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d = 1, 2, 3, enough regular, the time t ∈ (0,∞), ν is the outward normal vector to the
boundary, l and γ are positive constants with some physical meaning. The function
F ′ is the derivative of a potential coming from the physical model deduced by the
Gingzburg-Landau theory. Standard functions for the potential F are polynomials
of even degree with a strictly positive leading coefficient, as e.g., the double-well
potential

(1.6) F (r) =
(r2 − 1)2

4
,

the logarithmic potential

(1.7) F (r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− ar2, for r ∈ (−1, 1),

where a is positive and large enough to prevent the convexity and subdifferentials
of convex lower semicontinuous functions (see e.g., some explanations in [12]). We
shall consider the cases with the double-well potential and the logarithmic potential.

The stabilization will be investigated around a stationary solution (θ∞, φ∞) to
(1.1)–(1.5), and involves two controllers with the support in an open subset ω of
Ω, acting on the right-hand sides of equations (1.1)–(1.2). By making the function
transformation

(1.8) θ = σ − lφ,

and plugging the expression of µ into (1.2), the controlled system to be studied is

(1.9)
(1− τ∆)φt + ν∆2φ−∆F ′(φ)− γl∆φ+ γ∆σ = (1− τ∆)(fωv),

in (0,∞)× Ω,

σt −∆σ + l∆φ = fωu, in (0,∞)× Ω,(1.10)

φ(0) = φ0, σ(0) = σ0 := θ0 + lφ0, in Ω,(1.11)

∂φ

∂ν
=
∂∆φ

∂ν
=
∂σ

∂ν
= 0, in (0,∞)× ∂Ω,(1.12)

where the second boundary condition in (1.12) follows by (1.5).
The function fω is taken such that

(1.13) fω ∈ C∞
0 (Ω), supp fω ⊂ ω, fω > 0 on ω0,

where ω0 is an open subset of positive measure of ω. The form (1 − τ∆)(fωv) was
chosen in order to ensure that this controller has the support in ω0. This choice will
be more obvious later.

The aim is to stabilize exponentially this system around a stationary solution
(φ∞, θ∞) using the controllers computed in a feedback form, namely to show that
limt→∞(φ(t), θ(t)) = (φ∞, θ∞), with an exponential rate of convergence, whether
the initial datum (φ0, θ0) is in a certain neighborhood of (φ∞, θ∞).

The stabilization of the Cahn-Hilliard system in the nonviscous case, that is for
τ = 0, was discussed in the paper [7] for the regular potential (1.6).

We specify that the set of stationary states of the uncontrolled system (1.1)–(1.5)
is not empty, because it may have any constant solution θ∞ with some constant or
not constant solution φ∞. A discussion concerning the solutions to this stationary
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system with F the double-well potential is presented in [7], Lemma A1 in Appen-
dix. The result asserts that θ∞ is constant and φ∞ ∈ H4(Ω) ⊂ C2(Ω). For the
logarithmic case it is enough to observe that always there are constant stationary
solutions θ∞ and φ∞. Anyway, the proof of the existence of the solutions to the
stationary system is beyond our current aim.

The proof will consist in a sequence of intermediate results referring to: the well-
posedness and stabilization of the linearized system by a finite dimensional control,
in Propositions 2.1 and 2.2; the representation of the feedback controller and the
determination of its properties in Propositions 2.3 and 2.4; the proof of the existence
of a unique solution to the nonlinear closed loop system (with the feedback controller
expressed in terms of the solution) and the stabilization of this solution, in Theorem
2.5. The technique we shall approach is that introduced first in [17] and used then
in [3–6] for Navier-Stokes equations and nonlinear parabolic systems and relies on
the construction of the feedback controller as a linear combination of the unstable
modes of the corresponding linearized system. We mention that in this viscous
case, due to some transformations of the system, the theory will refer to an integro-
differential system. Moreover, in this case the linearized system has no longer a
self-adjoint operator, as in the degenerate case (τ = 0) studied in [7], so that the
privileges offered by such an operator cannot be used. Instead, complex eigenvalues
and eigenvectors should be taken into considerations as well as the stabilization in
a complexified space. Working exactly with the linearized system and not with a
modified one as in [7], it is no longer necessary to impose conditions limiting the
magnitude of the gradient and Laplacian of the stationary solution aimed to be
stabilized (as done in [7]). These stand as essential differences with respect to the
case discussed in [7]. Results will be provided first in the three-dimensional case for
the system with a regular potential F.

In a separate section, the case of a logarithmic potential will be treated. This
last part will include the proofs of the results previously described, presented first
for a regularization Fε of the singular potential, in Theorem 3.1. These will im-
ply the stabilization of the system with the singular function F, on the basis of a
compactness result working in one-dimension, in Theorem 3.2.

We can specify that the stabilization theorem we shall obtain for the nonlinear
system corresponding to Fε can be seen as a stand-alone result which could also
work for other models, as for example, for reaction-diffusion processes with nonlinear
sources.

1.1. Intermediate considerations. Before performing some transformations of
the system (1.9)–(1.12) we write the stationary system in terms of φ∞ and σ∞,

ν∆2φ∞ −∆F ′(φ∞)− γl∆φ∞ + γ∆σ∞ = 0, in Ω,

−∆σ∞ + l∆φ∞ = 0, in Ω,(1.14)

∂φ∞
∂ν

=
∂∆φ∞
∂ν

=
∂σ∞
∂ν

= 0, on ∂Ω.
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We denote y := φ − φ∞, z := σ − σ∞, compute the difference between system
(1.9)–(1.12) and (1.14), and get

(1.15)
(1− τ∆)yt + ν∆2y −∆(F ′(y + φ∞)− F ′(φ∞))− γl∆y + γ∆z

= (1− τ∆)(fωv), in (0,∞)× Ω,

zt −∆z + l∆y = fωu, in (0,∞)× Ω,(1.16)

y(0) = y0 = φ0 − φ∞, z(0) = z0 = σ0 − σ∞, in Ω,(1.17)

∂y

∂ν
=
∂∆y

∂ν
=
∂z

∂ν
= 0, on (0,∞)× ∂Ω.(1.18)

Next, we write in (1.15) the Taylor expansion for F ′(y+φ∞) around φ∞, obtaining

(1.19)
(1− τ∆)yt + ν∆2y −∆(F ′′(φ∞)y)− γl∆y + γ∆z

= (1− τ∆)(fωv) + ∆Fr(y), in (0,∞)× Ω,

where the rest of second order of the Taylor expansion, represented by the nonlinear
part Fr(y), was moved on the right-hand side. This expansion can be written for the
functions considered before (polynomial and logarithmic), under certain hypotheses
in the second case (these will be specified in Section 3).

Let us consider the standard space triplet H = L2(Ω), V = H1(Ω), V ′ =
(H1(Ω))′, and introduce the linear operator, A : D(A) ⊂ H → H,

(1.20) A = I − τ∆, with D(A) =

{
w ∈ H2(Ω);

∂w

∂ν
= 0 on ∂Ω

}
,

where I is the identity operator. The operator A is linear continuous, self-adjoint
and m-accretive on H. One can define its fractional powers Aα, α ≥ 0 (see e.g.,
[16], p. 72), with the domain D(Aα) = {w ∈ H; ∥Aαw∥H < ∞} and the norm
∥w∥D(Aα) = ∥Aαw∥H . Moreover, D(Aα) ⊂ H2α(Ω), with equality if and only if

2α < 3/2.
We write (1.19), (1.16)–(1.18) in terms of A (by replacing ∆ = 1

τ (I − A)) and

since A is surjective we can apply A−1 in (1.19). The stabilization for the system
(1.15)–(1.18) is reduced thus to the stabilization of the equivalent integro-differential
system

(1.21)

yt +
ν
τ2
(A+A−1 − 2)y − 1

τ (A
−1 − I)(F ′′(φ∞)y)

+γ
τ (A

−1 − I)z − γl
τ (A

−1 − I)y = fωv +
1
τ (A

−1 − I)Fr(y),

in (0,∞)× Ω,

zt +
1

τ
(A− I)z +

l

τ
(I −A)y = fωu, in (0,∞)× Ω,(1.22)

y(0) = y0, z(0) = z0, in Ω.(1.23)

We shall study in fact the stabilization for this system around the state (0, 0),
for the initial datum (y0, z0) lying in a neighborhood of (0, 0). It is obvious that
by making the backward transformations we obtain the stabilization result for the
initial system in (φ, θ), in Theorem 3.3, Section 3.
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2. Stabilization of the viscous Cahn-Hilliard system
with the double-well potential

In this section we consider system (1.21)–(1.23) for F the double-well potential
given by (1.6) and assume that

(2.1) φ∞ is an analytic function in Ω.

We discuss first the stabilization of the linearized system by a finite dimensional
controller and then the stabilization of the nonlinear system by a feedback controller
which will be constructed in Section 2.2.

For simplicity we shall denote the norm in L∞(Ω) by ∥ · ∥∞.

2.1. Stabilization of the linearized system for F the double-well potential.
The linearized system extracted from (1.21)-(1.23),

yt +
ν

τ2
(A+A−1 − 2)y − 1

τ
(A−1 − I)(F ′′(φ∞)y)

+
γ

τ
(A−1 − I)z − γl

τ
(A−1 − I)y = fωv, in (0,∞)× Ω,(2.2)

zt +
1

τ
(A− I)z +

l

τ
(I −A)y = fωu, in (0,∞)× Ω,(2.3)

y(0) = y0, z(0) = z0, in Ω,(2.4)

is rewritten in the abstract form

(2.5)
d

dt
(y(t), z(t)) +A(y(t), z(t)) = fωU(t), a.e. t ∈ (0,∞),

(2.6) (y(0), z(0)) = (y0, z0),

where U(t) = (v(t), u(t)).
The operator A is defined on D(A) ⊂ H ×H → H ×H, by

(2.7) A=

[
ν
τ2
(A+A−1−2)−γl

τ (A
−1−I)− 1

τ (A
−1−I)(F ′′(φ∞)·) γ

τ (A
−1−I)

l
τ (I−A)

1
τ (A−I)

]
and has the domain

D(A) =

{
w = (y, z) ∈ L2(Ω)× L2(Ω); Aw ∈ H ×H,

∂y

∂ν
=
∂z

∂ν
= 0 on Γ

}
.

We notice that, under the assumption of a regular enough domain, we have D(A) =
H2(Ω)×H2(Ω).

We set H = H × H, V = D(A1/2) × D(A1/2), V ′ = (D(A1/2) × D(A1/2))′, and
note that V ⊂ H ⊂ V ′ algebraically and topologically, with compact injections. We
define the scalar products on H and V by

((y, z), (ψ1, ψ2))H =

∫
Ω

(
τ l2

ν
yψ1 + zψ2

)
dx,

((y, z), (ψ1, ψ2))V =

∫
Ω

(
τ l2

ν
(∇y · ∇ψ1 + yψ1) +∇z · ∇ψ2 + zψ2

)
dx.
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Proposition 2.1. The operator A is quasi m-accretive on H and its resolvent is
compact. Moreover, −A generates a C0-analytic semigroup.

Let (y0, z0) ∈ H and (v, u) ∈ L2(0, T ;H). Then, problem (2.5)–(2.6) has a unique
solution (y, z) ∈ C([0, T ];H) ∩ L2(0, T ;V) ∩W 1,2(0, T ;V ′), for all T > 0, and

(2.8)
∥(y(t), z(t))∥2H + ∥(y, z)∥2L2(0,T ;V)

≤ C∞

(
∥(y0, z0)∥2H +

∫ T
0 ∥fωU(s)∥2H ds

)
, for all t ∈ [0, T ].

In addition, (y, z) ∈ C((0, T ];V) and we have the estimate

t ∥(y(t), z(t))∥2V + t ∥(Ay(t), Az(t)∥2H(2.9)

≤ C∞

(
∥(y0, z0)∥2H +

∫ T

0
∥fωU(s)∥2H ds

)
, for all t ∈ (0, T ].

The constant C∞ depends on Ω, T , the problem parameters and ∥F ′′(φ∞)∥∞ .

Proof. We consider the operator, denoted still by A, from V to V ′ given by

⟨A(y, z), (ψ1, ψ2)⟩V ′,V

=

∫
Ω

(
l2∇y·∇ψ1 +

l2

ν
yψ1

(
l+F ′′(φ∞)− ν

τ

)
+
l2

ν
ψ1A

−1y
(ν
τ
− l
))

dx

−
∫
Ω

l2

ν
ψ1A

−1(F ′′(φ∞)y)dx(2.10)

+

∫
Ω

(
∇z · ∇ψ2 − l∇y · ∇ψ2 +

l2γ

ν
ψ1(A

−1z − z)

)
dx

for any (ψ1, ψ2) ∈ V. Taking into account that by the regularity results of the
elliptic equations

∥∥A−1y
∥∥
H

≤ C ∥y∥H we deduce that this operator is bounded

from V to V ′,

(2.11)
∥A(y, z)∥V ′ = sup(ψ1,ψ2)∈V,∥(ψ1,ψ2)∥V≤1

∣∣∣⟨A(y, z), (ψ1, ψ2)⟩V ′,V

∣∣∣
≤ C ∥(y, z)∥V ,

and that it satisfies

(2.12) ⟨A(y, z), (y, z)⟩V ′,V ≥ C1 ∥(y, z)∥2V − C2 ∥(y, z)∥2H , for all (y, z) ∈ V.
Then, problem (2.5)-(2.6) has a unique solution (2.8) which by a straightforward
computation satisfies estimate (2.9), implying thus that (y, z) ∈ C((0, T ];V).We do
not show all computations because they are standard. For the reader convenience,
the computation of (2.9) is done by a similar technique as for proving (2.43) in
the further Proposition 2.3. Moreover, by (2.12), it follows that λI +A is coercive
for some λ > 0, and so its restriction to H is m-accretive. Also, A generates a C0-
analytic semigroup and this follows by (2.12) and by Theorem 5.2 in [16], p. 61. The
constants C1, C2 depend on the problem parameters and the norm ∥F ′′(φ∞)∥∞. In
the polynomial case, the latter reduces to in fact ∥φ∞∥∞ . �

We denote by λi and {(φi, ψi)}i≥1 the complex eigenvalues and eigenfunctions of
A, that is A(φi, ψi) = λi(φi, ψi), i ≥ 1. Since the resolvent of A is compact, there
exists a finite number of eigenvalues with the real part nonpositive, Reλi ≤ 0. Each
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of these eigenvalues may have the order of multiplicity li, i = 1, . . . , p. We write
the sequence Reλ1 ≤ Reλ2 ≤ · · · ≤ ReλN ≤ 0, where each eigenvalue is counted
according its corresponding order of multiplicity and N = l1 + l2 + · · · + lp. We

denote by λi (conjugated) and {(φ∗
i , ψ

∗
i )}i≥1 the eigenvalues and eigenfunctions of

the adjoint A∗ of A, that is A∗(φ∗
i , ψ

∗
i ) = λi(φ

∗
i , ψ

∗
i ), i ≥ 1, where

(2.13) A∗=

[
ν
τ2
(A+A−1−2)−γl

τ (A
−1−I)− 1

τ (A
−1−I)(F ′′(φ∞)·) l

τ (I−A)
γ
τ (A

−1−I) 1
τ (A−I)

]
.

The controller aimed to stabilize the linear system is searched as a linear com-
bination of the unstable eigenvectors of the adjoint operator A∗ (see e.g., [17], [5]),
namely

(2.14) fωU(t, x) =

N∑
j=1

fωRe(w̃j(t)(φ
∗
j (x), ψ

∗
j (x))), t ≥ 0, x ∈ Ω,

where w̃j ∈ C([0,∞);C), j = 1, . . . , N. This form replaced in (2.5) provides the
open loop linear system

(2.15)
d

dt
(y(t), z(t)) +A(y(t), z(t))

=

N∑
j=1

fωRe(w̃j(t)(φ
∗
j (x), ψ

∗
j (x))), a.e. t ∈ (0,∞).

We take here an arbitrary initial condition

(2.16) (y(0), z(0)) = (y0, z0).

Proposition 2.2. Let the eigenvalues λi be semi-simple and (2.1) hold. Then,
there exist wj ∈ L2(R+), j = 1, . . . , 2N, such that the controller (2.14) stabilizes
exponentially system (2.15)-(2.16), that is, its solution (y, z) satisfies

(2.17) ∥y(t)∥H + ∥z(t)∥H ≤ C∞e
−k∞t

(∥∥y0∥∥
H
+
∥∥z0∥∥

H

)
, for all t ≥ 0.

Moreover, we have

(2.18)

 2N∑
j=1

∫ ∞

0
|wj(t)|2 dt

1/2

≤ C
(∥∥y0∥∥

H
+
∥∥z0∥∥

H

)
,

where C∞, C and k∞ depend on the problem parameters ν, γ, l and Ω and
∥F ′′(φ∞)∥∞ .

Proof. Since the eigenfunctions are complex we have to work in the complexified

space H̃ = H+ iH, i =
√
−1. Let us introduce the following system for the complex

functions (ỹ, z̃) = (y, z) + i(Y,Z),

d

dt
(ỹ(t), z̃(t)) +A(ỹ(t), z̃(t)) =

N∑
j=1

fω(w̃j(t)(φ
∗
j (x), ψ

∗
j (x)),(2.19)

a.e. t ∈ (0,∞),

(ỹ(0), z̃(0)) = (y0, z0).(2.20)
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At the end of this proof, we take (y, z) = (Reỹ, Rez̃), (v, u) = (Reṽ,Reũ) and the
pair (y, z) constructed in this way turns out to be the solution to the open loop
system (2.15)-(2.16) corresponding to the controller (2.14). To this end we need to
give some notions (see e.g., [5]).

We consider the linear space generated by the eigenfunctions {(φi, ψi)}i=1,...,N

and denote it by H̃N = lin span{(φ1, ψ1), . . . , (φN , ψN )}. Also, H̃S = lin span

{(φN+1, ψN+1), . . . } and we have the unique algebraic decomposition H̃ = H̃N⊕H̃S ,
which is not orthogonal. Then, we have

(2.21) H̃ ∋ (ỹ, z̃) = (yN , zN ) + (yS , zS), (yN , zN ) ∈ H̃N , (yS , zS) ∈ H̃S .

Moreover, H̃N = PNH, H̃S = (I − PN )H, where PN : H → HN is the algebraic

projector, namely PN (y1, z1) =
∑N

i=1 χj(φj , ψj), χj ∈ C. Since A has a compact re-

solvent it lets invariant H̃N and H̃S , that is AH̃N ⊂ H̃N and AH̃S ⊂ H̃S .Moreover,
if A has the eigenfunctions {φi, ψi}i≥1, then AN = A|H̃N

has the eigenfunctions

{φi, ψi}i=1,...,N and AS = A|H̃S
= (I −PN )A has the eigenfunctions {φi, ψi}i≥N+1.

On the invariant subspace H̃S the operator −AS generates a C0-analytic semi-
group, that is

(2.22)
∥∥e−ASt

∥∥
L(H̃S×H̃S)

≤ Ce−k̃t, k̃ = Re(λN+1 − λN ).

Now we split system (2.19)–(2.20) in two systems

(2.23)
d
dt(yN (t), zN (t))+AN (yN (t), zN (t))=PN

(∑N
j=1 fωw̃j(t)(φ

∗
j , ψ

∗
j )
)
,

(yN (0), zN (0))=PN (y
0, z0)

and

(2.24)
d
dt(yS(t), zS(t))+AS(yS(t), zS(t))=(I−PN )

∑N
j=1 fωw̃j(t)(φ

∗
j , ψ

∗
j ),

(yS(0), zS(0))=(I−PN )(y0, z0).

Let T0 > 0 be arbitrary, fixed. We shall prove that system (2.23) is null control-
lable in T0 and the solution to (2.24) decreases exponentially to 0, as t→ ∞.

We begin with the first system. We write the solution to (2.19)–(2.20) as

(2.25) (ỹ(t, x), z̃(t, x)) =

∞∑
j=1

ξj(t)(φj(x), ψj(x)), (t, x) ∈ (0,∞)× Ω,

with ξj ∈ C([0,∞);C), replace it in the system, and multiply scalarly the equation

by (φ∗
i , ψ

∗
i ), getting

(2.26) ξ′i + λiξi =
N∑
j=1

w̃jdij , ξi(0) = ξi0, for i ≥ 1,

where

(2.27) ξi(0) = ξi0 :=

∫
Ω
(y0φ∗

j (x) + z0ψ∗
j (x))dx, i ≥ 1,
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and

(2.28) dij =

∫
Ω
fω(φ

∗
iφ

∗
j + ψ∗

i ψ
∗
j )dx, j = 1, . . . , N, i ≥ 1.

We specify that we used the assumption that λi are semi-simple, which implies that
the system {(φi, ψi)}i, {(φ∗

i , ψ
∗
i )}i is bi-orthogonal, that is ((φi, ψi), (φ∗

j , ψ
∗
j ))H×H =

δij . Moreover, |dij | ≤ C∞ where C∞ depends on problem data and ∥F ′′(φ∞)∥∞ ,
which in the case with a polynomial potential reduces to ∥φ∞∥∞ .

By taking i = 1, . . . , N in (2.26) we get the system corresponding to (2.23). It
can be written in the form

(2.29) X ′ +MX = DW̃, X(0) = X0,

where

M =

 λ1 . . . 0
. . . . . . . . .
0 . . . λN

 , X =

 ξ1
. . .
ξN

 , X0 =

 ξ10
. . .
ξN0

 ,
D =

 d11 . . . d1N
. . . . . . . . .
dN1 . . . dNN

 , W̃ =

 w̃1

. . .
w̃N

 .
In the matrix M each λj is repeated according to its order of multiplicity.
Next, we prove that, for every T0 > 0, system (2.26), for i = 1, . . . , N, is null
controllable on [0, T0]. To do that, we show first that the system {

√
fωφ

∗
j ,
√
fωψ

∗
j }Nj=1

is linearly independent in ω (since supp fω ⊂ ω). To this end we assume that∑N
j=1 αj(

√
fωφ

∗
j ,
√
fωψ

∗
j ) = 0 in ω and prove that αj = 0 for j = 1, . . . , N. Denoting

S∗ :=
∑N

j=1 αj(φ
∗
j , ψ

∗
j ) we have

√
fωS

∗ = 0 in ω and this implies that S∗ = 0 in

the open set ω0 because fω > 0 on ω0. Let us study the system A∗(Y,Z) = λ(Y,Z),
(where (Y, Z) stands for each (φ∗

j , ψ
∗
j ) and λ for each λj), that is

ν

τ2
(AY +A−1Y − 2Y )− γl

τ
(A−1Y − Y )− 1

τ
(A−1 − I)(F ′′(φ∞)Y )

+
l

τ
(Z −AZ) = λY,

γ

τ
(A−1Y − Y ) +

1

τ
(AZ − Z) = λZ.

We apply the operator A to both equations and obtain an elliptic system. Under
our assumptions, φ∞ is analytic, F ′′ is a second degree polynomial, hence F ′′(φ∞) is
analytic, and so the elliptic system has an analytic solution (Y,Z) (see [15]). Thus,
S∗ is analytic too, whence S∗ = 0 in Ω and so αj = 0 for j = 1, . . . , N, since the

system
{
(φ∗

j , ψ
∗
j )
}N
j=1

is linearly independent in Ω.

In conclusion, the system {(
√
fωφ

∗
i ,
√
fωψ

∗
i )}i is linearly independent on ω and

so, the determinant of [dij ]i,j is not zero. This implies that any solution to the
system

(2.30)

N∑
i=1

dijpi(t) = 0, t ∈ [0, T0], j = 1, . . . , N,
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must be zero, that is pi(t) = 0 for all i = 1, . . . , N. Using Kalman’s Lemma (see
e.g., [13]) it follows that there are w̃i ∈ C([0,∞);C) such that ξi(T0) = 0 for all
i = 1, . . . , N, and

(2.31)

(∫ T0

0

N∑
i=1

|w̃i(t)|2 dt

)1/2

≤ C
N∑
i=1

|ξi0| .

Thus, this finite dimensional controller steers the solution {ξj}Nj=1 to (2.26) into the

origin, at t = T0, and it follows that (yN (T0), zN (T0)) = (0, 0), too.

Since (ṽ, ũ) =
∑N

j=1 w̃j(t)(φ
∗
j , ψ

∗
j ) we get by (2.31) and (2.27) that

(∫ T0

0
(∥ṽ(t)∥2H + ∥ũ(t)∥2H)dt

)1/2
≤ C

(∫ T0

0

N∑
i=1

|w̃i(t)|2 dt
)1/2

(2.32)

≤ C

N∑
i=1

|ξi0| ≤ C
(∥∥y0∥∥

H
+
∥∥z0∥∥

H

)
.

Finally, we extend w̃i (and so ξi) by 0 at the right of t = T0, and take as a new
controller

(2.33) Ũext(t) =

{
(ṽ(t), ũ(t)) for t < T0

0 for t ≥ T0.

Using this controller in (2.31) and (2.32) they remain valid if we make T0 = +∞.
From (2.26), by the formula of variation of constants, we have

ξi(t) = e−λitξi0 +
N∑
j=1

dij

∫ t

0
e−λi(t−s)w̃j(s)ds, for t ≥ 0.

Using (2.31) and recalling that Reλi ≤ 0 for i = 1, . . . , N , we deduce the estimate

(2.34) |ξi(t)| ≤ C2e
−kN t

(∥∥y0∥∥
H
+
∥∥z0∥∥

H

)
≤ C3

(∥∥y0∥∥
H
+
∥∥z0∥∥

H

)
,

for t ∈ [0, T0] and i = 1, . . . , N. Therefore, we have

(2.35) ∥(yN , zN )(t)∥H̃ ≤ CN
∥∥(y0, z0)∥∥H̃ , for t ∈ [0, T0)

and (yN (t), zN (t)) = (0, 0) for t ≥ T0. All constants C,C2, C3, CN in (2.32)–(2.35)
depend on problem data and ∥F ′′(φ∞)∥∞ .

Now we study system (2.24). Since −AS generates a C0-analytic semigroup we
have

(yS , zS)(t) = e−ASt(I − PN )(y
0, z0) +

∫ t

0
e−AS(t−s)

N∑
j=1

w̃j(s)(I − PN )(φ
∗
j , ψ

∗
j )ds

and then, by (2.22),

∥(yS , zS)(t)∥H̃ ≤ C4e
−k̃t ∥∥(y0, z0)∥∥H̃ +

N∑
j=1

∫ T0

0
e−k̃(t−s) |w̃j(s)|

∥∥(φ∗
j , ψ

∗
j )
∥∥
H̃
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≤ C4e
−k̃t ∥∥(y0, z0)∥∥H̃ + C5e

−k̃t
N∑
j=1

∫ T0

0
|w̃j(s)| ek̃sds

≤ C4e
−k̃t ∥∥(y0, z0)∥∥H̃

+ C5e
−k̃t

N∑
j=1

(∫ T0

0
|w̃j(s)|2 ds

)1/2(∫ T0

0
e2k̃sds

)1/2

.

In conclusion, by (2.31) we get

(2.36) ∥(yS , zS)(t)∥H̃ ≤ CSe
−k̃t ∥∥(y0, z0)∥∥H̃ for t ≥ 0,

and ∥(yS , zS)(t)∥H̃ → 0 as t→ ∞.
Recalling (2.21), we get by (2.35) and (2.36) that

(2.37) ∥(ỹ, z̃)(t)∥H̃ ≤ Ce−kt
∥∥(y0, z0)∥∥H̃ , for t > 0

and ∥(ỹ, z̃)(t)∥H̃ → 0 as t → ∞. The constants C and k depend on the problem
data and ∥φ∞∥∞ .

Now, fωU = fω(v, u) = fω(Reṽ,Reũ) =
∑N

j=1 fωRe(w̃j(t)(φ
∗
j (x), ψ

∗
j (x))) and so

(2.38) v(t, x) =

N∑
j=1

(Rew̃j(t)Reφ
∗
j (x)− Imw̃j(t)Imφ

∗
j (x)),

and a similar expression takes place for u(t, x) with ψ∗
j instead of φ∗

j . We observe
now that in fact we have a controller consisting in a sequence of 2N terms, obtained
by setting

(2.39) wj := Rew̃j , for j = 1, . . . , N, wj+N := Imw̃j , for j = 1, . . . , N.

Then, by (2.31) we get (2.18). Moreover,

v(t, x) =

N∑
j=1

wj(t)Reφ
∗
j (x)−

N∑
j=1

wj+N (t)Imφ
∗
j (x),(2.40)

u(t, x) =
N∑
j=1

wj(t)Reψ
∗
j (x)−

N∑
j=1

wj+N (t)Imψ
∗
j (x).

At the end we take (y, z) = (Reỹ, Rez̃) and we get by (2.37) the stabilization
inequality (2.17), as claimed. �

2.2. Construction of the feedback controller. The feedback controller (de-
pending on the solution (y, z)) which stabilizes exponentially the solution to (2.15)-
(2.16) will be found in relation with the solution to the minimization problem

(2.41) Φ(y0, z0)= Min
W∈L2(0,∞;R2N )

{
1

2

∫ ∞

0
(∥Ay(t)∥2H + ∥Az(t)∥2H + ∥W (t)∥2R2N)dt

}
subject to (2.15)–(2.16). Here W=(w1, . . . , wN , wN+1, . . . , w2N ) ∈ L2(0,∞;R2N )
defined in (2.39). We note that D(Φ) = {(y0, z0) ∈ H × H; Φ(y0, z0) < ∞}. Let
R+ = (0,+∞).
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Proposition 2.3. For each pair (y0, z0)∈D(A1/2)×D(A1/2), problem (2.41) has a
unique optimal solution

(2.42) ({w∗
j}2Nj=1, y

∗, z∗)∈L2(R+;R2N )×L2(R+;D(A1/2))×L2(R+;D(A1/2))

and it satisfies

(2.43) c1(∥A1/2y0∥2H+∥A1/1z0∥2H) ≤ Φ(y0, z0) ≤ c2(∥A1/2y0∥2H+∥A1/2z0∥2H).

If (y0, z0) ∈ D(A)×D(A), then

(2.44)
(∥Ay∗(t)∥2H + ∥Az∗(t)∥2H) +

∫ t
0 (∥A

3/2y∗(s)∥2H + ∥A3/2z∗(s)∥2H)ds
≤ c3(∥Ay0∥2H + ∥A1/2z0∥2H), for all t ≥ 0,

where c1, c2, c3 are positive constants (depending on Ω, the problem parameters and
∥F ′′(φ∞)∥∞).

Proof. For all (y0, z0) ∈ H × H, it follows by Proposition 2.2, that there exist
wj ∈ L2(R+;R), j = 1, . . . , 2N, such that (2.15)–(2.16) has a solution with the
property (2.17) and {wj}j satisfies (2.18). Since the functional in (2.41) is nonneg-
ative, its infimum d exists and it is nonnegative. We take in (2.41) a minimizing
sequence {Wn}n≥1, W

n = (wn1 , . . . , w
n
2N ) such that (un(t), vn(t)) is given by (2.40)

corresponding to Wn. We have

(2.45) d ≤ J(Wn)=
1

2

∫ ∞

0
(∥Ayn(t)∥2H+∥Azn(t)∥2H+∥Wn(t)∥2R2N )dt ≤ d+

1

n
,

where (yn, zn) is the solution to (2.15)-(2.16) corresponding to Wn. By (2.45) we
have on a subsequence {n→ ∞} that wnj → w∗

j weakly in L2(R+;R), j = 1, . . . , 2N,

(yn, zn) → (y∗, z∗) weakly in L2(R+;D(A) × D(A)), and by (2.15), d
dt(yn, zn) →

d
dt(y, z) weakly in L2(R+;H). Since (un(t), vn(t)) is given by (2.40) it follows that

(un, vn) → (u∗, v∗) weakly in L2(R+;H ×H).

Thus, (y∗, z∗) is the solution to (2.15)–(2.16) corresponding to W ∗ :=
(w∗

1, . . . , w
∗
2N ). Moreover, passing to the limit in (2.45) we get on the basis of the

weakly lower semicontinuity of J that J(W ∗) = d.
The uniqueness follows by the fact that J is strictly convex and the state system

is linear.
Next, we show (2.43). Let (y0, z0) ∈ D(A1/2) × D(A1/2) and let α0 a positive

constant that will be determined later. We multiply (2.15), by (Ay(t), α0Az(t))
scalarly in H, keeping for simplicity on the right-hand side the form (fωv, fωu), and
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obtain

(2.46)

1

2

d

dt
(∥A1/2y(t)∥2H+α0∥A1/2z(t)∥2H)+

ν

τ2
∥Ay(t)∥2H+

α0

τ
∥Az(t)∥2H

= −ν − τγl

τ2
∥y(t)∥2H − 1

τ
(γl + F ′′(φ∞)− 2ν

τ
)∥A1/2y(t)∥2H

+
1

τ
(A−1(F ′′(φ∞)y(t)), Ay(t))H − γ

τ
(A−1z(t), Ay(t))H

+
γ

τ
(z(t), Ay(t))H − α0l

τ
(y(t), Az(t))H +

α0l

τ
(Ay(t), Az(t))H

+
α0

τ
∥A1/2z(t)∥2H + (fωv(t), Ay(t))H + (α0fωu(t), Az(t))H,

a.e. t > 0.

In the following computations we shall account on the following interpolation and
embedding inequalities involving the powers of A:

(2.47) ∥Aαw∥H≤ C ∥Aα1w∥λH ∥Aα2w∥1−λH , for α=λα1+(1−λ)α2, λ∈ [0, 1],

∥Aαw∥H ≤ C∥Aβw∥H , if α < β,(2.48)

∥Aαw∥2Hβ(Ω) ≤ C∥Aα+β/2w∥2H ,(2.49)

with C depending on the domain and the exponents. For example we have

c∥A1/2y(t)∥2H ≤ C∞∥Ay(t)∥H∥y(t)∥H ≤ δ∥Ay(t)∥2H + CC∞∥y(t)∥2H ,
where c = 1

τ (
2ν
τ − F ′′(φ∞) − γl) and C∞ represents a constant linearly depending

on ∥F ′′(φ∞)∥∞. In a similar way there are treated all the other terms and collecting
them in (2.46) we get

(2.50)

1

2

d

dt
(∥A1/2y(t)∥2H+∥A1/2z(t)∥2H)+

( ν
τ2

−5δ
)
∥Ay(t)∥2H+

α0

2τ
∥Az(t)∥2H

≤ Cδ
l2α2

0

τ2
∥Az(t)∥2H+C∞,α0,δ(∥y(t)∥2H+∥z(t)∥2H+∥u(t)∥2H+∥v(t)∥2H)

≤ Cδ
l2α2

0

τ2
∥Az(t)∥2H+C

{
e−kt(∥y0∥2H+∥z0∥2H)+∥u(t)∥2H+∥v(t)∥2H

}
,

where C∞,α0,δ depends on C∞, α0 and δ. Choosing δ and α0 small enough, integrat-
ing in time and recalling (2.17), (2.18) and (2.40) we obtain by some calculations∫ ∞

0

(
∥Ay(t)∥2H + ∥Az(t)∥2H + ∥u(t)∥2H + ∥v(t)∥2H

)
dt(2.51)

≤ C∞(∥A1/2y0∥2H + ∥A1/2z0∥2H) ≤ c2(∥A1/2y0∥2H + ∥A1/4z0∥2H),
where c2 depends on the problem parameters and ∥F ′′(φ∞)∥∞ (i.e., ∥φ∞∥∞ in the
polynomial case).

To prove the left-hand side relation in (2.43) we write by (2.46)∫ t

0

( ν
τ2

∥Ay(s)∥2H +
α0

τ
∥Az(s)∥2H

)
ds

=
1

2

(
∥A1/2y0∥2H + ∥A1/2z0∥2H

)
− 1

2

(
∥A1/2y(t)∥2H + ∥A1/2z(t)∥2H

)
+ S,
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where S is the right-hand side in (2.46). We shall estimate the terms as before, but
changing δ and Cδ when using the Young inequality, e.g.,

c∥A1/2y(t)∥2H ≤ C∞∥Ay(t)∥H∥y(t)∥H ≤ CδC∞∥Ay(t)∥2H + δ∥y(t)∥2H ,
which implies

c∥A1/2y(t)∥2H ≥ −CδC∞∥Ay(t)∥2H − δ∥y(t)∥2H .
By treating all the terms in the same way we arrive at∫ t

0

( ν
τ2

∥Ay(s)∥2H +
α0

τ
∥Az(s)∥2H

)
ds ≥ 1

2

(
∥A1/2y0∥2H + ∥A1/2z0∥2H

)
−1

2

(
∥A1/2y(t)∥2H + ∥A1/2z(t)∥2H

)
− Cδ

∫ t

0

(
∥Ay(s)∥2H + ∥Az(s)∥2H

)
ds

−C1δ

∫ t

0
(∥y(s)∥2H + ∥z(s)∥2H)ds− δ

∫ t

0
(∥u(s)∥2H + ∥v(s)∥2H)ds,

where C1 > 0 follows by some algebra and δ is taken small enough. By relying on
some computations involving (2.17), (2.18), for treating the last two terms on the
right-hand side, and (2.48), we obtain

C

∫ t

0

(
∥Ay(s)∥2H + ∥Az(s)∥2H

)
ds(2.52)

≥ 1

4

(
∥A1/2y0∥2H + ∥A1/2z0∥2H

)
− 1

2

(
∥A1/2y(t)∥2H + ∥A1/2z(t)∥2H

)
.

Since the last term on the right-hand side is a continuous L1 function, one can take
a sequence tj ↗ ∞ such that ∥A1/2y(tj)∥2H + ∥A1/2z(tj)∥2H → 0. Passing to the
limit in (2.52) along such a sequence we obtain∫ ∞

0

(
∥Ay(s)∥2H + ∥Az(s)∥2H

)
ds ≥ c1

(
∥A1/2y0∥2H + ∥A1/2z0∥2H

)
,

This relation written for the optimal pair (W ∗, (y∗, z∗)) yields the left inequality in
(2.43).

Relation (2.51), valid also for the optimal pair, leads to the right-hand side of
(2.43).

For proving (2.44) we multiply (2.15) by (A2y(t), α0A
2z(t)) scalarly in H × H.

The computations are done in a similar way and we do no longer present them,
except for the terms involving u and v and F ′′(φ∞)y(t). We use the representation
(2.40) and observe that fωv(t) ∈ C∞(Ω), hence(

fωv(t), A
2y(t)

)
H = (A(fωv(t)), Ay(t))H

≤ δ∥A3/2y(t)∥2H + Cδ∥y(t)∥2H + C
(
∥y0∥2H + ∥z0∥2H

)
,

where

∥A(fωv(t))∥2H ≤ C
2N∑
j=1

∫ ∞

0
|wj(t)|2 dt ≤ C

(
∥y0∥2H + ∥z0∥2H

)
.

For the other term we write(
1
τ (A

−1 − I)(F ′′(φ∞)y(t)), A2y(t)
)
H =

(
1
τ (I −A)(F ′′(φ∞)y(t)), Ay(t)

)
H

=(F ′′(φ∞)∆y(t)+2∇F ′′(φ∞) · ∇y(t)+y∆F ′′(φ∞), Ay(t))H≤ C∥Ay(t)∥2H .
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Finally, we are led to

∥Ay(t)∥2H + ∥Az(t)∥2H +

∫ t

0

(
∥A2y(s)∥2H + ∥A2z(s)∥2H

)
ds

≤ C1

(
∥Ay0∥2H + ∥Az0∥2H

)
+ C2(∥y0∥2H + ∥z0∥2H),

which written for the optimal pair implies (2.44), as claimed. �

An immediate consequence of this result is that there exists a functional R : V →
V ′ such that

(2.53) Φ(y0, z0) =
1

2

⟨
R(y0, z0), (y0, z0)

⟩
V ′,V ,

for all (y0, z0) ∈ V =D(A1/2)×D(A1/2). As a matter of fact R(y0, z0) is the Gâteaux
derivative of the function Φ at (y0, z0),

(2.54) Φ′(y0, z0) = R(y0, z0), for all (y0, z0) ∈ V.

Since Φ is coercive by (2.43) we can define the restriction of R to H ×H (denoted
still by R) having the domain D(R) = {(y0, z0) ∈ V; R(y0, z0) ∈ H × H} and we
have that R is self-adjoint.

In the next proposition a representation for the optimal solution to (2.41) is
constructed. Before that let us introduce now the operators B : R2N → H ×H and
B∗ : H ×H → R2N , by

(2.55)

Bp =

 fω

(∑N
j=1(pjReφ

∗
j −

∑2N
j=N+1 pjImφ

∗
j

)
fω

(∑N
j=1(pjReψ

∗
j −

∑2N
j=N+1 pjImψ

∗
j

)


for all p =

 p1
. . .
p2N

 ∈ R2N

and

(2.56)

B∗q =



∫
Ω fω(q1Reφ

∗
1 + q2Reψ

∗
1)dx

. . .∫
Ω fω(q1Reφ

∗
N + q2Reψ

∗
N )dx

−
∫
Ω fω(q1Imφ

∗
1 + q2Imψ

∗
1)dx

. . .
−
∫
Ω fω(q1Imφ

∗
N + q2Imψ

∗
N )dx

 ,

for all q =

[
q1
q2

]
∈ H ×H.

Then, (2.15)–(2.16) can be rewritten as

d

dt
(y(t), z(t)) +A(y(t), z(t)) = BW (t), a.e. t > 0,(2.57)

(y(0), z(0)) = (y0, z0).
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Proposition 2.4. Let W ∗={w∗
i }2Ni=1 and (y∗, z∗) be optimal for problem (2.41),

corresponding to (y0, z0)∈D(A1/2)×D(A1/2). Then W ∗ is expressed as

(2.58) W ∗(t) = −B∗R(y∗(t), z∗(t)), for all t > 0.

Moreover, R has the following properties

(2.59) 2c1∥(y0, z0)∥2V ≤
⟨
R(y0, z0), (y0, z0)

⟩
V ′×V ≤ 2c2∥(y0, z0)∥2V ,

for all (y0, z0) ∈ V =D(A1/2)×D(A1/2),

(2.60) ∥R(y0, z0)∥H×H ≤ CR∥(y0, z0)∥D(A)×D(A), for all (y0, z0) ∈ D(A)×D(A),

and R satisfies the Riccati algebraic equation

(2.61) 2 (R(y, z),A(y, z))H×H + ∥B∗R(y, z)∥2R2N = ∥Ay∥2H + ∥Az∥2H ,
for all (y, z) ∈ D(A)×D(A).

Here, c1, c2, CR are constants depending on the problem parameters, Ω and
∥F ′′(φ∞)∥∞.

Proof. Let T be positive and arbitrary. By the dynamic programming principle
(see e.g., [1], p. 104), the minimization problem (2.41) is equivalent to the following
problem

(2.62) Min
W∈L2(0,T ;R2N )

{
1

2

∫ T

0
(∥Ay(t)∥2H+∥Az(t)∥2H+∥W (t)∥2R2N )dt+Φ(y(T ), z(T ))

}
subject to (2.15)–(2.16), equivalently (2.57). We introduce the adjoint system

d
dt(p

T , qT )(t)−A∗(pT (t), qT (t)) = (A2y∗(t), A2z∗(t)), in (0, T )× Ω,
(pT (T ), qT (T )) = −R(y∗(T ), z∗(T )), in Ω.

(2.63)

We have used (2.54) for writing the final condition at t = T. We shall prove that
the solution to (2.63) is independent of T. By the maximum principle in (2.62), we
have that

(2.64) W ∗(t) = B∗(pT (t), qT (t)), a.e. t ∈ (0, T )

(see [14], p. 114; see also [1], p. 190). For proving (2.60), let (y0, z0) ∈ D(A)×D(A).
We shall prove that (pT , qT ) is in C([0, T );H ×H). For the reader’s convenience

we give the argument, following the idea from [6] and [7], adapted to the current

problem. We define (p̃, q̃) = Ã(pT , qT ) where Ã is the operator

Ã =

[
A−1/2 0

0 A−1/2

]
.

By recalling (2.13) we see that A∗ and Ã commute and so we obtain the system

(2.65)
d
dt(p̃, q̃)(t)−A∗(p̃(t), q̃(t)) = (A3/2y∗(t), A3/2z∗(t)), in (0, T )× Ω,

(p̃(T ), q̃(T )) = −ÃR(y∗(T ), z∗(T )), in Ω.

According to (2.44), we have (A3/2y∗, A3/2z∗) ∈ L2(0, T ;H × H). Since

R(y∗(T ), z∗(T )) ∈ V ′ × V ′ we get ÃR(y∗(T ), z∗(T )) ∈ H × H. By applying a
backward version of Proposition 2.1, formula (2.9) we see that system (2.65) has a
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unique solution (p̃, q̃) ∈ C([0, T );V) and so (pT , qT ) ∈ C([0, T );H × H). Next, we
prove the relation

(2.66) R(y0, z0) = −(pT (0), qT (0)).

To this end, let us consider two solutions to (2.62), (W ∗, y∗, z∗) and
(W ∗

1 , y
∗
1, z

∗
1), corresponding to (y0, z0) and (y1, z1), respectively, both belonging to

D(A)×D(A) and get by a straightforward computation that

(2.67) Φ(y0, z0)− Φ(y1, z1) ≤ −((pT (0), qT (0)), (y0 − y1, z0 − z1))H×H .

This implies that−(pT (0), qT (0)) ∈ ∂Φ(y0, z0). Since, Φ is differentiable onD(A1/2)×
D(A1/2) it follows that −(pT (0), qT (0)) = Φ′(y0, z0) = R(y0, z0), as claimed in
(2.66). Since (pT , qT ) ∈ C([0,∞);H ×H), this implies that (pT (0), qT (0)) ∈ H ×H
and so

(2.68) R(y0, z0) ∈ H ×H for all (y0, z0) ∈ D(A)×D(A).

On the other hand, one can easily see that R is a linear closed operator from
D(A)×D(A) to H ×H, and so by the closed graph theorem we conclude that it is
continuous (see e.g., [8], Th. 2.9, p. 37), that is R ∈ L(D(A) ×D(A);H ×H), as
claimed by (2.60).

We define the restriction of R to H × H, still denoted by R. Thus, its domain
contains D(A)×D(A). Next, resuming (2.64) which extends by continuity at t = T,
in V ′ we get

(2.69) W ∗(T ) = B∗(pT (T ), qT (T )).

Moreover, since (y∗(t), z∗(t)) ∈ D(A) × D(A) for all t ≥ 0, by (2.44), we have by
(2.68) that R(y∗(t), z∗(t)) ∈ H ×H for all t ≥ 0. In particular, this is true for t = T
and so using the final condition in (2.63) we get

(2.70) (pT (T ), qT (T )) = −R(y∗(T ), z∗(T )) ∈ H ×H.

This relation combined with (2.69) implies

W ∗(T ) = −B∗R(y∗(T ), z∗(T ))

where T is arbitrary. Therefore, it can be written for any t, as in (2.58), as claimed.
Inequalities (2.59) follow immediately by (2.53) and (2.43).
By (2.58), we also remark that

(2.71) fωU(t) = fω(v
∗(t), u∗(t)) = −BB∗R(y∗(t), z∗(t)),

that can be used to give the expressions of u∗ and v∗.
To prove (2.61) we consider (y0, z0) ∈ D(A)×D(A). By (2.41) and (2.62) written

with T = t we get

(2.72) Φ(y∗(t), z∗(t)) =
1

2

∫ ∞

t

(
∥Ay∗(s)∥2H+∥Az∗(s)∥2H+∥W ∗(s)∥2R2N

)
ds,

for any t ≥ 0. We note that

∥BB∗R(y∗(t), z∗(t))∥H×H ≤ C1∥R(y∗(t), z∗(t))∥H×H

≤ C2∥(y∗(t), z∗(t))∥D(A)×D(A),

since (Ay∗(t), Az∗(t)) ∈ H ×H and R(y∗(t), z∗(t)) ∈ H, a.e. t > 0.
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System (2.57) in which the right-hand side is replaced by (2.71) becomes a closed
loop system with the right-hand side −BB∗R(y∗(t), z∗(t)). Since A satisfies (2.11)
and (2.12) and BB∗R is continuous from V × V → V ′ × V ′, then −(A + BB∗R)
generates a C0-semigroup on H ×H (see also Lemma A3 in [7], Appendix).

Hence, the closed loop system (2.57) has, for (y0, z0) ∈ D(A)×D(A) = D(A), a
unique weak solution (y∗(t), z∗(t)) ∈ C([0,∞);H ×H) (see [2], p. 141), such that

A(y∗(t), z∗(t)) +BB∗R(y∗(t), z∗(t)) ∈ L∞(0,∞;H),

d

dt
(y∗(t), z∗(t)) ∈ L∞(0,∞;H).

But BB∗R(y∗(t), z∗(t)) ∈ L2(0,∞;H) and so A(y∗(t), z∗(t)) ∈ L2(0,∞;H).
Now, we differentiate (2.72) with respect to t, recalling (2.53) and that R is

symmetric. We get

(2.73)

(
R(y∗(t), z∗(t)),

d

dt
(y∗(t), z∗(t))

)
H×H

+
1

2

(
∥Ay∗(t)∥2H + ∥Az∗(t)∥2H

)
+

1

2
∥B∗R(y∗(t), z∗(t))∥2R2N = 0, a.e. t > 0.

Replacing d
dt(y

∗(t), z∗(t)) from (2.57) in (2.73) and taking into account (2.58) we
have

(R(y∗(t), z∗(t)),−A(y∗(t), z∗(t)))H×H +
1

2

(
∥Ay∗(t)∥2H + ∥Az∗(t)∥2H

)
+
1

2
∥B∗R(y∗(t), z∗(t))∥2R2N=(R(y∗(t), z∗(t)), BB∗R(y∗(t), z∗(t))H×H , t ≥ 0

which implies (2.61). �

2.3. Feedback stabilization of the nonlinear system. In this section we shall
deal the nonlinear system (1.21)-(1.23) in which the right-hand side (fωv, fωu) is
replaced by the feedback controller determined in the previous section, that is

(2.74) fωU(t) = −BB∗R(y(t), z(t)).

In the abstract form the closed loop system reads

(2.75)

d

dt
(y(t), z(t))+A(y(t), z(t))=G(y(t))−BB∗R(y(t), z(t)), a.e. t > 0,

(y(0), z(0))=(y0, z0),

where (y0, z0) is fixed now by (1.17), G(y(t)) = (G(y(t)), 0) and

(2.76) G(y) =
1

τ
(A−1 − I)Fr(y).

We recall that Fr is the rest of second order of the Taylor expansion of F ′(y+φ∞),
which is expressed here in the integral form

(2.77) Fr(y) = y2
∫ 1

0
(1− s)F ′′′(φ∞ + sy)dy = y3 + 3φ∞y

2.

Theorem 2.5. Let (y0, z0) ∈ D(A1/2)×D(A1/2). There exists ρ such that if

(2.78) ∥y0∥D(A1/2) + ∥z0∥D(A1/2) ≤ ρ,
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the closed loop system (2.75) has a unique solution

(y, z) ∈ C([0,∞);H ×H) ∩ L2(0,∞;D(A)×D(A))(2.79)

∩W 1,2(0,∞; (D(A1/2)×D(A1/2))′),

which is exponentially stable, namely

(2.80) ∥y(t)∥D(A1/2) + ∥z(t)∥D(A1/2) ≤ C∞e
−k∞t(∥y0∥D(A1/2) + ∥z0∥D(A1/2)),

for some positive constants k∞ and C∞, which depend on Ω, the problem parameters
and ∥φ∞∥∞.

Proof. The proof of this theorem will address the existence and uniqueness of the
solution to (2.75) and the stabilization result. The arguments are as in the proof of
Theorem 3.1 in [7], but relevant modifications due to the new form of the operator
A do impose.

First, existence and uniqueness are proved on every interval [0, T ] by the Schauder
fixed point theorem and then they will be extended to the whole [0,∞).

Let r be a positive constant which will be specified later. For T > 0 arbitrary
fixed, we introduce the set

(2.81)

ST=
{
(y, z) ∈ L2(0, T ;H ×H); sup

t∈(0,T )

(
∥y(t)∥2

D(A1/2)
+ ∥z(t)∥2

D(A1/2)

)
+

∫ T

0
(∥Ay(t)∥2H + ∥Az(t)∥2H)dt ≤ r2

}
which is a convex closed subset of L2(0, T ;D(A1/2)×D(A1/2)).

We fix (y, z) ∈ ST and consider the Cauchy problem

(2.82)

d

dt
(y(t), z(t))+A(y(t), z(t))+BB∗R(y(t), z(t)) = G(y(t)), a.e. t > 0,

(y(0), z(0)) = (y0, z0).

We prove that the solution to this problem exists and it is unique and define ΨT :
ST → L2(0, T ;V) by ΨT (y, z) = (y, z) the solution to (2.82).

We assert that this mapping has the properties:

(i) ΨT (ST ) ⊂ ST provided that r is well chosen;

(ii) ΨT (ST ) is relatively compact in L2(0, T ;D(A1/2)×D(A1/2));

(iii) ΨT is continuous in the L2(0, T ;D(A1/2)×D(A1/2)) norm.

To show all these we give next the proof.
One can observe, by (2.55) and (2.56), that BB∗ is continuous also from V ′ to

H,

∥BB∗R(y(t), z(t))∥H ≤ C∥R(y(t), z(t))∥V ′

with C depending on ∥F (φ∞)∥∞. Using the definition of R one can check that
A + BB∗R satisfies similar relations as in (2.11) and (2.12). Since (y0, z0) ∈ V =

D(A1/2)×D(A1/2) the Cauchy problem (2.82) has a unique solution

(2.83) (y, z) ∈ C([0, T ];V) ∩W 1,2(0, T ;H) ∩ L2(0, T ;D(A))
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provided that G(y) ∈ L2(0, T ;H × H). Moreover, relation (2.83) implies that
(y(t), z(t)) ∈ D(A) × D(A) a.e. t ∈ (0, T ) and so R(y(t), z(t)) ∈ H × H a.e.
t ∈ (0, T ).

Recalling that G(y) has the first component G(y) and the second zero, it remains
to show that G(y) ∈ L2(0, T ;H). We have

(2.84)

∥G(y(t))∥2H =
∥∥∥1
τ
(A−1 − I)Fr(y(t))

∥∥∥2
H

≤ CG∥Fr(y(t))∥2H
≤ CG∥y3(s) + 3φ∞y

2(s)∥2H
≤ CG

(
∥y(t)∥6

D(A1/2)
+ ∥φ∞∥2∞∥y(t)∥4

D(A1/2)

)
with CG depending on Ω and the problem parameters. Since (y, z) ∈ ST it follows∫ t

0
∥G(y(s))∥2Hds ≤ CG

∫ t

0
∥Ay(s)∥2H∥A1/2y(s)∥2H

(
∥A1/2y(t)∥2H + ∥φ∞∥2∞

)
ds

≤ CG(r
4 + ∥φ∞∥2∞r2)

∫ t

0
∥Ay(s)∥2Hds(2.85)

≤ CG(r
6 + ∥φ∞∥2∞r4).

To prove that (y, z) ∈ ST we multiply (2.82) by R(y(t), z(t)) ∈ H scalarly in H,

1

2

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H + (A(y(t), z(t)), R(y(t), z(t)))H×H

= −∥B∗R(y(t), z(t))∥2R2N + (G(y(t)), R(y(t), z(t)))H×H , a.e. t > 0,

and use then the Riccati equation (2.61). Recalling (2.60) we obtain

1

2

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H

+
1

2

(
∥Ay(t)∥2H + ∥Az(t)∥2H + ∥B∗R(y(t), z(t))∥2R2N

)
≤ ∥G(y(t))∥H×H∥R(y(t), z(t))∥H×H

≤ CR∥G(y(t))∥H
(
∥Ay(t)∥2H + ∥Az(t)∥2H

)1/2
≤ 1

4

(
∥Ay(t)∥2H + ∥Az(t)∥2H

)
+ 4C2

R∥G(y(t))∥2H , a.e. t ∈ (0, T ).

Integrating over (0, t) and using (2.59) we get

2c1∥y(t)∥2D(A1/2)
+ ∥z(t)∥2

D(A1/2)
+

1

2

∫ t

0

(
∥Ay(s)∥2H + ∥Az(s)∥2H

)
ds

≤ 2c2

(
∥y0∥2D(A1/2)

+ ∥z0∥2D(A1/2)

)
+ 8C2

R

∫ t

0
∥G(y(s))∥2Hds,

and further

(2.86)

∥y(t)∥2
D(A1/2)

+ ∥z(t)∥2
D(A1/2)

+
1

4c1

∫ t

0

(
∥Ay(s)∥2H + ∥Az(s)∥2H

)
ds

≤ c2
c1

(
∥y0∥2D(A1/2)

+ ∥z0∥2D(A1/2)

)
+

4C2
R

c1

∫ t

0
∥G(y(s))∥2Hds.
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We have to impose that the right-hand side is less than r2 and using (2.85) we write

(2.87)
c2
c1
ρ2 + C1(r

6 + ∥φ∞∥2∞r4)) ≤ r2,

where C1 =
4C2

RCG

c1
depends on the problem parameters, Ω and ∥F (φ∞)∥∞ (which,

in this case, is proportional with ∥φ∞∥∞). Relation (2.87) is satisfied e.g., by the

choice c2
c1
ρ2 = r2

2 , that is,

(2.88) ρ = r

√
c1
2c2

and by setting the appropriate r from the inequality

2C1r
4 + 2C1∥φ∞∥2∞r2 − 1 ≤ 0.

We take

(2.89) 0 < r ≤ r1 :=

√√√√−C1∥φ∞∥2∞ +

√
C1

2∥φ∞∥4∞ + 2C1

2C1

.

(ii) The fact that ΨT (ST ) is relatively compact in L2(0, T ;D(A1/2) × D(A1/2))
follows because by (2.83), d

dt(y, z) ∈ L2(0, T ;H×H), (y, z) ∈ L2(0, T ;D(A)×D(A))

and D(A)×D(A) is compactly embedded in D(A1/2)×D(A1/2).

(iii) Let (yn, zn) ∈ ST , (yn, zn) → (y, z) strongly in L2(0, T ;D(A1/2)×D(A1/2)),
as n→ ∞. We have to prove that the corresponding solution (yn, zn) = ΨT (yn, zn)

to (2.82) converges strongly to (y, z) = ΨT (y, z) in L2(0, T ;D(A1/2) × D(A1/2)).
The solution (yn, zn) to (2.82) corresponding to (yn, zn) is bounded in the spaces
(2.83), due to the estimate (2.86). Hence, on a subsequence {n → ∞} it follows
that

(yn, zn) → (y, z) weakly in L2(0, T ;D(A)×D(A)),(
dyn
dt

,
dzn
dt

)
→
(
dy

dt
,
dz

dt

)
weakly in L2(0, T ;H ×H),

and by the Aubin-Lions lemma

(yn, zn) → (y, z) strongly in L2(0, T ;D(A1/2)×D(A1/2).

Let us to show that G(yn) → G(y) weakly in L2(0, T ;H), by treating the terms in
(2.85). We want to show that∫ T

0

∫
Ω
G(yn)−G(y))ψdxdt =

∫ T

0

(
1

τ
(A−1 − I)(Fr(yn(t)− Fr(y(t)), ψ(t)

)
H

dt

=
1

τ

∫ T

0

∫
Ω
(Fr(yn)− Fr(y))(A

−1 − I)ψ(t)dxdt→ 0,

for all ψ ∈ L2(0, T ;H).

Because {yn(t)}n is bounded in V for all t ∈ [0, T ] and yn → y strongly in
L2(0, T ;V ), we have yn

3 → y3 and yn
2 → y2 weakly in L2(0, T ;H) implying

Fr(yn) → Fr(y) weakly in L2(0, T ;H).
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Now, writing the weak form of (2.82) corresponding to (yn, zn) and passing to
the limit we get that (y, z) = ΨT (y, z). As the same holds for any subsequence this
ends the proof of the continuity of ΨT .

In conclusion Ψ satisfies the conditions of Schauder’s theorem and has a fixed
point, Ψ(y) = y.

The uniqueness is proved using system (1.21)–(1.23) before expanding F ′(y+φ∞).
We consider two solutions (y1, z1), (y2, z2) and denote y = y1 − y2, z = z1 − z2. We
write the equations corresponding to these solutions and subtract them

yt +
ν

τ2
(A+A−1 − 2)y − 1

τ
(A−1 − I)(F ′(y1 + φ∞)− F ′(y2 + φ∞))

+
γ

τ
(A−1 − I)z − γl

τ
(A−1 − I)y = fωv, in (0,∞)× Ω,

zt +
1

τ
(A− I)z +

l

τ
(I −A)y = fωu, in (0,∞)× Ω,

y(0) = 0, z(0) = 0, in Ω,

where F ′(r) = r3 − r. Next, we multiply the first equation by y and the second by
λz, with λ a value to be specified later, getting

1

2

d

dt
∥y(t)∥2H +

λ

2

d

dt
∥z(t)∥2H +

ν

τ2
∥A1/2y(t)∥2H +

λ

τ
∥A1/2z(t)∥2H

≤ C1(A
−1y(t), y(t))H + C2∥y(t)∥2H +

1

τ

(
(I −A−1)(F ′(Y1)− F ′(Y2)), Y

)
H

+ C3((A
−1 − I)z(t), y(t))H + C4∥z(t)∥2H

+ C5(y(t), z(t))H + C6(Ay(t), z(t))H + (fωv(t), y(t))H + λ(fωu(t), z(t))H

and proceed by estimating the terms in a similar way as in the previous calculations.
Here, Yi := yi(t) + φ∞, i = 1, 2, Y := Y1 − Y2 = y(t).

We present only some less evident estimates. We recall that by (2.55), (2.56),
that BB∗ is continuous from V ′ to H and write

(fωu(t), λz(t))H ≤ λ∥fωu(t)∥H∥z(t)∥H ≤ λ∥fωU(t)∥H∥z(t)∥H
= λ∥BB∗R(y(t), z(t))∥H∥z(t)∥H ≤ Cλ∥R(y(t), z(t))∥V ′∥z(t)∥H
≤ Cλ∥(y(t), z(t))∥V∥z(t)∥H

≤ δ∥A1/2y(t)∥2H + Cδλ
2∥z(t)∥2H +

λ

4τ
∥A1/2z(t)∥2H + Cλ∥z(t)∥2H ,

where Cδ denotes several constants depending on δ. Then, we have(
(I−A−1)(F ′(Y1)−F ′(Y2)), Y

)
H

=
(
F ′(Y1)− F ′(Y2), (I −A−1)Y

)
H

=
(
Y 3
1 − Y 3

2 , Y
)
H − (Y1 − Y2, Y )H

−
(
Y 3
1 − Y 3

2 , A
−1Y

)
H
+
(
Y1 − Y2, A

−1Y
)
H

and note that the first term on the right-hand side is nonnegative. For the third
scalar product we evaluate only one term, the others obeying a similar estimate:∫

Ω Y Y
2
1 A

−1Y dx ≤ ∥Y ∥L4(Ω)∥Y 2
1 ∥L2(Ω)∥A−1Y ∥L4(Ω)

≤ ∥Y ∥V ∥Y1∥2V ∥Y ∥V ′ ≤ r2∥A1/2y(t)∥H∥y(t)∥H .
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The last term we evaluate is

λ(Ay(t), z(t))H = λ(A1/2y(t), A1/2z(t))H ≤ δ∥A1/2y(t)∥2H + Cδλ
2∥z(t)∥2H .

We obtain

1

2

d

dt
∥y(t)∥2H +

λ

2

d

dt
∥z(t)∥2H +

( ν
τ2

− k0δ
)
∥A1/2y(t)∥2H

+

(
λ

2τ
− Cδλ

2

)
∥A1/2z(t)∥2H ≤ C3∥y(t)∥2H + C4∥z(t)∥2H ,

where k0 is a positive integer. For δ and λ chosen small enough, this relation implies
the uniqueness.

In the proof of the well-posedness on [0, T ] the value r1 does not depend on T.

Thus, we can extend (y, z) from [0,∞) to D(A1/2) × D(A1/2), by (y(t), z(t)) =
(yT (t), zT (t)), for any t ∈ [0, T ], where (yT (t), zT (t)) denotes here the solution on
[0, T ] constructed before. By the uniqueness proof, (yT (t), zT (t)) = (yT ′(t), zT ′(t))
on [0, T ] ⊂ [0, T ′] and so (y, z) is well defined. Moreover, by the first part of the
proof, under the assumption (2.78) it follows that (y, z) ∈ S∞ which is ST with
T = ∞.

Finally, to prove the stabilization result we multiply equation (2.75) byR(y(t), z(t))
scalarly in H ×H. We get

(2.90)

1

2

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H

+
1

2

(
∥Ay(t)∥2H + ∥Az(t)∥2H + ∥B∗R(y(t), z(t))∥2R2N

)
≤ ∥G(y(t))∥H×H∥R(y(t), z(t))∥H×H

≤ CR∥G(y(t))∥H (∥Ay(t)∥H + ∥Az(t)∥H) ,

a.e. t ∈ (0, T ). Here we used (2.60). We recall (2.84) and (2.48) and compute the
right-hand side

I = CR
√
CG

(
∥A1/2y(t)∥3H + ∥φ∞∥2∞∥A1/2y(t)∥2H

)
(∥Ay(t)∥H + ∥Az(t)∥H)

≤ C∥Ay(t)∥2H∥A1/2y(t)∥2H + C∥A1/2y(t)∥2H∥A1/2y(t)∥H∥Az(t)∥H
+C∥φ∞∥2∞∥Ay(t)∥2H∥A1/2y(t)∥H
+C∥φ∞∥2∞∥Ay(t)∥H∥A1/2y(t)∥1/2H ∥A1/2y(t)∥1/2H ∥Az(t)∥H

≤ C∥Ay(t)∥2H∥A1/2y(t)∥2H + C∥A1/2y(t)∥4H + C∥A1/2y(t)∥2H∥Az(t)∥2H
+C∥φ∞∥2∞∥Ay(t)∥2H∥A1/2y(t)∥H
+C∥φ∞∥2∞∥Ay(t)∥2H∥A1/2y(t)∥H + C∥φ∞∥2∞∥A1/2y(t)∥H∥Az(t)∥2H .

Since (y, z) ∈ S∞ , we have ∥A1/2y(t)∥H ≤ r and so

I ≤ C1(∥Ay(t)∥2H + ∥Az(t)∥2H)(r2 + ∥φ∞∥2∞r),
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where C1 depends on the problem parameters, Ω and ∥F (φ∞)∥∞. Replacing in
(2.90), we conclude that for a.e. t we get

(2.91)

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H + ∥Ay∥2H + ∥Az∥2H

≤ C1

(
∥Ay∥2H + ∥Az∥2H

) (
r2 + ∥φ∞∥2∞r

)
.

Now, we impose

C2 := 1− C1

(
r2 + ∥φ∞∥2∞r

)
> 0

and so we get

(2.92) r ≤ r2 :=
−C2∥φ∞∥2∞ +

√
C2

2∥φ∞∥4∞ + 4C2

2C2

.

We fix ρ by (2.88) where

(2.93) r ≤ r0 := min{r1, r2}.

In conclusion, we have got that

(2.94)
d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H + C2

(
∥Ay(t)∥2H + ∥Az(t)∥2H

)
≤ 0

a.e. t ∈ (0,∞). Recalling (2.48) and (2.59), we deduce that

(2.95)

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H

+C2c0(R(y(t), z(t)), (y(t), z(t)))H×H ≤ 0, a.e. t ∈ (0,∞).

This implies

(2.96) (R(y(t), z(t)), (y(t), z(t)))H×H ≤ e−2kt(R(y0, z0), (y0, z0))H×H

where k := C2c0
2 and, owing on (2.59), we deduce that

c1∥(y(t), z(t))∥2D(A1/2)×D(A1/2)
≤ c2e

−2kt∥(y0, z0)∥2D(A1/2)×D(A1/2)
, a.e. t>0,

which leads to (2.80). As seen along the calculations, the constants k, c1, c2 in the
relation before depend on on the problem parameters and ∥F (φ∞)∥∞ which reduces
here to ∥φ∞∥∞.

Thus, one can fix ρ by (2.88) depending on the problem parameters and on
∥φ∞∥∞ such that the stationary solution is exponentially stabilized. This concludes
the proof. �

3. Stabilization of the viscous Cahn-Hilliard system
with the logarithmic potential

In this section we discuss the stabilization of system (1.21)–(1.23) in which F
is the logarithmic potential (1.7). For this singular function we cannot follow the
computations as provided before, but we need to work first with a regular potential
which will be obtained by applying a cut-off function to F.

Let ε be positive fixed, ε ∈ (0, 1) and assume that

(3.1) φ∞ is analytic in Ω, |φ∞(x)| < 1− ε for x ∈ Ω.
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We define χε ∈ C∞
0 (R) such that

χε(r) =

{
1, for |r| ≤ 1− ε

0, for |r| ≥ 1− ε
2 ,

and
0 < χε(r) ≤ 1 for r ∈ (−1 + ε

2 ,−1 + ε] ∪ [1− ε, 1− ε
2).

We also define the regularized potential

Fε(r) =


F (r), for r ∈ [1− ε, 1 + ε]

F (r)χε(r), for r ∈ (−1 + ε
2 ,−1 + ε] ∪ [1− ε, 1− ε

2)

0, for |r| ≥ 1− ε
2 ,

which is of class C∞
0 (R). The singular function F in (1.21) will be replaced by the

regular function Fε(r) and similar results as those presented in Section 2 will be
first proved for this new function.

We mention that, due to (3.1), Fε and its derivatives computed at φ∞ coincide
with the derivatives of F at φ∞, and so we can omit for them the subscript ε (that is
why in (1.21) we can keep the notation F ′′(φ∞)). Moreover, Fε and its derivatives
are continuous (and bounded) on [−1 + ε

2 , 1 − ε
2 ] and they are zero outside this

interval. We also specify that the derivatives of F that will be involved in the next
computations are continuous on

{
r; |r| ≤ 1− ε

2

}
. Let us denote

C ′′
F = ∥F ′′∥L∞(−1+ ε

2
,1− ε

2
), C

′′′
F = ∥F ′′′∥L∞(−1+ ε

2
,1− ε

2
),

and set

(3.2) CF = max{C ′′
F , C

′′′
F }.

Due to the definition of Fε it follows that

∥F ′′
ε ∥L∞(−1+ ε

2
,1− ε

2
) ≤ CC ′′

F ≤ CCF , ∥F ′′′
ε ∥L∞(−1+ ε

2
,1− ε

2
) ≤ CCF .

The value CF is a constant but we let it written as it is in order to recall its
connection with the function F. In this case the nonlinear system (1.21)-(1.23) is

yt +
ν

τ2
(A+A−1 − 2)y − 1

τ
(A−1 − I)(F ′′(φ∞)y) +

γ

τ
(A−1 − I)z − γl

τ
(A−1 − I)y

= fωv +
1

τ
(A−1 − I)Fr,ε(y), in (0,∞)× Ω,(3.3)

zt +
1

τ
(A− I)z +

l

τ
(I −A)y = fωu, , in (0,∞)× Ω,(3.4)

y(0) = y0, z(0) = z0, in Ω,(3.5)

where Fr,ε is the rest of second order in the Taylor expansion of F ′
ε(y+φ∞), written

in the integral form

(3.6) Fr,ε(y) = y2
∫ 1

0
(1− s)F ′′′

ε (φ∞ + sy)ds.

Therefore, we get the same linearized system (2.2)-(2.4) with the corresponding
operator A given by (2.7) and consequently, all results in Sections 2.1 and 2.2, that
is Propositions 2.1-2.4 remain valid, with the constants depending on the problem
parameters, Ω and possibly on CF via ∥F ′′(φ∞)∥∞.
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The nonlinear system in the closed loop form is

(3.7)

d

dt
(y(t), z(t))+A(y(t), z(t)) = Gε(y(t))−BB∗R(y(t), z(t)), a.e. t>0,

(y(0), z(0)) = (y0, z0),

where Gε(y) = (Gε(y), 0), and

(3.8) Gε(y) =
1

τ
(A−1 − I)Fr,ε(y).

The main results are enunciated in Theorem 3.1, for the function Fε and Theorem
3.2, for the function F .

Theorem 3.1. Let (y0, z0) ∈ D(A1/2) × D(A1/2). There exists ρ (depending on
the problem parameters, Ω and CF ) such that if (2.78) takes place, the closed loop
system (3.7), corresponding to Fε, has a unique solution in the spaces (2.79). The
solution is exponentially stable, and satisfies (2.80), for some positive constants k∞
and C∞ which depend on the problem parameters, Ω and CF .

Proof. The arguments are the same as in the proof of Theorem 2.5, but some mod-
ifications in the computations are necessary due to the current expression of the
potential. We shall point out only the computations which are different.

We define ST as in (2.81). To prove the existence of the solution to (3.7) we
proceed again by the Schauder fixed point technique, set (y, z) ∈ ST and introduce
problem (2.82) with G replaced by Gε. We show that the new Gε(y) ∈ L2(0, T ;H).
We have by (3.8),

(3.9) ∥Gε(y(t))∥H ≤ CG∥Fr,ε(y(t))∥H ≤ CGCF ∥A1/2y(t)∥2H ,

where CG denotes various constants depending on Ω and on the problem parameters.
Next, since (y, z) ∈ ST we obtain

(3.10)

∫ T

0
∥Gε(y(t))∥2Hdt ≤ CGC

2
F

∫ T

0
∥A1/2y(t)∥4Hdt ≤ CGC

2
F r

4.

Therefore, problem (2.82) has a solution (2.83). To prove that ΨT (ST ) ⊂ ST we
recall (2.86) and impose the condition

c2
c1
ρ2 +

4C2
R

c1
CGC

2
F r

4 ≤ r2

where
4C2

R
c1
CG := C2 depends on the problem parameters, Ω and CF (via ∥F (φ∞)∥∞).

Here we can choose again

(3.11) ρ = r

√
c1
2c2

and C2C
2
F r

4 ≤ r2

2 . This yields

(3.12) r ≤ r1 :=
1

CF

√
1

C2

.

Further, the proof of the solution existence follows as in Theorem 2.5.
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In the part concerning the uniqueness there is only one change for the term
involving F ′

ε(y + φ∞), namely(
(I −A−1)(F ′

ε(y1 + φ∞)− F ′
ε(y2 + φ∞)), y

)
H

=
(
F ′
ε(Y1)− F ′

ε(Y2), (I −A−1)Y
)
H

≤ ∥F ′
ε(Y1)− F ′

ε(Y2)∥H∥(I −A−1)Y ∥H ≤ CC ′′
F ∥Y ∥2H .

Here, we used the fact that F ′
ε is Lipschitz with the constant C ′′

F .
The last part concerning the stabilization result is led in the same way as before,

recalling (3.9). We resume the right-hand side in (2.90) and using (2.48) we have

CR∥Gε(y(t))∥H (∥Ay(t)∥H + ∥Az(t)∥H)
≤ C∗

1CF ∥A1/2y(t)∥2H (∥Ay(t)∥H + ∥Az(t)∥H)

≤ C∗
1CF ∥A1/2y(t)∥H

(
∥Ay(t)∥2H + ∥A1/2y(t)∥H∥Az(t)∥H

)
≤ C∗

1CF r
(
∥Ay(t)∥2H + ∥A1/2y(t)∥2H + ∥Az(t)∥2H

)
.

Finally, we obtain

CR∥Gε(y(t))∥H (∥Ay(t)∥H + ∥Az(t)∥H) ≤ 2C∗
1CF

(
∥Ay(t)∥2H + ∥Az(t)∥2H

)
r.

Therefore, (2.91) becomes

d

dt
(R(y(t), z(t)), (y(t), z(t)))H×H + ∥Ay∥2H + ∥Az∥2H ≤ 2C∗

1CF r
(
∥Ay∥2H + ∥Az∥2H

)
and we have a new condition 2C∗

1CF r < 1, which provides

r ≤ r2 :=
1

2C∗
1CF

.

Thus, we can fix ρ by (3.11), with r set by

(3.13) r ≤ r0 := max{r1, r2}
and the proof is continued as in Theorem 2.5. The constants in the relations estab-
lished in this case depend on the problem parameters and on CF given by (3.2). �

Theorem 3.1 provides a general result for a function Fε which together with its
derivatives up to the third order are continuous.

We present the consequence for the logarithmic function F.

Theorem 3.2. Let ε ∈ (0, 1) be arbitrary but fixed. For all pairs (y0, z0) ∈
D(A1/2)×D(A1/2) with ∥y0∥D(A1/2) + ∥z0∥D(A1/2) ≤ ρ, the closed loop system (3.7)

corresponding to the logarithmic potential F has, in the one-dimensional case, a
unique solution belonging to the spaces (2.79). The solution is exponentially stable
and satisfies (2.80).

Proof. We recall the result of Theorem 3.1 for the system (3.3)–(3.5) corresponding
to Fε. To be more specific we write (3.3) in the form

(3.14)
yt +

ν

τ2
(A+A−1 − 2)y − 1

τ
(A−1 − I)(F ′

ε(y + φ∞)− F ′(φ∞))

+
γ

τ
(A−1 − I)z − γl

τ
(A−1 − I)y = fωv, in (0,∞)× Ω,
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which is exactly that before expanding F ′
ε(y+φ∞) in Taylor series. Obviously, here

we can write F ′(φ∞) instead of F ′
ε(φ∞), because of (3.1). We know that there exists

ρ given by (3.11) such that if the initial datum is in the ball with the radius ρ we
have

(3.15)
∥y(t)∥D(A1/2) + ∥z(t)∥D(A1/2) ≤ C∞e

−k∞t(∥y0∥D(A1/2) + ∥z0∥D(A1/2))

≤ C∞e
−k∞tρ.

The argument we use further is based on the compactness H1(Ω) in C(Ω) which
holds for d = 1. Since

(3.16) |y(t)| ≤ ∥y(t)∥C(Ω) ≤ CΩ∥y(t)∥D(A1/2) ≤ CΩC∞e
−k∞tρ

relation (3.15) implies that |y(t)| → 0, as t → ∞ and so, for a sufficient large t,

t > 1
k∞

ln ρC∞CΩ
1−ε , we can find the values of |y(t)| in a ball with the radius less than

1− ε.
Moreover, one can set a new ρ such that the solution remains less than 1− ε for

all t > 0. Because |φ∞| < 1− ε, we can write |φ∞| ≤ 1− ε− δ, with δ ∈ (0, 1− ε)
and so we can impose in (3.16) that

|y(t)| ≤ CΩC∞e
−k∞tρ ≤ δ for all t ≥ 0.

This happens if

ρ ≤ δ

CΩC∞
and, recalling (3.11) we can set a new ρ as

ρ ≤ min

{
δ

CΩC∞
, r

√
c1
2c2

}
with r < r0 by (3.13). Then, we have

|y(t) + φ∞| < δ + 1− ε− δ = 1− ε for all t ≥ 0,

and consequently we can write F ′
ε(y + φ∞) = F ′(y + φ∞) in (3.14). In conclusion,

our solution y(t) actually satisfies system (3.14), (3.4)-(3.5) corresponding to the
function F and we have the stabilization result in the one-dimensional case. �

The following consequence for the system in θ and φ is immediate.

Theorem 3.3. There exists ρ such that for all pairs (φ0, θ0) ∈ D(A1/2)×D(A1/2)
with

∥φ0 − φ∞∥D(A1/2) + ∥(θ0 − θ∞) + l(φ0 − φ∞)∥D(A1/2) ≤ ρ,

the closed loop system (1.9)–(1.12), with (1∗ωv, 1
∗
ωu) replaced by (2.74), correspond-

ing to the double-well potential (1.6), has a unique solution belonging to the spaces
(2.79). The solution is exponentially stable and satisfies

(3.17)

∥φ(t)− φ∞∥D(A1/2) + ∥(θ(t)− θ∞) + l(φ(t)− φ∞)∥D(A1/2)

≤ C∞e
−k∞t(∥φ0 − φ∞∥D(A1/2)+∥(θ0 − θ∞)+l(φ0 − φ∞)∥D(A1/2)),

for all t ≥ 0.

This result remains true for the logarithmic potential (1.7), but in the one-dimensional
case.
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