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control, the optimality conditions take the form of a coupled system of a Hamilton-
Jacobi-Bellman (HJB) equation and a Fokker-Planck equation. The Fokker-Planck
equation describes then the evolution of the probability distribution of the state
variable and the HJB equation is an adjoint equation. The optimality conditions
can be derived with the standard approach used for Pontryagin’s principle with
needle perturbations, see [6, Chapter 4] and [21, Proposition 3]. In a closely related
paper of the same author [23], optimality conditions are derived for a formulation
of the problem where the feasible control processes are adapted processes with
respect to the Brownian motion. In this framework, the optimality conditions are
formulated as follows: an optimal control process is also an optimal solution to a
standard stochastic optimal control problem, where the terminal condition can be
interpreted as a derivative of the cost function. A standard problem refers here to a
problem where the cost function is an expectation, which can be solved by dynamic
programming.

Description of the methods. The methods that we propose are iterative methods,
consisting in forward and backward passes. The backward pass consists in the res-
olution of a standard problem, by solving the corresponding HJB equation. The
forward pass consists in solving the Fokker-Planck equation associated with the
control process obtained in the backward pass. The proposed schemes are similar
to those used to solve mean-field game problems, in so far as they are based on
backward and forward passes. In the first method, convex combinations of proba-
bility measures in the reachable set are used: in this way, the scheme can be seen
as a gradient method. We provide a convergence result for the continuous-time
formulation of the scheme. This formulation of the scheme provides a sequence of
probability measures. We show that this sequence possesses at least one limit point
satisfying the optimality conditions. The second method looks like the fixed-point
approach for mean-field games, however, a penalization term is included into the
linearized standard problems to be solved. In this manner, the algorithm provides
a sequence of feedback controls. The forward-backward structure of our algorithm
is usual, but the interpretation of the first method as a gradient method is new to
our knowledge. The introduction of a penalizing term in the second method seems
also to be new.

The state variable is discretized as a controlled Markov chain with a semi-
Lagrangian scheme, proposed originally in [10], see also the reference [18] on the
approximation of SDEs with Markov chains. The HJB equation can be then easily
discretized: it suffices to write the dynamic programming principle associated with
the controlled Markov chain. The Fokker-Planck equation is discretized by writ-
ing the Chapman-Kolmogorov equation associated with the Markov chain. In this
paper, we do not analyze the discretization of the SDE from a theoretical point of
view. The numerical analysis of forward-backward systems has received much at-
tention in the last years and is still an active field of research. In the articles [2, 1], a
proof of convergence of an implicit finite-difference numerical scheme is provided for
various mean-field games. In [13, 12], a semi-Lagrangian scheme, similar to the one
used in this article, is used for mean-field games. The convergence of the discretized
solutions is proved for a state variable of dimension 1.
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Structure of the article. Just below, we provide the main notations of the paper and
describe the problem under study. In section 2, we recall the main results of [23], on
which the numerical methods are based. These methods are described in section 3,
where we give a convergence result (Theorem 3.2). Section 4 consists in a discussion
on different kinds of cost functions which can be considered. The continuity and the
differentiability of these functions are investigated. In section 5, numerical results
are shown on academic examples. The cost function of the first example involves a
Wasserstein distance, in order to reach a given probability distribution. The cost
functions of the next two examples take into account the standard deviation of the
distribution. The last example uses the conditional value at risk.

1.2. Formulation of the problem and assumptions.
General notations. The set of probability measures on Rn is denoted by P(Rn). For
a function ϕ : Rn → R, its integral (if well-defined) with respect to the measure
m ∈ P(Rn) is denoted by∫

Rn

ϕ(x) dm(x) or

∫
Rn

ϕ dm.

Given two measures m1 and m2 ∈ P(Rn), we denote:∫
Rn

ϕ(x) d(m2(x)−m1(x)) :=

∫
Rn

ϕ(x) dm2(x)−
∫
Rn

ϕ(x) dm1(x).

The probability distribution of a given random variable X with values in Rn is
denoted by L(X) ∈ P(Rn). If m = L(X) ∈ P(Rn), then for any continuous and
bounded function ϕ : Rn → R,

E
[
ϕ(X)

]
=

∫
Rn

ϕ dm.

We also denote by σ(X) the σ-algebra generated by X.
For p ≥ 1, we denote by Pp(Rn) the set of probability measures having a finite

p-th moment:

Pp(Rn) :=
{
m ∈ P(Rn)

∣∣ ∫
Rn

|x|p dm(x) < +∞
}
.

We equip Pp(Rn) with the Wasserstein distance dp, see the definition and the dual
representation of dp for p = 1 in section 2.1.

For all R ≥ 0, we define:

(1.1) B̄p(R) :=
{
m ∈ Pp(Rn) |

∫
Rn

|x|p dm(x) ≤ R
}
.

The open (resp. closed) ball of radius r ≥ 0 and center 0 is denoted by Br (resp.
B̄r), its complement by Bc

r (resp. B̄c
r). The set of real-valued Lipschitz continuous

functions with modulus 1 defined on Rn is denoted by 1− Lip(Rn).
For a given p ≥ 1, a function ϕ : Rn → Rn is said to be dominated by |x|p if for

all ε > 0, there exists r > 0 such that for all x ∈ Bc
r ,

(1.2) |ϕ(x)| ≤ ε|x|p.
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Controlled SDEs. We fix T > 0 and a standard Brownian motion (Wt)t∈[0,T ] of di-
mension d. For all t ∈ [0, T ], we denote by Ft the σ-algebra generated by (Ws)s∈[0,t].

Let U be a compact subset of Rn. For a given random variable Y0 independent of
F0,T with values in Rn, we denote by U0(Y0) the set of control processes (ut)t∈[0,T ]
with values in U which are such that for all t, ut is (σ(Y0)×F0,t)-measurable.

The drift b : Rn × U → Rn and the volatility σ : Rn × U → Rn×d are given. For

all u ∈ U0(Y0), we denote by
(
X0,Y0,u
t

)
t∈[0,T ] the solution to the following SDE:

(1.3) dX0,Y0,u
t = b(X0,Y0,u

t , ut) dt+σ(X
0,Y0,u
t , ut) dWt, ∀t ∈ [0, T ], X0,Y0,u

0 = Y0.

The well-posedness of this SDE is ensured by the Assumption 1.1 [22, Section 5]

below. We also denote by m0,Y0,u
t the probability distribution of X0,Y0,u

t :

m0,Y0,u
t = L(X0,Y0,u

t ).

All along the article, we assume that the following assumption holds true.

Assumption 1.1. There exists L > 0 such that for all x, y ∈ Rn, for all u, v ∈ U ,

|b(x, u)|+ |σ(x, u)| ≤ L(1 + |x|+ |u|),
|b(x, u)− b(y, v)|+ |σ(x, u)− σ(y, v)| ≤ L(|y − x|+ |v − u|).

Formulation of the problem. We fix an initial condition Y0 (independent of F0,T )
and p ≥ 2 such that L(Y0) ∈ Pp(Rn). Let χ be a real-valued function defined on
Pp(Rn). We aim at studying the following problem:

(P ) inf
u∈U0(Y0)

χ(m0,Y0,u
T ).

Throughout the article, we assume that the next two assumptions (dealing with
the continuity and the differentiability of χ) are satisfied.

Assumption 1.2. The mapping χ is continuous for the d1-distance.

In order to state optimality conditions, we will need a notion of derivative for the
mapping χ. There are different ways to define the derivative of χ and we refer to
[11, Section 6] for a discussion on this topic. Denoting by M(Rn) the set of finite
signed measures on Rn, we define:

M̂p(Rn) =
{
m ∈ M(Rn)

∣∣ ∫
Rn

|x|p d|m|(x) < +∞,

∫
Rn

1 dm(x) = 0
}
.

Assumption 1.3. The mapping χ is directionally differentiable in the following

sense: for all m1 in Pp(Rn), there exists a linear form Dχ(m1) on M̂p(Rn) such
that for all m2 in P(Rn), for all θ ∈ [0, 1],

(1.4) χ
(
(1− θ)m1 + θm2

)
= χ(m1) + θDχ(m1)(m2 −m1) + o(θ).

Moreover, we assume that the linear form can be identified with a continuous func-
tion denoted by x ∈ Rn 7→ Dχ(m1, x) which is dominated by |x|p.

Under Assumption 1.3, equation (1.4) reads:

(1.5) χ
(
(1− θ)m1 + θm2

)
= χ(m1) + θ

[ ∫
Rn

Dχ(m1, x) d(m2(x)−m1(x))
]
+ o(θ).
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Observe that at a given value of m1, the directional derivative of Dχ(m1, ·) is
uniquely defined “up to a constant”: equation (1.5) remains true if a constant is
added to Dχ(m1, ·). The uniqueness derives directly from the identity:

Dχ(m1, y) = lim
θ→0

χ((1− θ)m1 + θδy)− χ(m1)

θ
+

∫
Rn

Dχ(m1, x) dm1(x),

where δy is the Dirac measure centered at y.

2. Analysis of the problem

2.1. Technical results.
Convexity of the closure of the reachable set. We denote by R(0, Y0) the set of
reachable probability measures at time T :

(2.1) R(0, Y0) =
{
m0,Y0,u
T |u ∈ U0(Y0)}.

We denote by cl
(
R(0, Y0)

)
its closure for the d1-distance. We recall Lemma 6 of

[23].

Lemma 2.1. The closure of the set of reachable probability measures is convex.

Elements on optimal transportation. We first recall the definition of the Wasserstein
distance denoted by dp (for p ≥ 1) in this article. For all m1 and m2 in Pp(Rn),

(2.2) dp(m1,m2) =
[

inf
π∈Π(m1,m2)

∫
Rn×Rn

|y − x|p dπ(x, y)
]1/p

,

Π(m1,m2) being the set of transportation mappings from m1 to m2 defined as:{
π ∈ P(R2n) |

{
π(A× Rn) = m1(A),
π(Rn ×A) = m2(A),

for all measurable A ⊂ Rn
}
.

By Hölder’s inequality, for all 1 ≤ p ≤ p′, Pp′(Rn) ⊂ Pp(Rn). Moreover, for all
1 ≤ p ≤ p′ and for all m and m′ in Pp′(Rn),

dp(m,m
′) ≤ dp′(m,m

′).

Note that Pp(Rn) equipped with dp is complete and separable [28, Theorem 6.18].
Note also the dual representation of d1 [28, Remark 6.5]: for all m1, m2 ∈ P1(Rn),

(2.3) d1(m1,m2) = sup
ϕ∈1−Lip(Rn)

∫
Rn

ϕ d(m2 −m1),

where 1− Lip(Rn) is the set of Lipschitz function with modulus 1.
The following lemma is a classical result, see for example [11, Lemma 5.7].

Lemma 2.2. For all p > 1 and R ≥ 0, the subset B̄p(R) of P1(Rn) (defined in
(1.1)) is compact for the d1-distance.

A proof of the following lemma can be found in the appendix of [23].

Lemma 2.3. Let p > 1, ϕ : Rn → R be dominated by |x|p (in the sense of (1.2)).
Then, for all R ≥ 0, the following mapping: m ∈ B̄p(R) 7→

∫
Rn ϕ(x) dm(x) is

continuous for the d1-distance.



634 L. PFEIFFER

2.2. Optimality conditions. In this section, we give a maximum principle for
problem P (defined in the introduction, page 632). We start by recalling the ap-
proach by dynamic programming for a linear cost function of the form:

χ(m) =

∫
Rn

ϕ(x) dm(x),

where ϕ : Rn → R is continuous and dominated by |x|p. The term “linear” refers
here to the following property: for all m1, m2 ∈ Pp(Rn), for all θ ∈ [0, 1],

χ
(
θm1 + (1− θ)m2

)
= θχ(m1) + (1− θ)χ(m2).

In this case, the derivative introduced in Assumption 1.3 is equal to ϕ for all m.
We denote by P (ϕ) the following problem:

(P (ϕ)) inf
u∈U0(Y0)

E
[
ϕ(X0,Y0,u

T )
]
.

We call such a problem standard problem. We set a(x, u) = σ(x, u)σ(x, u)t and
define the unminimized Hamiltonian h(u, x, p,Q) and the Hamiltonian H(x, p,Q)
by

h(u, x, p,Q) = pb(u, x) +
1

2
tr(a(x, u)Q),

H(x, p,Q) = inf
u∈U

h(u, x, p,Q),

where p is a row vector of size n and Q a symmetric matrix of size n. As is well-
known (see for example the books [5, 14]), the standard problem P (ϕ) can be solved
by dynamic programming. We introduce the value function V : [0, T ] × Rn → R,
defined by:

V (t, x) = inf
u∈Ut

E
[
ϕ(Xt,x,u

T )
]
,

s. t.:

{
dXt,x,u

s = f(Xt,x,u
s , us) ds+ σ(Xt,x,u

s , us) dWs,

Xt,x,u
t = x,

where (Ws)s∈[t,T ] is a standard Brownian motion and Ut the set of adapted processes
with respect to the filtration generated by (Ws)s∈[t,T ]. It is the viscosity solution to
the following Hamilton-Jacobi-Bellman (HJB) equation:

(2.4) −∂tV (t, x) = H(x, ∂xV (t, x), ∂xxV (t, x)), V (T, x) = ϕ(x).

An optimal solution ū to P (ϕ) is then such that for a.a. t, ūt minimizes almost

surely h
(
·, X0,Y0,ū

t , ∂xV (t,X0,Y0,ū
t ), ∂xxV (t,X0,Y0,ū

t )
)
, if V is sufficiently regular. The

dynamic programming principle associated with V states also that

E
[
V (t,X0,Y0,ū

t )
] (

=

∫
Rn

V (t, x) dm0,Y0,ū
t (x)

)
is independent of t ∈ [0, T ] and equal to the value of P (ϕ).

The following theorem was proved in [23]. It is a maximum principle for problem
P . For the sake of completeness, we recall here a proof.

Theorem 2.4. Let ū ∈ U0(Y0) be an optimal solution to problem P . Then, ū is a

solution to the standard problem P (ϕ), where ϕ(·) = Dχ(m̄, ·), with m̄ = m0,Y0,ū
T .
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In the sequel, we call problem P (ϕ) linearized problem when ϕ(·) = Dχ(m̄, ·), in
order to emphasize its connection with problem P .

Proof. Using the continuity of χ of the d1-distance, we obtain that m̄ is optimal on
cl(R(0, Y0)), which is by Lemma 2.1 a convex set. Therefore, for all u ∈ U0(Y0), for
all θ ∈ [0, 1],

0 ≤ χ
(
(1− θ)m̄+ θm0,Y0,u

T

)
− χ(m̄)

= θDχ(m̄)(m0,Y0,u
T − m̄) + o(θ)

= θE
[
Dχ

(
m̄,X0,Y0,u

T

)
−Dχ

(
m̄,X0,Y0,ū

T

)]
+ o(θ).(2.5)

Therefore, we obtain:

E
[
Dχ

(
m̄,X0,Y0,u

T

)]
≥ E

[
Dχ

(
m̄,X0,Y0,ū

T

)]
.

The theorem is proved. □

We are not able to prove the existence of an optimal solution ū ∈ U0(Y0) in
general. However, one can derive from the continuity of χ and the compactness of
cl(R(0, Y0)) the existence of an optimal solution m̄ to the problem:

inf
m∈cl(R(0,Y0))

χ(m).

The probability distribution m̄ is then a solution to infm∈cl(R(0,Y0))Dχ(m̄)m.
Here, it is not possible in general to compute directly the value function in order

to obtain a characterization of the optimal solution (as we would do to solve problem
P (ϕ)), since the terminal condition Dχ(m̄, ·) itself depends on the optimal control.

The following lemma explains the role of the value function associated with the
linearized problem when χ is convex. Note that in this case, the necessary condition
of Theorem 2.4 is also a sufficient condition.

Lemma 2.5. Assume that χ is convex on Pp(Rn), that is to say, for all θ ∈ [0, 1],
for all m1 and m2 ∈ Pp(Rn),

(2.6) χ(θm1 + (1− θ)m2) ≤ θχ(m1) + (1− θ)χ(m2).

Then, for all m̄ ∈ cl(R(0, Y0)), the following upper estimate holds:

(2.7) χ(m̄)−
(

inf
m∈cl(R(0,Y0))

χ(m)
)
≤ Dχ(m̄)m̄−Val(P (ϕ)),

where ϕ = Dχ(m̄, ·). In particular, if a control process ū is a solution to P (ϕ), with

ϕ = Dχ(m0,Y0,ū
T ), then ū is an optimal solution to P .

Proof. Since χ is convex, the following inequality holds true for all m ∈ Pp(Rn):

χ(m)− χ(m̄) ≥ Dχ(m̄)(m− m̄).

The lemma follows directly, minimizing both sides of the last inequality. □
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3. Numerical method

3.1. Continuous numerical method. This subsection is dedicated to the analysis
of a continuous-time algorithm. Note that the corresponding discretized algorithm
is the algorithm 1 studied in section 3.3. The procedure generates a sequence
(mℓ)ℓ∈N in cl(R(0, Y0)). At iteration ℓ, the linearized problem (P (ϕ)) is solved
with ϕ = Dχ(mℓ). The probability measure corresponding to an optimal solution,
denoted by m̃ℓ+1, is used as a descent direction. The next iterate is chosen as the
optimal probability measure on the interval [mℓ, m̃ℓ+1]. The parameter εℓ is non-
negative and equal to 0 if and only if mℓ satisfied the optimality condition provided
by Theorem 2.4. It measures the lack of optimality when χ is convex, as proved in
Lemma 2.5.

Choose m0 ∈ cl(R(0, Y0)) and set ℓ = 0;

for ℓ = 0, ... do
Compute a solution m̃ℓ+1 to:

inf
m∈cl(R(0,Y0))

Dχ(mℓ)m;

Set εℓ = Dχ(mℓ)(mℓ − m̃ℓ+1) ≥ 0;

Compute a solution θℓ+1 to:

inf
θ∈[0,1]

χ
(
(1− θ)mℓ + θm̃ℓ+1

)
;

Set mℓ+1 = (1− θℓ+1)mℓ + θℓ+1m̃ℓ+1;

Set ℓ = ℓ+ 1 ;

end

Continuous-time algorithm: gradient descent

The convergence result is based on the following assumption.

Assumption 3.1. There exists a constant K ≥ 0 such that for all m1, m2, m3,
and m4 in cl(R(0, Y0)), the following estimates hold:(

Dχ(m2)−Dχ(m1)
)
(m2 −m1) ≤ Kd1(m1,m2)

2,(3.1) (
Dχ(m2)−Dχ(m1)

)
(m4 −m3) ≤ Kd1(m1,m2).(3.2)

Equation (3.2) is a Lipschitz-continuity property for the derivative Dχ. Equation
(3.1) actually derives from (3.1) and is a semi-concavity property. We provide
a general class of functions for which this assumption is satisfied in section 4.1,
Lemma 4.1. Note also that by (3.1), for all m1 and m2 in cl(R(0, Y0)), for all
θ ∈ [0, 1],

(3.3)
(
Dχ((1− θ)m1 + θm2)−Dχ(m1)

)
(m2 −m1) ≤ θKd1(m1,m2)

2

In the following theorem, we prove the existence of a limit point (to the sequence
(mℓ)ℓ∈N) satisfying the optimality conditions provided by Theorem 2.4. The used
arguments are adapted from classical proofs of convergence for gradient methods,
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see for example [8, Theorem 2.11]. The main idea consists in finding an upper esti-
mate of the decay of χ(mℓ) at each iteration, derived from the Lipschitz-continuity
property (3.1).

Theorem 3.2. Assume that Assumption 3.1 holds. Then, the sequence (mℓ)ℓ∈N
has at least one limit point m̄ such that:

(3.4) Dχ(m̄)m̄ = inf
m∈cl(R(0,Y0))

Dχ(m̄)m.

Moreover, χ(mℓ) → χ(m̄) and εℓ → 0.

Proof. Step 1: estimate of the decay at iteration ℓ. By (3.3), for all θ ∈ [0, 1],

(3.5) Dχ
(
(1− θ)mℓ + θm̃ℓ+1

)
(m̃ℓ+1 −mℓ) ≤ −εℓ + θKd1(m

ℓ, m̃ℓ+1)2.

We define then:

θℓ+1
0 = min

( εℓ
Kd1(mℓ, m̃ℓ+1)2

, 1
)
.

Since θℓ+1 is optimal, it holds:

χ(mℓ+1) ≤ χ
(
(1− θℓ+1

0 )mℓ + θℓ+1
0 m̃ℓ+1

)
≤ χ(mℓ) +

∫ θℓ+1
0

0
Dχ((1− θ)mℓ + θm̃ℓ+1)(m̃ℓ+1 −mℓ) dθ

≤ χ(mℓ) +

∫ θℓ+1
0

0

[
− εℓ + θKd1(m

ℓ, m̃ℓ+1)2
]
dθ

≤ χ(mℓ)− εℓθ
ℓ+1
0 +

1

2
(θℓ+1

0 )2Kd1(m
ℓ, m̃ℓ+1)2.(3.6)

We distinguish now two cases.

• If θℓ+1
0 = εℓ

Kd1(mℓ,m̃ℓ+1)2
, then by (3.6),

(3.7) χ(mℓ+1)− χ(mℓ) ≤ −
ε2ℓ

2Kd1(mℓ, m̃ℓ+1)2
≤ −

ε2ℓ
2KD2

,

where D is the diameter of cl(R(0, Y0)):

(3.8) D = sup
m1,m2∈cl(R(0,Y0))

d1(m2,m1) < +∞.

The diameter is finite, since cl(R(0, Y0)) is compact, by Lemma 2.2.

• If θℓ+1
0 = 1, then Kd1(m

ℓ, m̃ℓ+1)2 ≤ εℓ and therefore, by (3.6),

(3.9) χ(mℓ+1)− χ(mℓ) ≤ −εℓ +
1

2
Kd1(m

ℓ, m̃ℓ+1)2 ≤ −1

2
εℓ.

Step 2: conclusion. The existence of a converging subsequence is a consequence
of the compactness of cl(R(0, Y0)) proved in Lemma 2.2. Since χ(mℓ) is decreasing
and since χ is continuous for the d1-distance, χ(m

ℓ) → χ(m̄). Therefore, χ(mℓ) −
χ(mℓ+1) → 0 and as a consequence of (3.7) and (3.9):

0 ≤ εℓ ≤ max
[
2(χ(mℓ)− χ(mℓ+1)),

(
2KD2(χ(mℓ)− χ(mℓ+1))

)1/2] → 0.
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Finally, we prove (3.4). Let m ∈ cl(R(0, Y0)). Observe first that:

Dχ(mℓ)(m−mℓ)−Dχ(m̄)(m− m̄) =(
Dχ(mℓ)−Dχ(m̄)

)
(m−mℓ) +Dχ(m̄)(m̄−mℓ) → 0.

Indeed, the first term of the r.h.s. converges to 0 by (3.2); the second term also
converges to 0 by Lemma 2.3. Then:

0 ≤ lim−εℓ ≤ limDχ(mℓ)(m−mℓ) = Dχ(m̄)(m− m̄),

which concludes the proof. □

3.2. Discretization of the control process and state equation. We discretize
the SDE as a controlled Markov chain on a finite subset of Rn with a semi-Lagrangian
scheme, as in [10].

We first discretize the state space. Let NX ∈ N\{0} and let S = {xi | i =
1, ..., NX} be a set of NX points in Rn. We discretize the state equation so that the
state variable takes only values in S. We set X = conv(S) and denote by PX the
orthogonal projection on X . We denote by P(S) the set of probability measures in

S, that we identify with:
{
α ∈ RNX

+ |
∑NX

k=1 αk = 1
}
.

For all q ∈ N and for all families (xi)i=1,...,q+1 in Rn, we say that the convex
envelope T of the set {x1, ..., xq+1} is a non-degenerate q-simplex if the family
(x2 − x1, ..., xq+1 − x1) is linearly independent. The points x1,...,xq+1 are then
called vertices (of the simplex T ). Let T = (Ti)i=1,...,N be a family of n-simplices

with vertices in {x1, ..., xNX
}. This family is called triangulation if X = ∪Ni=1Ti and

if for all 1 ≤ i < j ≤ N , Ti ∩ Tj is either empty or is a non-degenerate q-simplex
with q < n and with all its vertices in the intersection of the set of vertices of Ti
and Tj .

Henceforth we assume that a triangulation of S is given. It is easy to check
that for all x ∈ X , there exists a unique vector (αℓ(x))ℓ=1,...,NX

in P(S) such that

x =
∑NX

ℓ=1 αℓ(x)xℓ, and such that there exists r ∈ {1, ..., N} for which {xℓ |αℓ(x) >
0} ⊂ Tr.

We introduce now a discretization in time. Let NT ∈ N\{0}. We set: δt = T/NT

and define for all x ∈ Rn, for all u ∈ U , and for all i = 1, ..., 2d:

F (x, u, i) =

{
x+ f(x, u)δt+ σi(x, u)

√
dδt for i = 1, ..., d

x+ f(x, u)δt− σi(x, u)
√
dδt for i = d+ 1, ..., 2d.

Here, σi(x, u) stands for the i-th column of σ(x, u). The underlying idea is the
following: with probability 1/(2d), the variation of the Brownian motion dWt is

equal to one of the vector of the canonical basis of Rd multiplied by
√
dδt or −

√
dδt.

We can now combine the discretization in time and space. The index j is a time
index and the index k is a space index. The considered control processes are only
feedback controls, that is to say, elements of UNT×NX . At time j, the control process
u ∈ UNT×NX is seen as a function uj ∈ UNX of 1, ..., NX . For v ∈ U , we set:

Pv(k, k
′) =

1

2d

2d∑
i=1

αk′(PX (F (xk, v, i))) ≥ 0,
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where PX is the projection on X . Note that
∑NX

k′=1 Pv(k, k
′) = 1. For uj ∈ UNX ,

we denote:

Puj (k, k
′) =

1

2d

2d∑
i=1

αk′(PX (F (xk, uj(k), i))),

The distinction between the two notations will be clear from the context. Note
that Puj is a stochastic matrix. For u ∈ UNT×NX the discretized process is denoted
(Xu

j )j=0,...,NT
and the corresponding probability measure (mu

j )j=0,...,NT
. The state

equation is now given by: ∀k, k′ = 1, ..., NX , ∀j = 0, ..., NT − 1,

(3.10) P
[
Xj+1 = xk′ |Xj = xk

]
= Puj (k, k

′),

and the dynamics of its probability distribution in P(S) is simply given by mj+1 =
P t
ujmj . This equation is nothing but the Chapman-Kolmogorov equation for Markov

chains. Finally, we consider the following discretization of the probability distribu-
tion L(Y0):

m0(k) = E
[
αk(PX (Y0))

]
.

Note that in [10], a convergence result for the associated value function is provided,
but not for the Markov chain itself.
On the evaluation of χ. The cost functional χ needs only to be evaluated on P(S),
which is the set of probability measures on S = (xi)i=1,...,NX

. Observe that for all

m1, m2 ∈ P(S), which can be identified with elements of RNX , it holds:

χ((1− θ)m1 + θm2)− χ(m1)

= θ

∫
Rn

Dχ(m1, x) d
(∑NX

k=1(m2(k)−m1(k))δxk(x)
)
+ o(θ)

= θ

NX∑
k=1

Dχ(m1, xk)(m2(k)−m1(k)) + o(θ).

This relation shows that when considering the restriction of χ to P(S), it is sufficient
to consider the derivative Dχ(m1, ·) by the value taken at the points x1,...,xNX

.

3.3. Algorithms. We consider the full discretization (in time and space) of the
state process. Assume that χ and Dχ can be computed on P(S). We denote by R
the set of reachable probability measures (for the discretized process):

R = {mu
NT

∈ P(S) |u ∈ UNT×NX}

We describe now two methods to solve the problem.
Algorithm 1: Gradient method. The first method that we describe may be seen as
a gradient method. It generates a sequence (mℓ)ℓ≥1 in conv(R). Assuming that a
stopping criterion has been fixed, the method is the following.
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Choose u ∈ UNX×NT , compute m0 := mu
NT

, and set ℓ = 0;

while mℓ does not satisfy the stopping criterion do
Backward phase. Compute Dχ(mℓ, ·), and a solution uℓ+1 to the problem:

(3.11) inf
u∈UNT×NX

E
[
Dχ(mℓ, Xu

NT
)
]
;

Forward phase. Compute m̃ℓ+1 := muℓ+1

NT
;

Stepsize. Find an approximate solution θℓ+1 to:

(3.12) inf
θ∈[0,1]

χ(θmℓ + (1− θ)m̃ℓ+1),

and set mℓ+1 = (1− θℓ+1)m
ℓ + θℓ+1m̃

ℓ+1;

Set ℓ = ℓ+ 1;

end

Result: probability distribution mℓ at the final time

Algorithm 1: Gradient method

Let us describe and comment on the different steps of the method.

• Backward phase. We compute the value function V : {0, 1, ..., NT }×
{1, ..., NX} which is associated with (3.11) by backward induction: ∀k =
1, ..., NX ,

VNT
(k) = Dχ(mℓ, xk),(3.13)

Vj(k) = inf
u∈U

{ NX∑
k′=1

Pu(k, k
′)Vj+1(k

′)
}
, ∀j = NT − 1, ..., 0.(3.14)

For all j ∈ {0, ..., NT −1} and k = 1, ..., NX , let uj(k) be an optimal solution
of (3.14) — a solution exists, since U is compact and Pu(k, k

′) continuous
with respect to u. We set uℓ+1 = (uj(k))j=0,...,NT−1, k=1,...,NX

. Then, uℓ+1

is an optimal solution to (3.11).

• Forward phase. The probability measure m̃ℓ+1 = muℓ+1

NT
is obtained as fol-

lows:

(3.15) m̃ℓ+1 = P t
uℓNT−1

...P t
uℓ0
m0.

Eequation (3.15) is nothing but the Chapman-Kolmogorov associated
with the Markov chain. Observe that m̃ℓ+1 is an optimal solution to:
infm∈RDχ(m

ℓ)m. The probability measure that we have obtained here plays
the role of a descent direction.

• Stepsize. In step 3, different approaches can be considered for computing
θℓ+1, depending on properties of χ. An enumeration technique based on
a discretization of [0, 1] can be employed. If χ is convex, then a bisection
method can be used. One can also look for a stepsize satisfying the usual
stepsize rules for line-search methods (Armijo, Wolfe-Powell, see [7, Section
3.4]), rather than looking for an optimal stepsize.
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• Stopping criterion. Different criteria can be considered. A possible one is
the following: given ε > 0, we stop at iteration ℓ if

(3.16) εℓ := −
NX∑
k=1

m0(k)V0(k) +Dχ(mℓ)mℓ ≤ ε,

where V0(·) is the value function associated with problem (3.11). The value

of problem (3.11) is then
∑NX

k=1m0(k)V0(k). If χ is convex, mℓ is εℓ-optimal
for the discretized problem, similarly to Lemma 2.5.

Remark 3.3. (1) The sequence of probability measures (mℓ)ℓ∈N which is gen-
erated does not belong to R in general, but only to its convex envelope.
Such an approach is motivated by Lemma 2.1. Note the expression:

mℓ =

ℓ∑
i=0

(
Πℓj=i+1(1− θj)

)
θim̃

i, ∀ℓ, where: θ0 = 1.

(2) If χ is concave (that is to say, if −χ is convex in the sense of (2.6)), then the
optimal solution to (3.12) is 1. In this case, there is a (discretized) feedback
control associated with each probability measure mℓ. The algorithm falls
then into the general framework of [26]. In general, if χ is not convex, we
do not expect to find an approximation of a global minimizer.

Algorithm 2: obtaining a feedback control by a penalization technique. We suggest
here a variant of the method 1 that may enable us to find a solution as a feedback
control. The basic idea is the following. Assuming that at iteration ℓ, we have a

feedback control uℓ with associated probability distribution mℓ = muℓ

NT
. Given a

coefficient α > 0, we consider the following linearized and penalized problem:

(P (uℓ,mℓ, α)) inf
u∈UNT×NX

{
E
[
Dχ(mℓ, Xu

NT
)
]
+ αE

[ NX∑
j=0

|uj(Xu
j )− uℓj(X

u
j )|2

]}
.

If the coefficient α is large enough, the solution u′ to (P (uℓ,mℓ, α)) may satisfy

χ(mu′
NT

) < χ(muℓ

NT
). In this way, we avoid the line-search used in the previous

algorithm. Of course, it is not desirable to have a too large coefficient α, since
this may slow down the procedure. We therefore choose two functions h+ and
h− : R+ → R+ satisfying:

0 ≤ h−(α) ≤ α ≤ h+(α), ∀α ≥ 0,

in order to update the coefficient α throughout the procedure, which we present
next.
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Choose u0 ∈ UNX×NT , compute m0 = mu
NT

, choose α0 > 0, set ℓ = 0, and set

q = 0;

while mℓ does not satisfy the stopping criterion do
Solve the linearized and penalized problem P (uℓ,mℓ, αℓ). Denote by uℓ+1

its solution, set mℓ+1 = muℓ+1

NT
and q = q + 1;

if χ(mℓ+1) < χ(mℓ) then
Set αℓ+1 = h−(αℓ);

else
while χ(mℓ+1) ≥ χ(mℓ) do

Set αℓ = h+(αℓ);

Compute a solution uℓ+1 to P (uℓ,mℓ, αℓ), set m
ℓ+1 = muℓ+1

NT
, and

q = q + 1;

end

Set αℓ+1 = αℓ;

end
Set ℓ = ℓ+ 1.

end

Result: probability distribution mℓ at the final time, optimal feedback control
uℓ

Algorithm 2: Variant with a penalization term

The variable q does not play any role, it simply counts the number of backward
and forward passes. Note that the problem P (uℓ,mℓ, α) can be solved by dynamic
programming, using the following value function: ∀k = 1, ..., NX ,

VNT
(k) = Dχ(mℓ, xk),

Vj(k) = inf
u∈U

{ NX∑
k′=1

Pu(k, k
′)Vj+1(k

′) + α|u− uℓj(k)|2
}
, ∀j = NT − 1, ..., 0.

Note also that there are other ways of “penalizing” the linearized problem, that we
do not discuss here. We finish this section by general remarks for the two algorithms.

Remark 3.4. (1) In general, neither Algorithm 1 nor Algorithm 2 converges to
a solution of the discretized problem, since they are only gradient methods.

(2) Other discretizations of the SDE are possible, based on implicite finite dif-
ferences as in [1], for example.

(3) From a computational point of view, the backward phase is more difficult
than the forward phase, since it requires a pointwise minimization. Different
techniques for the minimization problem (3.14) are suggested in the littera-
ture that we do not discuss here, see e.g. [17]. The simplest method for the
minimization is the technique by enumeration on a finite subset of U .

(4) Denote by δx an upper estimate of the diameters of the simpleces of the
triangulation. In [10, Remark 3.3], an error estimate for the approximation
of the value function obtained with a semi-Lagrangian scheme involving the
ratio δx/δt (in the case of a Lipschitz data with respect to the state variable)
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is provided. Therefore, δx should be much smaller than δt. In this situation,
the computed probability distribution has an oscillatory behaviour, which
is however in our opinion acceptable, see the discussion in section 5.

4. Examples of cost functions

In this section, we describe different cost functions χ and check Assumptions 1.2
and 1.3. The real number p ≥ 2 is such that Y0 ∈ Pp(Rn). For the following exam-
ples, it is in general only possible to check these assumptions on B̄p(R). The opti-
mality condition given in Theorem 2.4 remains true, however, since cl(R(0, Y0)) ⊂
B̄p(R), for R ≥ 0 large enough.

4.1. Composition of linear costs. A general class of cost functions can be de-
scribed as follows. Let N ∈ N, let Ψ : RN → R, let ϕ1,...,ϕN : Rn → R be N
continuous functions all dominated by |x|p. We define then on Pp(Rn):

(4.1) χ(m) = Ψ
(∫

Rn

ϕ1(x) dm(x), ...,

∫
Rn

ϕN (x) dm(x)
)
.

For all R ≥ 0, the continuity on B̄p(R) is ensured by Lemma 2.3. Denoting by
y1,...,yN the variables of Ψ, the derivative of χ is given by:

(4.2) Dχ(m) =

N∑
i=1

∂yiΨ
(∫

Rn

ϕ1(x) dm(x), ...,

∫
Rn

ϕN (x) dm(x)
)
ϕi(·).

The differentiability of χ as well as formula (4.2) can be easily checked.
In this setting, denoting by H the following subset of RN :{

y ∈ RN | ∃m ∈ cl(R(0, Y0)), such that ∀i = 1, ..., N,

yi =

∫
Rn

ϕi(x) dm
0,Y0,u
T (x)

}
,

problem (P ) has the same value as the following problem: miny∈H Ψ(y). As a
consequence of Lemma 2.1 and Lemma 2.3, H is compact and convex. Let us
denote by Φ the characteristic function of the set H:

Φ(y) =

{
0 if y ∈ H

+∞ otherwise.

The conjugate function of Φ is given by:

Φ∗(λ) = sup
y∈RN

⟨λ, y⟩ − Φ(y) = sup
y∈H

⟨λ, y⟩

= sup
u∈U0(Y0)

{∫
Rn

N∑
i=1

λiϕi(x) dm
0,Y0,u
T (x)

}
.(4.3)

By Fenchel-Moreau-Rockafellar theorem,

Φ(y) = sup
λ∈RN

{
⟨λ, y⟩ − Φ∗(λ)

}
,

or equivalently, H can be described as an intersection of hyperplanes:

H = ∪λ∈RN {y | ⟨λ, y⟩ ≤ Φ∗(λ)}.
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This means that one can build an outer polyhedral approximation of H, by se-
lecting different values of λ ∈ Rn, and computing the value of Φ∗ by solving the
corresponding standard optimal control problem (4.3).

Lemma 4.1. If the functions ϕ1,...,ϕN are Lipschitz continuous and dominated by
|x|p and if Ψ has a Lipschitz derivative, then Assumption 3.1 is satisfied.

Proof. Let Kϕ be the Lipschitz modulus of the functions ϕ1,...,ϕN , let KDΨ be the
Lipschitz modulus of DΨ. Let m1, m2, m3, and m4 in cl(R(0, Y0)). We set:

y1 =
(∫

Rn

ϕ1 dm1, ...,

∫
Rn

ϕN dm1

)
,

y2 =
(∫

Rn

ϕ1 dm2, ...,

∫
Rn

ϕN dm2

)
.

One can show that:∣∣(Dχ(m2)−Dχ(m1)
)
(m4 −m3)

∣∣ ≤ |DΨ(y2)−DΨ(y1)|Kϕd1(m3,m4)

≤ KDΨK
2
ϕ d1(m1,m2)d1(m3,m4).

The estimate (3.1) follows by taking m3 = m1 and m4 = m2. The estimate (3.2)
follows from: d1(m3,m4) ≤ D, where D is defined by (3.8). □

We finish this paragraph by recalling a density property, stated and proved in
[11, Section 5.3]. For all R ≥ 0, any function χ : B̄p(R) → R that can be written in
the form (4.1), with continuous functions ϕ1,...,ϕN , all dominated by |x|p, is called
polynomial function on B̄p(R).

Proposition 4.2. For all R ≥ 0, the set of polynomial functions on B̄p(R) is dense
in the set of continuous functions (for the d1-distance) on B̄p(R), that is to say, for
all continuous cost function χ : B̄p(R) → R, for all ε > 0, there exists a polynomial
function χ̃ such that supm∈B̄p(R) |χ(m)− χ̃(m)| ≤ ε.

Proof. Since for all R ≥ 0, B̄p(R) is compact for the d1-distance, this result is a
direct consequence of the Stone-Weierstrass theorem, see [11, Section 5.3] for details.
Note that it is possible to restrict the set of polynomial functions to polynomial
functions involving functions ϕ1,...,ϕN which are infinitely many times differentiable,
with a compact support. □

For measures in R and for r ≤ p, the central moment of order r, denoted by µr
is a polynomial function of Pp. Indeed,

µr(m) =

∫
R

(
x−

∫
R
y dm(y)

)r
dm(x)

=

r∑
i=0

(
r

i

)(∫
R
xi dm(x)

)(
−

∫
R
xdm(x)

)r−i
.

Finally, to obtain a polynomial function, it suffices to set ϕi = xi for i = 1, ..., r and
Ψ(y1, ..., yr) = (−y1)r +

∑r
i=1

(
r
i

)
yi(−y1)r−i. In particular, for r = 2 and p ≥ 2, the

variance is given by taking Ψ(y1, y2) = y2 − y21, which is a concave function.
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4.2. Wasserstein distance. In various domains (in quantum mecanics for exam-
ple, see [15, Section 4], [3]), one tries to reach a given probability measure m∗.
Different cost functions can be employed to measure the distance from a given
probability measure m to the prescribed one, m∗. Note that the usual distances,
such as the L2-norm, requires that m has a density function and are in general not
continuous for the d1-distance. The Wasserstein distance defined below has good
continuity and differentiability properties.

For c : Rn × Rn, consider the optimal transport problem

χ(m) = inf
π∈Π(m,m∗)

∫
Rn×Rn

c(x, y) dπ(x, y)

and its dual:

sup
ϕ∈L1(m), ψ∈L1(m∗)

{∫
Rn

ϕ(x) dm(x) +

∫
Rn

ψ(x) dm∗(x)
}

such that: ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ Rn × Rn.

Let 1 ≤ q < p and consider the case of the Wasserstein distance c(x, y) = |y−x|q,
so that χ(m) = dqq(m,m∗). Let (mk)k∈N be a converging sequence in B̄p(R) for the
d1-distance with limit m̄. By theorem [28, Definition 6.8/Theorem 6.9], the sequence
is weakly converging in P(Rn) and by Lemma 2.3,

∫
Rn |x|q dmk(x) →

∫
Rn |x|q dm(x).

Therefore, applying once again [28, Definition 6.8/Theorem 6.9], we obtain the
convergence for the dp-distance and therefore the continuity of χ.

For the choice c(x, y) = |y−x|q, the conditions of [28, Theorem 5.10] are satisfied
and therefore, the primal and dual problem have the same value and have both
an optimal solution. In the dual formulation, χ is expressed as the supremum of
affine cost functions, thus is convex (in the sense of (2.6)). We also have a sub-
differentiability property on Pq(Rn), given by equation (4.4). Let m1 and m2 ∈
Pq(Rn) and let (ϕ1, ψ1) be a solution to the dual problem associated with m1.
Since for all x ∈ Rn, ϕ1(x) ≤ |x|q−ψ(0), we have that

∫
Rn ϕ1 dm2 ∈ [−∞,+∞) and

moreover, ϕ1 ∈ L1(µ2) if and only if
∫
Rn ϕ1 dm2 > −∞. Therefore, we obtain:

(4.4) χ(m2) ≥
∫
Rn

ϕ1 dm2 +

∫
Rn

ψ1 dm
∗ = χ(m1) +

∫
Rn

ϕ1 d(m2 −m1).

Indeed, if
∫
Rn ϕ1 dm2 = −∞, the inequality is trivial, otherwise, ϕ1 ∈ L1(m2), thus

ϕ1 is sub-optimal in the dual problem (associated with m2).

4.3. Conditional value at risk. A popular cost functional in stochastic optimiza-
tion is the Conditional Value at Risk (CVaR). Note that the CVaR belongs to the
important class of coherent risk measures [4]. The CVaR of a random variable in
R (typically modelling losses) can be easily understood when the distribution has
a density. Given a probability level β ∈ (0, 1), one has to define first the value at
risk (VaR) as the smallest value α ∈ R such that with a probability greater to β,
the losses do not exceed α. If the distribution has a density, then the CVaR is the
conditional expectation of the losses, under the condition that they exceed α.

In this subsection, we describe the CVaR of a random variable as the value of an
optimal transportation problem involving its probability distribution. This enables
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to derive easily a well-known formula [25, Theorem 1], to prove the concavity and
the continuity of the CVaR, and to prove a super-differentiability property.

Let m ∈ P(R) be a probability measure on R and let Ω be a set with exactly two
elements that we arbitrarily denote ω0 and ω1. Let β ∈ (0, 1), let ν ∈ P(Ω) be the
probability measure on Ω defined by: ν({ω0}) = β, ν({ω1}) = 1− β. We define the
set of transportation plans Π(m, ν) between µ and ν as:

Π(m, ν) =
{
π ∈ P(R× Ω) |π(A× Ω) = m(A), ∀A ∈ σ(R),

π(R× ω0) = β, π(R× ω1) = 1− β
}
,

where σ(R) is the σ-algebra of Borel subsets of R. We also set:

c : (x, ω) ∈ R× Ω 7→

{
0 if ω = ω0

x if ω = ω1.

The CVaR (with level β) of the probability measure m is now defined by:

(4.5) CVaR(m) =
1

1− β
sup

π∈Π(m,ν)

{∫
R×Ω

c(x, ω) dπ(x, ω)
}
.

The dual problem is therefore:

inf
ϕ∈L1(m)
ψ∈L1(ν)

{∫
R
ϕ(x) dm(x) +

∫
Ω
ψ(ω) dν(ω)

}
,

s.t. ϕ(x) + ψ(ω) ≥ c(x, ω), ∀(x, ω) ∈ R× Ω.

Let us analyse the set of feasible functions (ϕ, ψ). It is sufficient to describe ψ as a
vector of R2. We therefore write ψ = (ψ0, ψ1), where ψ0 = ψ(ω0) and ψ1 = ψ(ω1).
For a given function ψ ∈ R2, it is sufficient to consider the function ϕ defined by:

ϕ(x) = max
i=0,1

{
c(x, ωi)− ψi

}
= max(x− ψ1,−ψ0)

in the dual problem. We recover then the formula of [25]:

(1− β)CVaR(m)

= inf
(ψ0,ψ1)∈R2

{∫
R
max(x− ψ1,−ψ0) dm(x) + βψ0 + (1− β)ψ1

}
= inf

(ψ0,ψ1)∈R2

{∫
R
max(x− ψ1 + ψ0, 0) dm(x) + (1− β)(ψ1 − ψ0)

}
= inf

ψ∈R

{∫
R
(x− ψ)+ dm(x) + (1− β)ψ

}
.(4.6)

Let us define:

A(m) =
{
α ∈ R |m

(
(−∞, α]

)
≥ β, m

(
[α,+∞)

)
≥ 1− β

}
,

The set A(m) is a closed and bounded interval. Let us also define:

α−(m) = minA(m) and α+(m) = maxA(m).

For a given m ∈ P(R), it is easy to show the existence and uniqueness of non-
negative measures m− and m+ on R, having a support included respectively in
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(−∞, α−] and [α+,+∞), and such that m
(
(−∞, α−]

)
= β and m

(
[α+,+∞)

)
=

1− β.

Lemma 4.3. The unique solution to the primal problem (4.5) is given by:

π = (m− × δω0) + (m+ × δω1).

The interval A(m) is the set of optimal solutions to the dual problem (4.6).

Proof. We only prove that A(m) is the set of optimal solutions of the dual problem.
We denote by D(α) the dual criterion:

D(α) =

∫
R
(x− α)+ dm(x) + (1− β)α.

For α ≥ α−, it holds:

D(α) =

∫
R
(x− α)+ dm+(x) + (1− β)α

=

∫
R

(
(x− α)+ + (α− α−)

)
dm+(x) + (1− β)α−

=

∫
R
(x− α−) dm+(x) + (1− β)α− +

∫
R
(α− x)+ dm+(x)

= D(α−) +

∫
R
(α− x)+ dm+(x).

We let the reader check that if α ∈ [α−, α+], then
∫
R(α − x)+ dm+(x) = 0, and if

α > α+, then
∫
R(α− x)+ dm+(x) > 0.

Now, let α ≤ α−. Using x− α = (x− α)+ − (α− x)+, we obtain:

D(α) =

∫
R
(x− α) dm+(x) + (1− β)α− +

∫
R
(x− α)+ dm−(x)

=

∫
R
(x− α−) dm+(x) + (1− β)α− +

∫
R
(x− α)+ dm−(x)

= D(α−) +

∫
R
(x− α)+ dm−(x).

Finally, the reader can check that for α < α−,
∫
R(x− α)+ dm−(x) < 0. □

In the dual formulation, the CVaR is expressed as the infimum of affine functions.
Therefore, it is concave. Observe that for all ψ ∈ R, x 7→ (x − ψ)+ is 1 Lipschitz,
therefore, for all m1 and m2 ∈ P1(R),

(1− β)CVaR(m2) ≤
∫
R
(x− ψ)+ dm2(x) + (1− β)ψ

≤
∫
R
(x− ψ)+ dm1(x) + (1− β)ψ + d1(m1,m2).

Minimizing with respect to ψ, we obtain that:

CVaR(m2)− CVaR(m1) ≤
1

1− β
d1(m1,m2).
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Exchangingm1 andm2 in the previous inequality, we obtain the Lipschitz-continuity
of the CVaR. Similarly to (4.4), χ is super-differentiable in the following sense:

(4.7) χ(m2) ≤ χ(m1) +
1

1− β

∫
R
(x− ψ)+ d(m2(x)−m1(x)),

for all ψ ∈ A(m1).

4.4. Integral of interactions. Given a function ϕ : R2n → R, we can define:

χ(m) =

∫
R2n

ϕ(x, y) dm(x) dm(y).

A possible choice of ϕ is the following: ϕ(x, y) = φ(|y − x|) : if φ is increasing, the
diffusion of the state variable is penalised. One can for example easily check that:∫

R2n

1

2
|y − x|2 dm(x) dm(y) =

∫
Rn

(
y −

∫
Rn

xdm(x)
)2

dm(y) = Var(m).

Assume that for all ε > 0, there exists r > 0 such that if |x| ≥ r or |y| ≥ r, then
|ϕ(x, y)| ≤ εmax(|x|p, |y|p). Let (mk)k∈N be a converging sequence in B̄p(R) for the
d1-distance with limit m. We let the reader check that the sequence (mk ×mk)k
converges to (m×m) for the d1-distance of R2n. Applying Lemma 2.3 (in R2n), the
continuity of χ follows. The derivative is given by:

(4.8) Dχ(m,x) =

∫
Rm

(
ϕ(x, y) + ϕ(y, x)

)
dm(y).

Assumption 1.3 holds, as a consequence of the following identity: for all m1 and
m2 ∈ Pp(Rn), for all θ ∈ [0, 1],

χ((1− θ)m1 + θm2)

= χ(m1) + θ

∫
R2n

(
ϕ(x, y) + ϕ(y, x)

)
dm1(x)(dm2(y)− dm1(y))

+ θ2
∫
R2n

ϕ(x, y)(dm2(x)− dm1(x))(dm2(y)− dm1(y)).

5. Numerical results

We present numerical results for four different academic problems. The consid-
ered controlled SDEs are the following:

Test cases 1, 2, 3: dXt = ut dt+ dWt, X0 = 0, U = [−1, 1]
Test case 4: dXt = ut dt+ (1− ut) dWt, X0 = 0, U = [−1, 1].

The chosen time step is δt = 0.01, the state space is discretized with S = {−5,−5+
δx,−5+2δx, ..., 5}, where δx = 0.01. The set of feasible controls is also discretized,
with {−1,−1 + δu,−1 + 2δu, ..., 1}, where δu = 0.05 (the minimization problem in
(3.14) is solved by enumeration).

As we already mentioned in remark 3.4, the discretized probability distribution
obtained with a the semi-Lagrangian scheme has an oscillatory behaviour (see figure
2). However, in the three considered examples, it is easy to build a “regularized”
probability distribution. The approach used is the following: we denote by S′ the
following subset of S: S′ = {−5,−5 + δy,−5 + 2δy, ..., 5}, with δy = 0.2. Given a
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Test Case 1

Figure 1. Convergence results
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Test Case 2
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Figure 7. Value function
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Test Case 3
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Test Case 2 Test Case 3
Algorithm 1 Algorithm 2 Algorithm 1

ℓ χ(mℓ) εℓ χ(mℓ) εℓ q χ(mℓ) εℓ
0 -2 2,1 -2 2,1 0 2 8,6.10−1

2 -3,4572 1,0.10−1 -2,0459 2,0 2 0,7774 1,5.10−2

4 -3,5109 2,6.10−2 -2,2491 1,6 4 0,7430 1,9.10−3

6 -3,5323 2,5.10−3 -3,1521 4,0.10−1 6 0,7390 2,4.10−4

8 -3,5343 2,3.10−4 -3,5163 1,8.10−2 8 0,7385 1,37.10−4

10 -3,5346 ≈ 0 -3,5334 1,1.10−3 10 0,7384 ≈ 0
12 - - -3.5345 3,9.10−5 12 - -
14 - - -3.5346 3,1.10−9 14 - -

Figure 12. Convergence results of test cases 2 and 3

probability distribution mj on S at time j, we compute a regularized distribution
m̃j on S

′ as follows:

(5.1) m̃j(y) =
∑
x∈S

|y−x|≤δy

δy − |y − x|
δy

mj(x), ∀x ∈ S.

One can easily check that d1(mj , m̃j) ≤ δy/2.
The graphs of the regularized probability distributions in the three studied test

cases (figures 4, 6, and 9) are in our opinion good representations. We do not pretend
to justify here the discretization used for our problem. However, we think that
the (unregularized) probability distribution obtained with our numerical scheme is
acceptable (despite its oscillatory behavior), in so far as the regularization provides
a good representation and is close in the d1-norm, the cost function being continuous
for this norm.

The time needed for a backward pass is approximately 0.23s, the time needed for
a forward pass is approximately 0.05s.
Test case 1: Wasserstein distance. We test cost function: χ(m) = d2(m, m̄), where:

m̄ =
1

3

(
δ−2 + δ0 + δ2

)
.

In dimension 1, this cost can be easily computed, as well as a sub-gradient which
we use as if it was a gradient. In Figure 1, we show the value of the cost function
at different iterations ℓ, as well as the criterion εℓ, for the two algorithms. For the
second algorithm, we also show the number of backward and forward passes q.

The figures 2, 4, 3, and 5 (page 649) show respectively the probability distri-
bution, the regularized probability distribution (obtained with (5.1)), the value
function, and the optimal control that we obtain after a large number of iterations
of the second algorithm.

Let us comment on the form of the value function and the optimal solution. The
choice of the probability distribution m̄ has the following effect: one tries to attract
the system at one of the three points: −2, 0, and 2. These three points are the
three local minimizers of the dual variable at the final time. At the final time, the
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Test Case 4

0

0.5

1 −4
−2

0
2

4

0

0.1

0.2

0.3

0.4

SpaceTime

Figure 13.
Regularized
distribution

0.2

0.4

0.6

0.8

1 −4

−2

0

2

4

0

20

40

60

SpaceTime

Figure 14.
Value function

0.2

0.4

0.6

0.8

1

−4

−2

0

2

4

−1

0

1

Time

Space

Figure 15.
Optimal control

Algorithm 1

ℓ χ(mℓ) εℓ
0 2,0545 2,5.10−1

5 1,8972 1,0.10−1

10 1,8051 9,0.10−3

15 1,7961 3,6.10−5

20 1,7961 9,6.10−7

25 1,7961 1,1.10−8

30 1,7961 1,0.10−10

Figure 16.
Convergence
results

optimal control is bang-bang and has 5 discontinuity points. Three of them are the
three attractors (−2, 0, and 2): the optimal control is equal to 1 on the left and to
-1 on the right, at each of these points. The two other discontinuity points are the
two local maximizers of the dual variable. Due to diffusion, the value function has
only two local minimizers for early times. At these times, the optimal control has
only three discontinuity points and only the points −2 and 2 play a role of attractor.

We observed that the criterion εℓ does not seem to converge (even after a very
large number of iterations). The cost function is probably not differentiable at the
optimal solution (which happens if the dual problem has several optimal solutions).
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In this case, the derivative is discontinuous at the optimal solution, which prevents
the criterion εℓ from converging. Comparing algorithm 2 with algorithm 1, we
observe that algorithm 2 is particularly efficient. The difference of costs of the two
methods is negligible.
Test cases 2 and 3: combination of expectation and standard deviation. In the test
case 2 (resp. test case 3), we use the following cost function:

χ(m) = E
[
XT

]
+ β

√
Var

[
XT

]
=

∫
R
xdm(x) + β

(∫
R
x2 dm(x)−

(∫
R
xdm(x)

)2)1/2
,

with β = −2 (resp. β = 2). One can easily check that in the test case 2, the cost
function is convex, whereas it is concave in the test case 3. The algorithm 1 is
therefore sufficient for the test case 3, since then the solution of (3.12) is −1.

In the two test cases, the two algorithms converge quickly, as shown in Figure
12. The difference of costs for the two algorithms is negligible (in the test case 2).
The probability distribution, the value function, and the optimal control are shown
page 650. As a consequence of formula (4.2), the value function is a parabola at the
final in the two cases (a concave one in the test case 2, a convex one in the test case
3). The optimal control is constant in time and has a bang-bang structure: equal
to 1 when the value function is decreasing and equal to −1 when it is increasing.
Test case 4: Conditional Value at Risk. The cost function used in this test case is
the conditional value at risk, with parameter β = 0, 95. The chosen controlled SDE
is slightly different for this example and must be understood as follows: negative
controls are efficient, in so far as they induce the strong decrease of the state variable
(in expectation). They are also risky, since the volatily is higher. To the contrary,
positive control are less risky, but expensive.

Results are presented in Figures 13-16. The criterion is very small at the end.
Note that since the cost function is concave, the first algorithm is sufficient. Let
us comment on the obtained graphs. The CVaR focuses on the worst cases: when
Xt is high, a risky strategy is employed. To the contrary, when Xt is low, which
is a favorable case, the gains are not taken into account and therefore a less risky
strategy is prefered.
Conclusion of the numerical results. We have tested the two methods on four aca-
demic examples, for which the cost function is continuous for the Wasserstein dis-
tance. A semi-Lagrangian scheme has been used for the discretization. The two
proposed methods converge. The controls provided by the second method (which
only computes feedback controls) are as good as the controls of the first one (which
allows a larger class of control processes). Except in the test case 1, for which the
cost function is not continuously differentiable, the criterion εℓ converges to 0. A
further observation of the convergence results also shows that the cost χ(mℓ) and
the criterion εℓ converge at a linear rate in the four cases, for the first method as
well as the second one (for test cases 1 and 2).
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