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of the heart chamber is subjected to periodic forces leading to periodic contraction
and expansion of the chamber and thereby controlling blood flow. These are exam-
ples of structural control. Many more examples are given in [12]. However not much
systematic control theory on structural control exists in the literature except those
mentioned above. Here in this paper we consider structural control problem for a
large class of systems where the principal operator is a strongly nonlinear operator
valued measure. The structural control consists of linear operator valued measures.
The major goal of this paper is to prove existence of optimal structural controls.

A closely related topic, yet very distinct, is the subject of relaxed controls. This
has been studied extensively in the literature and well documented in the recent
book of Santorini [19] where the reader will find extensive references. These systems
are governed by differential equations on Banach spaces with controls which are
probability measure valued functions, while the systems considered in this paper
are determined by operator valued measures and controlled by vector or operator
valued measures. The first distinction is in the structure of the system dynamics
and the second is in the space of controls used.

The rest of the paper is organized as follows: We present relevant notations and
terminologies in section 2. In section 3, a brief review of recent results on existence
and regularity properties of weak solutions for strongly nonlinear parabolic systems
determined by nonlinear operator valued functions and measures is presented. In
section 4, we consider control systems determined by strongly nonlinear operator
valued measures subject to structural control and study the questions of existence
of solutions and their continuous dependence on controls. In section 5 we study
structural control problems proving existence of optimal structural control. For
illustration, in section 6, we present two examples one dealing with a parabolic
problem and another dealing with a hyperbolic problem. The paper is concluded
with some comments on open problems.

2. Notations and terminologies

Some Function Spaces: Let H be a real separable Hilbert space with scalar
product and norms denoted by (v, w) and |v| ≡

√
(v, v) respectively for v, w ∈ H.

Let V be a linear subspace of the Hilbert space H carrying the structure of a
reflexive Banach space with V ∗ denoting its topological dual. Identifying H with
its own dual and assuming that V is dense in H, we have the inclusion

V ↪→ H ↪→ V ∗

where the injections are continuous and dense. Collectively these Hilbert spaces
{V,H, V ∗} are known as the Gelfand triple. The duality pairing between v ∈ V and
w ∈ V ∗ is denoted by

⟨v, w⟩ ≡ ⟨v, w⟩V,V ∗ ≡ ⟨w, v⟩V ∗,V .

In case w ∈ H, this reduces to the scalar product in H.We assume that there exists
a complete system of basis vectors {vi} ⊂ V which is orthogonal in V and V ∗ and
orth-normal in H and that they span all the three spaces {V,H, V ∗} known as the
Gelfand triple. For more details on these spaces see [6,7] and the references therein.
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Let I ≡ [0, T ] be an interval with T < ∞ and let Σ ≡ σ(I) denote the sigma
algebra of subsets of the set I. Let B∞(I,H) ⊂ L∞(I,H) denote the vector space of
bounded Σ measurable functions on I with values inH. Furnished with the sup norm
topology, this is a Banach space. Let µ be any countably additive positive measure
on Σ having bounded total variation on I. For any of the spaces X ≡ {V,H, V ∗}
and 1 ≤ p <∞, we let Lp(µ,X) denote the Lebesgue-Bochner space of measurable
functions on I with values in X satisfying∫

I
∥ f(s) ∥pX µ(ds) <∞.

Strictly speaking this is the equivalence class of µ measurable X valued functions
whose X-norms are p− th power integrable.

By BV (I,X) we denote the vector space of functions, defined on I and taking
values from the Banach space X, having bounded total variation. Furnished with
total variation norm this is a Banach space. Similarly, for any Banach space X,
if γ is any finite positive measure on I, we let L∞(γ,X) denote the space of Σ
measurable functions with values in X having γ-essentially bounded norms.

Some Vector Measures: Let F be a Banach space and Mc(Σ, F ) the space
of countably additive bounded vector measures defined on the sigma algebra Σ
with values in the Banach space F. Let Mcabv(Σ, F ) be a proper subspace of the
space Mc(Σ, F ) consisting of countably additive F -valued vector measures having
bounded total variation. Furnished with the topology induced by the total variation
norm as defined below,

|ν| ≡ |ν|(I) ≡ sup
π

(∑
σ∈π

∥ ν(σ) ∥F
)
,(2.1)

it is a Banach space. Here the supremum is taken over all partitions π of the interval
I into a finite number of disjoint members of Σ. For any σ ∈ Σ, denote the variation
of ν on σ by |ν|(σ). Since ν is countably additive and bounded, this defines a
countably additive bounded positive measure on Σ Diestel and Uhl [16, Proposition
9, p.3]. In case F = R, the real line, we have the space of real valued signed
measures which we denote by Mc(Σ) and if they are nonnegative we use M+

c (Σ).
We introduce two other topologies which are used later. Let 1 ≤ q < ∞, π any

finite partition of the interval I by disjoint members of Σ and ν ∈ Mc(Σ, F ). The
vector measure ν is said to have q-variation if

sup
π

(∑
σ∈π

∥ ν(σ) ∥qF

)1/q

<∞

where the supremum is taken over all such partitions π.We denote this vector space
by BVq(Σ, F ). It is easy to verify that this is a Banach space with respect to the
norm topology

∥ ν ∥BVq(Σ,F )≡ sup
π

(∑
σ∈π

∥ ν(σ) ∥qF

)1/q

.(2.2)

Clearly BV1(Σ, F ) ≡ Mcabv(Σ, F ).
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The second topology is dependent on a given countably additive bounded non-
negative measure, say γ. Let BVq(γ, F ) denote the class of vector measures µ ∈
Mc(Σ, F ) for which

∥ µ ∥BVq(γ,F )≡ sup
π

{∑
σ∈π

(
∥ µ(σ) ∥F
γ(σ)

)q

γ(σ)

}1/q

<∞,(2.3)

where we use the convention 0/0 = 0.With respect to this norm topology, BVq(γ, F )
is a Banach space. Since γ is a countably additive bounded positive measure and
q ≥ 1, it is easy to verify that the embeddings

BVq(γ, F ) ↪→ BVq(Σ, F ) ↪→ Mcabv(Σ, F ),

are continuous. In case F = E∗, the dual of a Banach space E, the space of
vector measures BVq(γ,E

∗) is the topological dual of the Banach space Lp(γ,E)
for 1 ≤ p < ∞, 1/p + 1/q = 1, see Diestel & Uhl [16, Notes and Remarks, p.115].
However, if E∗ has RNP (Radon-Nikodym property), then BVq(γ,E

∗) ∼= Lq(γ,E
∗),

and for each m ∈ BVq(γ,E
∗) there exists a unique g ∈ Lq(γ,E

∗) such that

⟨m, f⟩BVq(γ,E∗),Lp(γ,E) =

∫
I
⟨m(ds), f(s)⟩E∗,E

=

∫
I
⟨g(s), f(s)⟩E∗,Eγ(ds)

for all f ∈ Lp(γ,E).

Operator Valued Measures: Let E and F be any pair of Banach spaces and
L(E,F ) the space of bounded linear operators from E to F. A set function Φ
mapping Σ×E to F is said to be an operator valued measure if for each σ ∈ Σ, e ∈ E,
Φ(σ, e) ∈ F and Φ(∅, e) = 0 the zero operator. The operator Φ is said to be weakly
countably additive if for any family of pair wise disjoint sets σi ∈ Σ and any pair
(e, f∗) ∈ E × F ∗, we have

⟨Φ(
∪
σi, e), f

∗⟩F,F ∗ =
∑

⟨Φ(σi, e), f∗⟩F,F ∗ .

If e −→ Φ(σ, e) is linear we may write Φ : Σ −→ L(E,F ). Further notations will be
introduced as and when required.

3. Brief review of some related work

In this section we present a brief review of some recent studies of systems governed
by strongly nonlinear parabolic equations determined by operator valued functions
coupled with scalar valued measures. Consider the system

dx+A(t, x)α(dt) = f(t)α(dt), x(0) = x0, t ∈ I,(3.1)

where A : I × V −→ V ∗ is an operator valued function, α is a countably additive
bounded positive measure and f is a V ∗ valued function. Throughout the presen-
tation, it is assumed that both V and its dual V ∗ have the structure of separable
reflexive Banach spaces with the embeddings V ↪→ H ↪→ V ∗ being continuous and
dense. Further, it is assumed that the pair of numbers {p, q} are conjugate satisfying

1 < q ≤ 2 ≤ p <∞ with 1/p+ 1/q = 1.
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We assume that α is a countably additive bounded positive measure on Σ having
bounded total variation, and the operator A satisfies the following properties:

(A1) A(t, ·) : V −→ V ∗ is monotone, hemi-continuous for α-a.a t ∈ I; and for
every u, v ∈ V , t→ ⟨A(t, u), v⟩V ∗,V is continuous.

(A2) there exist a > 0, b ≥ 0 so that < A(t, v), v >V ∗,V +b|v|2H ≥ a ∥ v ∥pV for
α-a.a t ∈ I.

(A3) there exist constants c1, c2 ≥ 0 so that |A(t, v)|V ∗ ≤ c1 + c2 ∥ v ∥p/qV α-a.a.
t ∈ I.

Following result was proved in a recent paper of the author.

Theorem 3.1. Consider the evolution equation (3.1) and suppose the operator
valued function A satisfies the assumptions (A1)-(A3) and f ∈ Lq(α, V

∗). Then for
each x0 ∈ H, equation (3.1) has a unique weak solution x ∈ L∞(I,H)∩Lp(α, V )∩
BVq(α, V

∗).

Proof. See [5, Theorem 4.4, p.475]. �

Remark 3.2. In case α is the Lebesgue measure or absolutely continuous with
respect to Lebesgue measure, we recover the classical result [7, Theorem 4.1, p.96].

Note that in the above theorem, A is assumed to be a nonlinear operator valued
function mapping I×V to V ∗. In recent years this result has been further extended
covering nonlinear operator valued measures [6]. That is, A : Σ × V −→ V ∗ is an
operator valued set function. The system model considered is given by

dx+A(dt, x(t)) = f(t)γ(dt), t ∈ I, x(0) = x0.(3.2)

Here the basic assumptions used are as follows:

(B1) The map A : Σ × V −→ V ∗ is maximal monotone and hemicontinuous in
the second argument satisfying

⟨A(σ, u)−A(σ, v), u− v⟩V ∗,V ≥ 0, ∀ σ ∈ Σ, and ∀ u, v ∈ V.

There exist two countably additive nonnegative measures γ, β ∈ M+
c (Σ)

having bounded variations on I with γ being strictly positive (on non void
sets); and two real numbers c1 ≥ 0, c2 ≥ 0, such that

(B2) ⟨A(σ, v), v⟩V ∗,V + β(σ)|v|2H ≥ γ(σ) ∥ v ∥pV ∀ σ ∈ Σ,

(B3) ∥ A(σ, v) ∥V ∗≤ γ(σ){c1 + c2 ∥ v ∥p/qV } ∀ σ ∈ Σ.

Note: We wish to point out that the measure γ is not assumed to be nonatomic.

We are concerned with the question of existence of solutions for the system (3.2).
By a solution, we mean a weak solution as defined below. Let C1

T (0, T ) denote the
class of C1 functions on I ≡ [0, T ] vanishing at T.

Definition 3.3. An element x ∈ B∞(I,H)∩Lp(γ, V ) is said to be a weak solution
of the problem (3.2) if for every v ∈ V and φ ∈ C1

T (0, T ), it satisfies the following
identity

−(x0, φ(0)v)H −
∫
I
(x(t), φ̇(t)v)Hdt+

∫
I
⟨A(dt, x(t)), φ(t)v⟩V ∗,V
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=

∫
I
⟨f(t), φ(t)v⟩V ∗,V γ(dt).(3.3)

Now we present some recent results from [6] on the questions of existence of
solutions and their regularity properties.

Theorem 3.4. Suppose γ is a countably additive bounded positive measure having
bounded variation on I and the operator valued measure A satisfy the assumptions
(B1)-(B3) and f ∈ Lq(γ, V

∗). Then for each x0 ∈ H, the system (3.2) has a unique
weak solution x ∈ B∞(I,H) ∩ Lp(γ, V ) and further x ∈ BVq(Σ, V

∗).

Proof. See [6, Theorem 5.3, p.800]. �
In the system model (3.2), the same measure γ(·) has been used to represent both

the external as well as the internal forces embodied in the fundamental operator A.
A more general representation is given by

dx(t) +A(dt, x(t)) = ν(dt), x(0) = x0, t ∈ I,(3.4)

where the operator valued measure A satisfies the assumptions (B1)-(B3) involving
the scalar measures γ, β; while ν is a V ∗-valued vector measure. The following result
shows that under a mild assumption this general model can be reduced to the one
given by (3.2).

Corollary 3.5. Consider the system (3.4) and suppose the operator valued measure
A and the measures γ, β satisfy the assumptions of Theorem 3.4. Let ν be a count-
ably additive V ∗-valued vector measure having finite q-variation on I and that it is
γ continuous. Then for each x0 ∈ H, the system (3.4) has a unique weak solution
x ∈ B∞(I,H) ∩ Lp(γ, V ) and further x ∈ BVq(Σ, V

∗).

Proof. The proof follows from Theorem 3.4 by simply noting that V ∗, being a re-
flexive Banach space, has the Radon-Nikodym property (RNP) and, ν being a
γ-continuous vector measure having q-variation, there exists an f ∈ Lq(I, V

∗) such
that dν = fdγ. �

Theorem 3.4 was also extended in reference [6] to cover systems of the form

dx(t) +A(dt, x(t)) = f(x(t))γ(dt), x(0) = x0, t ∈ I,(3.5)

where f is a suitable nonlinear map from V to V ∗ or from H to H. For details see
ref [6].

In reference [1] optimal control of systems given by the model (3.5) was con-
sidered. In particular, the associated control system is described by the following
nonlinear evolution equation,

dx+A(dt, x) = f(x)γ(dt) +B(t)u(dt), t ∈ I, x(0) = ξ.(3.6)

where B ∈ L∞(γ,L(F ∗, V ∗)) and u ∈ BVq(γ, F
∗).

Theorem 3.6. Consider the Gelfand triple {V,H, V ∗} with the injection V ↪→
H being compact. Suppose the operator valued measure A, along with the scalar
measures {γ, β}, satisfies the assumptions (B1)-(B3) and the operator f : H −→ H
is continuous satisfying the growth condition

|(f(h), h)| ≤ K(1+ ∥ h ∥2)



OPTIMAL STRUCTURAL CONTROL OF STRONGLY NONLINEAR SYSTEMS 7

for some K > 0 finite. Let B ∈ L∞(γ,L(F ∗, V ∗)) so that

B∗ ∈ L∞(γ,L(V, F )) ⊂ L∞(γ,L(V, F ∗∗)).

Then, for each x0 = ξ ∈ H and u ∈ Uad ⊂ BVq(γ, F
∗), the system (3.6) has at least

one weak solution x ∈ B∞(I,H) ∩ Lp(γ, V ). The vector measure µx, given by the
relation

(3.7)

µx(ψ) ≡
∫
I
⟨ψ(t), µx(dt)⟩V,V ∗

=

∫
I
⟨ψ(t), dx(t)⟩V,V ∗ ∀ ψ ∈ Lp(γ, V ),

is an element of BVq(γ, V
∗). Further, if −f is monotone, the solution is unique.

Proof. For detailed proof see [1, Theorem 4.3, p.175]. �

In fact, the proof of the above theorem is based on similar approach as detailed
in the proof of Theorem 4.2. We use a-priori bounds, finite dimensional projection,
maximal monotonicity of the operator valued measure A, Crandall-Liggett gener-
ation theorem for nonlinear semigroups [7, Theorem 4.7, p.120], and the following
compact embedding [8, Theorem 3.2, p.911]

Mp,q ↪→ Lp(γ,H)

where

Mp,q ≡
{
x : x ∈ Lp(γ, V ) & µx ∈ BVq(Σ, V

∗)
}
.(3.8)

For the class of control systems of the form (3.6), the questions of continuous
dependence of weak solutions with respect to controls from the class of vector mea-
sures BVq(γ, F

∗), and the questions of existence of optimal controls from the same
class are extensively studied in the papers [1, Corollary 4.4, Theorem 5.1, Theorem
5.2].

In this paper we are interested in structural control of systems like (3.5). This is
considered in the next section.

4. Existence and regularity of solutions

We consider the following control system

dx+A(dt, x) = B(dt)x+ f(x)γ(dt), t ∈ I, x(0) = ξ,(4.1)

where B is the structural control, belonging to the class Mcabsv(Σ,L(V, V ∗)) con-
sisting of countably additive set functions defined on Σ and taking values from the
space of bounded linear operators L(V, V ∗) and having bounded semi-variation. We
assume that the operator valued measure B satisfies the following condition:

(B4) The operator valued measure B has Radon-Nikodym derivative with respect
to the scalar measure γ, that is, B(dt) = Λ(t)γ(dt) with Λ ∈ Lr(γ,L(V, V ∗))
for a suitable r > 1.

For characterization of operator valued measures having Radon-Nikodym deriv-
ative with respect to scalar measures see reference [2].

For proof of existence of weak solutions we need the following a-priori estimate.
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Lemma 4.1. Suppose the operator valued measure A along with the scalar measures
{γ, β} satisfies the conditions (B1)-(B3) for {p, q} conjugate satisfying

1 < q ≤ 2 < p <∞ with 1/p+ 1/q = 1.

The operator valued measure B ∈ Mcabsv(Σ,L(V, V ∗)) satisfying the assumption
(B4) with r = p/(p − 2) and the operator f satisfies the assumptions of Theorem
3.6 and x0 = ξ ∈ H. Then, if x is any solution of the system (4.1), it must be
an element of Lp(γ, V ) ∩ B∞(I,H) where ν is a positive measure with finite total
variation on I.

Proof. Let x be any solution of equation (4.1) corresponding to the initial state
x0 = ξ ∈ H and B ∈ Mcabsv(Σ,L(V, V ∗)). Scalar multiplying equation (4.1) by x
and then integrating by parts over the interval It ≡ [0, t] and using (B2), it is easy
to verify that for each t ∈ I,

(4.2)

|x(t)|2H + 2

∫ t

0
∥ x(s) ∥pV γ(ds) ≤ |ξ|2H + 2

∫ t

0
|x(s)|2Hβ(ds)

+ 2

∫ t

0
(f(x(s)), x(s))Hγ(ds)

+ 2

∫ t

0
⟨B(ds)x(s), x(s)⟩V ∗,V .

It follows from our assumption (B4) with respect to the operator valued measure B
that

(4.3)
∣∣∣ ∫ t

0
⟨B(ds)x(s), x(s)⟩V ∗,V

∣∣∣ ≤ ∫ t

0
∥ Λ(s) ∥L(V,V ∗)∥ x(s) ∥2V γ(ds).

Since γ(I) is finite, it is clear that Lp(γ, V ) ⊂ L2(γ, V ) for any p > 2. Therefore, it
follows from Hölder inequality, applied to the inequality (4.3), that∫ t

0
∥ Λ(s) ∥∥ x(s) ∥2V γ(ds)(4.4)

≤
(∫ t

0
∥ Λ(s) ∥r γ(ds)

)(1/r)(∫ t

0
∥ x(s) ∥pV γ(ds)

)2/p

for all t ∈ I. Now using Cauchy-Young inequality, it follows from (4.4) that, for any
ε > 0, we have∫ t

0
∥ Λ(s) ∥∥ x(s) ∥2V γ(ds)(4.5)

≤ 2εp/2

p

∫ t

0
∥ x(s) ∥pV γ(ds) +

(p− 2)

pεp/p−2

(∫ t

0
∥ Λ(s) ∥r γ(ds)

)
.

Choosing ε = (p/4)2/p in the expression (4.5) and then substituting in (4.3) we
obtain

(4.6)

∣∣∣ ∫ ⟨B(ds)x(s), x(s)⟩V ∗,V | ≤
∫ t

0
∥ Λ(s) ∥∥ x(s) ∥2V γ(ds)

≤ (1/2)

∫ t

0
∥ x(s) ∥pV γ(ds) + CΛ.
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where

CΛ ≡ (p− 2)42/p−2

p(p/p−2)

∫ T

0
∥ Λ(s) ∥r γ(ds), and r = (p/p− 2).

Clearly, it follows from the growth property of f, as assumed in Theorem 3.6, that∣∣∣ ∫ t

0
(f(x(s)), x(s))Hγ(ds)

∣∣∣ ≤ Kγ(I) +K

∫ t

0
|x(s)|2Hγ(ds).(4.7)

Using the estimates (4.6) and (4.7) in the inequality (4.2) we arrive at the following
inequality

|x(t)|2H +

∫ t

0
∥ x(s) ∥pV γ(ds) ≤ C1 +

∫ t

0
|x(s)|2H ν(ds), t ∈ I,(4.8)

where

C1 = |ξ|2H + 2Kγ(I) + 2CΛ

and the measure ν is given by

ν(σ) = 2β(σ) + 2Kγ(σ), ∀ σ ∈ Σ.

Since the measures β and γ are positive having bounded total variation, so is the
measure ν. Thus by virtue of generalized Gronwall inequality [9, Lemma 5, p268] it
follows from (4.8) that

|x(t)|2H ≤ C1

{
1 + ν({0})

}
exp ν(I), for all t ∈ I.(4.9)

If {0} is not an atom of the measure ν one can omit ν({0}) in the above expression.
In view of the above estimate, which holds for all t ∈ I, it is clear that x ∈ B∞(I,H),
the space of norm-bounded H valued functions. Further, using the estimate (4.9)
in the inequality (4.8) we arrive at the following inequality∫ t

0
∥ x(s) ∥pV γ(ds) ≤ C1

{
1 + [1 + ν({0})]ν(I) exp ν(I)

}
, ∀ t ∈ I,(4.10)

which shows that x ∈ Lp(γ, V ). Clearly B∞(I,H) ⊂ L∞(I,H). Thus it follows from
the above analysis that

x ∈ Lp(γ, V ) ∩B∞(I,H) ⊂ Lp(γ, V ) ∩ L∞(I,H).

This completes the proof. �

Now we are prepared to consider the question of existence of solution of the
evolution equation (4.1).

Theorem 4.2. Suppose the operator valued measure A, the scalar measures {γ, β}
and the operator f satisfy the assumptions of Lemma 4.1 with the injection V ↪→ H
being compact. Then, for each x0 = ξ ∈ H and B ∈ Mcabv(Σ,L(V, V ∗)) satisfying
the assumption of Lemma 4.1, the evolution equation (4.1) has at least one weak
solution x ∈ B∞(I,H) ∩ Lp(γ, V ). The vector measure µx, given by the relation

µx(ψ) ≡
∫
I
⟨ψ(t), µx(dt)⟩V,V ∗ =

∫
I
⟨ψ(t), dx(t)⟩V,V ∗ ∀ ψ ∈ Lp(γ, V ),

is an element of BVq(γ, V
∗).
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Proof. We use similar technique as in [1, Theorem 4.3]. So for convenience of the
readers we present it briefly. It is based on a-priori bounds, finite dimensional
projection to an increasing family of (finite dimensional) subspaces determined by
Xn ≡ lin.span {vi, 1 ≤ i ≤ n}, maximal monotonicity of the operator valued mea-
sureA, Crandall-Liggett generation theorem for nonlinear semigroups corresponding
to maximal monotone operators [7, Theorem 4.7, pp.120-121], see also [14, p.115],
and continuity of f and, most importantly, compact embedding [8, Theorem 3.2,
p911] of Mp,q ↪→ Lp(γ,H) where

Mp,q ≡
{
x : x ∈ Lp(γ, V ) & µx ∈ BVq(Σ, V

∗)
}
.(4.11)

Let {vi} be a complete basis for the Gelfand triple V ⊂ H ⊂ V ∗ so that they
are orthogonal in V and V ∗, and orthonormal in H. Now we use finite dimensional
projection of the system (4.1) to Xn and denote the corresponding solutions (if they
exist) by xn ≡

∑n
i=1 z

n
i vi giving the family of finite dimensional systems,

⟨dxn, vi⟩+ ⟨A(dt,
n∑

j=1

znj vj), vi⟩V ∗,V(4.12)

= (f(

n∑
j=1

znj vj), vi)Hγ(dt) +

n∑
j=1

znj ⟨B(dt)vj , vi⟩V ∗,V ,

i = 1, 2, . . . , n;n ∈ N,

with the initial condition given by xn(0) ≡
∑n

i=1(ξ, vi)vi. Define the maps

G(σ, z) ≡ col{Gi(σ, z), 1 ≤ i ≤ n}, f̃(z) ≡ col{fi(z), 1 ≤ i ≤ n},(4.13)

MB(σ) ≡ matrix{µBi,j(σ), 1 ≤ i, j ≤ n}, σ ∈ Σ, z ∈ Rn,(4.14)

where z = (z1, z2, . . . , zn)
′
and

Gi(σ, z) ≡ ⟨A(σ,
n∑

j=1

zjvj), vi⟩V ∗,V , fi(z) ≡ (f(

n∑
j=1

zjvj), vi)H ,(4.15)

µBi,j(σ) ≡ ⟨B(σ)vj , vi⟩, 1 ≤ i, j ≤ n, σ ∈ Σ, z ∈ Rn.

Let MB denote the matrix valued measure with entries {µBij}. It is clear from (4.15)

and our assumption on B that MB ∈ Mcabv(Σ,L(Rn, Rn)). Using these notations,
for any n ∈ N the system (4.12) can be written in the form,

dz +G(dt, z) = f̃(z)γ(dt) +MB(dt)z,(4.16)

z(0) = col{(ξ, vi), i = 1, 2, . . . , n}, n ∈ N.

This is a measure driven n-dimensional system. For any m ∈ N , partition the
interval I into m disjoint subintervals giving I = ∪m−1

i=0 σi where σi ≡ (ti, ti+1], 0 ≤
i ≤ m − 1, with t0 = 0, tm = T. Define the nonlinear operator valued set function
Ĝ(σ)(z) ≡ G(σ, z) from Rn to Rn and σ ∈ Σ. Since for each σ ∈ Σ, A(σ, ·) is

maximal monotone (from V to V ∗), Ĝ(σ) is maximal monotone on Rn. Hence the

range of the operator (I + Ĝ(σ)) is all of Rn, that is, R(I + Ĝ(σ)) = Rn. Thus, by
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use of implicit difference scheme, one can construct the sequence {zm(t), t ∈ I} by
linear interpolation of the nodes given by

zm(ti+1) ≡ (I+Ĝ(σi))
−1

(
zm(ti)+f̃(zm(ti))γ(σi)+MB(σi)zm(ti)

)
, i = 0, 1, . . . ,m−1.

It follows from Crandall-Ligget generation theorem for nonlinear semigroups [7,
Theorem 4.7, p120-121], that zm(t) −→ z(t) uniformly on I and that z solves
equation (4.16). We denote this solution by z = zn. Then, xn ≡

∑n
i=1 z

n
i vi solves

equation (4.12). By virtue of the a-priori bounds given by Lemma 4.1, {xn} is
contained in a bounded subset of Lp(γ, V ) ∩ B∞(I,H) ⊂ Lp(γ, V ) ∩ L∞(I,H).
Since the spaces (V,H, V ∗) are all reflexive there exists a subsequence, relabeled as
the original sequence, and an element x ∈ Lp(γ, V ) ∩B∞(I,H) such that

xn
w∗
−→ x in L∞(I,H)(4.17)

xn
w−→ x in Lp(γ, V ).(4.18)

Let C1
T [0, T ] denote the class of C1 functions vanishing at T. Multiplying equation

(4.12) by φ ∈ C1
T [0, T ] and integrating by parts we obtain

(4.19)

− (xn(0), φ(0)vi)−
∫
I
(xn(t), φ̇(t)vi)Hdt+

∫
I
⟨A(dt, xn(t)), φ(t)vi⟩V ∗,V

=

∫
I
(f(xn(t)), φ(t)vi)Hγ(dt) +

∫
I
⟨xn(t), B∗(dt)φ(t)vi⟩V,V ∗ .

Since V is dense in H, it is clear that xn(0)
s−→ ξ in H. Letting n → ∞, it follows

from this and (4.17) that

−(xn(0), φ(0)vi)H −
∫
I
(xn(t), φ̇(t)vi)Hdt(4.20)

−→ −(ξ, φ(0)vi)H −
∫
I
(x(t), φ̇(t)vi)Hdt.

It follows from the assumption (B4) and the fact that r > q > 1, the measure
µ given by µ(σ) ≡

∫
σ B

∗(dt)φ(t)vi, σ ∈ Σγ , is an element of BVq(γ, V
∗). In other

words, µ is a V ∗ valued γ continuous vector measure having finite q variation. Using
this fact and (4.18) and the natural duality pairing between the spaces Lp(γ, V ) and
BVq(Σγ , V

∗) we conclude that

(4.21)

∫
I
⟨xn(t), B∗(dt)φ(t)vi⟩V,V ∗ −→

∫
I
⟨x(t), B∗(dt)φ(t)vi⟩V,V ∗ ,

as n → ∞. Considering the third term on the left of equation (4.19) and following
similar approach as in [1, Theorem 4.3, p175] we prove that the operator valued
measure A(·, xn(·)) −→ A(·, x(·)) in BVq(Σγ , V

∗) in the weak star topology. We
sketch the proof briefly. Define the sequence of V ∗-valued vector measures,

an(σ) ≡
∫
σ
A(ds, xn(s)), σ ∈ Σ.(4.22)
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Clearly, it follows from the assumption (B3) and countable additivity of the measure
γ that for each v ∈ V and σ ∈ Σ,

⟨an(σ), v⟩V ∗,V ≡
∫
σ
⟨A(ds, xn(s)), v⟩V ∗,V

is well defined and that the set function σ −→ ⟨an(σ), v⟩V ∗,V is countably additive
and γ-continuous. Thus {an} is a sequence of weakly countably additive V ∗ valued
vector measures and that it vanishes on γ null sets. Hence it follows from Pettis the-
orem [Dunford-Schwartz, 18, Theorem 1V.10.1, p318] that it is countably additive
and γ continuous. These facts along with the a-priori bounds of {xn} (see Lemma
4.1) imply that the set {an} is contained in a bounded subset of Mc(Σ, V

∗), and
that

lim
γ(σ)→0

|an|(σ) = 0, uniformly in n ∈ N.(4.23)

Since V ∗ is a reflexive Banach space, it follows from boundedness of the set {an}
that for each σ ∈ Σ, {an(σ), n ∈ N} is a conditionally weakly compact subset of V ∗.
As the dual pair of Banach spaces {V, V ∗} are reflexive, they have Radon-Nikodym
property (RNP). Thus it follows from Bartle-Dunford-Schwartz compactness theo-
rem for vector measures [16, Theorem 5, p105] that there exists an a ∈ Mc(Σ, V

∗)
such that, along a subsequence if necessary, an −→ a weakly. Hence, for the third
term on the left of the expression (4.19), we have∫

I
⟨A(dt, xn(t)), φ(t)vi⟩V ∗,V(4.24)

≡
∫
I
⟨an(dt), φ(t)vi⟩V ∗,V −→

∫
I
⟨a(dt), φ(t)vi⟩V ∗,V .

Then, by using the monotonicity and hemicontinuity assumption (B1), one can
easily verify that

a(σ) =

∫
σ
A(ds, x(s)) ∀ σ ∈ Σ.(4.25)

For details see [1, Theorem 4.3]. Thus we have proved that, along a subsequence if
necessary,

(4.26) ∫
I
⟨A(dt, xn(t)), φ(t)vi⟩V ∗,V ≡

∫
I
⟨an(dt), φ(t)vi⟩V ∗,V

−→
∫
I
⟨a(dt), φ(t)vi⟩V ∗,V =

∫
I
⟨A(dt, x(t)), φ(t)vi⟩V ∗,V .

Next, we verify that the first term on the right hand side of equation (4.19) converges
to the desired limit, that is,∫

I
(f(xn(t)), φ(t)vi)Hγ(dt) −→

∫
I
(f(x(t)), φ(t)vi)Hγ(dt).(4.27)
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Here we use a compact embedding theorem [8, Theorem 3.2, p.911]. Define the
sequence of V ∗ valued vector measure µn by

µn(ψ) ≡
∫
I
⟨ψ(t), µn(dt)⟩V,V ∗ ≡

∫
I
⟨ψ(t), dxn(t)⟩V,V ∗ , ψ ∈ Lp(γ, V ).

Since {γ, β} are countably additive bounded positive measures and {xn} is contained
in a bounded subset of B∞(I,H)∩Lp(γ, V ), it follows from straightforward compu-
tation, using the above identity and the assumptions (B3), that {µn} ⊂ BVq(γ, V

∗).
Then it follows from the embedding BVq(γ, V

∗) ↪→ BVq(Σ, V
∗), as seen in section 2,

that {µn} ⊂ BVq(Σ, V
∗). Thus by definition of Mp,q (see the expression (4.11)) we

have {xn} ⊂ Mp,q. Since the embedding Mp,q ↪→ Lp(γ,H) is compact [8, Theorem
3.2, p911] we can extract a subsequence of the sequence {xn}, relabeled as {xn}, so
that xn

s−→ x in Lp(γ,H). Hence there exists a further subsequence of the sequence
{xn}, relabeled as {xn}, such that

xn(t)
s−→ x(t) in H for γ − a.a t ∈ I.

By our assumption, f : H −→ H is continuous and bounded on bounded sets and
hence

f(xn(t))
s−→ f(x(t)) in H for γ − a.a t ∈ I.

From the growth assumption for f (see the statement in Theorem 3.6) and the
fact that the family {xn, x} satisfies the same bounds as stated in Lemma 4.1,
{f(xn(·))} is dominated by an element from Lp(γ,H). Thus by Lebesgue dominated

convergence theorem, f(xn(·))
s−→ f(x(·)) in Lp(γ,H) and, since φvi ∈ C(I,H) ⊂

B∞(I,H), we have∫
I
(f(xn(t)), φ(t)vi)Hγ(dt) −→

∫
I
(f(x(t)), φ(t)vi)Hγ(dt)(4.28)

proving (4.27). Collecting the above results and letting n → ∞ in equation (4.19)
we arrive at the following identity

(4.29)

− (ξ, φ(0)vi)H −
∫
I
(x(t), φ̇vi)Hdt+

∫
I
⟨A(dt, x(t)), φ(t)vi⟩V ∗,V

=

∫
I
(f(x(t)), φ(t)vi)Hγ(dt) +

∫
I
⟨x(t), B∗(dt)φ(t)vi⟩V,V ∗

which holds for all φ ∈ C1
T (I) and for all i ∈ N. Since {vi} is a basis for V , this

identity holds for all v ∈ V. Hence x is a weak solution of equation (4.1) satisfying
all the properties as stated. This completes the proof. �

For uniqueness of weak solutions we need some stronger assumptions. This is
given in the following proposition.

Proposition 4.3. Consider the system (4.1) and suppose the assumptions of The-
orem 4.2 hold, and further the operator valued measure A is strictly monotone sat-
isfying

⟨A(σ, x)−A(σ, y), x− y⟩V ∗,V ≥ γ(σ) ∥ x− y ∥2V , ∀ σ ∈ Σ.

There exists a constant M ≥ 0 such that

|(f(x)− f(y), x− y)H | ≤M |x− y|2H , ∀x, y ∈ H.
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The structural control B : Σ −→ L(V,H) is an operator valued measure having
Radon-Nikodym derivative with respect to the scalar measure γ, that is, B(dt) =
Λ(t)γ(dt), t ∈ I, with Λ ∈ L2(γ,L(V,H)). Then, for every x0 = ξ ∈ H, the weak
solution of the evolution equation (4.1) is unique.

Proof. Suppose there are two weak solutions x, y ∈ B∞(I,H) ∩ Lp(γ, V ) starting
from the same initial state ξ ∈ H. Subtracting equation (4.1) with x as the weak
solution, from the same equation with y as the weak solution, and scalar multiplying
this equation by (x− y) and integrating by parts one can easily verify that, for all
t ∈ I,

|x(t)− y(t)|2H + 2

∫ t

0
⟨A(ds, x(s))−A(ds, y(s)), x(s)− y(s)⟩V ∗,V

= 2

∫ t

0
(f(x(s))− f(y(s)), x(s)− y(s))Hγ(ds)

+ 2

∫ t

0
(B(ds)(x(s)− y(s)), x(s)− y(s))H .

It follows from the assumptions on {A, f,B} and the above identity that

|x(t)− y(t)|2H + 2

∫ t

0
∥ x(s)− y(s) ∥2V γ(ds) ≤ 2M

∫ t

0
|x(s)− y(s)|2Hγ(ds)

+ 2

∫ t

0
∥ Λ(s) ∥L(V,H)∥ x(s)− y(s) ∥V |x(s)− y(s)|Hγ(ds).

Considering the last term of the above expression and using Hölder and Cauchy
inequalities, it is easy to verify that, for any ε > 0,

2

∫ t

0
∥ Λ(s) ∥L(V,H)∥ x(s)− y(s) ∥V |x(s)− y(s)|Hγ(ds)

≤ ε

∫ t

0
∥ x(s)− y(s) ∥2V γ(ds) + (1/ε)

∫ t

0
∥ Λ(s) ∥2L(V,H) |x(s)− y(s)|2Hγ(ds).

Choosing ε = 1, it follows from the preceding two inequalities that

|x(t)− y(t)|2H +

∫ t

0
∥ x(s)− y(s) ∥2V γ(ds)

≤
∫ t

0

(
2M+ ∥ Λ(s) ∥2L(V,H)

)
|x(s)− y(s)|2Hγ(ds), t ∈ I.

By Theorem 4.2, x, y ∈ Lp(γ, V ); and, since p > 2 and γ is a finite positive measure,
it is evident that Lp(γ, V ) ↪→ L2(γ, V ). Thus the expression on the left hand side
of the above inequality is well defined. Since Λ ∈ L2(γ,L(V,H)) and γ(I) < ∞
and x, y ∈ B∞(I,H) ⊂ L∞(I,H), the expression on the right hand side is also well
defined. Define

κ(t) ≡ 2M+ ∥ Λ(t) ∥2L(V,H)
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and φ(t) ≡ |x(t)− y(t)|2H and ψ(t) ≡∥ x(t)− y(t) ∥2V for t ∈ I. With this notation,
the above inequality can be rewritten as follows:

φ(t) +

∫ t

0
ψ(s)γ(ds) ≤

∫ t

0
κ(s)φ(s)γ(ds), t ∈ I.

It follows from the assumption on B and the fact that I is a finite interval, that
κ ∈ L+

1 (γ), and, since both x, y ∈ L2(γ, V ), ψ ∈ L+
1 (γ) also. Now by virtue of

generalized Gronwall inequality, it follows from the above expression that φ(t) ≡ 0
γ − a.e and hence ψ(t) ≡ 0 γ − a.e. This means x = y as elements of L∞(I,H) ∩
L2(γ, V ). Hence, under the given assumptions, the evolution equation (4.1) has a
unique weak solution. This completes the proof. �
Remark 4.4. If the operator valued measure B : Σ −→ L(H) has the RND (Radon-
Nikodym derivative) Λ ∈ L2(γ,L(H)) then the assumption on strict monotonicity
of the operator A can be relaxed to simple monotonicity, that is, < A(σ, x) −
A(σ, y), x− y >V ∗,V ≥ 0 for all σ ∈ Σ and all x, y ∈ V.

5. Existence of optimal structural controls

In this section we introduce the class of admissible structural controls and prove
a result on continuous dependence of solutions on controls. Using these results we
prove the existence of optimal controls for certain typical cost functionals.

5.1. Continuous dependence of Solutions: Let L(V,H) denote the space of
bounded linear operators from V to H, and Mfa(Σ,L(V,H)) the space of finitely
additive bounded operator valued measures. It is well known that it is a Ba-
nach space with respect to the variation norm. Let Mad be a bounded subset of
Mfa(Σ,L(V,H)) and suppose it is uniformly γ-continuous satisfying the assump-
tion (B4) and countably additive in the weak operator topology. Further charac-
terization of admissible controls is given later in this section. To consider optimal
control problems we need continuous dependence of solutions on controls. This is
given in the following theorem.

Theorem 5.1. Consider the system (4.1) and suppose the assumptions of Theorem

4.2 hold. Then the map B −→ x is continuous in the sense that whenever Bn
w−→ Bo

in Mad, xn
w∗
−→ xo in L∞(I,H) and xn

w−→ xo in Lp(γ, V ), where xo is the weak
solution of equation (4.1) corresponding to Bo.

Proof. Let {Bn} ⊂ Mad and {xn} the corresponding weak solutions of the system
(4.1). Then it follows from the definition of weak solution that, for every v ∈ V and
φ ∈ C1

T (I), the following identity holds

−(ξ, φ(0)v)H −
∫
I
(xn(t), φ̇v)Hdt+

∫
I
⟨A(dt, xn(t)), φ(t)v⟩V ∗,V(5.1)

=

∫
I
(f(xn(t)), φ(t)v)Hγ(dt) +

∫
I
⟨B∗

n(dt)φ(t)v, xn(t)⟩V ∗,V .

Suppose Bn
w−→ Bo in Mad. Since the set Mad is a bounded subset of

Mfa(Σ,L(V,H)), the solution set

X ≡ {x ∈ L∞(I,H) ∩ Lp(γ, V ) : x = x(B), B ∈ Mad}
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is a bounded subset of B∞(I,H) ∩ Lp(γ, V ) ⊂ L∞(I,H) ∩ Lp(γ, V ). Thus the
sequence of solutions {xn} corresponding to the sequence {Bn} is contained in
a bounded subset of B∞(I,H) ∩ Lp(γ, V ) ⊂ Lp(γ, V ) ∩ L∞(I,H). Since V has
the structure of a reflexive Banach space and H is a Hilbert space there exists
a subsequence of the sequence {xn}, relabeled as {xn}, and an element xo ∈
L∞(I,H) ∩ Lp(γ, V ) such that

xn
w∗
−→ xo in L∞(I,H)(5.2)

xn
w−→ xo in Lp(γ, V ).(5.3)

Then, following similar arguments as used in the proof of Theorem 4.2, we conclude
that as n→ ∞, along a subsequence if necessary, we have∫

I
(xn(t), φ̇(t)v)Hdt −→

∫
I
(xo(t), φ̇(t)v)Hdt(5.4) ∫

I
⟨A(dt, xn(t)), φ(t)v⟩V ∗,V −→

∫
I
⟨A(dt, xo(t)), φ(t)v⟩V ∗,V(5.5) ∫

I
(f(xn(t)), φ(t)v)Hγ(dt) −→

∫
I
(f(xo(t)), φ(t)v)Hγ(dt)(5.6)

for every v ∈ V and φ ∈ C1
T (I). Let us now consider the last term in the expression

(5.1). Since Bn
w−→ Bo in Mad, the restriction of B∗

n to V denoted by B∗
n|V

converges weakly to B∗
o in Mad. By assumption, the embedding V

i
↪→ H is compact.

Thus it’s adjoint is compact and hence the embedding H∗ = H
i∗
↪→ V ∗ is also

compact. Therefore, along a subsequence if necessary (relabeled as the original
sequence),

B∗
n(σ)|V φ(t)v = B∗

n(σ)φ(t)v
s−→ B∗

o(σ)φ(t)v

in V ∗ for every σ ∈ Σ and t ∈ I. By assumption, the family of operator valued
measures Mad is uniformly γ-continuous. Thus the V ∗-valued measures {µn, µo},
given by µn(σ) ≡

∫
σ B

∗
n(ds)φ(s)v and µo(σ) ≡

∫
σ B

∗
o(ds)φ(s)v, σ ∈ Σ, are uniformly

γ-continuous. In our assumption (B4), r = (p/p−2) and therefore q < r, where q is
the conjugate (number) of p and consequently BVr(γ, V

∗) ⊂ BVq(γ, V
∗). Thus the

sequence of measures {µn, µo} belong to BVq(γ, V
∗) and µn

s−→ µo in BVq(γ, V
∗).

On the other hand we have already seen that xn
w−→ xo in Lp(γ, V ). Hence letting

n→ ∞, we have the convergence of the duality pairing

⟨µn, xn⟩BVq(γ,V ∗),Lp(γ,V ) −→ ⟨µo, xo⟩BVq(γ,V ∗),Lp(γ,V ).

Clearly, this is equivalent to

(5.7)

∫
I
⟨B∗

n(dt)φ(t)v, xn(t)⟩V ∗,V −→
∫
I
⟨B∗

o(dt)φ(t)v, x
o(t)⟩V ∗,V as n→ ∞.

Now using (5.4)-(5.7) and letting n −→ ∞ in (5.1), we arrive at the following
identity

−(ξ, φ(0)v)H −
∫
I
(xo(t), φ̇v)Hdt+

∫
I
⟨A(dt, xo(t)), φ(t)v⟩V ∗,V(5.8)
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=

∫
I
(f(xo(t)), φ(t)v)Hγ(dt) +

∫
I
⟨B∗

o(dt)φ(t)v, x
o(t)⟩V ∗,V .

Since the above identity holds for arbitrary v ∈ V and φ ∈ C1
T (I) it follows from

this (identity) that xo is a weak solution of the system

dx+A(dt, x) = Bo(dt)x+ f(x)γ(dt), t ∈ I

x(0) = ξ,(5.9)

and by Lemma 4.1, xo ∈ B∞(I,H)∩Lp(γ, V ). Thus we conclude that the control to
solution map, B −→ x = x(B), is (sequentially) continuous in the sense as stated
in the theorem. This completes the proof. �

5.2. Optimal Controls: In this section we wish to consider control problems. Be-
fore we can do so we need further characterization of the set of admissible structural
controls.

In order to include in the objective functional the cost of control representing the
semivariation of the operator valued measure one may consider the following class of
operator valued measures. Let B∞(γ, V ) denote the class of γ-essentially bounded
measurable V valued functions and let H be the Hilbert space. Let L(B∞(γ, V ),H)
denote the space of bounded linear operators from the Banach space B∞(γ, V ) to
the Hilbert space H. Suppose this is endowed with the weak operator topology τwo.
We denote this topological space by

(L(B∞(γ, V ),H), τwo) = Lwo(B∞(γ, V ),H)).

This is a locally convex sequentially complete topological vector space. Let

Mfabsv(Σγ ,L(V,H)) ⊂ Mfa(Σ,L(V,H))

denote the space of finitely additive γ continuous L(V,H) valued vector measures
having bounded semivariation contained in the space of finitely additive measures
with values in L(V,H). Let S(γ, V ) denote the class of γ-measurable simple func-
tions from I to V. Note that the semivariation of an operator valued measure B on
σ ∈ Σ is also given by
(5.10)

∥ B ∥sv (σ) ≡ sup
{
|
∫
σ
B(dt)f(t)|H : f ∈ S(γ, V ) ⊂ B∞(γ, V ), ∥ f ∥∞ ≤ 1

}
,

with ∥ B ∥sv≡∥ B ∥sv (I) ≡ sup{∥ B ∥sv (σ), σ ∈ Σ}. The integral in the ex-
pression (5.10) is understood in the sense of Dobrakov [17, 20]. Recall that the
Dobrakov integral of f ∈ B∞(γ, V ) with respect to an operator valued measure
B ∈ Mfabsv(Σγ ,L(V,H)) is given by the limit

lim
n→∞

∫
I
B(ds)fn(s)

where fn ∈ S(γ, V ) and fn(t) −→ f(t) γ a.e.

The following result is fundamental in the proof of existence of optimal structural
controls and it is also of independent interest.
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Proposition 5.2. The class of operator valued measures Mfabsv(Σγ ,L(V,H)) is
isometrically isomorphic to Lwo(B∞(γ, V ),H)) and this is signified by

Mfabsv(Σγ ,L(V,H)) ∼= Lwo(B∞(γ, V ),H)).

Proof. The proof is based on representation theorem due to [Brooks and Lewis, 15,
Lemma 4.1, Theorem 4.4, Corollary 4.4.1, p154-155]. Let B ∈ Mfabsv(Σγ ,L(V,H))
and define the operator LB on B∞(γ, V ) by

LBf ≡
∫
I
B(ds)f(s),(5.11)

where, again the integration is understood in the sense of Dobrakov [17, 20]. Then,
since B has finite semivariation, it follows from the definition that

∥ LBf ∥H ≤∥ B ∥sv∥ f ∥B∞(γ,V )<∞.(5.12)

Thus, if B describes a bounded subset (in the sense of semivariation) of
Mfabsv(Σγ ,L(V,H)), the corresponding operator LB describes a bounded subset
of L(B∞(γ, V ),H). Since B∞(γ, V ) is a Banach space and H is a Hilbert space, it
is well known that any closed bounded convex subset of L(B∞(γ, V ),H) is com-
pact in the weak operator topology τwo ≡ wo. Thus LB ∈ Lwo(B∞(γ, V ),H) and it
follows from (5.12) that its norm is dominated by the semivariation of B, that is,

∥ LB ∥L(B∞(γ,V ),H) ≤ ∥ B ∥sv .
Conversely, let L ∈ L(B∞(γ, V ),H). Since the range space is a Hilbert space H, the
operator L maps every bounded set of B∞(γ, V ) into a relatively weakly compact
set in H and so the operator L is weakly compact. Then it follows from generalized
Riesz representation theorem due to Brooks and Lewis [15, Corollary 4.4.1] that
there exists a unique B ∈ Mfabsv(Σγ ,L(V,H)), determined by L alone, such that

Lf =

∫
I
B(ds)f(s)

for every f ∈ B∞(γ, V ), and ∥ L ∥=∥ B ∥sv . This means that the operator
norm of L coincides with the semivariation of the corresponding representing mea-
sure B. Thus we have shown that every B ∈ Mfabsv(Σγ ,L(V,H)) determines
a unique bounded linear operator L ∈ L(B∞(γ, V ),H) and conversely, to every
L ∈ L(B∞(γ, V ), H) there corresponds a unique B ∈ Mfabsv(Σγ ,L(V,H)). Thus
we have the isometric isomorphism

Mfabsv(Σγ ,L(V,H)) ∼= Lwo(B∞(γ, V ),H)).

This completes the proof. �
Using the Proposition 5.2 we can now characterize our admissible (structural)

controls precisely as follows.

Admissible Structural Controls: We take any closed bounded convex subset
Cad ⊂ Lwo(B∞(γ, V ),H) containing the origin. Clearly Cad is compact in the weak
operator topology τwo. Then let Mad ⊂ Mfabsv(Σγ ,L(V,H)) denote the isomor-
phic image of the set Cad. Let τm denote the relative topology on Mad induced,
under the isomorphism, by the weak operator topology τwo. Since, under isomor-
phism, compactness is preserved, we conclude that Mad is τm compact. We consider
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Mad, furnished with this relative topology τm, as the class of admissible structural
controls.

Lemma 5.3. Consider the following pair of spaces of operator valued measures

M1 ≡ Mfabsv(Σγ ,L(V,H)) and M2 ≡ Mfabsv(Σγ ,L(V, V ∗))(5.13)

and let the corresponding semivariations be denoted by ∥ · ∥sv1 and ∥ · ∥sv2 respec-
tively. Consider the set Mad ⊂ M1, endowed with the τm topology as described
above. Then the functional Ψ given by Ψ(B) ≡∥ B ∥sv2 is lower semicontinuous on
M1 with respect to the τm topology.

Proof. Clearly, as vector spaces, M1 ⊂ M2. Let B ∈ Mad ⊂ M1. Let us compute
its semivariation in M2 which is given by

∥ B ∥sv2= sup

{
∥
∫
I
B(ds)f(s) ∥V ∗ , f ∈ B∞(γ, V ), ∥ f ∥∞≤ 1

}
.(5.14)

Let {Bn} ∈ Mad ⊂ M1 and suppose Bn
τm−→ Bo in M1. Since Mad is compact in

the τm topology, Bo ∈ Mad. Then by definition, the semivariation of Bo, considered
as an element of M2, is given by

∥ Bo ∥sv2= sup

{
∥
∫
I
Bo(ds)f(s) ∥V ∗ , f ∈ B∞(γ, V ), ∥ f ∥∞≤ 1

}
.(5.15)

So, for every ε > 0, there exists an fε ∈ B∞(γ, V ) with ∥ fε ∥∞≤ 1, such that

∥ Bo ∥sv2≤ (ε/2)+ ∥
∫
I
Bo(ds)fε(s) ∥V ∗(5.16)

≤ (ε/2)+ ∥
∫
I
[Bo(ds)−Bn(ds)]fε(s) ∥V ∗ + ∥

∫
I
Bn(ds)fε(s) ∥V ∗

≤ (ε/2)+ ∥
∫
I
[Bo(ds)−Bn(ds)]fε(s) ∥V ∗ + ∥ Bn ∥sv2

for all n ∈ N. Since Bn
τm−→ Bo in Mad ⊂ M1, it is clear that∫

I
[Bo(ds)−Bn(ds)]fε(s)

w−→ 0 in H as n→ ∞.

Thus it follows from the compact embedding H ↪→ V ∗ that∫
I
[Bo(ds)−Bn(ds)]fε(s)

s−→ 0 in V ∗ as n→ ∞.

Hence it follows from the expression (5.16) that, for any given ε > 0, there exists a
natural number nε such that

∥ Bo ∥sv2 ≤ (ε/2) + (ε/2)+ ∥ Bn ∥sv2 ∀ n ≥ nε.

Since this is true for every ε > 0, we conclude that

Ψ(Bo) ≡ ∥ Bo ∥sv2 ≤ lim ∥ Bn ∥sv2 ≡ limΨ(Bn).

This proves that the functional Ψ, as defined above, is lower semicontinuous on M1

with respect to the τm topology. �
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Remark 5.4. It follows from the above result that a weakly compact subset of M1

is always (strongly) compact as a subset of M2. This implies that the embedding
M1 ↪→ M2 is compact.

In the case of operator valued measures as controls, the cost of controls should
be an increasing function of either the total variation norm or the semivariation. In
general, while the semivariation may be finite the total variation may be infinite.
Thus it is logical to consider semivariation as the measure of control cost. However,
if one wishes to impose a stronger constraint, one can always choose the total
variation as the measure of cost. In that case the class of admissible structural
controls is a smaller subset of M1.

Theorem 5.5. Consider the system (4.1) with the following cost functional,

(5.17)

J(B) ≡
∫
I
∥ x(B)(t)− xd(t) ∥pV γ(dt)

+

∫
I
|x(B)(t)− xd(t)|pHγ(dt) + Ψ(B),

and suppose Theorem 5.1 holds. Let Mad, furnished with the topology τm, denote the
set of admissible controls and suppose the functional Ψ is given by Ψ(B) ≡∥ B ∥sv2 .
Then there exists a control Bo ∈ Mad at which the functional J attains its minimum.

Proof. Since Mad is a compact subset of Mfabsv(Σγ ,L(V,H)) in the τm topology,
it is bounded in semivariation. Thus, as seen in the proof of Theorem 5.1, the
solution set X ≡ {x(B), B ∈ Mad} is a bounded subset of B∞(I,H)∩Lp(γ, V ). As
the embedding V ↪→ H is continuous, it is clear that the embedding Lp(γ, V ) ↪→
Lp(γ,H) is also continuous. Now let Bn

τm−→ Bo in Mad and let {xn, xo} be the
corresponding set of weak solutions of the evolution equation (4.1). Then, in view

of Theorem 5.1, along a subsequence if necessary, xn
w−→ xo in Lp(γ, V ). Since,

by virtue of Hahn-Banach theorem, the norm in any Banach space is weakly lower
semi-continuous, it is easy to verify that the first term in the cost functional (5.17)
is weakly lower semicontinuous. Further, it follows from the compact embedding
Mp,q ↪→ Lp(γ,H), see [8, Theorem 3.1, p911], that along a subsequence, if necessary,

xn
s−→ xo in Lp(γ,H). Clearly, strong convergence of xn to xo as elements of

Lp(γ,H) implies continuity of the second term of the cost functional (5.17). Thus
the sum of the first two terms, as a functional on Mad, is lower semi-continuous
in the τm topology. It follows from Lemma 5.3 that the functional Ψ is lower
semicontinuous on Mad in this topology. Thus B −→ J(B), given by a finite sum
of lower semicontinuous functionals, is lower semicontinuous in the τm topology in

the sense that, as Bn
τm−→ Bo, we have J(Bo) ≤ limJ(Bn). Further, inf{J(B), B ∈

Mad} ≥ 0. Since Mad is compact in the τm topology and J is lower semicontinuous
in this topology, it attains its minimum on it. Hence there exists a control at which
J attains its minimum proving the existence of an optimal control. �

Remark 5.6. It is interesting to note that one can use the control cost as any
continuous nondecreasing function Φ of the semivariation ∥ · ∥sv2 such as Ψ(B) ≡
Φ(∥ B ∥sv2).
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6. Some examples

(E1): Parabolic Problem. A classical example of a strongly nonlinear parabolic
problem representing nonlinear diffusion (for example, flow through porous media,
temperature dependent conductivity in heat flow, nonlinear diffusion in plasma etc.)
with homogeneous Dirichlet boundary condition is given by

∂ψ(t, ξ)/∂t− div Φ(t,▽ψ) + a(t, ξ)ψ = (b(t, ξ),▽ψ), (t, ξ) ∈ I × Ω,

ψ|∂Ω(t, ξ) = 0, (t, ξ) ∈ I × ∂Ω, ψ(0, ξ) = ϕ(ξ), ξ ∈ Ω,

where Ω is a bounded open connected domain in Rn with smooth boundary ∂Ω.
We are interested in the measure driven version of this example including structural
controls as presented below:

(6.1)
∂ψ(t, ξ)− div Φ(dt,▽ψ) + a(dt, ξ)ψ = (b(dt, ξ),▽ψ(t, ξ)), (t, ξ) ∈ I × Ω,

ψ|∂Ω(t, ξ) = 0, (t, ξ) ∈ I × ∂Ω, ψ(0, ξ) = ϕ(ξ), ξ ∈ Ω,

where a : Σ×Ω −→ R, and b : Σ×Ω −→ Rn are set functions in the first argument
defined on Σ ≡ σ(I) ≡ (sigma algebra of subsets of the interval I) and measurable
in the second. The operator Φ : Σ×Rn −→ Rn is a set function with respect to the
first argument and a point function in the second argument and continuous from
Rn to Rn satisfying the following properties:

There exist two countably additive bounded nonnegative measures γ(·), β(·) (not
necessarily nonatomic) and nonnegative constants c1, c2 such that

(1) (Φ(σ, ζ), ζ) + β(σ)|ζ|2 ≥ γ(σ)|ζ|p for all σ ∈ Σ, ζ ∈ Rn

(2) |Φ(σ, ζ)| ≤ γ(σ){c1 + c2|ζ|p−1}, for all σ ∈ Σ, ζ ∈ Rn

(3) (Φ(σ, ζ)− Φ(σ, η), ζ − η) ≥ 0, for all σ ∈ Σ, ζ, η ∈ Rn.

Let {p, q} be the conjugate pairs as defined in section 4 and W 1,p
0 (Ω), p > 2,

denote the standard Lp-Sobolev space with the dual W−1,q(Ω). For this example

the appropriate vector spaces are V ≡W 1,p
0 (Ω) and V ∗ ≡W−1,q(Ω). Since p ≥ 2 we

can take H ≡ L2(Ω). Thus we have the required Gelfand triple V ↪→ H ↪→ V ∗ with
continuous, dense and compact embeddings. By use of integration by parts, it is
easy to verify that the operator A, subject to the homogeneous Dirichlet boundary
condition, defined by

A(σ, ψ) ≡ −div Φ(σ,▽ψ) + a(σ, ·)ψ(6.2)

satisfies the following properties

(a1) A : Σ× V −→ V ∗,
(a2) ⟨A(σ,w), w⟩V ∗,V + 2β(σ)|w|2H ≥ γ(σ) ∥ w ∥pV , ∀ w ∈ V, σ ∈ Σ,
(a3) there exists a nonnegative constant c, dependent on c1, c2 and the Lebesgue

measure of the set Ω, and the embedding constants V ↪→ H such that

∥ A(σ,w) ∥V ∗≤ cγ(σ){1+ ∥ w ∥p/qV }.
(a4) ⟨A(σ,w)−A(σ, v), w − v⟩V ∗,V ≥ 0 ∀ w, v ∈ V.

Further, the reader can verify that A is hemicontinuous from V to V ∗. Note that
the operator A defined above contains p-Laplacian as a special case. The control
operator is defined as follows:

B(σ, ·)v(·) ≡ (b(σ, ·),▽v(·)), σ ∈ Σ.



22 N. U. AHMED

We assume that b : Σ× Ω −→ Rn, is a bounded set function (signed measure) and
γ continuous in the first argument uniformly with respect to ξ ∈ Ω, and measurable
in the second argument and that there exists a finite number b̃ > 0 such that

esssup {|b(σ, ξ)|Rn , ξ ∈ Ω} ≤ b̃ γ(σ) ∀ σ ∈ Σ and ξ ∈ Ω.

From this it follows that

|⟨B(σ)v, h⟩V ∗,V | = |(B(σ)v, h)H | ≤ b̃γ(σ) ∥ v ∥V |h|H , ∀ v ∈ V, h ∈ H

and hence ∥ B(σ)v ∥H≤ b̃γ(σ) ∥ v ∥V ∀ σ ∈ Σ. Introducing the vector valued func-
tion x(t) ≡ ψ(t, ·), the system (6.1) can be reformulated as an abstract differential
equation as follows,

dx+A(dt, x) = B(dt)x, x0 ≡ ϕ(·).(6.3)

For the cost functional one may choose the following expression

J(B) ≡
∫
I
∥ ψ(t, ·)− ψd(t, ·) ∥pW 1,p

0

γ(dt)(6.4)

+ ∥ ψ(t, ·)− ψd(t, ·) ∥pL2(Ω) dt+ η(∥ B ∥sv)

where η is a real valued nondecreasing continuous function from [0,∞) to [0,∞]. The
problem is to find a structural control that minimizes this functional. Since both A
and B of this example satisfy all the properties (B1)-B(4), and the cost functional
satisfies the assumptions of Theorem 5.3, it follows from the results presented in
section 5, that this problem has a solution.

(E2): Hyperbolic Problem. Here we consider the following second order differ-
ential equation,

dż +Azdt+K(dt)z +D(dt)ż = g(t, z, ż)γ(dt),(6.5)

z(0) = z0, ż(0) = z1, t ∈ I.

This equation represents a large class of semilinear mechanical structures such as
bridges, tall buildings, aircraft, space station etc. The operator A ∈ L(V, V ∗)
K : Σ −→ L(V,H) and D : Σ −→ L(H) and g : I × V × H −→ V ∗. Here A can
be interpreted as the principal elasticity operator of the structure. For example,
the standard Euler beam operator with simply supported (or cantilever or mixed)
boundary conditions. The operator K determines stiffness of the structure and D
determines its viscous damping. Defining x ≡ (z, ż)

′
, we can reformulate this second

order evolution equation as a first order evolution in the product space X ≡ V ×H
as given below,

dx = Axdt+B(dt)x+ f(t, x)γ(dt), x(0) = x0, t ∈ I.(6.6)

Here the operators {A, B, f} are given by

A =

[
0 IH

−A 0

]
, B(·) =

[
0 0

−K(·) −D(·)

]
and f(t, x) =

[
0

g(t, x1, x2)

]
.

Without loss of generality we assume that A is positive self adjoint. As shown in
details in [3, Example E1], the state space for this abstract system is the Hilbert
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space X = V ×H with the scalar product

(x, y)X = (
√
Ax1,

√
Ay1)H + (x2, y2)H

and the norm ∥ x ∥X given by

∥ x ∥X=

√
∥
√
Ax1 ∥2H + ∥ x2 ∥2H

where
√
A denotes the positive square root of the positive self adjoint operator A.

The first term of the norm represents elastic potential energy and the second term
represents the Kinetic energy. It is not difficult to show (see [3]) that the operator
A is skew adjoint and hence iA is self adjoint. Thus it follows from Stones theorem
[13, Theorem 3.1.4, p71] that A generates a C0-unitary group {U(t), t ≥ 0} on X.
Then using the variation of constants formula the (mild) solution x of the system
(6.6) is given by the solution of the following nonlinear integral equation (on X)

x(t) = U(t)x0 +

∫ t

0
U(t− s)B(ds)x(s)(6.7)

+

∫ t

0
U(t− s)f(s, x(s))γ(ds), t ∈ I.

For this problem, we choose the class of operator valued measures which are γ-
continuous and countably additive in the strong operator topology having bounded
variation denoted by Mcasbv(Σγ ,L(X)). Clearly, this is a closed subspace of the
space Mcasbsv(Σ,L(X)). Then we choose for admissible structural controls a set
Mad satisfying the following properties:

(a) It is a bounded subset of Mcasbv(Σγ ,L(X)),
(b) It is uniformly γ continuous in the sense that |B|(·) << γ(·) uniformly with

respect to B ∈ Mad. Since X is a Hilbert space, it has the Radon-Nikodym prop-
erty (RNP). Therefore it follows from Radon-Nikodym theorem for operator valued
measures [Ahmed, 2, Theorem 3.1, p288] that, for each B ∈ Mad, there exists a
unique strongly measurable operator valued function L such that

B(σ)x =

∫
σ
L(s)x γ(ds) for every x ∈ X, and σ ∈ Σ.

In view of this, the integral equation (6.7) is equivalent to the following integral
equation

x(t) = U(t)x0 +

∫ t

0
U(t− s)L(s)x(s)γ(ds)(6.8)

+

∫ t

0
U(t− s)f(s, x(s))γ(ds), t ∈ I.

Assuming that f is locally Lipschitz having at most linear growth, and the oper-
ator valued function L is measurable in the uniform operator topology and Bochner
integrable with respect to the measure γ, one can easily prove the existence of a
unique mild solution x ∈ B∞(I,X) ⊂ L∞(I,X). The cost functional can be chosen
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as

J(B) =

∫
I
∥ x(t)− xd(t) ∥2X γ(dt) + Ψ(B),(6.9)

where xd ∈ L2(γ,X) is the given (desired) trajectory and x ∈ L∞(I,X) ⊂ L2(γ,X)
is the mild solution of the integral equation (6.8) corresponding to B and hence
L, and Ψ is given by the total variation norm of B ∈ Mad. It follows from stan-
dard properties of vector measures that, with respect to the total variation norm,
Mcasbv(Σγ ,L(X)) is a Banach space. Hence the reader can easily verify that the
map B −→ x is continuous with respect to this topology on Mcasbv(Σγ ,L(X)) and
the norm topology on L∞(I,X). Thus the first term of the above cost functional
is continuously dependent on B ∈ Mcasbv(Σγ ,L(X)). Considering the second term,
since Ψ(B) is given by the variation norm, again it follows from Hahn-Banach theo-
rem that it is weakly lower semicontinuous. Thus, as a special case, it follows from
Theorem 5.5 that this problem has an optimal structural control in the admissible
class Mad.

Remark 6.1. If one chooses xd ≡ 0 in the expression (6.9), the optimal structural
control is the one that tries to minimize (or damp out) the elastic and kinetic energies
in the (mechanical) system. This is specially important if the system suddenly
encounters unexpected aerodynamic disturbance.

Remark 6.2. In case the measure γ is nonatomic, the solution x(B) ∈ C(I,X).
In this case one may consider time optimal control problems. For example, given a
target set K ⊂ X which is closed and convex with x(0) = ξ ̸∈ K, one is interested
to find a control B ∈ Mad that minimizes the first hitting time of the target K. In
this case the cost functional is given by

J(B) = inf{t ∈ [0,∞) : d(x(B)(t),K) = 0},

where d is the metric (distance) induced by the norm in X. This functional is also
lower semicontinuous and hence attains its minimum on Mad.

Open Problems (P1): In order to determine the optimal structural control, one
must develop necessary conditions of optimality. We leave this as an open problem.
(P2): It will be interesting to extend the results of this paper to stochastic systems
of the form

dx+A(dt, x) = B(dt)x+ f(x)γ(dt) + σ(t, x)dW,

where W is an E (separable Hilbert space) valued cylindrical Wiener process and
σ is a suitable map (possibly Hilbert-Schmidt) so that σ : I ×H −→ L(E,H).
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