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STOCHASTIC QUASILINEAR SYMMETRIC HYPERBOLIC
SYSTEM PERTURBED BY LEVY NOISE

MANIL T. MOHAN® AND SIVAGURU S. SRITHARAN

ABSTRACT. In this work we establish the local and global solvability of the
Cauchy problem for a stochastic quasilinear symmetric hyperbolic system per-
turbed by Lévy noise. The local monotonicity property of the nonlinear terms
and a stochastic generalization of the localized Minty-Browder technique are ex-
ploited in the proofs.

1. INTRODUCTION

Quasilinear symmetric and symmetrizable hyperbolic systems have a wide range
of applications in engineering and physics including unsteady Euler and potential
equations of gas dynamics, inviscid magnetohydrodynamic (MHD) equations, shal-
low water equations, compressible viscoelastic fluid flow equations, and Einstein’s
field equations of general relativity (see for example [12,24,32,35,39,42]). In the
past, the Cauchy problem of smooth solutions for these systems has been studied
using the semigroup approach and fixed point arguments (see [16-18, 22, 30, 38]).
In [17], Tosio Kato established the existence and uniqueness of local in time mild
solutions of the Cauchy problem for various quasilinear equations of evolution, and
n [18], he established the local solvability of quasilinear symmetrizable hyperbolic
systems in uniformly local Sobolev spaces using a semigroup approach. In this
paper, we utilize the local monotonicity method developed in [30] to prove local
and global solvability theorems for the corresponding stochastic case perturbed by
Lévy noise. For multidimensional scalar conservation laws with stochastic forcing
we refer the readers to [6,7,10,13], etc.
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Let (2, .7, (%#)t>0,P) be a given complete filtered probability space. We describe
the stochastic quasilinear symmetric hyperbolic system as

ou LI Ju
—(t,x,w) + Alt,z,u)—(t,z,w) = {(t, x,w),
. 320+ A0 00) = 19,0

u(0, z,w) = up(z,w),

for (t,z,w) € (0,T) x R™ x Q, where u(t,z,w) = (ui(t,z,w), -, un(t,z,w)),
AJ(-,-,-)’s are m X m symmetric matrices, f(¢,r,w) is the external random forc-
ing and ug(x,w) is the .#y—adapted initial data with ug € L*(Q;H*(R")) for
s > n/2 4+ 2. Local existence and uniqueness of mild solution for stochastic quasi-
linear evolution equations, including symmetric hyperbolic systems, with additive
Gaussian noise in Hilbert spaces and UMD Banach Spaces is obtained in [14] and
[31], respectively.

The system (1.1) perturbed by additive and multiplicative Gaussian noise is con-
sidered in [21], where the author established the local solvability of the system using
a vanishing viscosity method, and a global solvability for multiplicative Gaussian
noise under a smallness assumption on the initial data. In this paper, we establish
the local and global solvability of the system (1.1) perturbed by multiplicative Lévy
noise. The novelties of this paper are:

(1) stochastic quasilinear symmetric hyperbolic system with Lévy noise is stud-
ied for the first time,
(7i) a local monotonicity method for the solvability of such systems handles the
Gaussian and Lévy case easily,
(7i7) global solvability under a smallness assumption on initial data and certain
conditions on noise coefficients.

The construction of the paper is as follows. In section 2, we formulate the Ito
stochastic differential form of (1.1), discuss the hypothesis satisfied by noise co-
efficients, and state certain properties satisfied by the linear operator <7 (t,u) :=
Z;‘:lAj(t,x,u)a%j. By defining a suitable cutoff function, a local monotonicity
property of the nonlinear term 47 (¢, u)u and energy estimates for the corresponding
cutoff problem are obtained in section 3. A local in time existence and uniqueness
of strong solutions of (1.1) up to a stopping time is obtained in section 4 (Theorem
4.3). The global solvability results for the system (1.1) are also discussed in section
4 (Theorem 4.5).

The main theorem of this paper is

Theorem 1.1. (I) Let the Fo—measurable initial data ug € L*(Q;H*(R™)), for
s>mn/2+ 2. Then under Property 2.5 and (2.6) (see section 2):

(1) There exists a unique local strong solution (u, ) to the stochastic quasilinear
symmetric hyperbolic system (2.1). Here T > 0, for almost all w € ), is a stopping
time with respect to {F}1>0 such that

T(w) = A}gnoo 7N (w) for alomost all w,
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where we define, for N € N,

() =inf {1 u(®)]z > N},

and
u € LYQ; D(0, 7(w); H*(R™))),

where D(0, 7(w); H*(R™)) is the space of all cadlag paths from [0,7) to H*(R™), and
u(-) satisfies

u(t ATy) =up — /O TNZAj(s,x,u)agaS)ds—i— /O ™ (s, u(s))dW(s)

j=1
(1.2) + /0 " /Z Y(s—,u(s—), )N (ds dz),

for allt € [0,T] and all N > 1 and for almost all w € Q.
(IT) Choose any 0 < § < 1, and let B > 1. Then, under the assumption (4.44)
(see section 4), we have

(1.3) PlweQir>d}>1-Co0{1+2E [l },

for some positive constant C' independent of ug and 9.
(III) Let € > 0 be given. Under the assumptions (4.52), (4.53) and (4.54) (see
section 4), there ezists a k(g) such that if E (||uo||f:) < k(e), then

(1.4) P{wEQ:T:—I—oo}>1—5.

2. STOCHASTIC QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM

The stochastic quasilinear symmetric hyperbolic system (1.1) perturbed by Lévy
noise can be written in the It6 stochastic differential form as

8;“) dt + o(t, u(t)) AW (¢)

Lj

du(t) = = > Al(t,z,u)
j=1

2.1 \
( ) +/Zy(t—,u(t—),Z)N(dt7dz)a

u(0) = uy,

where t € (0,7), ug € LYQ;H*(R")), for s > n/2 + 2, and Z is a measurable
subspace of some Hilbert space (for example measurable subspaces of R™, L2(R")
etc). In (2.1), W(-) is an L?—valued Wiener process with a nuclear covariance

operator ) and N (dt,dz) is a compensated Poisson random measure. The processes
W () and N (dt,dz) = N (dt,dz)—A(dz)dt are mutually independent. The properties
of the noise coefficient o(-,-) and y(-,-,-) are given in the next subsection.
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2.1. Hypothesis. Let H and U be Hilbert spaces and let @) : H — H be a sym-
metric, positive, trace class operator such that Qe; = Aje;, where {)\j};’;l are
the eigenvalues of @) and {ej}‘]?‘;l are the corresponding eigenvectors in H with

Tr(Q) = Y20\ < +oc.

Definition 2.1. Let (2,.#,.%;,P) be a complete filtered probability space. A sto-
chastic process {W(t) }o<i<7 is said to be an H—valued .F#:—adapted Wiener process
with covariance operator @ if

(7) for each non-zero h € H, \Q%h\_l(W(t), h)m is a standard one dimensional

Wiener process,
(17) for any h € H, (W(t), h)g is a martingale adapted to .%;.

If W(-) is an H—valued Wiener process with covariance operator @ with Tr Q <
+00, then W(+) is a Gaussian process on H and E[W(¢)] = 0, Cov[W(¢)] = tQ, t > 0.
The space Hy = Q%H is a Hilbert space equipped with the inner product (-, -)o,

1 11
(u,v)p = Z (u, er)L2(v, ex)L2 = (Q 2u, Q) 2v)L2, vV u,v € Hpy,

A
=1 "k

where Q_% is the pseudo-inverse of Q%. Since @ is a trace class operator, the
imbedding of Hy in H is Hilbert-Schmidt.

Let L(H, U), £Lo(H, U) and Lg(H, U) denote the space of all bounded linear oper-
ators from H to U, Hilbert-Schmidt operators from H to U, and Hllbert Schmidt op-

erators from Q2H to U, respectively. Let {e;}22,, {g;}52; = {)\263} p and {f;}152,
be orthonormal bases for H, Hy and U respectively. Then the space EQ (]HI, U) is also
a separable Hilbert space, equipped with the norm

11z o) = Z 1gnllyy = ZZ\ Ygh, fr)y

h=1k=1

LoHU)
(2.2) = Tr(TQY™),
where we used the fact that for a Hilbert-Schmidt operator S, Tr(S*S) = Tr(SS*).
In this paper, we take H = L2(R") and U = H*(R").

Let us assume that the noise coefficient o(-,-) : [0,T] x H* — £(IL?,H?®), for any
T > 0 and s > 0, satisfies the following conditions:

(C.1) For all ¢ € [0,T] and u € HF, there exists a positive constant K such that
lo(t, W)z ms) < K(1+ [[ullg:).

(C.2) Forallt € [0,7] and u;,up € H?, there exists a positive constant L such
that

o(t,u1) — o(t, u2)|l g2 ms) < Lljur — uz||ms.
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Now we obtain the main hypotheses regarding the noise coefficient o(-,-) : [0,7] x
H* — Lo (L%, H?) from the above two conditions.

Lemma 2.2. We have
(1) For allt €[0,T] and u € H*, there exists a positive constant K such that

ot ) 02 5y < K (14 i) -

(i7) For allt € [0,T] and uy,up € H®, there exists a positive constant L such
that

[o(t,u1) — o, UQ)H%Q(]LQJHIS) < Lfur — w2/

Proof. For the sequence {e;}72, defined as above, we have

lo(t, W7, e = Y ot W@ ejllfs = D Ajllo(t, w)e; [

j=1 j=1
- 2 2 2
< Z Ajlloft, u)Hﬁ(M,Hs)H@j”L? =Tr(Q)lla(t, U)HQ(U,HS)
j=1
(2.3) < Tr(Q)K2(1+ |[ufl:)® < K(1+ [ulff),

where K = 4Tr(Q)I~( 2. Similarly, one can prove that
(2.4) ot 1) = ot 0|2 oy < Ll — usf,
for some positive constant L = L2Tr(Q). O

Definition 2.3. A cadlag adapted process (paths are right continuous with left
limits), (L¢)s>0, is called a Lévy process if it has stationary independent increments
and is stochastically continuous.

Let H and U be Hilbert spaces and let (L;);>0 be an H—valued Lévy process.
Then, for every w € €, L;(w) has countable number of jumps on [0,t] with jump
ALy (w) = Ly(w) — Ly—(w). Let us define

N(t,Z) =N (t,Z,w) =#{s € (0,0) : ALs(w) € Z},

for t > 0,Z € B(H\{0}), w € Q, as the Poisson random measure associated with
the Lévy process (Ly)i>0 (see page 100, [1]).
The differential form of the measure N (¢, Z, w) is written as N (d¢, dz)(w). We call

N(dt,dz) = N(dt, dz) — A(d2)dt, a compensated Poisson random measure (cPrm),
i.e., E(N(dt,dz)) = A(dz)dt (Theorem 35, section 4, [34]), where A\(dz)d¢ is known
as compensator of the Lévy process (L¢)¢>0. Here dt denotes the Lebesgue measure
on Z(RT), and A\(dz) is a o-finite Lévy measure on (Z, B(Z)).

Let us denote by D([0, T]; H), the set of all H—valued functions defined on [0, 77,
which are right continuous and have left limits (cadlag functions) for every ¢ € [0, 7.
Also, let

(2.5) MP(H;U) :=L% (2 x (0,T] x Z,B((0,T] x F x Z),dt @ P \; U),
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be the space of all Z((0,T] x .% x Z) measurable functions y : [0,7] x Q x Z - U
such that

E [/OT/ZHy(t,-,z)||%p)\(dz)dt < 0.

Let us assume that the following conditions hold for the noise coefficient y(-,-,-) :
[0,T] x H® x Z — H?, for s > 0, corresponding to the jump processes ([41], [15]):

Assumption 2.4. The noise coefficient y(-,-,-) : [0,7] x H® x Z — H? satisfies:
(A.1) For all t € [0,T] and u € H?, there exists a positive constant K such that

/Z Iy (tw, 2)|eA(d2) < K (14 [fuf.).-

(A.2) For all t € [0,7] and uj,up € H*, there exists a positive constant L such
that

/Z I (t a1, 2) — Y(t vz, )2 A(d2) < Ll — us|e.

(A.3) We fix the measurable subset Z,, of Z with Z,, T Z and \(Z,,) < 400 such
that

sup / Iy (t,u, 2)||%: A(dz) — 0, as m — oo, for M > 0.
[ullss <M JZ

If Z is of finite measure, i.e., if A\(Z) < +o0, then (A.3) is satisfied automatically.

Let us combine Assumption 2.2 and Assumption 2.4 to get the properties of the
noise coefficients o(-,-) and y(, -, -), namely linear growth and a Lipschitz condition.

Property 2.5. For all s > 0, the noise coefficients o(-,-) and y(,-,) satisfy

(P.1) (Growth Condition) For all u € H*(R™) and for all ¢ € [0, T, there exists a
positive constant K such that

ot W, o me + /Z It w,2)[BA(dz) < K (1+ [lulf).

(P.2) (Lipschitz Condition) For all uj,us € H*(R") and for all ¢ € [0,7], there
exists a positive constant L such that

ot 1) = ot w2 oy + [ (e, 2) = Yt w2, 2) @)
< L|uy — ug|%s.
(P.3) Assumption (A.3).

In order to get the p'™ moment estimate, for p = 2,3, ---, we also assume, there
exists a positive constant K such that

20 ot Wl wa + [ Iw A < K (1+ ).

for all u € H*(R") and for all ¢ € [0, T7.
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2.2. Commutator Estimates and Moser Estimates. We have J® := (I— A)%/?
so that ||f||gs = ||J*f]|L2, for f € H*(R™). Let us recall the commutator estimates
([19]) and Moser estimates ([38]) used in this paper.

Lemma 2.6. If s >0 and 1 < p < oo, then
(2.7) 17°(f9) = F (TP le < Cp (IVFllLoe 13 gllue + [13° Fllr g e -
Proof. See Lemma XI, [19]. O

Lemma 2.7. Let F(-) be a smooth function of u € L>(R™) NH*P(R"™) and assume
F(0) =0, then for s >0 and p € (1,00), we have

(2.8) [F(u)[[msr < Csp ([aflLee) (1 + [Jul[ps) -
Proof. See Proposition 3.1.A., [38], Chapter 2, page 102, [40]. O
Remark 2.8. Note that for s > 2 + k, H*(R") C C*(R"), and

[fllor < Clif |z,

where ||f||cx := supgepnilf], |VE],---,|V*|}. In particular ||f|jLe < C|/f||gs for
s > n/2 and ||Vf||p~ < C|f|gs-1 for s > n/2 + 1. Also, H® is an algebra for
s>n/2, ie.,

1fglles < [1€]lze |z
for all f,g € H®, s > n/2.

2.3. Properties of the Operators &/ and . For the stochastic quasilinear
symmetric hyperbolic system (2.1), we obtain the following properties satisfied by
the nonlinear operator (-, -) under which we establish the local solvability of (2.1)
(see [30]).

(F.1) The linear operator 7 (t,u) := Z?ZlAj(t,x,u)%, where A7(-,-,-)’s are
m X m symmetric matrices for j = 1,--- | n, satisfies

1
(2.9) ((t, )V, V)L > —§||VA||L°°||V||[2L2,

for u,v € H¥(R"), s > n/2 + 2, where

IVA[L~ = Zlﬁi’;z sup

z€R™

—a L(tx,a)

and a{k(-, -,+) is an entry of AJ(-,-, ). For %HVAH]LOO < u, the operator <7 (t,u) + ul
is monotone.
(F.2) There exists an operator

(2.10) B(t,u) = (t,u)]° — (t,u),
where J¥ = (I — A)*/2, such that %(t,u) € L(IL?,1L?) with
14 (t, w)v]|L2
(2.11) < OIVA[L< VI [lga-1 + C([lullee) (1 + [[ullm) VIV,

for u,v € H¥(R"), s > n/2 + 2.
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(F.3) We have H*(R") C Dom(<7(t,u)), so that </ (t,u) € £(H*,L?) with

(2.12) | (< (t,u) =/ (t,v)) w2 < [[VaAllLellu = v [[VW]Le,
and
(2.13) 17 (t,0) = (£, V)| s 12) < Ol VaAllLeellu = vz,
for u,v,w € H*(R"), s > n/2 + 2, where
1/2
n s . 2
[VuAllLe = max sup )Vuag (t,z,7u+ (1 —71)v)
;gzgmkz:l (z,7)ER™ x[0,1] b
(F.4) We also have
(2.14) (e (t,0) = & (t, V)V [ms—r < CVaAllger [0 = vlg [v]m,
. , 12
where || VA |1 = (ijl |V Ad| %) with
9 m . 2
|[Vud/| o1 = SUp Z HVuagk(t,x,Tu +(1- T)V)‘ I

T€[0,1] ik=1

Remark 2.9. Condition (F.2) (see (2.11)) is obtained by making use of the com-
mutator estimates (Lemma 2.6) and Moser estimates (Lemma 2.7) (see [30] for more
details).

2.4. Local and Global Strong Solution. Let us now define the notion of local
and global strong solutions of stochastic quasilinear symmetric hyperbolic system
perturbed by Lévy noise.

Definition 2.10 (Local Strong Solution). We say that the pair (u,7) is a local
strong (pathwise) solution for the stochastic quasilinear symmetric hyperbolic sys-
tem (2.1) with ug € L*(Q; H*(R")), for s > n/2 + 2, if

(7) the symbol 7 is a strictly positive stopping time, i.e.,

P{wGQ:T(w)>O}:1,

and
7(w) = lim 7x5(w), for almost all w € Q,
N—o00

where we define, for N € N,

=1 . s >
() = inf {¢ < lu(O)lls > N},
(73) for all t € [0,T), the symbol u denotes a right continuous progressively
measurable stochastic process such that
(a) the process u(-) € L*(Q; D(0, 7(w); H*(R"))),
(b) u(-) satisfies
n

u(t A7n) =ug — Z/(; w Aj(s,l‘, u) a;a(;j) ds + /0 ™ o(s, u(s))dW(S)

Jj=1
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tATN .
# [ [ vl s A7 as, ),
0 Z
for all t € [0,7) and N > 1.

Definition 2.11. A local strong solution (u,7) to (2.1) is called a unique local
strong solution if (u,7) is an another local strong solution, then

7 =7, for almost all w € 2,

and
u(-) =u(-) on [0,7),

for almost all w € Q.

Definition 2.12. The pair (u,7) is a global (pathwise) strong solution for the sto-
chastic quasilinear symmetric hyperbolic system (2.1) if

P{wGQ:T(w):—I—oo} = 1.

3. LocAL MONOTONICITY AND ENERGY ESTIMATES

In this section, we prove the local monotonicity property of the nonlinear operator
and energy estimates.

3.1. Local Monotonicity. We establish that the nonlinear term <7 (¢,u)u is lo-
cally monotone (in L2—norm), i.e., @ (t,-) - +C(M)I(-) is a monotone operator in a
closed ball By,  H¥ (R™) of radius M, for s’ < s, s’ >n/2 + 2.

Theorem 3.1. For any given M > 0, we consider the following (closed) ball:

(3.1) Bas = {z € B (R") : |12 < M},

then for any u,v € By and each t € (0,T), we have

(3.2) (o (t,0)u — o (t,v)v,u—v)» + C(M)|u—v|2, > 0.

Proof. See Theorem 3.1, [30]. O

Next, we prove the local monotonicity of the nonlinear operator <7 (¢,u)u in the
H* ! —norm.

Theorem 3.2. For any u,v € By and each t € (0,T), we have
(3.3) (o (t,u)u — o (t,v)v,u — v)gs_1 + C(M)[u - VH]%IS,,1 > 0.
Proof. Let us consider

(o (t,u)u — o (t, V)V, u — V)

= (Jslfl [ (t,u)u] — J¥ 1 [/(t,v)v], T " Hu — v)>]L2

= (Mt wa -] I @)

+ (P @ )~ (V]I =)

_ (d(t, u)JS’_l(u—v),JSI_l(u_V>>L2
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+ (I ()= v) = (I T =), T =)

(3.4) n (JS’—l (o (t,0) — (£, v))v], I~ (u — V))M .

Now we take the first term from the right hand side of the equality (3.4) and use
(2.9) to obtain

<@%(t, W (u - v),J¥ " (u— V))Lz

1 v 1
(3.5) > = [VAue= 377 (= V)l = =5 IVAllLelfu = viGo--

The second term from the right hand side of the equality (3.4) can be estimated
using the Cauchy-Schwarz inequality and (2.11) as

‘ (JS’—l [ (t, u)(u — V)] — & (t,u) " ~H(u — v), I L(u— v))

]LQ

<| 7 u =)

I e (tw) (u = V)] — o (t,w) ) (u - V)HIL2 ‘

L2
< [CIVAIL= IV (0 = ¥) -2 + Cllallioe) (1 + [allgo1) 1V (0 = v) o |
X = Vg

(3.6) < (CIVAlL= + Cllullise) (14 fulgo) )u = vIZ.

The final term from the right hand side of the equality (3.4) can be estimated using
the Cauchy-Schwarz inequality and (2.14) as

‘ (JS’*l (< (t,0) — o (t,v))V],J¥ L (u — v))

]L2

< ‘ Js,_l(u—v)‘

(& () = A (L) |
(3.7) < OVl g [Vl 0 = VI

]L2

Combining (3.5), (3.6) and (3.7), and substituting it in (3.4) to get
(o (£, W) — (£, V)V, 1 = V)
+ (CIVAI= + C(lulle) (1 + ulg-1)
(3.8) + Ol VaAlgoi [Vl ) fu = V]2, > 0.
Thus for any u,v € By, we have
(3.9) (o (t,u)u— o (t,v)v,u—v)gs_1 + C(M)[u— VHIQHIS/,1 > 0.
g

Remark 3.3. Let us denote F(u) = /(¢,u)u. From the local monotonicity the-
orem (Theorem 3.1 and Theorem 3.2), it can be easily seen that F(-) + C(M)I is
a monotone operator in By, € H¥ (R") (see (3.9)) and in fact one can prove that
F() + C(M)I is a maximal monotone operator in By, (see Remark 1, [30]).
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Let us define a function ¥ : [0, 00) — [0, 1] by

1, for 0 <y < N,
(3.10) Yy(y)=4¢ N+1—-y, for N<y<N+1,
0, fory > N +1,

where N is a positive integer. Note that {Pxy(-) is a continuous function. We
now consider the operator <7(t,u) := by (||ullgs-1)47(t,u) and prove the local
monotonicity in H*~!—norm.

Theorem 3.4. For any u,v € By and each t € (0,T), we have
— — L )
(twu-etvivu—v) | + (C’NM + 2) la— V]2,
(3.11)
1
> [no(t, ) = 0tV oy [ IVt 0.2) =¥, 2) B A@2)
where L is the Lipschitz constant appearing in (P.2) of Property 2.5.

Proof. Let us assume that |[ulgs—1,||V|]|gs—1 < N and in this case the operator
</ (-,-) becomes /(-,-) and from (3.9), for any u,v € By, we have

(3.12) <fszf/v(t, u)u — (t, v)v,u— v)Hs/_1 + CnMlu— VH]%IS/,l > 0.
Let us now assume that N < [Jul|ge_1, [|V|lgs-1 < N + 1 and consider
(éf\zt, u)u — JZ//\Zt, v)v,u— V>H5/71
= (77 [ (Il (2, 0]
—I T o (Vo) (8 v)V] 3 T @ =)
= (W (allge—) = on (Vi) ) (397 [ (6 wu] 3 @ =v))
(313)  +¥n(IVlige) (377 1t wu] = 3 [ (V]I T =)

The first term from the equality (3.13) can be estimated using the Cauchy-Schwarz
inequality, algebra property of the H* ~! norm, Moser estimate and reverse triangle
inequality as

(Wl =W (¥l (377 1 ( wpu) 7 =)

< [l ) = wn (vl | "
< [Vl = Il | 1A ) ggr | Vg 11 = Vg
(3.14) < C(lulls) (1+ o) ol = vIZ,

Since 0 <Py () < 1, the second term from the right hand side of the equality (3.13)
can be estimated similarly as of (3.9). Hence, from (3.13), we have

(At wn =Tt vvu—v)

L2
J¥ N u - V)‘

351 e (t, u)u]H

]LQ
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+ (CIVAIe + C(lulle) (1+ fullger-s) (1+ ulz)
(3.15) + Ol Val g1 [Vl ) [0 = VIZ s > 0.

Hence, by choosing u, v € By, we obtain (3.12).
Let us now consider the case ||ulgs—1 < N and N < ||v|gs-1 < N + 1. Then,
we have

(sz;ft, u)u — ¢5a7(t, v)v,u— v) .
= (37 e e w)u] = O (V)3 [ (V]I ()

- (JS/_I [ (¢, w)u] — I [ (8, v)v], I (u — v))

]LQ

(3.16) + (IIVllger—s — N) (Js’—l [ (8, v)V], 3% L (u — v))

]LZ

The first term from the right hand side of the equality (3.16) can be estimated
similarly as of (3.9). Note that by using reverse triangle inequality, we get

(3.17) Vgt = N < [¥llgos = llgos < fu = Vil
A calculation similar to (3.14) yields
[V llrs = N) (3 [ (8, v)], 3 A = v))
(3.18) < C(Ivlizee) (1 v lger—2) 1Vl = vIE o
Thus from (3.16), we have
<¢sz\Zt, u)u — gff\ft, v)v,u— V)H -

L2

+ (CIIVAHLOO + C(ufliee) (1 + [[ullge-1)
(3.19)
+ (C(IVllee) (L + [IVllger—1) + ClIVaA[lgor-1) IIVIIHSI) la = V|3, > 0.

The case of N < |lu||gs—1 < N+1 and ||v|[gs—1 < N can also be handled similarly.
Now if [[ul|ge—1 < N and [|v||gs—1 > N + 1, then

(3.20) (;Z{N(t, u)u — fszf/v(t, v)v,u— V)Hsul = (Jsl_l,xzf(t, w)u, J¥ ! (u— v))}L2 ,

and note that

(3.21) lu = Vllgos = [Vl — g > 1,

By using the Cauchy-Schwarz inequality, algebra property of H*'~! norm, and Moser
estimate, we have

‘ (3 (¢, Wy, 7w = v))

L2
< [A@) g1 [Vallgor - [[u = v
(3.22) < Cllulleee) (1 + l[ullgger—) l[allge o = i3,
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Thus from (3.20), we obtain
<sz/(t, wu — (£, v)v,u — V)HS,_l
(3.23) + O([ullee) (1 + l[ullg—1) ullge o = v]§., -, > 0.

The case of |lul/gs—1 > N+1and [|v| g1 < N can be handled in a similar fashion.
We now take N < |lu|lgs—1 < N +1 and ||v||gs—1 > N + 1. Then, we have

(St Tlovvu=),

(3.24) = (N 1= [l ) (3t wu, 3 = v))
But we know that
(3.25) (N 41— fullr ) < IVl — [l < JJu— Vil s,

and a calculation similar to (3.22) yields (3.23). The case of |jul|gs—1 > N +1 and
N < ||v]|gs=1 £ N +1 follows similarly. The inequality (3.12) can be regained from
the estimates (3.19) and (3.23) by choosing u,v € B,.

For [jul|gs—1, |[V|lgs—1 > N + 1, we have tssz?t, u)u = JZ?Et,V)V = 0 and the
property (3.12) is trivially satisfied. Adding %Hu —v||2_,_, on both sides of (3.12)
and using property (P.2) from Property 2.5, we finally obtain (3.11). O

Similar results for Navier-Stokes equations is obtained in [4, 5]. For more details
about monotone operators, we refer the readers to [2, 3].

3.2. Energy Estimates. We next establish the .2 and H* energy estimates for the
stochastic hyperbolic system (2.1). We consider the truncated system corresponding
to (2.1) in the It6 stochastic differential form in (0,7") with the cutoff P (-) as

du(t) = —bn(ul)llgs-1)« (¢, )u(t)dt + o(t, u)dW(t)
(3.26) + /Z y(t—, u(t—), 2)N(dt, dz),

u(0) = uy,

for up € H*(R") for s > n/2 + 2.

Let us consider a finite—dimensional Galerkin approximation of the system (2.1)
perturbed by Lévy noise. Let {ej,e2,---} be a complete orthonormal system in
L2(R") belonging to H*(R") and let L2(R") be the n—dimensional subspace of
L2(R™). Let P,, denote the orthogonal projection of I.? to 2. Note that W(-) is an
L2 —valued Q—Wiener process such that Qe; = \je; with Tr(Q) < 400 and thus we
define W, (-) = P,W(-), 0"(-,u") = P,0o(-,u”) and y"(-,u”, ) = P,y(-,u",-). Let
us now consider the following system of finite—dimensional stochastic ODE satisfied
by u"(-) in the variational form in (0,7):

d(u"(t), v)rz = — (O ([0 (£) lgs—1) < (¢, 0" )u" (£), v(t)) 2 dt
+ (0" (¢, u")dWny(2), v(£))L2

+ / (Y (t—,u"(t—), 2), v(t)) 2 N(dt,dz),

u”(0) = ug,

(3.27)
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with u} = P,ug for each v € L2. Since the system (3.27) is finite-dimensional
with bounded drift and locally Lipschitz coefficients (see (2.13) and (2.14)), it has
a unique solution in L2(£2;D(0,T;1L2)) (see [27]).

Proposition 3.5 (L?—energy estimate). Let u™(-) be the unique solution of the
system of stochastic ODE’s (8.26) with ug € L2(€;L2(R")). Then, we have the
following a-priori energy estimate:

(3.28) E

sup ||un(t)||i2] < (14 2 [JJug||2,]) eXON+9KIT
0<t<T

Proof. We first define the sequence of stopping times 73, to be
(3.29) o= gg{t ()| > M}.

Let us apply the It6 formula (see Theorem 3.7.2, [25], section 4.4, [1], section 2.3,
27]) to |lu”()[|, to obtain

™ A i) 22
) t/\T}CI
= O =2 [ (o) (5,0 (). W (3)) . s
t/\T}CI )
[ 0 s )y

2 [ (0 s (6 AW(5) ()
/ TM/ Y™ (s, 0" (s), 2) | 2N (ds, dz)

(3.30) +2/ TM/ (s—,u"(s—),2),u (s—))Lzﬁ(ds,dz).

The term —2 (P ([u”||gs-1)< (s, u™)u”(s), u"(s)); 2 from (3.30) can be estimated
using (2.9) as

=2 (W ([u"[gs-1)# (s, u™)u"(s), u"(s))p2
(3.31) < P (flu”lps-1) [ VAl [u” (s) 7.
By using (3.31) in (3.31), we get

t/\T]@[
(A7) 2 < un(0)]2, + / v ([ g )| VAo [0 (5) 2 ds
t/\T}L/I )
4 / o™ (s, 0" ()12, 2.2

_|-2/ w (O' (S u ( ))dwn(s)7un<8>)L2
/ TM/ V" (s, u"(s), 2)||2 N (ds, dz)



STOCHASTIC QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM 151

(3.32) +2/0 TM/ (Y (5=, u"(s—), 2), u" (s—))p2 N(ds, dz).

Note that the fourth and final terms on the right hand side of the inequality (3.32)
are local martingales having zero expectation. Let us take the expectation of (3.32)
and use this fact to obtain

E [|[u” (¢ A 730)22]
tATY
<Euol] +B | [ e eI VAL (o) s
(3.33)
AT,
+E [/0 <HO‘"(87u"(3))’%Q(L2,]L2) + /Zn HY”(s,u"(s),z)”ig)\(dz)> ds:| ,

where we also used the fact that the expectation of the Quadratic variation process
and Meyer process of u”(-) are equal, i.e.,

ATy . - AT, . " )
B[ o gaendst [ [ sl s a)|
(3.34)

ATy, n 2 AT . . ,
—E [/0 0" (s, u )HLQ(M,M)der/O /Z y™(s,u ,Z)HLQA(dz)ds].

Let us use the property of the cutoff function Py (-) and Property 2.5 in (3.34) to
find

t/\T]’\}I
E[[lu"(t A3 [2] < E [Jluoll2:] + CnE [ /0 \|u”<s>ui2ds]

AT,
(3.35) + KE [/0 (1+ [[lu™(s)72) ds} .
Thus from (3.35), we get
E [[lu"(t A 73172
(3.36) < E [[[uoflf2] + (Cn + K) /OtE [1+ lu" (s ATRp)IIE2] ds.
An application of the Gronwall’s inequality on (3.36) yields

(3.37) E [Ju™(t Arip)lIEs] < (1+E [Jlugl|g.]) eV,
for all t € [0,7]. On the other hand, we have
E [[[u™(t A 3|17 2]
= E |Ju"(t A Th) X (g <] + B [ (E A TE) X g2

(3.39) =E [ (i) IBaxgrg, <] +E [10" 022X g 5] -
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where y is the indicator function. From the right continuity of the process u™(-),
we know that |[u”(77,)|lL2 > M (see (3.29)), and note that

E [X{T%t}} - P{w €07y < t}.
Equation (3.38) gives
E[u"(t ATip)lIE2] =E [Ilu"(fﬁ)llizx%q}} +E [IIU"(t)IlizX{T;,zt}}

> B | (73 g, <0
(3.39) > MQP{w €0l < t}.
Thus by using (3.37), we finally obtain

Ploca:ny <t} < #E Tl (¢ A 73)]22]

(3.40) < (14 E[fluol2a]) ¥+,

S e
Hence, we have
(3.41) lim P{WEQ:T}\} <t} =0 for all t € [0, T,

M—o0
and t A7)y — t as M — oo. Then on taking limit M — oo in (3.37) and using the
dominated convergence theorem, we get

(342) E [ (0)lIf=] < (1+E [JluollZ2]) e ¥+,

for0<t<T.
In order to prove (3.28), let us take the supremum from 0 to T'A 7}, before taking
the expectation in (3.32) and use the cutoff property of the function P n(-) to obtain

E| sup [u"(t)||f

0<t<TATY,

TNty
SB[ O] + o | [ )R]

ve|[ o {lo e O gan + [ . R} a

+2E sup / (0™(s,u”(s))dWy(s),u"(s))2 ]
o<t<TAry |Jo
(3.43) +2E OSts;T];;T& /0 /n (Y (s—,u"(s—), 2),u"(s—))2 N(ds, dz)

Let us take the fourth term from the right hand side of the inequality (3.43) and use
the Burkholder-Davis-Gundy inequality (see Theorem 73, Chapter 4, [34], Theorem
3.50, [33]), Holder inequality and Young’s inequality to get

|

E sup

0<t<TATY,

/0 (0" (5, u"(5)) AW, (s), " (5)) .
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1/2

< V2E

TNty 9 5
/0 0™ (1, 0™ (0)) 12 2.y 10" (D)ol

1
(3.44) <gE| sup Ju™ ()22 | +4E

0<t<TATE,

TNty )
/0 o (0 ()12 eyl -

Using the Burkholder-Davis-Gundy inequality, Holder inequality and Young’s in-
equality on the final term from the right hand side of the inequality (3.43), we
obtain

o ([ ot
< VE [/T AT >1L2|yu<>|y§2A<dz>dt]m

e[ [ " .z

Applying (3.44) and (3.45) in (3.43), we get

oo

1
(3.45) §E[ sup  |[u"(t H]L2
0<t<TATY,

) ) T/\TXI 5
E| sip [0 <2E[||uorL2]+20NE[/ \u“(twpdt}
0<t<TATY, 0
T/\T]T\Z 9
| 18E [ [ (1o e
(3.46) +f ||v”<t,u"<t>7z>uizA<dz>>}dt-
Zin

Using Property 2.5 in (3.46), we find

E

sup Hun(t)Hiz]

0<t<TATY,

T
(3.47) < 2E [||uo]3.] +2(C’N+9K)/0 E[ sup (1+]u”(3)]\i2)] dt.

0<s<tATY,

An application of Gronwall’s inequality on (3.47) yields

(3.48) E

IO | = (1422 o)) 000
0<t<TATY,

A calculation similar to (3.41) yields limM_Nx)IP){w e < T} = 0 and thus
as M — oo, T N7}, — T. Let us take the limit M — oo in (3.48) and use the

dominated convergence theorem to obtain the estimate (3.28). u

The It6 stochastic differential equation satisfied by Ju(-) with the cutoff function
Py (-) in (0,7) can be written as

P u(t) =~ () la2)3° [(t, wpu(®)] dt + ol u(t)) dW()
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+/sz(t—,u(t—),z)J\7(dt, dz),
z
with u(0) = uy.

Proposition 3.6. Let u”™(-) be the unique solution of the system of stochastic ODE’s
(3.26) with vy € L?P(Q;H*(R")), for s > n/2+2 and p = 1,2,---. Then, under
Property 2.5 and (2.6), we have the following a-priori energy estimate:

(3.49) E [ sup [u()]|2 | < (1 42K [Huonﬁ]{;]) LCNKRpTIT
0<t<T

Proof. Let us define the sequence of stopping times 7y, to be

(3.50) TN = %Eg {t e ()| > M}

Now we apply Ito’s formula to ||Jsu”(-)||i€ to get

[u™(t A7) 172 = [lu™(0)][2%
TR n 2p—2 n s ny..n s..n
9 /0 ™ ()22 (v ([l J° [ (5, u")u™], *u™(5)), ds
tAT}&I n 2p—2 s.n n s..n
+2p /0 I ()22 (3507 (s, u™ () AW, (5), J°u"(s)),.
t/\TXLI n 2p—2 n n 2
Fp2p—1) /0 ™ () 220 (5, 0™ () 12, g2 ey
tATﬁI n n n 2p n 2p
T /0 / (uu (8) 47" (5,0 (), 2)[122 — [lu"(s) 22

— 2p|[u”(s) 272 (37 (s), I (5, 0" (5), 2)e )N(ds,dz>

t/\T]T\L/I _
s w0 [ Y (s (5, ). P ) s ),
0 Zn

We write the term (VP (]|u”||gs—1)J° [@7 (s, u™)u”], J°u"(s)), 2 as
(W ([0 [|gs-1)J* [« (s, " )u"], TP (s)) 2
= (O (f[u"lg=-1) 4 (s, 0")J*u"(s), J*u"(s))L2
(3.52) 4 (n([[u"[ge-1) (J° [ (s, u")u"(s)] = (s,u")I"u"(s)) , J*u"(s))L2 -

The term (P (|Ju”||gs-1)47 (s, u™)J*u™(s), J*u"(s)); > from (3.52) can be estimated
using (2.9) as

(W ([0 [lgs-1) < (s, 0")J*u"(s), J*u"(s))L2
1
(3.53) > = SN[ ) VAo [0 (5) [

For estimating the second term from the right hand side of the equality (3.52), we
use the Cauchy-Schwarz inequality and (2.11) to obtain

(W ([0 [[ge-1) (I [ (s, 0" )u"(5)] — & (s,u") 0" (s)) , J"u" (s))p:|
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< [n([u{lgs-1) (s, u™) I 0" (s) (L2 [|[ 770" (s)[|12
(3.:54) < ¥n(Jlu"(|ms-1) (CHVAHLOO + C([lu™{|zee) (14 [[Va" o) ) lu” () s
for s > n/2 + 2. Next we use (3.53) and (3.54) in (3.51) to get

(e A i) I

9 tATY
< 0" (0)lI5: +/0 11)N(||unHHS—1)<(20 + DIVA[Le
2
+ C([u"[Le) (1 + [[Va"||Le) ) [[u” () - ds

ATy, B
L op /0 0™ (5)[[2272 (3° 07 (s, ™ () )AWan(s), F*u"(s))p2

INTY -2/ n " 9
L p(2p— 1) / ™ (5) 1222 0™ (5, 0™ ()2 2.y 5

TR n n n 2p n 2p
/. : [u™(s) +v"(s,u"(s), 2) [l — 0" ()|

~ apllu () |22 (FPu(s >,J5v"<s,un<s>,z>>L2)N(dadz)

t/\TM ~
(355)  +2p / / [ 2272 (3% (5=, 0 (5= ), 2), 0" (s—) )2 N (ds, d2).

Now we take expectation in (3.55), use the property of the cutoff function, and use
the fact that the third and final terms from the right hand side of the inequality

(3.55) are local martingales having zero expectation to get
2
E [l (¢ A i) l172]

9 AT 9
<& [l2] + vz [ [ I olas)

AT
+p(2p— DE [ [ e 2||o"<s,u"(s))H%Q(Lz,Hs)ds]

+E[/O ™ /n (Hu"(s) —|—‘Yn(5,un(5),z)||§ﬂps _ Hun(s)”?mps
(3.56) — 2p[u”(s) || 2272 (JPu (s )7J3y"(s,un(8),z))“>)\(dz)ds].

By virtue of Taylor’s formula, we have

“l

[l " (o, 2) 2 = a2 = 2”72 (0, 7" ()
2p—2 2
(357 <Gy (IR w2 e+ I a2 ) -
Note that for p = 1, we have
2 2 2p—2
”un +yn('7unvz)”Hz - Hun”HpS - 2pHunH - ( njyn('7un’2))Hs

(3.58) = V", u”, 2)|lfs-



156 M. T. MOHAN AND S. S. SRITHARAN
By using (3.57) in (3.56), we obtain
E [l (¢ A 7)1

9 AT 9
<& [ll2] + vz [ [ I olas)
0

TR 2p—2 n n 2
+ GE ; o ($)llge = | 10" (s, 0™ ()2, 12,10

AT <dz>)ds]
(3.59) +CE[/MT / " (0™, 2) |22 A(d2)d ]

Let us use Property 2.5, (2.6) and the fact that |z|?P=2 < 1+ |z|?", for all p > 1, in
(3.59) to get

n n |2
E [l (¢ A7) 1]

¢
360 <[]+ ©x + Gl + ) | [ B (14 Jus n o) s
An application of Gronwall’s inequality on (3.60) yields
(361 E[[w@AT)IE] < (1+E |uglfh] ) eCrrnix,

for all t € [0,7]. A calculation similar to (3.41) shows that limM%OOIP’{w €N

Ty < t} = 0 and this implies t A 7y, — t as M — oo. Taking the limit as M — oo

in (3.61) and using the dominated convergence theorem, we get

(3.62) E [lu"(8)|&] < (1+E [Juolffs]) el O+,
for0<t<T.

Let us take the supremum from 0 to 75, := T' A 73, before taking the expectation
in (3.55) to get

2
E| sup [u"(t)[g

0<t<7T,

<E[|u"(0)I] + CnE

™o 2
; [ (@) || s dt

+2pE | sup / la™(s) (372 (3 “(su<>>dwn<s>,J8un<s>>m]
0<t<7y,
+p(2p— 1)E / ™ (1)1 2| 0" <tu<>>||%Q(Lz,Hs>dt]
{03% / / (uu (5) +v"(5, 07 (s), 2) |22 — 0" (s) 2
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[ ] e oyt o s
Now we take the third term from the right hand side of the inequality (3.63) and
use Burkholder-Davis-Gundy inequality and Young’s inequality to obtain

|

— 2p||u” (s) [l (T u"(s ),Jsv”(s,un(sw))p>N(d8,d2)

(3.63) + 2pE { sup

0<t<7y,

2pE[ sup / [u(s) |72 (356" (5, u™(5))dW, (s), J*u"(s)) .2

0<t<7y,

1/2
< C,E /0 [u™ (#)[|:% 2| o™ (tm”(t))ll%Q(m,Hs)df]

. 1/27
2p—1 M n n 2
< CLE | sup [[u”(t)||ge ; |0 (t,u (t))HLQ(Lz,HS)dt

0<t<7y,
L . - v

< 1E n 2p C.E M n n 2 d

< 2B | sup flu (@)l | +Cp lo™ (&, u™ () |2, (12, me) At
0<t<7Y, 0 |

1 n 2p p—1 Tar n
(3.64) <7 E| sup [u"(t)|y. | +CT"E lo™ (¢, ™ ()17 o2 d

0<t<7Y, 0

For the fifth term from the right hand side of the inequality can be estimated using
(3.57) as

[ sup <||u 8) +Y" (s, u"(s), 2) | — [0 (s) 5

O<t<T

— 2p[u”(s )||2p L (Fu(s ),JSY"(s,u”(S),Z))Lz)N(dt,dZ)

|

<CE / (e 2uv”<t,un,z>u%ﬁs+uv"u,un,z)\%%)Mdt,dz)]

=, / |, (i 2||v“<t,u",z>||ﬁs+||v”<t,u”,z>|§ﬂ%)x<dz>dt]-

The final term from the right hand side of the inequality (3.63) can be estimated
by using Burkholder-Davis-Gundy inequality and Young’s inequality as

2pE [ sup
0<t<7’"

1/2
/ /Hu Ol 2IIV”(t,u"(t),z)||12ﬁls/\(dz)dt]

// Ju™ | 2272 (J5y™(s—, u"(5—), ), J*u™) 2 N (ds, dz)

< C,E
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1/27
<GE | suwp ot (/ / Iyt " (6), 2) %A <dz>dt>
0<t<7y,

1P
1
§E[ sup |Ju" ()| + CpE / / Y™ (t, u™(t), 2)|| 3 A(dz)dt
4 lo<t<ry, |
1 n %
< EE sup (™ () [l
0<t<7y,

(3.66) + C,TP'E

/ / [y™ (¢, u"( )H%’i/\(dz)dt]

Let us combine (3.64), (3.65) and (3.66), and substitute it in (3.63) to get

9 .
; [[u” (t)]]7:d

™
A O o (LR T

b [ .G Jas

# 68| [ (1o )1 s
(3.67) + /Z Hy"(t,u”(t),z)\@ﬁi)\(dz))dt].

1 2
LE | sup (o)

<E[w(0)] + CnE
0<t<7Y,

By using Property 2.5, (2.6) and the fact that |z[??=2 < 1+ |2|?", for all p > 1, in
(3.67), we obtain

2 2
E| sup [l (IR2] <2 [Ju"(0)]2]
0<t<7Y,
N T
(3.68) +2<CN+Cp(K+Tp_1K)>/ E| s (14 w(s)E) | a
0 0<s<tATY;

An application of Gronwall’s inequality in (3.68) yields

(3.69) E| sup Hun@)H%pS < (1+2 [HU"(O)H%QD 62(CN+CP(K+TP—1[A())T.

0<t<7Y,

A calculation similar to (3.41) yields limM%wP{w e < T} = 0 and thus

as M — oo, T N7}, — T. Let us take the limit M — oo in (3.69) and use the
dominated convergence theorem to get the estimate (3.49). O

Corollary 3.7 (H®—energy estimate). Let u™(-) be the unique solution of the system
of stochastic ODE’s (3.26) with ug € L2(Q;H*(R")), for s > n/2 + 2. Then, we
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have the following a-priori energy estimate:

(3.70) E[sup [ ()| | < (1+ 2E [[|ug||f.]) e2(ON 5T,

0<t<T

4. EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS

In this section, we discuss the local, and global solvability (under the smallness
assumptions on initial data and some extra assumptions on the noise coefficients)
of the symmetric hyperbolic system (2.1). In order to do this, we first prove the
existence and uniqueness of the system (3.26).

4.1. Local Strong Solution. Let us now prove that the system (3.26) has a unique
solution by exploiting the local monotonicity property (Theorem 3.4) of the non-
linear operator with cutoff function and a stochastic generalization of the Minty-
Browder technique. Similar existence results for deterministic quasilinear symmetric
hyperbolic system can be found in [30] and 2 — D stochastic Navier-Stokes equations
can be found in [28, 36].

Theorem 4.1 (Local Existence and Uniqueness). Let ug € L*(Q;H*(R")) be
Fo—measurable with s > n/2 + 2 be given. Then there exists a strong solution
u(-) to the problem (3.26) such that

(i) u e LY (L0, T H*(R))),
(1i) the Fy—adapted paths of u(-) are cadlag.

Proof. Let us prove Theorem 4.1 by using a stochastic generalization of the Minty-
Browder technique of local monotonicity in the following steps:

Step (1). Finite-dimensional Galerkin approximation of (2.1) and energy equality:
Let {e1,ez,---} be a fixed complete orthonormal system in L2%(R") belonging
to H*(R™). Let L2(R") := span{ej, ez, - ,e,} be the n—dimensional subspace
of L2(R™). Let us now consider the following It6 stochastic differential equation
satisfied by {u"(-)}:
du”(t) = —F(u"(¢))dt + o™ (¢t,u" (t))dW,(t)
(4.1) +/ Y (t—, u"(t—), )N (dt, dz),
un(o) = uy,
where F(u"(t)) = by (|[u"||gs-1) < (t,u)u"(t) and the energy equality
¢
o™ (@) = [u"™(0) e — 2/0 (F(u"(s)), u"(s))gs-1 ds
t
2 [ (07 (50" (5) AW, (9. 0" (5)
0
t
o s 6D gy

t Ps— u(s=), 2) |71 s,dz
+/O/nw (5=, 1" (5-), 2)|[3 1V (ds, dz)
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t ~
(4.2) w2 [ ] s (s N ),
0 n

for all t € [0,7] and s > n/242. Let us now apply It6’s formula to e~"(*) Ju™ () 121
to get

d (e u" ()] )

= — "W (2P (u" (1)) + ()" (1), W (1) )gpen dt
+2e77® (6™ (¢, u™(£))AW,, (), u™ () ) ggo—1
+ e W0 (t, u ()71 -1y A

e [y (0, 9) BN (dt, de)
Zn

(4.3) +2¢77() / (Y™ (t—, u™(t=), 2), u™ (t—))ge 1 N (dt, dz).

Note that the second and final terms from the right hand side of the equality (4.3)
are martingales having zero expectation. Let us now integrate the equality (4.3)
from 0 to t and then take the expectation to obtain

E [0 u (1) 13

— E [0 (0) 1

~a ] [ @)+ () ) ]

(4.4) +/ Iv"(, un(t),z)llﬁs—d(dzo ds] ;

for all ¢t € [0,T].

Step (2). Weak convergence of the sequences u”(-), F(u”(-)), o™(-,-) and y"(-, -, -):
Using the energy estimates in Proposition 3.6 and Corollary 3.7, and the fact

that L* (Q;1L°°(0, T; H*(R"))) = (]L‘l/3 (Q;Ll(O,T;H*S(Rn))))*, where X* denotes

the dual of X, along with the Banach-Alaoglu theorem, we can extract a subsequence

{u"} of {u™} which converges to the following limits (for notational simplicity, we

denote the index ng by n):

u”(-) 5 u(-) in LY(Q; L>°(0, T; H (R™))),
(4.5) u(T) % n € L2(Q; H¥ (R™)),

*

F(u"()) 5 Fo(-) in L2( L2 (0, T3 H L (R™))).
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The final convergence (4.5) is obtained by using the Moser estimates (2.8) and the
algebra property of H*~! as

E | sup ||1J)N(Hu”]Hs_l)d(t,u")u"(t)\]%Is_l]
0<t<T
n 2
. ou"(t)
<E| su 2 (™[ ggs— Al(t,z,u" 25, S
- 0§t£T vl 1)ZH ( Mg O ||gs—

j=1

< CyE

sup IIH"(t)II%Is]
0<t<T

(4.6) < On (14 2E [|Jug|}]) eXONHIEIT,

and the right hand side of (4.6) is finite, since u™ € L2(Q;1L°°(0, T; H*(R"))), and
independent of n. From the linear growth property (Property 2.5) and energy
estimates given Proposition 3.6 and Corollary 3.7, we have

T T
E o™ (t, 0" ()] % L2, msydt + " (t, 0™ (), z) || fs A(d2)de
0 EA o Jz,

T
< ke[ @+ i) af
47 < KT(1 + (14 2E [[[uo|%]) e2<CN+9K>T) < too.

Thus, we can extract subsequences {o”*(-,u"*)} and {y"™*(-,u",-)} which converge
to the following limits (denoting the index ny by n):

4.8
49 Y (- u”, ) B () in MG (L H?).

As discussed in Chapter 6, Theorem 7.5, [11] (see Theorem 2.6, [36], Theorem 3.2,
[37] also), we extend the time interval from [0,7] to an open interval (—u,T + p)
with > 0, and set the terms in the equation (4.1) equal to zero outside the
interval [0, T]. Let ¢(t) be a function in H(—u, T + u) with ¢(0) = 1. Let us define
ej(t) = ¢(t)e; for all 5 > 1, where {e;} is the fixed orthonormal basis in L?(R")
belonging to H*(R™). Applying the It6 formula to the process (u"(t),e;(t))L2, one
obtains

{ 0" (-, u")P, % &(-) in L2(Q;1L2(0, T; Lo (L2, H?))),

(u"(T), ;(T))r2
T e
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We can take the term by term limit n — oo in (4.9) by using the weak convergence
given in (4.5) and (4.8). For instance, let us consider the stochastic integral present
in the fourth term from the right hand side of the equality (4.9) with j fixed. Let Pp

denote the class of predictable processes with values in L?(2;1L2(0, T; Lg(IL2,1L2)))
with the inner product defined by

T
(0,0)p, =E [/0 Tr(G(t)QC*(t))dt] for all 0,C € Pr.

Also, let us define the map Y : Pr — L2(;1L%(0,T)) by

t
T(6) = [ (G6)aW().e5(s))
for all t € [0,T]. Clearly the map Y is linear and continuous. Note that the weak
convergence of 0™ (-, u™)P,, < ®(-) in L2(Q;L2(0, T; Lo (L%, 1.2))) (see (4.8)) implies

that (0" (¢, u"(t))Py, O)p, — (P(1)dW(?), {)p,. for all ¢ € Pr as n — oco. From this,
as n — 0o, we conclude that

t
Yo" (1" (0)P) = [ (" (0 (O)PuAW(s)oe(5)r
t
= [ @OW(s)e (o)
for all t € [0,7] and for each j.
Now we consider the stochastic integral present in the final term from the right
hand side of the equality (4.9) with j fixed. Let &1 denote the class of predictable

processes with values in M2 (see (2.5) for definition and Chapter 3, [25]) associated
with the inner product

T
(v,a>,@T=E[ [ [ o ennasar) oranv.ee o

Let us now define the map ¥ : 21 — L2(Q;1L2(0,T)) by

t ~
Z(K):/O / (K(s—,w,z),ej(s—))L2N (ds, dz),

for all t € [0,T]. It can be easily seen that the map ¥ is linear and continuous.
Also, the weak convergence of y™(-,u”,-) = ¥(-,-) in MZ(L%L?) implies that
(Y (t,u"™(t), 2), &) 2, — (V(t,2),&) 2., for all & € P and t € [0,T], as n — oo.
Thus, as n — oo, we have

2w (©.2) = [ ] 67 (50).2) 6 (5N 5,02

. /Ot /Z(\Il(s—, 2), ei(s—) 2N (ds, dz) as n — oo,

for all ¢ € [0,7] and for each j. Here, we used Property 2.5 (see (P.3)) and that
Zo 7 with MN(Zy) < +00.
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Let us pass to limits termwise in the equation (4.9) to get

(177 ej)]de)(T) (u()v eJ)JL2 +/ (u ( )’ dﬁi )ej>IL2 dt

/¢ ) (Fo(t e]Lth+/¢ W(t),ej)p2

(4.10) + /O /Z S(t—) (U(t—, 2), ;) N(d, d2).

Now we choose a subsequence {¢p} € H'(—p, T + u) with ¢,(0) = 1, for k € N,
such that ¢ — x¢ and the time derivative of ¢y converges to d;, where x(s) = 1,
for s <t and 0 otherwise, and d§;(s) = (¢t — s) is the Dirac d—distribution. Using
¢ in place of ¢ in (4.10) and then letting k& — oo, we obtain

(u(t), ¢j)> = (uo, €)1 —/ (Fo(s), ¢j)L2 dS/O (®(5)dW(s), €))L

(4.11) / / )y €5)p2 N (ds,dz),
for all t < T with (u(T),e;) = (n,e;) for all j. Thus, we have

)
t t t ~
(4.12)  u(t) :uo—/o Fo(s)ds+/0 @(s)dW(s)—k/O /Z\If(s—,z)N(ds,dz),
€j i)

with (u(T"),e;) = (n,¢ej). Also u(-) satisfies the It stochastic differential
du(t) = —=Fo(t)dt + ©(¢)dW(¢) + / U(t—, 2)N(dt,dz),
(4.13) VA
u(0) = uy,

and the energy equality
t
(O s = olfens =2 [ (Fo(s), ) d
t
2 [ @@aw(s), <>H91+/ (5) 12, o ggeryds

/ /qu 8, 2)||Fs—1 N (ds, dz)

(1.14) 2 / [ (Ws=2) 0l ) (s, ),
0 Jz
for all ¢ € [0,T]. A calculation similar to (4.4) yields

E (e u(t) 3]
- [e—r<0>||u0||§ﬂ5,l} _E [ /0 L) (2Fo(s) + (s)u(s),u(s))Hs_lds]

t
119) B | [ O (100 mods+ [ 190,2)Boix@)) as].
0 Z
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for all ¢ € [0,T]. Also, it should be noted that the initial value u"(0) converges to
u(0) strongly, i.e.,

(4.16) lim E [[[u”(0) — uo|/fs] = 0.

n—oo
Step (3). Local Minty-Browder Technique and Local Strong Solution:

Let us now prove that F(u(:)) = Fo(+), o(-,u(-)) = ®(-) and y(-,u(-),-) = ¥(-,-).
For v € L4(Q;1L°°(0, T; L2, (R™))) with m < n, let us define

t L
(4.17) r(t) = / <0N|V(s)||Hs + 2> ds,
0
so that 7(t) = 2 (Cn||v(s)|lus + g) a.e. For u”,v € By, from the local monotonic-
ity theorem (Remark 3.4), by using (3.11), we have

(Re
B [0 (20 (v0) - P (), v(0) w0
£ (0) (v(0) = 00, (1) — (0 )
> B[ [ 010 1v0) — o0 )y ]
(4.18) +E [ /0 ! e ® /Z ) V" (¢, v (t), 2) — Y™ (¢, 0" (t), z)H%HS_I)\(dz)dt] .

In (4.18), rearranging the terms and using the energy equality (4.4) to get
T
E [ /0 e QF(v(t)) + (t)v(t), v(t) — u"(t))ggo-1 dt]
T
[ [0 (o v O
+ [ v, 2@ ) a
T
+ 2E [ /0 e (0" (8, v(1)), 0™ (£, 0™ () £y (12 151 dt}
T
+2E [ / e [ (Yt v(t), 2), Yt u™(E), 2) g )\(dz)dt]
0 Zn
> T —7r(t) n . n
>E [/0 e (2F(u"(t)) + 7(t)u™(t), v(t))gs—1 dt}
T
~E [ /D e~ (2F (0™ (1)) + 7#(£)u™ (), u™ (£) g1 dt]

T
+E[[ o0 (||a R0 -

/ "™ (¢, 0" (t), 2) |3 1/\(d2)> dt]
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T
= e u” r(t)u” v 1
—E[/ D (2B (u"(1)) + P (1), v(E))g dt]

0
(4.19) +E [ O (T) s — 0"(0) s |
Note that

T
E /0 e " (2 (0" (t, v (1)), 0" (t, 0™ (1)) £ 12 o1

—[lo"(t, V(U)H%:Q(M,Hs—l)) dt]
T
=E [ / e 2 (a(t, v(t)), 0™ (t, 0" (1)) £y (121001 dt}
0
T
+E [ / e "2 (a"(t, v (1) — o(t, v(1)), 0™ (£, 0" (1)) £ (12 1051 dt}
0
T
_E [/0 e—r(t)||gn(t,v(t))||%Q(L2’HS1)dt]
T
<E [ / e 702 (a(t,v(t)), o™ (¢, u™(t))) Lo 1) dt}
0
T 1/2
w20 (B | [0 100, v(0) - oty O) o ] )
0
T
1200 +E[[ -0 v ]
0
1/2
where C' = (IE [fOT e~ H(Tn(t,u"(t))H%Q(Lz,qu)dt}) / . Then applying the weak
convergence (4.8) of {o"(-,u”(-)) : n € N} to the first term and the Lebesgue

Dominated Convergence Theorem to the second and third terms on the right hand
side of the inequality (4.20), we deduce that (see Proposition 4.6, [8])

T
E /0 e (® (2(Gn(t,V(t)),Gn(t>un(t)))£Q(L27HS_1)

_||0'7’l(t’ V(t))||%Q(L2,H571)) dt]

T
(4.21) %E{ / e (2<c<t,v>,<1><t>>£Q@z,Hs1>—||o<t,v<t>>||iQ<Lz,Hs1>)dt],

as n — 0o. Similarly one can prove that

T
E[/o o /n O v(),2),v" (t, 0" (1), 2) ) e

v (), ) )\(dz)dt]
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T
E /O 0 /n(2(y(t,v(t),z),\I/(t,z))Hs_l

(4.22) —Ilv(t. v (t), 2)lIfy-1) A(dZ)dt] ;

as n — oo. On taking liminf on both sides of (4.19), and using (4.21) and (4.22),
we obtain

T
e~ v r(t)v v(t) —u 1
E[ [ e @r o) + HovE. VO - uo)e dt]

&/ Cero (ot v O oo + [ V001 2) s ) ]

1 9E [ /O " e (o(t,v(1)). (1)) o o) dt}
49 [ /0 " /Z (vt v (1), ), Ut 2))gpes )\(dz)dt}

T
>E [ / e (2Fo(t) + r(t)u(t), v(t))ge1 dt]
0
(428) - liminfE [ (2) s — 0|
By using the lower semicontinuity property of the L2—norm and the strong conver-

gence of the initial data u™(0) (see (4.16)), the second term on the right hand side
of the inequality satisfies the following inequality:

timinf B [~ (T) s — 0" (0) s
(4.24) > E [e "D lu(D)]Fes — lluolEe-s]

Hence by using the energy equality (4.15) and (4.24) in (4.23), we find

T
e~ () v r(t)v v(t) —u 1
E[ e R + Vo, v(0) - a0 dt]

>E [/OT o0 <||cr(t,v(t))||iQ(L2,Hsl) + /Z ||Y(t,v(t),z)|]§ﬂsl)\(dz)> dt]
/T e (a(t, v (1)), D(1)) £ (1.2 e l)dt}

|
—2E [ / e m® / (t,v(t),2), U(t, 2))gs- 1)\(dz)dt}
+E| /0 O (100 it + [ 1900, ]

T
(4.25) +E [ /0 e (2Fg(t) + r(t)u(t), v(t) — u(t))ges dt}
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Thus, by rearranging the terms in (4.25), we obtain

T
E [ /0 e "W (2F(v(t)) — 2Fo(t) + 7(t) (v(t) — u(t)), v(t) — u(t))ge— dt
T
> E!/ e*r<t>(||o(t,v(t)) — ()12, 2 me )

0
(4.26) +/Z||y(t,v(t),z)—\Il(t,z)||]%ﬁs_1)\(dz))dt > 0.

The estimate (4.26) holds for any v € L4(Q; L°°(0, T'; L2,(R"))) for any m € N, since
the estimate (4.26) is independent of m and n. It can be easily seen by a density ar-
gument that the inequality (4.26) remains true for any v € L4(2; 1L°°(0, T; H* (R™)))
for s > n/2+2. Indeed, for any v € L*(Q; 1L>°(0, T; H*(R"))), there exists a strongly
convergent subsequence v, € L*(Q;1L>°(0, T; H*(R"))) that satisfies the inequality
(4.26).

Taking v(-) = u(-) in (4.26) immediately gives o(-,v(-)) = ®(:) and y(-,v(-), )=
(-, -). Let us now take v(-)=u(-)+Aw(-), A >0, where w € L4(£; L°>°(0, T; H* (R"™))),
and substitute for v in (4.26) to get

(4.27) E [ /0 ' e (2F (u(t) + Aw(t)) — 2Fo(t) + (1) AW (), AW () ) ggo 1 dt] > 0.

Let us divide the inequality (4.27) by A, use the continuity of P (-), the hemicon-
tinuity property of <7(-,-)-, and let A\ — 0 to obtain (see [30])

T

(4.28) E [ / e (F(u(t)) — Fo(t), w(t))gs dt} > 0.
0

The final term from (4.27) tends to 0 as A — 0, since

el [ ") (wi), i)
s [ (O lvOlle + 5 ) IOl at

1/2 1/2
§2CNTE{ sup ||v(t)||]%ls} E | sup ||w(t)||ﬁ“ﬂ51dt]
0<t<T

0<t<T

(4.29) +LTE | sup ||w(t)||Ze-dt| < +oo.

0<t<T

Thus from (4.28), we have F(u(t)) = Fo(¢) in L2(0,T;H*"!) and hence u(-) is a
solution of the system (3.26) and u € L*(Q,L>°(0,T;H*(R"))) for s > n/2 + 2.
From the energy estimates (see Proposition 3.5, Proposition 3.6 and Corollary 3.7),
u”(-) is almost surely uniformly convergent on finite intervals [0,7] to u(-), from
which it follows that u(-) is adapted and cadlag (Theorem 6.2.3, [1]). O

Now, we prove that the strong solution u(-) of the system (3.26) is pathwise
unique.
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Theorem 4.2. Let ug € L*(Q;H*(R")) be .Fo—measurable for s > n/2 + 2. Let
u; € LA(Q;1L°°(0, T; H*(R™))), j = 1,2, be two .#;—adapted processes with cadlag
paths that are strong solutions of (3.26) having same initial value u;(0) = ug. Then

uy(t) = uy(t), for allt €10,T], a. s.
Proof. For i = 1,2, we define sequences of stopping times as

QM:{m%%ﬂwwmmsz}

(4.30)
T, if the set {---} is empty,

and
v = Cm A G,
Let us apply It6’s formula to [[u; — ugl|3,_; to obtain

[ (A Car) — w2t A Car)l[s
— INCM o
e A (A EZE

— Py (||ugllgs—1) (s, uz)uz, u; — u2)H571dS

tACM
+ 2/ ((o(s,u1) — o(s,u2))dW(s), u; — ug)gs—1
0
INCM
[ ot ) = oo, )l
A )
+ /Mvsmj V(s 2, )3 N (ds, d2)

tACM "
(4.31) + 2/ / —,uy,2) —y(s—,ug,2),u; — ug)y.—1 N(ds,dz).

By using (2.9), (2.11), (2.14) and properties of the cutoff function, we estimate the
first term from the rlght hand side of the equality (4.31) as (see (3.11), Theorem
3.4)

(W ([Jug flgs—1) 27 (s, ur)ur — W (|luzllgs—1)e (s, u2)uz, ur — ug)y.-1|
(4.32) < Cn (Jwallms + [Juzllme) ur — ugllfe—s

Let us take supremum over 0 to 7" and then take expectation in (4.31) to obtain

E | sup [[ui(tACar) — uat A Car)l|Fss

0<t<T ]

TACM )
< CnmE {/ lur — uzIIHS_ldS]
0

TN
L (o) = os, o) s

/||Y s,ui, 2) —v(s,uz, 2 )H]%Isl)\(dz))ds]

+E
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tACM
+2E | sup / ((o(s,u1) — o(s,u2))dW(s),u; — ug)ys—1 ]
0<t<T |J0
tACh _
(4.33) +2E | sup / / (v(ur,z) —y(uz, 2),u; — u2)g.—1 N(ds,dz)|| .
0<t<T | Jo 7

By using Burkholder-Davis-Gundy inequality and (P.3) (see Property 2.5), we get

E | sup [lui(tA Q) —ua(t A CM)H?HIS—I]
0<t<T
T
(4.34) <2(Cyy+9L)E / sup  [lui(s) — ua(s)||F—1ds| .
0 0<s<tAlnm
An application of Gronwall’s inequality in (4.34) yields
(4.35) uy (t A Car) =ua(t A ), forall t € [0,7], a. s.
Let us now pass M — oo in (4.35) to find
(4.36) u (t) = ug(t), for all t € [0,7], a. s.,
and hence the uniqueness of strong solution to the system (3.26) follows. O

Let us now prove the unique local solvability of the system (2.1).

Theorem 4.3. Let (2, .%,(%)i>0,P) be a given probability space and ug €
LA(Q; H*(R™)) be Fo—measurable with s > n/2 + 2 be given. Then there exists
a unique strong solution (u,T) to the problem (2.1) such that

(i) u e LY(QL®(0, 7(w); H*(R™))),
(1i) the F;—adapted paths of u(-) are cadlag.

Proof. From the unique global solvability of the system (3.26), for each fixed integer
N >3 and 0 < T < oo, there exists progressively measurable cadlag process uy(-)
such that

(4.37) uy € LY(Q;L>°(0, T; H*(R™)))
such that

uy(t) =ug — /Ot Yy (||un||ms—1)< (t,un)uyds + /Ot o(s,un(s))dW(s)
(4.38) —|—/Ot/Zy(s—,uN(s—),z)./\?(ds,dz),
for all 0 <t < T and almost all w € Q. Let us now define
(4.39) m = inf {t: Jux(®)]s = N}

For 3 < N; < Na, by an estimate similar to (4.34), we have
(4.40) uy, (t) = un,(t) for all t € [0, 7n, A TN,], a. s.,
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since T' > 0 is arbitrary. From the definition of the stopping time (4.39), we have
TN, < TN, a. s. We can now define

4.41 =l . S.
(4.41) 7(w) NI&TN(W) a. s.,
and
u(t) = lim uy(t), for 0 <t <7, a. s.
N—o0

Hence, (u,7) is a local strong solution to the problem (2.1).

Let us now prove that the local strong solution obtained above is unique. Let
us assume that the pair (u,7) is another local strong solution. Thus there exists
an increasing sequence of stopping times {7y, N > 1} converging to 7 such that
(un,7n) is a strong solution to (3.26) and

v =inf ¢ [lan ()]s 2
But from the uniqueness theorem (Theorem 4.2), we have uy(t) = un(t), for all
t € 0,78 ATN], a. s., for N > 1. Let us take N 1 oo so that we get
(4.42) u(t) =u(t), for allt € [0,7 AT], a. s.

From (4.42), we can easily conclude that 7 = 7, a. s. If 7 # 7, then either 7 > T or
T <T,a.s. If T <7, then by using uniqueness (4.42), we have

lim | su Fem (S = lim | su Femu(s

pren Ogsgt ”X{T<T} ( )’ HS:| Ntoo |:0<S<I:_N HX{T<T} ( )‘ Hs:|

4.43 = lim | su =enu(s)||... | = o0

(4.43) lim L<S<I;N X (7<ryi(s)] H] :
contradicts the fact that u does not explode before the stopping time 7. Similarly
T > 7 is also not possible and hence 7 =7, a. s. O

In order to prove the probabilistic estimate of 7, we assume that
(444)  (CIVAles + C(lullie) (1 + [Vullie) ) < € (1+ [ullfc)
for >1and s >n/2+2.
Theorem 4.4. For a given 0 < d < 1, we have
(4.45) P{T > 5} >1- 05%{1 + 28 [||uo|Z ] }
for some positive constant C independent of ug and §.

Proof. Let u(-) be the solution of (3.26) constructed in Theorem 4.3, and define the
stopping times

. = i . S. =1 : s > .
(4.46) T ngnoo TN, a. s., where 7y %Izlg {t la(t)|lms > N}

For each § > 0, by using (4.44), a calculation similar to (3.63) yields

E

sup ||u(t)||12als]
0<t<6ATN
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|

OINTN
<E [[[uolf3e] + C(1+ NO)E [ / uu<t>rﬁsdt}

+9F /0 (0(s,u(s))dWy(s), u(s))gs

sup
0<t<dATN

ONTN 5
[ ot )10

+|[ o 5 (6000, 2l Ad2)

(4.47) +2E | sup

0<t<dNTN

/Ot / (=), 2) (s s 02)

] |

Let us use Burkholder-Davis-Gundy inequality and Property 2.5 to obtain

E| sup Hu(t)llﬁs]
0<t<SATN
INTN
(4.48) < 2E [|luo||Z:] +2C(1 + N” + 9K)E [/ ||u(t)HI2HIsdt} :
0
An application of Gronwall’s inequality in (4.48) yields
(4.49) E [ sup |lu(t A TN)H%;HS] < (1 4 2E [JJugf}:]) 2CU+N+9K)
0<t<é

where C' is a positive constant independent of u, N and §.

For the given 0 < § < 1, there exists a positive integer N such that
1 1 1

08 < —.

N+17 N

From the definition of 7y and 7(see (4.46)), we have

A

P:= {w €Q: sup |lu®)|lms < N}

0<t<INTN
(4.50) QQ:Z{wGQ:TN>6}QR::{wGQ:T>5}.

In order to prove the first inclusion P C @, let us take an w € P. Then, there are
two possibilities, either 7 (w) > 6 or 75 (w) < 4. If 7n(w) > §, then clearly w € Q.
Now, if 75 (w) < §, then 75y A 0 = 7y and the supremum norm inside P exceeds N
for all the trajectories and the set P is empty and hence P C ). For the second
inclusion, we take w € @ and thus 7n(w) > §. Let us assume that w ¢ R, so that
we get 7(w) < d. But from the definition of 7, we know that 7 (w) < 7(w) < 0, a
contradiction. Hence w € R and () C R. Thus it follows that

]P{T > 5} > P{TN > 5} > ]P’{ sup.[ju(t A7) e < N}

0<t<
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=P< sup ||u(t/\7‘N)||12HIs < N?
0<t<é

1
>1——=E| sup |[lu(tA71n 2
- <o<t<5” (A )l

1
>1— ~z (1 +9E [Huo”%ﬂ&]) eQC(1+Nﬁ+9K)5

(4.51) > 1—C65 (142K [||luol|Z]),

where we used the Markov’s inequality, (4.49) and

12
:1—
(rx)

Note that in (4.51), C' is a positive constant independent of § and uy. O

1 1 9
WSW(N-FI)(;

N
™I

2
<498,

Similar ideas for proving the positivity of the stopping time for stochastic quasilin-
ear hyperbolic systems can be found in Theorem 1.3, [21], stochastic Euler equations
can be found in Theorem 2.14, [29], and stochastic non-resistive MHD equations
can be found in Theorem 3.17, [26].

4.2. Global Strong Solution. In this subsection, we obtain the global solvability
results under the smallness assumptions on initial data and certain conditions sat-
isfied by the noise coefficient. A similar theorem for multiplicative Gaussian noise
was obtained in Theorem 1.4, [21]. For the global existence, we assume that each
AJ’s is independent of (¢,x) and A7 € C*(R™). Hence, there is a nondecreasing
function ¢; : [0,00) — [0, 00) such that

(CIVAIL= + C(lullu=) (1 + [ Vulli) )

n
(4.52) < O3 b (Ivlhgos) [V lzo 1 [V, for all v € HE(R™),
j=1

for some constant C' > 0.

Theorem 4.5. Let (u(-),7) be a solution of the stochastic quasilinear symmetric
hyperbolic system (2.1) under the assumption: (4.52) and there exists constants
K; >0,i=1,2,3 such that

2

bl

]LZ

Killu(®)li < | (ot u)Q"2e;, 3*u(t))
j=1

(4.53)
lo(t, u(t)l| g 2me) < Kolat)]e:,

Iv(tu(t), 2)llis < Kallu(®)llse and A(Z) < +oc,
with K3 sufficiently small and
(4.54) 0 < K3 < 2Kj,
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along with (P.2) in Property 2.5. Let 0 < € < 1 be given, then there exists a k(e)
such that if E (||uo|Z.) < k(e), then we have

(4.55) P{WGQ:T:+OO}>1—€.
Proof. Let us define the sequence of stopping times 75 to be
4. ::'f{t: t s>5},
(4.56) To(w) = nf (¢ u(t)llgs =

for 0 < & < 1. Let us define Y(t) = |lu(t A 75)||%s, so that Y(-) satisfies the Ito
stochastic differential equation:

dY (t) = X[0,7] < —2((ABt NT15,u) + A (t ANT15,0)) JPu, Ju)
ot ule AT e + [ It e A7), ) [BeAG) )

+2 3 NP0 (FP0(E A 75, )ej, °0) 2 dB;(2)

J=1
T X[0,7s] /z [2 Iy ((t A T5)— 1, 2), I )
(4.57) Iyt A oy, 2) [ | V(A ),

where (Z(-,u) + & (-,u)) J*u = J*[</(-,u)u]. Let us denote
It 1, 2) = Xjorg) [2(PV((EAT5) =0, 2), W) + [y(EA 75,0, 2)|[f] -
Let us choose 0 < a < % and n > 0 and apply Ité’s formula to (n + Y(+))* to find
(n+Y()" = (n+Y(0)"

t
+a / (n+Y(5))* o ( —2((B(s A5, 0) + (s A7s,0) Tu, o)
0
T llots, uls A 75Dy g mey + / (s A 75, z>||%{sx<dz))ds

t
+2a/0(77+Y ) 1ZA/X[M] (J5o(s A 7s,u)e;, Ju);, dB;(s)
j=1

t
+2a(a—1)/(n+Y Zz\jxgm]} (J%o(s A 15,1 )e],JuLQ‘ ds
0
7=1

// (n+Y(s=) +9(s—, u,2))* — (n+ Y(s—))*) N(ds, dz)
// M+ Y(s)+9(s,u,2))* = (n+Y(s))*

(458)  —a(n+Y(s)* (s, u, z)))\(dz)d



174 M. T. MOHAN AND S. S. SRITHARAN

Now we take the expectation on both sides of the equality (4.58) and note that the
third and fifth term from the right hand side of the equality are martingales having
zero expectation to get

E(n+Y(#)" =E@n+Y(0)"

+ QE[/ (n+ Y(s))aflx[om] < —2((#(s N15,u) + 4 (s N15,u)) JPu, JPu) 2
0

ot A 75 e + [ 105 A7), 2)lA(a) as]

J=1

t o
—2a(l — a)E |:/ (n+Y(s))>2 Z AjX[0,7] |(J°a(s A 7s,u)ej, I°u), 2 ‘2 ds]
0

/Ot/z ((77+Y(s)+19(57u7 D) — (4 Y(5))°

+E
(4.59)
—a(n+Y(s)* (s, u, z)))\(dz)ds] .

), commutator estimates, Moser estimates and (4.44), we get
(Z(t,u) + F(t, 1)) J°u, J*u) 2|
< (C|IVA[lLe + C(llullre) (1 + [[Vualle)) [ulf

By using (2.9
|

(4.60) <O dj (lullgs-1) Il lullfs < COuflgs—1 |l
j=1
where C1 =377 $;(1). Let us use (4.60) and (4.53) in (4.59) to obtain
E(n+Y(t)*

<E(n+Y(0)*+aE [ /Ot(n +Y(s A T(;))a_l)([g’m] (2CC10 + K%)Y(s)ds}
~ 20t - @R[ [ (14 V)" 0 V705
+E {/ot/z ((’n +Y(s) +39(s,u,2))* = (n+Y(s))”

(4.61) —2a(n + Y(s))O‘_IX[Omﬂ (J3yv(s A 15,1, 2), J°u) 2 ))\(dz)ds] .

By using the inequality

(1-0a) 5

B> (1—a)b+c)?— A,

for all b,¢ > 0, and for all 0 < a < 1, we can estimate —2(1 —a) K3 (n+Y)*2Y? as

1— 2
(4.62) —2(1— a)K1(n+Y)*2Y2 < —2(1 — a)2K1(n + Y)* + 5! ao‘) K,
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since 0 < a < % and Y > 0. We now simplify the integrand in the final term from
the right hand side of the inequality (4.61), by using the inequality

(a+b)* <2%al* + |b|*) for a4+ b >0 and all a > 0,
Cauchy-Schwarz inequality, and (4.53) as

((n+ Y(5) +9(s5,,2)) = (0 + Y(5))°

= 20(n + Y(5)) " Xjo.ry (T¥(5 A 75,1, 2), ") 2 )
< (20 = 1)+ Y(5) + 2°[9(s, u,2)|"
200+ Y () X0 (5 A 75,1, 2) s s

(4.63) < ((2% = 1) + 2% (2K3 + K3)” + 2aK3) (n + Y(s))™
Let us substitute (4.62) and (4.63) in (4.61) to find
E(n+Y(#)*

<E(n+Y(0))* +2(1 - a)*Kint
+ [ (@20C15+ K3) + (20 = 1) + 2 (2K + K3)* + 20K3) A(2))

(4.64) —2a(1 — 01)2K1} x E [/OMT& (n+Y(s))*ds| .
Since K3 is sufficiently small, we can now choose sufficiently small 0 < é < 1 and
O<ax< % so that
(a(2CC16 + K3) + ((2% — 1) + 2%(2K3 + K3)* + 2aK3) M(Z))
(4.65) < 2a(1 — a)?K;.
Thus from (4.65), we obtain

(4.66) E(n+Y(1)* <E(n+Y(0)* +2(1 — a)?Kin°t.
Let us now pass n — 0 in (4.66) to get
(467) E (|[u(t A m)|[%) < B (Juol) . for all t > 0.

Let us define the set 4 to be
G = {w €N:75(w) < —I-OO}.

Now, by using the Markov’s inequality, (4.66), Jensen’s inequality and Hélder’s
inequality, we obtain

P(9) = ]P’{w (W) < +oo}
= ]P{ litnig}f [Xg”u(t A 7'5||Hs] > 5}
1 Pl 2«
< B timinf [y u(t A7) 3]

.. . , 1 2
= 5Tahtri£fE<Xf¢”“(MTé)IIH%) < o (luol2)
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(4.68) < <z {E (lmol) 1 < {E (luolie)} <,

for E (|luo||Z.) < ca6*. Hence, we have (4.55). O

Remark 4.6. If the Wiener noise W(-, ) contains only finite number of nodes, i.
e, A\j =0forall j >k, k> 2 and if 0(t,u) = u, then Theorem 4.5 holds, if there
exists positive constants K;,7 = 1,2 such that
( k

2
Kilullfs <X |(TPue;, Iu) .|
j=1

i

(4.69) k , ,
> AjlluejlfEs < Kollulff
j=1

Ky < 2K,

along with other assumptions in (4.53). Also, if the continuous martingale part
in the noise is Z?Zl oju(-)B;(-), where o; € R and 3;(-)’s are one dimensional
Brownian motions, then the global existence holds for any (a1, -, o) € RE.

If we consider more general forms of AJ’s, that is, A7 = AJ(¢,z,u), then the
estimate (4.60) reduces to

(B(t,0) + o/ (t, 1)) I*u, J*u)2| < Colulff,
for all u € H*(R"), ||ul|gs—1 < 1. Hence the necessary condition (4.65) becomes
(a(2C2 + K3) + ((2* — 1) + 2*(2K3 + K3)* + 2aK3) A(Z))
(4.70) < 2a(1 — a)?K;.

Note that (4.70) may not satisfy if Cy is not relatively small to K7, for sufficiently
small o and K3.
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