described by systems (2.1) and (2.6), we allocate
common control system (2.5), which is considered below.

Next, in system (2.5) we introduce the new variables:

s(t) = N−1S(t), e(t) = N−1E(t), i(t) = N−1I(t)

with corresponding initial values:

s0 = N−1S0, e0 = N−1E0, i0 = N−1I0,

for which the following inequalities hold:

s0, e0, i0 > 0; s0 + e0 + i0 < 1.

These variables are the fractions of the quantities S(t), E(t), I(t) in a population
of size N .

Then, for the variables s(t), e(t), i(t) we obtain the following nonlinear control
system:

(2.9)


ṡ(t) = −(u(t)i(t) + v(t)e(t))s(t), t ∈ [0, T ],
ė(t) = (u(t)i(t) + v(t)e(t))s(t)− (σ + w(t))e(t),

i̇(t) = σe(t)− (γ + z(t))i(t),
s(0) = s0, e(0) = e0, i(0) = i0,
s0, e0, i0 > 0; s0 + e0 + i0 < 1.

For this system the set of all admissible controls consists of all possible Lebesgue
measurable functions u(t), v(t), w(t), z(t), which for almost all t ∈ [0, T ] satisfy
constraints (2.4).

Now, we define a region:

Ω =
{
(s, e, i) : s > 0, e > 0, i > 0, s+ e+ i < 1

}
,

Initial conditions for system (2.9) imply the following inclusion:

(2.10) (s0, e0, i0) ∈ Ω.

The following lemma ensures the positiveness, boundedness, and continuation of
the solutions for system (2.9).

Lemma 2.1. For any admissible controls u(t), v(t), w(t), z(t) the corresponding
solutions s(t), e(t), i(t) for system (2.9) are defined on the entire interval [0, T ] and
satisfy the inclusion:

(2.11) (s(t), e(t), i(t)) ∈ Ω, t ∈ (0, T ].

Proof of this lemma is standard and so we omit it. Proofs of similar statements
are given for example in [22, 32]. Inclusions (2.10), (2.11) imply that the region Ω
is a positive invariant set for system (2.9).
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Next, for system (2.9) on the set of all admissible controls we consider the fol-
lowing functionals:

(2.12) J1(u, v, w, z) =

T∫
0

(
e(t) + i(t)

)
dt,

(2.13)

J2(u, v, w, z) = p

T∫
0

[
(α− v(t))e(t) + (β − u(t))i(t)

]
dt

+ q

T∫
0

[
(w(t)− λ)e(t) + (z(t)− ν)i(t)

]
dt.

Functional (2.12) defines the sum of the total fractions of exposed and infected
individuals on the given interval [0, T ]. Functional (2.13) implies the sum of the
total weighted costs of control constraints (2.4), where p, q are the non-negative
weighted coefficients. Functionals of type (2.13) were used previously for the analysis
of SIR control models in [3, 10].

Finally, for system (2.9) on the set of all admissible controls we consider the
optimal control problem of minimization the sum of functionals (2.12) and (2.13):

min
u(·),v(·),w(·),z(·)

{
J(u, v, w, z) =

T∫
0

[(
1 + p(α− v(t)) + q(w(t)− λ)

)
e(t)

+
(
1 + p(β − u(t)) + q(z(t)− ν)

)
i(t)

]
dt
}
.(2.14)

Here, depending on the values of the weighted coefficients p and q we simultaneously
consider the following four problems:

(i) let p = 0 and q = 0, then problem (2.14) implies the minimization of the
sum of the total fractions of exposed and infected individuals on the interval
[0, T ];

(ii) let p > 0 and q = 0, then problem (2.14) implies the simultaneous minimiza-
tion of the sum of the total fractions of exposed and infected individuals and
the total weighted costs of the constraints for the controls u(t), v(t) on the
interval [0, T ];

(iii) let p = 0 and q > 0, then problem (2.14) is similar to the previous one with
the difference that there are controls w(t), z(t) instead of the controls u(t),
v(t);

(iv) let p > 0 and q > 0, then problem (2.14) is similar to the two previous ones
with the difference that it takes into account the total weighted costs of the
constraints for all controls, that is u(t), v(t), w(t), z(t).

Remark 2.2. Problem (ii) for the system (2.9) without the controls w(t), z(t) was
previously considered in [24], and the analysis of the problem (iiii) was partially
presented at the XX International Symposium on Mathematical Methods Applied
to the Sciences (SIMMAC), 2016, Costa Rica.
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In problem (2.9), (2.14) the optimal controls u∗(t), v∗(t), w∗(t), z∗(t) and corre-
sponding optimal solutions s∗(t), e∗(t), i∗(t) for system (2.9) exist. This fact follows
from Lemma 2.1 and Theorem 4 ([33], Chapter 4).

3. Pontryagin maximum principle

For analysis of optimal control problem (2.9), (2.14) we use the Pontryagin max-
imum principle [42]. First, we write the Hamiltonian as

H(s, e, i, ψ1,ψ2, ψ3, u, v, w, z) = (ui+ ve)s(ψ2 − ψ1) + σe(ψ3 − ψ2)

− weψ2 − (γ + z)iψ3 −
(
1 + p(α− v) + q(w − λ)

)
e

−
(
1 + p(β − u) + q(z − ν)

)
i,

where ψ1, ψ2, ψ3 are the adjoint variables. Secondly, let us calculate for this Hamil-
tonian the required partial derivatives:

∂H

∂s
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = (ui+ ve)(ψ2 − ψ1),

∂H

∂e
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = vs(ψ2 − ψ1) + σ(ψ3 − ψ2)− wψ2

−
(
1 + p(α− v) + q(w − λ)

)
,

∂H

∂i
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = us(ψ2 − ψ1)− (γ + z)ψ3

−
(
1 + p(β − u) + q(z − ν)

)
,

∂H

∂u
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = si

(
(ψ2 − ψ1) + ps−1

)
,

∂H

∂v
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = se

(
(ψ2 − ψ1) + ps−1

)
,

∂H

∂w
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = e(−ψ2 − q),

∂H

∂z
(s, e, i, ψ1, ψ2, ψ3, u, v, w, z) = i(−ψ3 − q).

Then, according to the Pontryagin maximum principle for the optimal controls
u∗(t), v∗(t), w∗(t), z∗(t) and corresponding optimal solutions s∗(t), e∗(t), i∗(t) for
system (2.9) there necessary exists the vector-function ψ∗(t) = (ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t))

such that:

(i) ψ∗(t) is the nontrivial solution of the adjoint system:

(3.1)



ψ̇∗
1(t) = −(u∗(t)i∗(t) + v∗(t)e∗(t))(ψ

∗
2(t)− ψ∗

1(t)), t ∈ [0, T ],

ψ̇∗
2(t) = −v∗(t)s∗(t)(ψ∗

2(t)− ψ∗
1(t))− σ(ψ∗

3(t)− ψ∗
2(t))

+w∗(t)ψ
∗
2(t) + (1 + p(α− v∗(t)) + q(w∗(t)− λ)),

ψ̇∗
3(t) = −u∗(t)s∗(t)(ψ∗

2(t)− ψ∗
1(t)) + (γ + z∗(t))ψ

∗
3(t)

+(1 + p(β − u∗(t)) + q(z∗(t)− ν)),
ψ∗
1(T ) = 0, ψ∗

2(T ) = 0, ψ∗
3(T ) = 0;
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(ii) the controls u∗(t), v∗(t), w∗(t), z∗(t) maximize the Hamiltonian

H(s∗(t), e∗(t), i∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), u, v, w, z)

with respect to u ∈ [umin, umax], v ∈ [vmin, vmax], w ∈ [wmin, wmax], z ∈
[zmin, zmax] for almost all t ∈ [0, T ], and therefore the following relationships
hold:

(3.2) u∗(t) =

 umax , if L0(t) > 0,
∀u ∈ [umin, umax] , if L0(t) = 0,
umin , if L0(t) < 0,

(3.3) v∗(t) =

 vmax , if L0(t) > 0,
∀v ∈ [vmin, vmax] , if L0(t) = 0,
vmin , if L0(t) < 0,

(3.4) w∗(t) =

 wmax , if Lw(t) > 0,
∀w ∈ [wmin, wmax] , if Lw(t) = 0,
wmin , if Lw(t) < 0,

(3.5) z∗(t) =

 zmax , if Lz(t) > 0,
∀z ∈ [zmin, zmax] , if Lz(t) = 0,
zmin , if Lz(t) < 0,

where the functions:

(3.6)
L0(t) = (ψ∗

2(t)− ψ∗
1(t)) + ps−1

∗ (t),

Lw(t) = −ψ∗
2(t)− q, Lz(t) = −ψ∗

3(t)− q,

by Lemma 2.1, are the switching functions, which define the types of the
optimal controls u∗(t), v∗(t), w∗(t), z∗(t) according to formulas (3.2)–(3.5);

(iii) the Hamiltonian

H(s∗(t), e∗(t), i∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), u∗(t), v∗(t), w∗(t), z∗(t)),

which, by formulas (3.6), is rewritten as

(3.7)

H∗(t) = e∗(t)
(
v∗(t)s∗(t)L0(t) + (σ + w∗(t))Lw(t)− σLz(t)

− (1 + αp− λq)
)

+i∗(t)
(
u∗(t)s∗(t)L0(t) + (γ + z∗(t))Lz(t)

− (1 + βp− (ν + γ)q)
)
,

is constant on the given interval [0, T ].

Now, applying the first equation of system (2.9) and the equations of system (3.1),
we write the differential equations for the switching functions L0(t), Lw(t), Lz(t) as
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follows 

L̇0(t) = (u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t))L0(t)
−(σ + w∗(t))Lw(t) + σLz(t) + (1 + αp− λq),

L̇w(t) = v∗(t)s∗(t)L0(t) + (σ + w∗(t))Lw(t)
−σLz(t)− (1 + αp− λq),

L̇z(t) = u∗(t)s∗(t)L0(t) + (γ + z∗(t))Lz(t)
−(1 + βp− (ν + γ)q).

Using the initial conditions for system (3.1) and formulas (3.6), we find the corre-
sponding initial conditions for the functions L0(t), Lw(t), Lz(t):

L0(T ) = ps−1
∗ (T ), Lw(T ) = −q, Lz(T ) = −q.

Combining the differential equations and the initial conditions obtained above, we
finally have the Cauchy problem for the switching functions L0(t), Lw(t), Lz(t):

(3.8)



L̇0(t) = (u∗(t)i∗(t) + v∗(t)e∗(t)− v∗(t)s∗(t))L0(t)
−(σ + w∗(t))Lw(t) + σLz(t) + (1 + αp− λq),

L̇w(t) = v∗(t)s∗(t)L0(t) + (σ + w∗(t))Lw(t)
−σLz(t)− (1 + αp− λq),

L̇z(t) = u∗(t)s∗(t)L0(t) + (γ + z∗(t))Lz(t)
−(1 + βp− (ν + γ)q),

L0(T ) = ps−1
∗ (T ), Lw(T ) = −q, Lz(T ) = −q.

This system will be actively used in further arguments.
Also, applying the second and third equations of system (3.8) we rewrite rela-

tionship (3.7) in a more convenient form:

(3.9) e∗(t)L̇w(t) + i∗(t)L̇z(t) = H∗(T ), t ∈ [0, T ].

4. Properties of the switching functions

We have the statements that describe the properties of the switching functions
L0(t), Lw(t), Lz(t).

Lemma 4.1. For all t ∈ [0, T ] the following equality holds:

(4.1)
d

dt
(s∗(t)L0(t)) = −s∗(t)L̇w(t).

The validity of this fact directly follows from the first equation of system (2.9)
as well as the first and second equations of system (3.8).

Lemma 4.2. For the switching functions L0(t), Lw(t), Lz(t) depending on the
values of the weighted coefficients p, q we have the following statements.

(1) Let p > 0 and q > 0. Then there exists the value t1 ∈ (0, T ) such that the
following inequalities are simultaneously satisfied:

(4.2) L0(t) > 0, Lw(t) < 0, Lz(t) < 0, t ∈ (t1, T ].

(2) Let p > 0 and q = 0. Then there exists the value t2 ∈ (0, T ) such that the
following inequalities are simultaneously satisfied:

(4.3) L0(t) > 0, t ∈ (t2, T ]; Lw(t) > 0, Lz(t) > 0, t ∈ (t2, T ).
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(3) Let p = 0 and q > 0. Then there exists the value t3 ∈ (0, T ) such that the
following inequalities are simultaneously satisfied:

(4.4) L0(t) < 0, t ∈ (t3, T ); Lw(t) < 0, Lz(t) < 0, t ∈ (t3, T ].

(4) Let p = 0 and q = 0. Then there exists the value t4 ∈ (0, T ) such that the
following inequalities are simultaneously satisfied:

(4.5) L0(t) < 0, Lw(t) > 0, Lz(t) > 0, t ∈ (t4, T ).

Proof. Let us consider the various cases depending on the values of p and q.
Case 1. Let p > 0 and q > 0. Inequalities (4.2) are the consequence of continuity

of the functions L0(t), Lw(t), Lz(t) as well as their initial conditions of system (3.8).
Case 2. Let p > 0 and q = 0. The first inequality in (4.3) follows from continuity

of the function L0(t) and its initial condition of system (3.8). In order to justify the
other inequalities in (4.3), we integrate in system (3.8) the differential equations for
the functions Lw(t), Lz(t) with the corresponding initial conditions. As a result,
the following formulas hold:

Lw(t) =

T∫
t

e
−

χ∫
t
(σ+w∗(ξ))dξ{

1 + σLz(χ) +
(
αp− v∗(χ)s∗(χ)L0(χ)

)}
dχ,

Lz(t) =

T∫
t

e
−

χ∫
t
(γ+z∗(ξ))dξ{

1 +
(
βp− u∗(χ)s∗(χ)L0(χ)

)}
dχ.(4.6)

By continuity of the functions s∗(t), L0(t), Lz(t) and initial conditions of sys-
tem (3.8), a small left half-neighborhood of the value t = T is defined, in which
the expressions in braces in formulas (4.6) are positive. Thus, in this neighborhood
the functions Lw(t), Lz(t) take positive values. Now, this implies the required fact.

Case 3. Let p = 0 and q > 0. The last two inequalities in (4.4) follow from
continuity of the functions Lw(t), Lz(t) and their initial conditions of system (3.8).
In order to justify the first inequality in (4.4), we integrate in system (3.8) the
differential equation for the function L0(t) with the corresponding initial condition.
As a result, the following formula is true:

(4.7)
L0(t) = −

T∫
t

e
−

χ∫
t
â0(ξ)dξ{

1 + σ
(
Lz(χ)− Lw(χ)

)
−

(
w∗(χ)Lw(χ) + λq

)}
dχ,

where â0(t) = u∗(t)i∗(t) + v∗(t)e∗(t) − v∗(t)s∗(t). By continuity of the functions
Lw(t), Lz(t) and their initial conditions of system (3.8), there exists a small left half-
neighborhood of the value t = T , in which the expression in braces in formula (4.7)
is positive. Therefore, in this neighborhood the function L0(t) takes negative values.
Now, this implies the required fact as well.

Case 4. Let p = 0 and q = 0. We integrate in system (3.8) all differential equa-
tions with the corresponding initial conditions, and, as a result, have the following
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formulas:

L0(t) = −
T∫
t

e
−

χ∫
t
â0(ξ)dξ{

1 + σ
(
Lz(χ)− Lw(χ)

)
− w∗(χ)Lw(χ)

}
dχ,

Lw(t) =

T∫
t

e
−

χ∫
t
(σ+w∗(ξ))dξ{

1 + σLz(χ)− v∗(χ)s∗(χ)L0(χ)
}
dχ,(4.8)

Lz(t) =

T∫
t

e
−

χ∫
t
(γ+z∗(ξ))dξ{

1− u∗(χ)s∗(χ)L0(χ)
}
dχ.

By continuity of the functions s∗(t), L0(t), Lw(t), Lz(t) and initial conditions of
system (3.8), a small left half-neighborhood of the value t = T is defined, in which
the expressions in braces in formulas (4.8) are positive. Thus, in this neighborhood
the function L0(t) takes negative values as well as the functions Lw(t), Lz(t) take
positive values. Now, this implies the required fact. The proof is complete. □
Corollary 4.3. Inequalities (4.2)–(4.5) of Lemma 4.2 and formulas (3.2)–(3.5) yield
the following relationships for the optimal controls u∗(t), v∗(t), w∗(t), z∗(t):

(1) if p > 0 and q > 0, then:

u∗(t) = umax, v∗(t) = vmax,(4.9)

w∗(t) = wmin, z∗(t) = zmin, t ∈ (t1, T ];

(2) if p > 0 and q = 0, then:

u∗(t) = umax, v∗(t) = vmax,(4.10)

w∗(t) = wmax, z∗(t) = zmax, t ∈ (t2, T ];

(3) if p = 0 and q > 0, then:

u∗(t) = umin, v∗(t) = vmin,(4.11)

w∗(t) = wmin, z∗(t) = zmin, t ∈ (t3, T ];

(4) if p = 0 and q = 0, then:

u∗(t) = umin, v∗(t) = vmin,(4.12)

w∗(t) = wmax, z∗(t) = zmax, t ∈ (t4, T ].

Lemma 4.4. For any values of the weighted coefficients p and q the derivatives of
the switching functions Lw(t), Lz(t) satisfy the following equalities:

(4.13) L̇w(T ) = −1, L̇z(T ) = −1.

Proof. Using in system (3.8) the second and third differential equations as well
as the necessary initial conditions, we find the relationships for the corresponding
derivatives:

(4.14)
L̇w(T ) = −1−

(
α− v∗(T )

)
p−

(
w∗(T )− λ

)
q,

L̇z(T ) = −1−
(
β − u∗(T )

)
p−

(
z∗(T )− ν

)
q.



ESTIMATING THE NUMBER OF SWITCHINGS OF THE OPTIMAL STRATEGIES 555

Thereafter, let us consider the various cases depending on the values of p and q.
Case 1. Let p > 0 and q > 0. Then, by (2.4) and (4.9), we find the equalities:

u∗(T ) = β, v∗(T ) = α, w∗(T ) = λ, z∗(T ) = ν.

Using them in formulas (4.14) we find equalities (4.13).
Case 2. Let p > 0 and q = 0. Then, by (2.4) and (4.10), we obtain the equalities:

u∗(T ) = β, v∗(T ) = α.

Using them in formulas (4.14) we find equalities (4.13).
Case 3. Let p = 0 and q > 0. Then, by (2.4) and (4.11), we find the equalities:

w∗(T ) = λ, z∗(T ) = ν.

Using them in formulas (4.14) we find equalities (4.13).
Case 4. Let p = 0 and q = 0. Then equalities (4.13) are immediately obtained

from formulas (4.14). This completes the proof. □

Corollary 4.5. By Lemma 2.1 and equalities (4.13), we have for formula (3.9) the
following relationship:

(4.15) H∗(T ) = −
(
e∗(T ) + i∗(T )

)
< 0.

Lemma 4.6. The switching functions L0(t), Lw(t), Lz(t) are not equal to zero on
any finite interval of [0, T ].

Proof. First, let us consider the function L0(t). We suppose the contrary. It means
that there is the interval ∆0 ⊂ [0, T ] on which

(4.16) L0(t) = 0.

Then, by Lemma 2.1, we find from formula (4.1) that for all t ∈ ∆0 the following
equality is true:

(4.17) L̇w(t) = 0.

From this, again by Lemma 2.1 and relationships (3.9) and (4.15), we conclude that
on the interval ∆0 the following inequality holds:

(4.18) L̇z(t) < 0.

Now, from (4.17) it follows that

(4.19) Lw(t) = L0
w = Const, t ∈ ∆0.

We consider the possible cases depending on the value of L0
w.

Case 1. Let L0
w = 0. Then, by equalities (4.16) and (4.17), the second equation

of system (3.8) is transformed to the expression:

Lz(t) = −σ−1(1 + αp− λq) = Const, t ∈ ∆0.

From this, we conclude that on the interval ∆0 the equality

(4.20) L̇z(t) = 0,

holds, which contradicts (4.18). Hence, this case is impossible.
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Case 2. Let L0
w ̸= 0. Then, by (3.4), from (4.19) we obtain that w∗(t) = w∗ ∈

{wmin;wmax} on the interval ∆0. Again by equalities (4.16) and (4.17), the second
equation of system (3.8) is reduced to the form:

Lz(t) = σ−1
(
(σ + w∗)L

0
w − (1 + αp− λq)

)
= Const, t ∈ ∆0.

From this, we find the contradictory equality (4.20). Therefore, this case is impos-
sible as well. Our assumption is wrong and the switching function L0(t) does not
vanish on any interval of [0, T ].

Secondly, let us consider the function Lw(t). Again we suppose the contrary. It
implies that there exists the interval ∆w ⊂ [0, T ] on which

(4.21) Lw(t) = 0.

Then, on this interval the equality (4.17) is true. By Lemma 2.1 and relation-
ships (3.9) and (4.15), from this it follows inequality (4.18).

Now, from (4.1) and (4.17) we find the formula:

(4.22) s∗(t)L0(t) = L0
0 = Const, t ∈ ∆w.

We consider the possible cases depending on the value of L0
0.

Case 1. Let L0
0 = 0. Then, by equalities (4.17) and (4.21), the second equation

of system (3.8) is transformed to the expression:

Lz(t) = −σ−1(1 + αp− λq) = Const, t ∈ ∆w.

From this, it follows equality (4.20) executing on the interval ∆w, which contra-
dicts (4.18). Hence, this case is impossible.

Case 2. Let L0
0 ̸= 0. Then from (4.22) we find that the function L0(t) = L0

0s
−1
∗ (t)

takes the same sign on the interval ∆w. Hence, by (3.3), we conclude that v∗(t) =
v∗ ∈ {vmin; vmax} on this interval. Then, again by equalities (4.17) and (4.21), the
second equation of system (3.8) is reduced to the form:

Lz(t) = σ−1
(
v∗L

0
0 − (1 + αp− λq)

)
= Const, t ∈ ∆w.

From this, we find the contradictory equality (4.20). Therefore, this case is impos-
sible as well. Our assumption is wrong and the switching function Lw(t) does not
vanish on any interval of [0, T ].

Finally, let us consider the function Lz(t). Again we argue by contradiction.
Then, there is the interval ∆z ⊂ [0, T ] on which

(4.23) Lz(t) = 0.

Hence, on this interval equality (4.20) holds. From this, by Lemma 2.1 and rela-
tionships (3.9) and (4.15), we obtain the inequality:

(4.24) L̇w(t) < 0

executing on the interval ∆z.
Now, by equalities (4.20) and (4.23), the third equation of system (3.8) is trans-

formed to the expression:

(4.25) u∗(t)s∗(t)L0(t) = 1 + βp− (ν + γ)q, t ∈ ∆z.

We consider the possible cases depending on the value of (1 + βp− (ν + γ)q).
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Case 1. Let 1+βp− (ν+γ)q = 0. Then we have equality s∗(t)L0(t) = 0, t ∈ ∆z

from which, by Lemma 2.1 and formula (4.1), we obtain the equality:

(4.26) L̇w(t) = 0, t ∈ ∆z,

which contradicts (4.24). Hence, this case is impossible.
Case 2. Let 1 + βp− (ν + γ)q ̸= 0. Then, by (4.25), we see that the function

L0(t) =
(
1 + βp− (ν + γ)q

)
u−1
∗ (t)s−1

∗ (t)

takes the same sign on the interval ∆z. Therefore, by (3.2), we conclude that
u∗(t) = u∗ ∈ {umin;umax} on this interval. Hence, again by (4.25), the following
equality holds:

s∗(t)L0(t) =
(
1 + βp− (ν + γ)q

)
u−1
∗ , t ∈ ∆z.

Again using formula (4.1) we find the contradictory equality (4.26). Therefore, this
case is impossible as well. Our assumption is wrong and the switching function
Lz(t) does not vanish on any interval of [0, T ]. This completes the proof. □
Corollary 4.7. Lemma 4.6 and formulas (3.2)–(3.5) show that the optimal con-
trols u∗(t), v∗(t), w∗(t), z∗(t) are bang-bang functions taking values {umin;umax},
{vmin; vmax}, {wmin;wmax}, {zmin; zmax}, respectively. Moreover, the controls u∗(t),
v∗(t) switch from maximum values to minimum values and vice versa at the same
moments of switching.

5. Estimating the number of zeros of the switching functions

We consider two new approaches for estimating the number of zeros of the switch-
ing functions L0(t), Lw(t), Lz(t). The first approach is based on the analysis of the
solutions of the Cauchy problems for the derivatives of the switching functions Lw(t)
and Lz(t). The second approach implies using the constancy of the Hamiltonian on
the optimal solution of the original problem (2.9), (2.14) for reducing by one of the
order of system (3.8). Next, we describe in detail these approaches.

5.1. Cauchy problems for derivatives of the switching functions. Let us
obtain the differential equations for the functions L̇w(t), L̇z(t). In order to make
this, we have to be sure in the possibility of differentiation of these functions almost
everywhere on the interval [0, T ]. Analyzing the second and third equations of

system (3.8) we conclude that for differentiability of the functions L̇w(t), L̇z(t) it is
sufficient if the functions u∗(t), v∗(t), w∗(t), z∗(t) are piecewise constant functions.
It implies that they must have a finite number of switchings on the interval (0, T ).
In turn, it means that the corresponding switching functions L0(t), Lw(t), Lz(t)
have a finite number of zeros on the interval [0, T ]. Hence, we assume that the
following condition holds.

Condition 5.1. Let the switching functions L0(t), Lw(t), Lz(t) have a finite number
of zeros on the interval [0, T ].

Further we will demonstrate that this condition is correct. Condition 5.1 ensures
that the functions L̇w(t), L̇z(t) are differentiable almost everywhere on the interval
[0, T ].
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Now, let us consider the switching function Lw(t). Using the second equation

of system (3.8) we calculate the derivative of the function L̇w(t). After this, in
the obtained relationship we use formulas (3.9) and (4.1). Adding the first formula
from (4.13) as the corresponding initial condition, finally, we obtain the Cauchy

problem for the function L̇w(t):

(5.1)

{
L̈w(t) = âw(t)L̇w(t)− σH∗(T )i

−1
∗ (t), t ∈ [0, T ],

L̇w(T ) = −1,

where âw(t) = σ + w∗(t) + σe∗(t)i
−1
∗ (t)− v∗(t)s∗(t).

Integrating Cauchy problem (5.1), we find the formula:

L̇w(t) = −e
−

T∫
t
âw(ξ)dξ

+ σH∗(T )

T∫
t

e
−

χ∫
t
âw(ξ)dξ

i−1
∗ (χ)dχ, t ∈ [0, T ],

which, by Lemma 2.1 and (4.15), implies that

(5.2) L̇w(t) < 0, t ∈ [0, T ].

Hence, the function Lw(t) decreases from value Lw(0) to value Lw(T ) = −q ≤ 0.
Therefore, depending on the values of q and Lw(0) the switching function Lw(t) has
at most one zero on the interval (0, T ):

if q = 0, then Lw(t) > 0, t ∈ [0, T );(5.3)

if q > 0 and Lw(0) ≤ 0, then Lw(t) < 0, t ∈ (0, T ];(5.4)

if q > 0 and Lw(0) > 0, then Lw(t)


> 0 , for 0 ≤ t < τ∗,

= 0 , for t = τ∗,

< 0 , for τ∗ < t ≤ T,

(5.5)

where τ∗ ∈ (0, T ) is a zero of the function Lw(t).
Now, let us consider the switching function Lz(t). Using the third equation of

system (3.8) we calculate the derivative of the function L̇z(t). Then, in the obtained
expression we use formula (4.1). Adding the second formula from (4.13) as the
corresponding initial condition, finally we find the Cauchy problem for the function
L̇z(t):

(5.6)

{
L̈z(t) = (γ + z∗(t))L̇z(t)− u∗(t)s∗(t)L̇w(t), t ∈ [0, T ],

L̇z(T ) = −1.

Integrating Cauchy problem (5.6), we obtain the formula:

L̇z(t) = −e
−

T∫
t
(γ+z∗(ξ))dξ

+

T∫
t

e
−

χ∫
t
(γ+z∗(ξ))dξ

u∗(χ)s∗(χ)L̇w(χ)dχ, t ∈ [0, T ],

which, by constraints (2.4), Lemma 2.1 and inequality (5.2), implies that L̇z(t) < 0
for all t ∈ [0, T ]. Hence, the function Lz(t) decreases from value Lz(0) to value
Lz(T ) = −q ≤ 0. Therefore, depending on the values of q and Lz(0) the switching
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function Lz(t) has at most one zero on the interval (0, T ):

if q = 0, then Lz(t) > 0, t ∈ [0, T );(5.7)

if q > 0 and Lz(0) ≤ 0, then Lz(t) < 0, t ∈ (0, T ];(5.8)

if q > 0 and Lz(0) > 0, then Lz(t)


> 0 , for 0 ≤ t < η∗,

= 0 , for t = η∗,

< 0 , for η∗ < t ≤ T,

(5.9)

where η∗ ∈ (0, T ) is a zero of the function Lz(t).
Finally, let us consider the switching function L0(t). By relationships (4.1)

and (5.2), we conclude that the inequality d
dt(s∗(t)L0(t)) > 0 is valid for all t ∈

[0, T ]. Hence, the function L̃0(t) = s∗(t)L0(t) increases from value L̃0(0) to value

L̃0(T ) = p ≥ 0. Therefore, depending on the values of p and L̃0(0) the function

L̃0(t) has at most one zero on the interval (0, T ):

if p = 0, then L̃0(t) < 0, t ∈ [0, T );(5.10)

if p > 0 and L̃0(0) ≥ 0, then L̃0(t) > 0, t ∈ (0, T ];(5.11)

if p > 0 and L̃0(0) < 0, then L̃0(t)


< 0 , for 0 ≤ t < θ∗,

= 0 , for t = θ∗,

> 0 , for θ∗ < t ≤ T,

(5.12)

where θ∗ ∈ (0, T ) is a zero of the function L̃0(t). By Lemma 2.1, we see that the
relationships (5.10)–(5.12) hold for the switching function L0(t). Adding here rela-
tionships (5.3)–(5.5) and (5.7)–(5.9) obtained previously for the switching functions
Lw(t), Lz(t), we conclude that Condition 5.1 is correct.

Now, by formulas (3.2)–(3.5) and relationships (5.3)–(5.5), (5.7)–(5.9) and (5.10)–
(5.12), we make conclusions about the behavior of optimal controls u∗(t), v∗(t),
w∗(t), z∗(t) depending on the values of the weighted coefficients p and q. The
following theorems hold.

Theorem 5.2. Let p > 0 and q > 0. Then optimal controls u∗(t), v∗(t) are either
constant functions of the type:

u∗(t) = umax, v∗(t) = vmax, t ∈ [0, T ];

or piecewise constant functions with one switching of the type:

u∗(t), v∗(t) =

{
umin, vmin , for 0 ≤ t ≤ θ∗,

umax, vmax , for θ∗ < t ≤ T.

Optimal control w∗(t) is either constant function of the type:

w∗(t) = wmin, t ∈ [0, T ];

or piecewise constant function with one switching of the type:

w∗(t) =

{
wmax , for 0 ≤ t ≤ τ∗,

wmin , for τ∗ < t ≤ T.
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Optimal control z∗(t) is either constant function of the type:

z∗(t) = zmin, t ∈ [0, T ];

or piecewise constant function with one switching of the type:

z∗(t) =

{
zmax , for 0 ≤ t ≤ η∗,

zmin , for η∗ < t ≤ T.

Theorem 5.3. Let p > 0 and q = 0. Then optimal controls u∗(t), v∗(t) are either
constant functions of the type:

u∗(t) = umax, v∗(t) = vmax, t ∈ [0, T ];

or piecewise constant functions with one switching of the type:

u∗(t), v∗(t) =

{
umin, vmin , for 0 ≤ t ≤ θ∗,

umax, vmax , for θ∗ < t ≤ T.

Optimal controls w∗(t), z∗(t) are constant functions of the type:

w∗(t) = wmax, z∗(t) = zmax, t ∈ [0, T ].

Theorem 5.4. Let p = 0 and q > 0. Then optimal controls u∗(t), v∗(t) are constant
functions of the type:

u∗(t) = umin, v∗(t) = vmin, t ∈ [0, T ].

Optimal control w∗(t) is either constant function of the type:

w∗(t) = wmin, t ∈ [0, T ];

or piecewise constant function with one switching of the type:

w∗(t) =

{
wmax , for 0 ≤ t ≤ τ∗,

wmin , for τ∗ < t ≤ T.

Optimal control z∗(t) is either constant function of the type:

z∗(t) = zmin, t ∈ [0, T ];

or piecewise constant function with one switching of the type:

z∗(t) =

{
zmax , for 0 ≤ t ≤ η∗,

zmin , for η∗ < t ≤ T.

Theorem 5.5. Let p = 0 and q = 0. Then optimal controls u∗(t), v∗(t), w∗(t),
z∗(t) are constant functions of the type:

u∗(t) = umin, v∗(t) = vmin, w∗(t) = wmax, z∗(t) = zmax, t ∈ [0, T ].

Remark 5.6. In [21] for estimating the number of switchings of the optimal control
in the model of malignant tumor treatment with the immune reaction the properties
of the first and second derivatives of the corresponding switching function were also
used.
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5.2. Constancy of the Hamiltonian on the optimal solution. As in the pre-
vious approach, here we will have to differentiate the control functions u∗(t), v∗(t),
w∗(t), z∗(t). In order to do this, they must be piecewise constant functions with
a finite number of switchings on the interval (0, T ). In turn, it implies that the
corresponding switching functions L0(t), Lw(t), Lz(t) must have a finite number of
zeros on the interval [0, T ]. Therefore, further we consider that Condition 5.1 is
satisfied.

Now, let us rewrite formula (3.7) expressing the constancy of the Hamiltonian on
the optimal solution of the original problem (2.9), (2.14) as follows

(5.13)

e∗(t)
(
v∗(t)s∗(t)L0(t) + (σ + w∗(t))Lw(t)− σLz(t)

− (1 + αp− λq)
)

+i∗(t)
(
u∗(t)s∗(t)L0(t) + (γ + z∗(t))Lz(t)

− (1 + βp− (ν + γ)q)
)
= H∗(T ), t ∈ [0, T ].

Next, we express from this the term (σ+w∗(t))Lw(t) and substitute it into the first
equation of system (3.8). After the corresponding transformations and addition
of the third equation of this system, we have the following system of differential
equations for the switching functions L0(t), Lz(t):

(5.14)



L̇0(t) =
(
u∗(t)i∗(t) + v∗(t)e∗(t) + u∗(t)i∗(t)e

−1
∗ (t)s∗(t)

)
L0(t)

+(γ + z∗(t))i∗(t)e
−1
∗ (t)Lz(t)

−
(
H∗(T )e

−1
∗ (t) + (1 + βp− (ν + γ)q)i∗(t)e

−1
∗ (t)

)
,

L̇z(t) = u∗(t)s∗(t)L0(t) + (γ + z∗(t))Lz(t)
−(1 + βp− (ν + γ)q),

L0(T ) = ps−1
∗ (T ), Lz(T ) = −q.

For the convenience of the subsequent analysis of this system, we will get rid of the
non-homogeneity in the first equation. To do this, we introduce in system (5.14)
the auxiliary function:

G(t) = (γ + z∗(t))Lz(t)−
(
H∗(T )i

−1
∗ (t) + (1 + βp− (ν + γ)q)

)
.

Then, the first equation of system (5.14) is rewritten as

(5.15)
L̇0(t) =

(
u∗(t)i∗(t) + v∗(t)e∗(t) + u∗(t)i∗(t)e

−1
∗ (t)s∗(t)

)
L0(t)

+ i∗(t)e
−1
∗ (t)G(t).

Then, using the third equation of system (2.9) and the second equation of sys-
tem (5.14) we find the corresponding differential equation for the function G(t):

(5.16)
Ġ(t) = (γ + z∗(t))u∗(t)s∗(t)L0(t) + (γ + z∗(t))G(t)

+ σH∗(T )e∗(t)i
−2
∗ (t).
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Now, let us introduce in equations (5.15) and (5.16) the following functions:

(5.17)
a0(t) = u∗(t)i∗(t) + v∗(t)e∗(t) + u∗(t)i∗(t)e

−1
∗ (t)s∗(t),

b0(t) = i∗(t)e
−1
∗ (t), c0(t) = (γ + z∗(t))u∗(t)s∗(t).

Then, gathering together equations (5.15) and (5.16), we finally have the system of
equations for the switching function L0(t) and its corresponding auxiliary function
G(t):

(5.18)

{
L̇0(t) = a0(t)L0(t) + b0(t)G(t), t ∈ [0, T ],

Ġ(t) = c0(t)L0(t) + (γ + z∗(t))G(t) + σH∗(T )e∗(t)i
−2
∗ (t).

We will use this system in following arguments for the analysis of the number of
zeros of the function L0(t).

Now, let us obtain a system of equations similar to (5.18) for the analysis of the
number of zeros of the function Lz(t). To do this, we introduce in system (5.14)
the auxiliary function:

Q(t) = u∗(t)L0(t)− (1 + βp− (ν + γ)q)s−1
∗ (t).

Then, the second equation of system (5.14) takes the form:

(5.19) L̇z(t) = (γ + z∗(t))Lz(t) + s∗(t)Q(t).

Then, using the first equations of systems (2.9) and (5.14) we obtain the corre-
sponding differential equation for the function Q(t):

(5.20)

Q̇(t) = (γ + z∗(t))u∗(t)i∗(t)e
−1
∗ (t)Lz(t)

+
(
u∗(t)i∗(t) + v∗(t)e∗(t) + u∗(t)i∗(t)e

−1
∗ (t)s∗(t)

)
Q(t)

−H∗(T )u∗(t)e
−1
∗ (t).

Now, by (5.17), let us introduce in equation (5.20) the following functions:

(5.21) az(t) = a0(t), cz(t) = (γ + z∗(t))u∗(t)i∗(t)e
−1
∗ (t).

Then, gathering together equations (5.19) and (5.20), we finally have the required
system of equations for the switching function Lz(t) and its corresponding auxiliary
function Q(t):

(5.22)

{
L̇z(t) = (γ + z∗(t))Lz(t) + s∗(t)Q(t), t ∈ [0, T ],

Q̇(t) = cz(t)Lz(t) + az(t)Q(t)−H∗(T )u∗(t)e
−1
∗ (t).

Finally, let us obtain a system of equations similar to (5.18) and (5.22) for the
analysis of the number of zeros of the function Lw(t). To do this, we express the term
s∗(t)L0(t) from equality (5.13) and first substitute it into the second equation of
system (3.8) and then into the third equation. After corresponding transformations
we have the following system of differential equations for the switching functions



ESTIMATING THE NUMBER OF SWITCHINGS OF THE OPTIMAL STRATEGIES 563

Lw(t), Lz(t):

(5.23)



L̇w(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1

{
(σ + w∗(t))u∗(t)i∗(t)Lw(t)

−(σu∗(t) + (γ + z∗(t))v∗(t))i∗(t)Lz(t)
−(1 + αp− λq)u∗(t)i∗(t)

+(1 + βp− (ν + γ)q)v∗(t)i∗(t) +H∗(T )v∗(t)
}
,

L̇z(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1

{
−(σ + w∗(t))u∗(t)e∗(t)Lw(t)

+(σu∗(t) + (γ + z∗(t))v∗(t))e∗(t)Lz(t)
+(1 + αp− λq)u∗(t)e∗(t)

−(1 + βp− (ν + γ)q)v∗(t)e∗(t) +H∗(T )u∗(t)
}
.

Again, for the convenience of the subsequent analysis of this system, we will get rid of
the non-homogeneity in the first equation. To do this, we introduce in system (5.23)
the auxiliary function:

P (t) = (σu∗(t) + (γ + z∗(t))v∗(t))Lz(t) + (1 + αp− λq)u∗(t)

− (1 + βp− (ν + γ)q)v∗(t)−H∗(T )v∗(t)i
−1
∗ (t).

Then, the first equation of system (5.23) is rewritten as

(5.24)
L̇w(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))

−1
{
(σ + w∗(t))u∗(t)i∗(t)Lw(t)

− i∗(t)P (t)
}
.

Next, using the third equation of system (2.9) and the second equation of sys-
tem (5.23) we find the corresponding differential equation for the function P (t):

(5.25)

Ṗ (t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1

×
{
−(σ + w∗(t))(σu∗(t) + (γ + z∗(t))v∗(t))u∗(t)e∗(t)Lw(t)

+ (σu∗(t) + (γ + z∗(t))v∗(t))e∗(t)P (t)
}

+ σH∗(T )(u∗(t)i∗(t) + v∗(t)e∗(t))i
−2
∗ (t).

Now, let us introduce in equations (5.24) and (5.25) the following functions:

(5.26)

aw(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1(σ + w∗(t))u∗(t)i∗(t),

bw(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1i∗(t),

cw(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1

× (σ + w∗(t))(σu∗(t) + (γ + z∗(t))v∗(t))u∗(t)e∗(t),

dw(t) = (u∗(t)i∗(t) + v∗(t)e∗(t))
−1

× (σu∗(t) + (γ + z∗(t))v∗(t))e∗(t).

Then, gathering together equations (5.24) and (5.25), we finally have the required
system of equations for the switching function Lw(t) and its corresponding auxiliary
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function P (t):

(5.27)

 L̇w(t) = aw(t)Lw(t)− bw(t)P (t), t ∈ [0, T ],

Ṗ (t) = −cw(t)Lw(t) + dw(t)P (t)
+σH∗(T )(u∗(t)i∗(t) + v∗(t)e∗(t))i

−2
∗ (t).

Next, we execute in systems (5.18), (5.22) and (5.27) the corresponding changes
of variables:

L̃0(t) = L0(t), G̃(t) = G(t) + h0(t)L0(t),(5.28)

L̃z(t) = Lz(t), Q̃(t) = Q(t) + hz(t)Lz(t),(5.29)

L̃w(t) = Lw(t), P̃ (t) = P (t)− hw(t)Lw(t).(5.30)

Here the functions h0(t), hz(t) and hw(t) satisfy the corresponding non-autonomous
Riccati equations:

ḣ0(t) = b0(t)h
2
0(t)− (a0(t)− (γ + z∗(t)))h0(t)− c0(t),(5.31)

ḣz(t) = s∗(t)h
2
z(t) + (az(t)− (γ + z∗(t)))hz(t)− cz(t),(5.32)

ḣw(t) = bw(t)h
2
w(t)− (aw(t)− dw(t))hw(t)− cw(t).(5.33)

Now, we will show that equations (5.31)–(5.33) have the solutions h̃0(t), h̃z(t)

and h̃w(t) defined on the entire interval [0, T ]. For this, we establish the validity of
the following lemma.

Lemma 5.7. Let there be given a non-autonomous Riccati equation:

(5.34) ḣ(t) = a(t)h2(t) + b(t)h(t) + c(t),

where a(t), b(t), c(t) are the piecewise continuous functions defined on the interval
[0, T ], and the functions a(t), c(t) satisfy the following inequalities:

(5.35) a(t) > 0, c(t) < 0, t ∈ [0, T ].

Then, there exists the piecewise differentiable solution h̄(t) for equation (5.34) sat-
isfying the initial condition:

(5.36) h̄(T ) = hT > 0,

which is defined on the entire interval [0, T ].

Proof. By Theorem 1A ([33], Chapter 1), there exists the solution h̄(t) for equa-
tion (5.34) with the initial condition (5.36) defined on the interval (t0, t1), which is
the maximum possible interval for the existence of such solution. If the inclusion
[0, T ] ⊂ (t0, t1) is valid, then the required fact is established. Now, let the inequal-
ities 0 ≤ t0 < T < t1 hold. In order for the required fact to be true, according to
Corollary from Lemma ([16], § 14, Chapter 4) it suffices to show the boundedness
of the solution h̄(t) on the interval (t0, t1).

For this, we execute in equation (5.34) the change of variable:

h̃(t) = e

T∫
t
b(ξ)dξ

h̄(t).

It is easy to see that the function h̃(t) satisfies the differential equation:

(5.37)
˙̃
h(t) = ã(t)h̃2(t) + c̃(t), t ∈ (t0, t1),
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and, by (5.36), the initial condition:

(5.38) h̃(T ) = hT > 0.

Here the functions:

ã(t) = e
−

T∫
t
b(ξ)dξ

a(t), c̃(t) = e

T∫
t
b(ξ)dξ

c(t)

satisfy inequalities (5.35) as well as the functions a(t), c(t).

From the analysis of equation (5.37) we conclude that the function h̃(t), firstly,
takes only positive values for all t ∈ (t0, T ], and, secondly, satisfies the following
differential inequalities:

˙̃
h(t) > c̃(t),

˙̃
h(t) < ã(t)h̃2(t), t ∈ (t0, t1).

Let us integrate these inequalities on the interval [t, T ], t ∈ (t0, T ) with initial
condition (5.38). We obtain the inequalities:

h̃(t) < hT −
T∫
t

c̃(χ)dχ ≤ hT −
T∫
0

c̃(χ)dχ,

h̃(t) >

h−1
T +

T∫
t

ã(χ)dχ

−1

≥

h−1
T +

T∫
0

ã(χ)dχ

−1

,

which, by relationships (5.35) and (5.38), imply the required boundedness. This
completes the proof. □
Remark 5.8. Justification of Lemma 5.7 is based on the ideas presented in [57].

Thus, the existence of the required solutions h̃0(t), h̃z(t) and h̃w(t) follows from
constraints (2.4), formulas (5.17), (5.21) and (5.26), equations (5.31)–(5.33) and
Lemmas 2.1 and 5.7.

Moreover, we consider that for each of the solutions h̃0(t), h̃z(t), h̃w(t) the value
hT in (5.36) is given by one of the following equalities:

h0T = βs∗(T ),(5.39)

hzT = (ν + γ)s−1
∗ (T ),(5.40)

hwT = (λ+ σ)u∗(T ).(5.41)

Next, system (5.18) in new variables (5.28) and with the function h̃0(t) is given
by

(5.42)


˙̃
L0(t) =

(
a0(t)− b0(t)h̃0(t)

)
L̃0(t) + b0(t)G̃(t), t ∈ [0, T ],

˙̃
G(t) =

(
(γ + z∗(t)) + b0(t)h̃0(t)

)
G̃(t) + σH∗(T )e∗(t)i

−2
∗ (t).

Now, system (5.22) in new variables (5.29) and with the function h̃z(t) is written
as follows

(5.43)


˙̃
Lz(t) =

(
(γ + z∗(t))− s∗(t)h̃z(t)

)
L̃z(t) + s∗(t)Q̃(t), t ∈ [0, T ],

˙̃
Q(t) =

(
az(t) + s∗(t)h̃z(t)

)
Q̃(t)−H∗(T )u∗(t)e

−1
∗ (t).
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Finally, system (5.27) in new variables (5.30) and with the function h̃w(t) has the
following form:

(5.44)


˙̃
Lw(t) =

(
aw(t)− bw(t)h̃w(t)

)
L̃w(t)− bw(t)P̃ (t), t ∈ [0, T ],

˙̃
P (t) =

(
dw(t) + bw(t)h̃w(t)

)
P̃ (t)

+σH∗(T )
(
u∗(t)i∗(t) + v∗(t)e∗(t)

)
i−2
∗ (t).

Let us consider systems (5.42)–(5.44). We show that for the corresponding func-

tions G̃(t), Q̃(t), P̃ (t) the following lemma is true.

Lemma 5.9. For the functions G̃(t), Q̃(t), P̃ (t), which satisfy systems (5.42)–

(5.44) together with the corresponding functions L̃0(t), L̃z(t), L̃w(t), the following
inequalities hold:

(5.45) G̃(t) > 0, Q̃(t) < 0, P̃ (t) > 0, t ∈ [0, T ].

Proof. First, let us consider the function G̃(t). From constraints (2.4), Corollary 4.3,
formula (4.15), the corresponding initial condition of system (5.14) and the defini-
tion of the function G(t) we find the equality:

G(T ) = e∗(T )i
−1
∗ (T )− βp.

Then, by Lemma 2.1, the corresponding initial condition of system (5.14), formu-
las (5.28) and (5.39), we obtain the relationship:

G̃(T ) = e∗(T )i
−1
∗ (T ) > 0.

Now, let us integrate the following Cauchy problem for the function G̃(t):{
˙̃
G(t) = k̃0(t)G̃(t) + σH∗(T )e∗(t)i

−2
∗ (t), t ∈ [0, T ],

G̃(T ) = e∗(T )i
−1
∗ (T ),

where k̃0(t) = (γ + z∗(t)) + b0(t)h̃0(t). As a result, we have the following formula:

G̃(t) = e∗(T )i
−1
∗ (T )e

−
T∫
t
k̃0(ξ)dξ

− σH∗(T )

T∫
t

e
−

χ∫
t
k̃0(ξ)dξ

e∗(χ)i
−2
∗ (χ)dχ, t ∈ [0, T ],

which, by Lemma 2.1 and Corollary 4.5, implies the positiveness of the function

G̃(t) on the interval [0, T ].

Now, let us consider the function Q̃(t). Again, from constraints (2.4), Corol-
lary 4.3, the corresponding initial condition of system (5.14) and the definition of
the function Q(t) we obtain the equality:

Q(T ) = −s−1
∗ (T ) + (ν + γ)qs−1

∗ (T ).

Then, by Lemma 2.1, the corresponding initial condition of system (5.14), formu-
las (5.29) and (5.40), we find the relationship:

Q̃(T ) = −s−1
∗ (T ) < 0.



ESTIMATING THE NUMBER OF SWITCHINGS OF THE OPTIMAL STRATEGIES 567

Now, let us integrate the following Cauchy problem for the function Q̃(t):{
˙̃
Q(t) = k̃z(t)Q̃(t)−H∗(T )u∗(t)e

−1
∗ (t), t ∈ [0, T ],

Q̃(T ) = −s−1
∗ (T ),

where k̃z(t) = az(t) + s∗(t)h̃z(t). As a result, we have the following formula:

Q̃(t) = − s−1
∗ (T )e

−
T∫
t
k̃z(ξ)dξ

+H∗(T )

T∫
t

e
−

χ∫
t
k̃z(ξ)dξ

u∗(χ)e
−1
∗ (χ)dχ, t ∈ [0, T ],

which, by constraints (2.4), Lemma 2.1 and Corollary 4.5, implies the negativeness

of the function Q̃(t) on the interval [0, T ].

Finally, let us consider the function P̃ (t). From formula (4.15), the corresponding
initial condition of system (5.14) and the definition of the function P (t) we find the
equality:

P (T ) = − (σu∗(T ) + (γ + z∗(T ))v∗(T ))q + (αp− λq)u∗(T )

− (βp− (ν + γ)q)v∗(T ) + (u∗(T ) + v∗(T )e∗(T )i
−1
∗ (T )).

Then, by the corresponding initial condition of system (5.14), formulas (5.30) and
(5.41), we obtain the equality:

P̃ (T ) = p(αu∗(T )− βv∗(T ))− qv∗(T )(z∗(T )− ν)

+ (u∗(T ) + v∗(T )e∗(T )i
−1
∗ (T )).

By constraints (2.4) and Corollary 4.3, we find that the first two terms in this
expression are equal to zero. Thus, by Lemma 2.1, we finally have the following
relationship:

P̃ (T ) = u∗(T ) + v∗(T )e∗(T )i
−1
∗ (T ) > 0.

Now, let us integrate the following Cauchy problem for the function P̃ (t):{
˙̃
P (t) = k̃w(t)P̃ (t) + σH∗(T )

(
u∗(t)i∗(t) + v∗(t)e∗(t)

)
i−2
∗ (t), t ∈ [0, T ],

P̃ (T ) = u∗(T ) + v∗(T )e∗(T )i
−1
∗ (T ),

where k̃w(t) = dw(t) + bw(t)h̃w(t). As a result, we have the following formula:

P̃ (t) =
(
u∗(T ) + v∗(T )e∗(T )i

−1
∗ (T )

)
e
−

T∫
t
k̃w(ξ)dξ

− σH∗(T )

T∫
t

e
−

χ∫
t
k̃w(ξ)dξ(

u∗(χ)i∗(χ) + v∗(χ)e∗(χ)
)
i−2
∗ (χ)dχ,

which is valid for all t ∈ [0, T ]. By constraints (2.4), Lemma 2.1 and Corollary 4.5,

this formula implies the positiveness of the function P̃ (t) on the interval [0, T ]. This
completes the proof. □
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Then, applying to the first equations of systems (5.42)–(5.44) the generalized
Rolle’s Theorem ([17]) and taking into account the corresponding inequalities (5.45),

we conclude that for the functions L0(t) = L̃0(t), Lz(t) = L̃z(t), Lw(t) = L̃w(t) the
following lemma holds.

Lemma 5.10. The switching functions L0(t), Lz(t), Lw(t) have at most one zero
on the interval [0, T ].

This statement shows that Condition 5.1, the validity of which we have previously
suggested, is satisfied.

Analyzing again the first equations of systems (5.42)–(5.44), and taking into
account the results of Lemmas 4.2, 5.9 and 5.10, we imply the validity of rela-
tionships (5.3)–(5.5), (5.7)–(5.9) and (5.10)–(5.12) for the corresponding switching
functions L0(t), Lz(t), Lw(t). Then, using formulas (3.2)–(3.5), we conclude that
depending on the values of the weighting coefficients p and q Theorems 5.2–5.5 about
the types of the optimal controls u∗(t), v∗(t), w∗(t), z∗(t) hold for this approach as
well.

6. Conclusion

In this paper, we considered two various SEIR control models describing the
spread of an Ebola epidemic in a population of a constant size. These models are
nonlinear, deterministic and involve four bounded controls implying intervention
control strategies for stopping Ebola transmission and spreading. Two of them
reflect the efforts to protect susceptible individuals from exposed and infected indi-
viduals. The other two controls, depending on the model, define the efforts or for
the treatment, or for the detection and isolation of exposed and infected individuals.
In the considered SEIR control models, the common SEI subsystem was allocated
for which the minimization problem of the sum of total fractions of exposed and
infected individuals and total weighted costs of control constraints over a given time
interval was stated. The corresponding two weighted coefficients are non-negative
values that allow us to study several optimal control problems. Using the Pontryagin
maximum principle, the analysis of the optimal controls was conducted analytically.
It related to the established properties of the switching functions, which completely
determined the behavior of the optimal controls. By these properties, we stated
that the optimal controls were bang-bang, and then proposed two new approaches
for estimating the number of zeros of the switching functions. The basis of all these
studies is the linear non-homogeneous non-autonomous system of differential equa-
tions for these functions. The first approach relates to the analysis of the Cauchy
problems for the derivatives of the switching functions. The second approach is
based on using the constancy of the Hamiltonian on the optimal solution of the
original problem for reducing by one of the order of the mentioned system for the
switching functions. The estimates of the number of switchings of the optimal con-
trols for each considered approach were found. Possible behavior of these controls
depending on the values of the weighted coefficients is focused in Theorems 5.2–5.5.

The important conclusion that can be made for the original problem based on
the study presented above, is the coincidence of the behavior of the optimal controls
obtained by applying the first and second approaches. This means that if as a result
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of using the first approach some optimal control is a constant function, then this
control has the same type as a result of applying the second approach. If as a result
of using the first approach some optimal control is a piecewise constant function
with one switching, then this control has the same type as a result of applying the
second approach as well.

Finally, we will give the epidemiological interpretation of the results presented in
Theorems 5.2–5.5. If the weighted coefficients are zero, then we consider the problem
of minimizing the total fractions of exposed and infected individuals on the given
time interval. The optimal intervention strategies found in this case, correspond to
the maximum efforts that can be made. If the weighted coefficients are positive, then
we consider the problem of minimizing the sum of the total fractions of exposed and
infected individuals and the total weighted costs of the control constraints on the
given time interval. All optimal intervention strategies are the piecewise constant
functions with at most one switching (each control has its own switching). Before
the corresponding switchings, these strategies correspond to the maximum efforts
that can be made and after to minimum efforts. If one of the weighted coefficients
is zero and the other is not, then we consider the problem of minimizing the sum
of the total fractions of exposed and infected individuals and the total weighted
costs of the control constraints corresponding to the positive weighted coefficient
on the given time interval. The optimal intervention strategies relating to the zero
weighted coefficient imply the maximum efforts that can be made, and the optimal
intervention strategies corresponding to the positive weighted coefficient are the
piecewise constant functions with at most one switching of the type described above.
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