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The problem of finding a functional for which a given differential equation is the
Euler-Lagrange equation is called as the inverse problem of the calculus of variations.
Note here paper [7], where the author consider several aspects of the inverse problem
of the calculus of variations as they have developed since 1979, giving some of the
principal results, listing significant primary sources and mentioning review articles
for further references. The inverse problem of the discrete calculus of variations
consists in the following. For a given system of discrete equations we want to know
whether there is a functional for which the given system coincides with the Euler-
Lagrange equation for this functional. If such a functional exists, then we need
to find it. To our knowledge, inverse problems of the calculus of variations were
studied only for continuous-time systems (see, for instance, [1]-[4], [7]-[9]).

The inverse problem of the calculus of variations arises when variational methods
for equations solving are used. If for a given system, continuous or discrete, we found
a functional such that the considered system is the Euler-Lagrange equation for a
problem of minimization of this functional, then we can use packages of programs for
solving optimization problems in order to find a solution of the considered system.

The present paper deals with two inverse problems of the calculus of variations
for discrete-time systems. Namely, we consider systems of discrete equations of the
second and fourth orders, for which solvability conditions and implicit expressions
for a functional are obtained. We use here the idea of the method for solving classical
inverse problems of the calculus of variations for continuous-time systems from [8].

2. Inverse problems

2.1. Systems of discrete equations of the second order.

Theorem 2.1. If a system of the form

(2.1) φk(xk−1, xk, xk+1) = 0, k = 1, ..., N − 1,

where x0, xN are specified and φk are everywhere continuously differentiable func-
tions, is the Euler-Lagrange equation for a functional of type (1.1) with twice con-
tinuously differentiable functions Vk, then

(2.2)
∂

∂xk+1
φk(xk−1, xk, xk+1) =

∂

∂xk
φk+1(xk, xk+1, xk+2), k = 1, ..., N − 2.

Moreover, if functions φk in (2.1) satisfy conditions (2.2), then a solution of the
inverse problem of the calculus of variations for system (2.1) can be found as follows

(2.3) J =

∫ x1

0
φ1(x0, x1, x2)dx1 +

N−1∑
k=2

∫ xk

0
φk(0, xk, xk+1)dxk.

Proof. Let system (2.1) be an Euler-Lagrange equation for a functional of type
(1.1). Hence, there exist functions Vj , j = 0, 1, . . . , N − 1, such that the following
equalities (see (1.2))

φk(xk−1, xk, xk+1) =
∂

∂xk
(Vk(xk, xk+1) + Vk−1(xk−1, xk)),

k = 1, ..., N − 1,
(2.4)

are valid.
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Differentiating the last equality with respect to xk+1, we have

(2.5)
∂

∂xk+1
φk(xk−1, xk, xk+1) =

∂2

∂xk+1∂xk
Vk(xk, xk+1), k = 1, ..., N − 1.

From (2.4), it follows

φk+1(xk, xk+1, xk+2) =
∂

∂xk+1
(Vk+1(xk+1, xk+2) + Vk(xk, xk+1)).

Differentiating this equality with respect to xk, we obtain

∂

∂xk
φk+1(xk, xk+1, xk+2) =

∂2

∂xk∂xk+1
Vk(xk, xk+1).

Comparing the last equality with (2.5) we get (2.2).
Further, suppose that functions from system (2.1) satisfy condition (2.2) and

define the functional J by (2.3). Then we get

∂J

∂x1
= φ1(x0, x1, x2).

Taking into account (2.2), we have

∂J

∂x2
=

∫ x1

0

∂

∂x2
φ1(x0, x1, x2)dx1 + φ2(0, x2, x3)

=

∫ x1

0

∂

∂x1
φ2(x1, x2, x3)dx1 + φ2(0, x2, x3)

=φ2(x1, x2, x3).

Similarly, we obtain for k > 2 in view of (2.2) the following

∂J

∂xk
=φk(0, xk, xk+1) +

∫ xk−1

0

∂

∂xk
φk−1(0, xk−1, xk)dxk−1

=φk(0, xk, xk+1) +

∫ xk−1

0

∂

∂xk−1
φk(xk−1, xk, xk+1)dxk−1

=φk(xk−1, xk, xk+1).

This completes the proof. □

Remark 2.2. Different methods are used for discretization of differential equations.
Usually, for differential equations of the second order the first derivative x′(kh) is
approximated by the difference (xk+1 − xk−1)/2h and the second derivative x′′(kh)
is changed by (xk+1−2xk+xk−1)/h

2, where xk = x(kh) and h is a step of partition
of the argument interval into equal parts. As a result, a system of form (2.1) is
obtained.

Remark 2.3. The statement of Theorem 2.1 in this paper contains the revised last
formula from the abstract in ([5], p. 10).



576 G. KURINA AND V. ZADOROZHNIY

2.2. Systems of discrete equations of the fourth order. Consider the problem
of minimizing the functional

(2.6) J =

N−2∑
k=0

Vk(xk, xk+1, xk+2), N > 2,

where boundary conditions x0, x1, xN−1, xN are specified and functions Vk are
differentiable.

Using the necessary condition of an extremum of a function of several variables
we obtain the Euler-Lagrange equation for functional (2.6) in the form

∂

∂xk
(Vk(xk, xk+1, xk+2) + Vk−1(xk−1, xk, xk+1) + Vk−2(xk−2, xk−1, xk)) = 0,

k = 2, ..., N − 2.
(2.7)

Theorem 2.4. If a system of the form

(2.8) φk(xk−2, xk−1, xk, xk+1, xk+2) = 0, k = 2, ..., N − 2,

where x0, x1, xN−1, xN are specified and φk are continuously differentiable func-
tions, is the Euler-Lagrange equation for a functional of type (2.6) with twice con-
tinuously differentiable functions Vk, then

∂

∂xk+1
φk(xk−2, xk−1, xk, xk+1, xk+2) =

∂

∂xk
φk+1(xk−1, xk, xk+1, xk+2, xk+3),

k = 2, ..., N − 3,
(2.9)

and

∂

∂xk+2
φk(xk−2, xk−1, xk, xk+1, xk+2) =

∂

∂xk
φk+2(xk, xk+1, xk+2, xk+3, xk+4),

k = 2, ..., N − 4.

(2.10)

Moreover, if functions φk in (2.8) satisfy conditions (2.9) and (2.10), then a solution
of the inverse problem of the calculus of variations for system (2.8) can be found as
follows

J =

∫ x2

0
φ2(x0, x1, x2, x3, x4)dx2 +

∫ x3

0
φ3(x1, 0, x3, x4, x5)dx3

+

N−2∑
k=4

∫ xk

0
φk(0, 0, xk, xk+1, xk+2)dxk.

(2.11)

Proof. Let system (2.8) be an Euler-Lagrange equation for a functional of type (2.6).
Hence, there exist functions Vj , j = 0, 1, ..., N−2, such that the following equalities
(see (2.7))

(2.12)

φk(xk−2, xk−1, xk, xk+1, xk+2) =
∂

∂xk
(Vk(xk, xk+1, xk+2)

+ Vk−1(xk−1, xk, xk+1)

+ Vk−2(xk−2, xk−1, xk)), k = 2, ..., N − 2,

are valid.
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For k = 2, . . . , N − 3, differentiating the last equality with respect to xk+1, we
have

(2.13)

∂

∂xk+1
φk(xk−2, xk−1, xk, xk+1, xk+2) =

∂2

∂xk+1∂xk
(Vk(xk, xk+1, xk+2)

+ Vk−1(xk−1, xk, xk+1)).

From (2.12), it follows

φk+1(xk−1, xk, xk+1, xk+2, xk+3) =
∂

∂xk+1
(Vk+1(xk+1, xk+2, xk+3)

+ Vk(xk, xk+1, xk+2)

+ Vk−1(xk−1, xk, xk+1)).

Differentiating this equality with respect to xk, we obtain

∂

∂xk
φk+1(xk−1, xk, xk+1, xk+2, xk+3) =

∂2

∂xk∂xk+1
(Vk(xk, xk+1, xk+2)

+ Vk−1(xk−1, xk, xk+1)).

Comparing the last equality with (2.13), we get (2.9).
For k = 2, . . . , N − 4, differentiating (2.12) with respect to xk+2, we have

(2.14)
∂

∂xk+2
φk(xk−2, xk−1, xk, xk+1, xk+2) =

∂2

∂xk+2∂xk
Vk(xk, xk+1, xk+2).

From (2.12), it follows

φk+2(xk, xk+1, xk+2, xk+3, xk+4) =
∂

∂xk+2
(Vk+2(xk+2, xk+3, xk+4)

+ Vk+1(xk+1, xk+2, xk+3)

+ Vk(xk, xk+1, xk+2)).

Differentiating this equality with respect to xk, we obtain

∂

∂xk
φk+2(xk, xk+1, xk+2, xk+3, xk+4) =

∂2

∂xk∂xk+2
Vk(xk, xk+1, xk+2).

Comparing the last equality with (2.14), we get (2.10).
Further, suppose that functions from system (2.8) satisfy conditions (2.9) and

(2.10) and define the functional by equality (2.11). Then we get

∂J

∂x2
= φ2(x0, x1, x2, x3, x4).

Taking into account (2.9), we have

∂J

∂x3
=

∫ x2

0

∂

∂x3
φ2(x0, x1, x2, x3, x4)dx2 + φ3(x1, 0, x3, x4, x5)

=

∫ x2

0

∂

∂x2
φ3(x1, x2, x3, x4, x5)dx2 + φ3(x1, 0, x3, x4, x5)

=φ3(x1, x2, x3, x4, x5).
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Using immediate differentiation, in view of (2.9) and (2.10) we get

∂J

∂xk
= φk(xk−2, xk−1, xk, xk+1, xk+2), k = 4, 5.

Similarly, we obtain for k > 5 the following

∂J

∂xk
=φk(0, 0, xk, xk+1, xk+2) +

∫ xk−1

0

∂

∂xk
φk−1(0, 0, xk−1, xk, xk+1)dxk−1

+

∫ xk−2

0

∂

∂xk
φk−2(0, 0, xk−2, xk−1, xk)dxk−2

=φk(0, 0, xk, xk+1, xk+2) +

∫ xk−1

0

∂

∂xk−1
φk(0, xk−1, xk, xk+1, xk+2)dxk−1

+

∫ xk−2

0

∂

∂xk−2
φk(xk−2, xk−1, xk, xk+1, xk+2)dxk−2

=φk(xk−2, xk−1, xk, xk+1, xk+2).

This completes the proof. □

Remark 2.5. The form of system (2.8) follows, for instance, from a differential
equation of the second order if the first derivative x′(kh) is approximated by the
difference (xk+1−xk−1)/2h and the second derivative x′′(kh) is changed by (xk+2−
2xk + xk−2)/4h

2.

Remark 2.6. If it turns out that one of the integrals in the statement of Theorems
2.1, 2.4 does not exist, then we can replace the lower limit of integration by any
number such that this integral does exist.

3. Examples

3.1. Consider the system

k2(xk−1 + 1)2exp(k2(xk−1 + 1)2xk)

+2(k + 1)2(xk + 1)xk+1exp((k + 1)2(xk + 1)2xk+1) = 0,

k = 1, ..., N − 1, N > 1,

(3.1)

with fixed end points, i.e. x0 and xN are specified.
We want to know whether there is a discrete functional for which this system is

a discrete Euler-Lagrange equation.
The considered system (3.1) is a system of form (2.1). It is easy to see that

condition (2.2) is satisfied. Hence, in view of Theorem 2.1 system (3.1) is the
Euler-Lagrange equation for a functional. Using formula (2.3) we find one of such
functionals

(3.2) J =

N−1∑
k=0

exp((k + 1)2(xk + 1)2xk+1).

We can immediately verify that system (3.1) is really the Euler-Lagrange equation
for the found functional (3.2).
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3.2. Consider the system

x0 + 2x1 + 2x2 = 0,

x1 + 2x2 + x3 = 0
(3.3)

with a fixed-end points, i.e. x0 and x3 are specified.
The considered system is a system of form (2.1), where

φ1(x0, x1, x2) = x0 + 2x1 + 2x2, φ2(x1, x2, x3) = x1 + 2x2 + x3.

Condition (2.2) is not satisfied for these functions. Hence, in view of Theorem 2.1
system (3.3) is not the Euler-Lagrange equation for a functional of type (1.1).

If we multiply the first equation of system (3.3) by 1
2 , namely, we will consider

the system

1

2
x0 + x1 + x2 = 0,

x1 + 2x2 + x3 = 0,

then condition (2.2) is satisfied. In view of Theorem 2.1, the obtained system is the
Euler-Lagrange equation for a functional. One of such functionals can be found by
formula (2.3)

J =
1

2
x0x1 +

1

2
x21 + x1x2 + x22 + x2x3.

The method of multiplying the equation by the factor for obtaining the Euler-
Lagrange equation for a functional was used earlier for continuous systems (see, for
instance, [8]). It is called in this book as the method of the integrating multiplier.
See about the multiplier problem, for instance, in [7].

4. Relation to continuous-time case

Firstly we present a result from ([8], p. 53).
An equation is the Euler-Lagrange equation for a some integral functional if and

only if it has the form

A(t, x, x′)x′′ +B(t, x, x′) = 0,

where the functions A and B satisfy the following equality

(4.1) Bx′ −At − x′Ax = 0.

4.1. Consider an equation from ([8], p. 58) of the form

(4.2) −2t2x′′ − 4tx′ + 24x = 0.

It is evident that this equation satisfy equality (4.1). Hence (4.2) is the Euler-
Lagrange equation for a some integral functional.

If we use the discretization scheme from Remark 2.2 with h = 1 for second order
differential equation (4.2) we obtain discrete system of form (2.1)

(4.3) −2k(k + 1)xk+1 + 4(k2 + 6)xk + 2k(1− k)xk−1 = 0.

It is not difficult to verify that condition (2.2) is satisfied for the last system. There-
fore, in view of Theorem 2.1 system (4.3) is the Euler-Lagrange equation for a
functional of type (1.1).
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If we use another discretization scheme for equation (4.2), replacing x′(k) by the
difference xk+1 − xk and x′′(k) by the same expression as before, we obtain the
discrete system

(4.4) −2k(k + 2)xk+1 + 4(k2 + k + 6)xk − 2k2xk−1 = 0.

Condition (2.2) is not satisfied for this system. Taking into account Theorem
2.1 we conclude that system (4.4) can not be the Euler-Lagrange equation for a
functional of type (1.1).

Hence, solvability of the inverse problem of the calculus of variations for dis-
cretized equation depends on a discretization method.

4.2. Condition (4.1) for the Bessel equation

(4.5) t2x′′ + tx′ + (t2 − ν2)x = 0

is not satisfied. Therefore, the inverse problem of the calculus of variations for this
equation is not solvable.

Using the discretization method from Remark 2.2 with h = 1 we obtain from
(4.5) the discrete system

k(k +
1

2
)xk+1 − (k2 + ν2)xk + k(k − 1

2
)xk−1 = 0,

which is not the Euler-Lagrange equation for a functional of type (1.1) in view of
Theorem 2.1.

4.3. Consider the equation of the form

(4.6) t3x′′ + (3t2 + a)x′ + bx = 0,

where a and b are constants.
If we use the discretization method from Remark 2.2 with h = 1 for equation

(4.6) we obtain the discrete system

(4.7) (k3 +
3k2 + a

2
)xk+1 + (−2k3 + b)xk + (k3 − 3k2 + a

2
)xk−1 = 0.

Let us assume that a = 0. Then condition (4.1) is satisfied and (4.6) is the
Euler-Lagrange equation for an integral functional. In this case, condition (2.2) is
not satisfied for corresponding discretized equation (4.7). Hence, this equation is
not the Euler-Lagrange equation for a functional of type (1.1).

4.4. If a = −1
2 then condition (4.1) for equation (4.6) is not satisfied and (4.6) is

not the Euler-Lagrange equation for a some integral functional. Condition (2.2)
for such a is satisfied for discretized equation (4.7). Hence, this equation is the
Euler-Lagrange equation for a functional of type (1.1) in view of Theorem 2.1.

Thus all four situations concerning solvability of the inverse problem of the calcu-
lus of variations for a differential equation of the second order and a corresponding
discretized system are possible.
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5. Conclusion

In this paper, the inverse problem of the calculus of variations for two discrete
systems, where the first of them consists of second order discrete equations and the
second system consists of fourth order equations, has been solved.

It is planed to obtain analogous results in future for systems of discrete equations
of the 2r-th order of the form

φk(xk−r, xk−r+1, . . . , xk+r) = 0, k = r, ..., N − r,

where x0, . . . , xr−1 and xN−r+1, . . . , xN are specified.
The problem with some free variables from the last two lists can be also consid-

ered. Such situation in the discrete calculus of variations, where the Euler-Lagrange
equation is a system of second order equations, has been researched, for instance,
in [6].
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