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convex, lower semicontinuous function and ∂φ(·) being the subdifferential of φ in
the sense of convex analysis). They proved existence theorems for both the convex
and nonconvex problems. More recently, in a nice paper Frigon [8] studied differ-
ential inclusions in RN with A ̸= 0 and proved existence theorems for convex and
nonconvex problems under general conditions. For related recent results concerning
multi-valued problems we refer to Papageorgiou, Rădulescu and Repovš [15, 16].
However, none of the aforementioned works deals with the problem of existence of
extremal trajectories and how these trajectories are related to the solutions of the
convexified problem (strong relaxation).

In this work, we establish the existence of extremal solutions and then show
that every solution of the convexified problem (that is, extF (t, x) is replaced by
F (t, x) = conv extF (t, x)) can be approximated by certain extremal trajectories
(strong relaxation). Our approach uses tools from multivalued analysis (see Hu &
Papageorgiou [11]) and the theory of nonlinear operators of monotone type (see
Barbu [5]).

2. Mathematical background

Suppose that (Ω,Σ) is a measurable space and X is a separable Banach space.
We introduce the following families of subsets of X:

Pf(c)(X) = {E ⊆ X : E is nonempty, closed (and convex)},
P(w)k(c)(X) = {E ⊆ X : E is nomempty, (weakly-) compact (and convex)}.

Consider a multifunction F : Ω → 2X\{∅}. The “graph of F” is the set

GrF = {(ω, x) ∈ Ω×X : x ∈ F (ω)}.

We say that F (·) is “graph measurable”, if

GrF ∈ Σ×B(X)

with B(X) being the Borel σ-field of X. If µ(·) is a σ-finite measure defined on Σ
and F : Ω → 2X\{∅} is a graph measurable multifunction, then the Yankov-von
Neumann-Aumann selection theorem implies that there exists a Σ-measurable map
f : Ω → X such that

f(ω) ∈ F (ω) for µ− a.a. ω ∈ Ω.

Such a map is called a “measurable selection” of F . In fact, we can find a whole
sequence of measurable selections fn : Ω → X n ∈ N such that

F (ω) ⊆ {fn(ω)}n≥1 for µ− a.a. ω ∈ Ω.

Given a multifunction F : Ω → Pf (X), we say that it is “measurable”, if for
every u ∈ X the R+-valued function

ω 7→ d(u, F (ω)) = inf[||u− x|| : x ∈ F (ω)]

is Σ-measurable. A multifunction F : Ω → Pf (X) which is measurable, it is also
graph measurable. The converse is true if there is a complete σ-finite measure µ(·)
defined on Σ.
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Now suppose that (Ω,Σ, µ) is a σ-finite measure space, X is a separable Banach
space and F : Ω → 2X\{∅} is a graph measurable multifunction. For 1 ≤ p ≤ ∞,
we introduce the set

Sp
F = {f ∈ Lp(Ω, X) : f(ω) ∈ F (ω) µ− a.e.}.

An easy application of the Yankov-von Neumann-Aumann selection theorem re-
veals that

Sp
F ̸= ∅ if and only if ω 7→ inf[||x|| : x ∈ F (ω)] belongs in Lp(Ω).

The set Sp
F is “decomposable” in the sense that

(E, f1, f2) ∈ Σ× Sp
F × Sp

F ⇒ χEf1 + χΩ\Ef2 ∈ Sp
F ,

with χE being the characteristic function of E ∈ Σ.
For every C ⊆ X and x∗ ∈ X∗, we define

|C| = sup[||x|| : x ∈ C],

σ(x∗, C) = sup[⟨x∗, x⟩ : x ∈ C]

with ⟨·, ·⟩ being the duality brackets for the pair (X∗, X). The function x∗ 7→
σ(x∗, C) is known as the “support function” of the set C.

Suppose V, Y are Hausdorff topological spaces and G : V → 2Y \{∅}. We say
that G(·) is “upper semicontinuous” (usc for short), if for all U ⊆ Y open, the set

G+(U) = {v ∈ V : G(v) ⊆ U} is open.

We say that G(·) is “lower semicontinuous” (lsc for short), if for all U ⊆ Y open,
the set

G−(U) = {v ∈ V : G(v) ∩ U ̸= 0} is open.

For any Banach space Z, on Pf (Z) we can define a generalized metric, be setting

h(C,M) = sup[|d(z, C)− d(z,M)| : z ∈ Z]

= max

[
max
c∈C

d(c,M), sup
m∈M

d(m,C)

]
for all C,M ∈ Pf (Z).

This is known as the Hausdorff metric on Pf (Z).
We know that (Pf (Z), h) is a complete metric space. If Y is a Hausdorff topo-

logical space, then a multifunction G : Y → Pf (Z) is said to be “h-continuous”, if
it is continuous from Y into the metric space (Pf (Z), h).

Let X be a reflexive Banach space and X∗ its topological dual. As before, by
⟨·, ·⟩ we denote the duality brackets for the pair (X∗, X). A multivalued map A :
D ⊆ X → 2X

∗
is said to be “monotone”, if

⟨x∗ − y∗, x− y⟩ ≥ 0 for all (x, x∗), (y, y∗) ∈ GrA.

We say that A is “strictly monotone”, if

⟨x∗ − y∗, x− y⟩ = 0 ⇒ x = y.

The map A(·) is “maximal monotone”, if

⟨x∗ − y∗, x− y⟩ ≥ 0 for all (x, x∗) ∈ GrA ⇒ (y, y∗) ∈ GrA.

This means that GrA is maximal with respect to inclusion among the graphs of
all monotone maps. If A(·) is maximal monotone, then GrA is sequentially closed in
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Xw×X∗ and in X×X∗
w (here by Xw (respectively X∗

w) we denote the Banach space
X (respectively X∗) endowed with the weak topology). If A is maximal monotone,
then for all x ∈ D, A(x) ∈ Pfc(X

∗).

Finally by L1
w(T,RN ) we denote the Lebesgue space L1(T,RN ) equipped with

the weak norm || · ||w defined by

||u||w = sup

[
||
∫ t

s
u(τ)dτ || : 0 ≤ s ≤ t ≤ b

]
, u ∈ L1(T,RN ).

Equivalently, we can define the weak norm as

||u||w = sup

[
||
∫ t

0
u(τ)dτ : 0 ≤ t ≤ b

]
.

3. The convex problem

In this section we consider the convexification of problem (1.1), namely the fol-
lowing periodic system{

−u′(t) ∈ A(u(t)) + F (t, u(t)) for a.a. t ∈ T,
u(0) = u(b).

}
(3.1)

We prove an existence theorem for this system, complementing Theorem 3.6 of
Frigon [8].

The hypotheses on the data of (3.1) are the following.

H(A) : A : D ⊆ RN → 2R
N

is a maximal monotone map with 0 ∈ A(0).

H(F ) : F : T × RN → Pkc(RN ) is a multifunction such that

(i) for every x ∈ RN , t 7→ F (t, x) is graph measurable;
(ii) for a.a. t ∈ T, GrF (t, ·) is closed in RN × RN ;
(iii) for every r > 0, there exists ar ∈ L1(T ) such that

|F (t, x)| ≤ ar(t) for a.a. t ∈ T, all |x| ≤ r;

(iv) there exists M > 0 such that for a.a. t ∈ T , all x ∈ RN with |x| = M and
all v ∈ F (t, x) we have

(v, x)RN ≥ 0.

Remark 3.1. Hypothesis H(F )(iv) is a multivalued version of the so-called “Hart-
man condition”. It was first used by Hartman [10] in the context of single-valued
Dirichlet systems. Hypothesis H(F )(iv) is more restrictive than condition (ST −2)
of Frigon [8] (the L2-tube condition). On the other hand hypothesis H(F )(iii) is
more general than hypothesis (F2 − 2) of Frigon [8]. In addition we do not need
condition (A3) of Frigon [8].

Let ϵ > 0 and g ∈ L1(T,RN ) be given and consider the following periodic system{
−u′(t) ∈ (A+ ϵI)(u(t)) + g(t) for a.a. t ∈ T,
u(0) = u(b).

}
(3.2)

Let Â : D̂ ⊆ RN → 2R
N

be a map such that for some ϑ > 0, x 7→ (Â − ϑI)(x)

is maximal monotone. Given (u0, g) ∈ D̂ × L1(T,RN ), we consider the Cauchy
problem

−u′(t) ∈ Â(u(t)) + g(t) for a.a. t ∈ T, u(0) = u0.
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From Barbu [6, p. 128] we know that this Cauchy problem has a unique solution

u(u0, g) ∈ W 1,1((0, b),RN ). Moreover, if (u0, g), (û0, ĝ) ∈ D̂ × L1(T,RN ) and u =
u(u0, g), û = u(û0, ĝ) are the corresponding solutions, then

|u(t)− û(t)| ≤ e−ϑt|u0 − û0|+
∫ t

0
e−ϑ(t−s)|g(s)− ĝ(s)|ds for all t ∈ T.

Therefore, if g = ĝ, then from the above inequality we see that the Poincaré map

u0 7→ u(u0, g)(b)

is a contraction and so by the Banach fixed point theorem we infer that it has a
unique fixed point.

Using these observations on problem (3.2), we can say that it has a unique solution
ξϵ(g) ∈ W 1,1((0, b),RN ) ⊆ C(T,RN ). The next proposition examines the solution
map ξϵ : L

1(T,RN ) → C(T,RN ).

Proposition 3.2. If hypotheses H(A),H(F ) hold, then the solution map

ξϵ : L
1(T,RN ) → C(T,RN ) is completely continuous (that is, if gn

w→ g in L1(T,RN ),
then ξϵ(gn) → ξϵ(g) in C(T,RN )).

Proof. Suppose that gn
w→ g in L1(T,RN ) and let un = ξϵ(gn) and u = ξϵ(g).

Exploiting the monotonicity of A and the fact that 0 ∈ A(0), we have

|un(t)|2 ≤ |un(s)|2 +
∫ s∨t

s∧t
2|gn(τ)||un(τ)|dτ for all 0 ≤ s, t ≤ b

with s ∨ t = max{s, t}, s ∧ t = min{s, t}. From Brezis [7, p. 157] it follows that

(3.3) |un(t)| ≤ |un(s)|+
∫ s∨t

s∧t
2|gn(τ)|dτ for all 0 ≤ s, t ≤ b, all n ∈ N.

Let mn = min
t∈T

|un(t)| and m̂n = ||un||∞ for all n ∈ N. From (3.3) we have

(3.4) m̂n ≤ Mn + c1 with c1 = 2 sup
n∈N

||gn||1 < ∞ .

On the other hand, from (3.2) we have

(u′n(t), un(t))RN + ϵ|un(t)|2 ≤ −(gn(t), un(t))RN for a.a. t ∈ T

(see hypothesis H(A)),

⇒ |un(b)|2 + 2ϵ

∫ b

0
|un(τ)|2dτ ≤ |un(0)|2 − 2

∫ b

0
(gn(τ), un(τ))RNdτ,

⇒ ϵ

∫ b

0
|un(τ)|2dτ ≤

∫ b

0
|gn(τ)||un(τ)|dτ for all n ∈ N

(recall that un(0) = un(b) for all n ∈ N);

⇒ ϵm2
nb ≤ m̂n

c1
2
,

⇒ ϵm2
nb ≤

c1
2
(mn + c1) for all n ∈ N (see (3.4)),

⇒ {mn}n≥1 ⊆ R+ is bounded,

⇒ {un}n≥1 ⊆ C(T,RN ) is bounded (see (3.4)).
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Since we are in a finite dimensional Banach space, the nonlinear contraction
semigroup generated by A is compact (see Barbu [5]). So, from Baras [4] (see also
Vrabie [17]), it follows that

{un(b)}n≥1 ⊆ RN is relatively compact,

⇒ {un(0)}n≥1 ⊆ RN is relatively compact,

⇒ {un}n≥1 ⊆ C(T,RN ) is relatively compact (see Vrabie [17]).

So, we may assume that

(3.5) un → û in C(T,RN ).

Hence û(0) = û(b). Also, on account of the monotonicity of A, we have

(u′n(t)− u′(t), un(t)− u(t))RN + ϵ|un(t)− u(t)|2 ≤
−(gn(t)− g(t), un(t)− u(t))RN

for a.a. t ∈ T,

⇒ 1

2
|un(b)− u(b)|2 + ϵ||un − u||22 ≤

1

2
|un(0)− u(0)|2

−
∫ b

0
(gn(t)− g(t), un(t)− u(t))RNdt,

⇒ |û(b)− u(b)|2 + 2ϵ||û− u||22 ≤ |û(0)− u(0)|2,
⇒ ||û− u||22 ≤ 0 (exploiting the periodic boundary condition),

⇒ û = u.

Therefore the Urysohn criterion for the convergence of sequences, implies that
for the original sequence we have

un → u in C(T,RN ) (see (3.5)),

⇒ ξϵ(gn) → ξϵ(g) in C(T,RN ),

⇒ ξϵ(·) is completely continuous.

�

Let pM : RN → RN be the M -radial retraction defined by

pM (x) =

{
x if |x| ≤ M
M x

|x| if M < |x| for all x ∈ RN .

We introduce the following modification of the multivalued perturbation F (t, x):

(3.6) F̂ (t, x) =

{
F (t, x) if |x| ≤ M
F (t, pM (x)) if M < |x|.

Using F̂ (t, x), we consider the following periodic system:

(3.7)

{
−u′(t) ∈ (A+ ϵI)(u(t)) + F̂ (t, u(t)) for a.a. t ∈ T,
u(0) = u(b).

}
Proposition 3.3. Assume that hypotheses H(A),H(F )(iv) hold and u ∈
W 1,1((0, b),RN ) is a solution of (3.7). Then |u(t)| ≤ M for all t ∈ T .
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Proof. We argue by contradiction. So, suppose that the conclusion of the proposi-
tion is not true. Then one of the following situations can occur:

(a) There exist 0 ≤ t1 < t2 ≤ b such that

|u(t1)| = M < |u(t)| for all t ∈ (t1, t2]

or
(b) |u(t)| > M for all t ∈ T .

First suppose that (a) holds. Then

(u′(t), u(t))RN + ((A+ ϵI)(u(t)), u(t))RN = −(f̂(t), u(t))RN

for a.a. t ∈ T with f̂ ∈ S1
F̂ (·,u(·)),

⇒ 1

2

d

dt
|u(t)|2 ≤ −(f̂(t), u(t))RN for a.a. t ∈ T (see hypothesis H(A))

⇒ |u(t)|2 − |u(t1)|2 ≤ −2

∫ t

t1

(f̂(τ), u(τ))RNdτ for all t ∈ (t1, t2] .(3.8)

Note that

(f̂(τ), u(τ))RN = (f̂(τ), pM (u(τ)))RN

|u(τ)|
M

for a.a. τ ∈ (t1, t2]

⇒ (f̂(τ), u(τ))RN ≥ 0 for a.a. τ ∈ (t1, t2] (see (3.6) and hypothesis H(F)(iv)),

⇒ 0 < |u(t)|2 − |u(t1)|2 ≤ 0 for all t ∈ (t1, t2] (see (3.8)),

a contradiction. Hence (a) cannot happen.
Next suppose that (b) holds. We have

1

2

d

dt
|u(t)|2 + ϵ|u(t)|2 ≤ −(f̂(t), u(t))RN for a.a. t ∈ T

(see hypothesis H(A)),

⇒ ϵ||u||22 ≤ −
∫ b

0
(f̂(t), pM (u(t)))RN

|u(t)|
M

dt ≤ 0

(see (3.6) and hypothesis H(F )(iv))

⇒ u = 0,

again a contradiction. �

Now we produce a solution for problem (3.7).

Proposition 3.4. If hypotheses H(A),H(F ) hold, then problem (3.7) has a solution
u0 ∈ W 1,1((0, b),RN ).

Proof. Consider the multifunction N̂ : C(T,RN ) → 2L
1(T,RN ) defined by

N̂(u) = S1
F̂ (·,u(·)) for all u ∈ C(T,RN ).

Hypotheses H(F )(i), (ii), (iii) imply that

N̂(u) ∈ Pwkc(L
1(T,RN )) for all u ∈ C(T,RN )

(see Hu & Papageorgiou [11, p. 21] and use the Dunford-Pettis theorem).
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Consider the set

Sϵ = {u ∈ C(T,RN ) : u ∈ λ(ξϵ ◦ N̂)(u), λ ∈ (0, 1)}.
For u ∈ Sϵ, we have

− 1

λ
u′(t) ∈ A

(
1

λ
u(t)

)
+ f̂(t) for a.a. t ∈ T, u(0) = u(b)

with f̂ ∈ N̂(u). As in the proof of Proposition, via hypothesis H(F )(iv), we have

|u(t)| ≤ M for all t ∈ T.

This means that Sϵ is bounded. So, we can apply the multivalued Leray-Schauder
alternative principle due to Bader [2, Theorem 8] (see also Gasinski & Papageorgiou
[9, p. 890]) and produce ûϵ ∈ C(T,RN ) such that

ûϵ ∈ (ξϵ ◦ N̂)(ûϵ),

⇒ ûϵ ∈ W 1,1((0, b),RN ) is a solution of problem (3.7).

�
Now we consider the following periodic system{

−u′(t) ∈ (A+ ϵI)(u(t)) + F (t, u(t)) for a.a. t ∈ T,
u(0) = u(b).

}
(3.9)

Combining Propositions 3.3 and 3.4 and using (3.6), we can state the following
existence theorem for problem (3.9).

Proposition 3.5. If hypotheses H(A),H(F ) hold and ϵ > 0, then problem (3.9)
has a solution uϵ ∈ W 1,1((0, b),RN ).

Next we let ϵ ↓ 0 to produce a solution of the “convex” problem (3.1).

Theorem 3.6. If hypotheses H(A),H(F ) hold, then problem (3.1) admits a solution
u0 ∈ W 1,1((0, b),RN ).

Proof. Let ϵn ↓ 0 and let un = uϵn (for n ∈ N) be the solutions of the approximate
problem (3.9), produced in Proposition 3.5. From Proposition 3.3 we know that

(3.10) |un(t)| ≤ M for all t ∈ T, all n ∈ N.
As in the proof of Proposition 3.2, using the result of Baras [4], we have that

{un}n≥1 ⊆ C(T,RN ) is relatively compact.

So, by passing to a subsequence if necessary, we may assume that

(3.11) un → u0 in C(T,RN ).

From Barbu [5, p. 124] we have

(3.12)
1

2
|un(t)− x|2 ≤ 1

2
|un(s)− x|2 +

∫ t

s
(fn(τ)− y, un(τ)− x)RNdτ

for all (x, y) ∈ Gr (A+ ϵnI), all 0 ≤ s ≤ t ≤ b and with f ∈ S1
F (·,un(·)), n ∈ N.

Hypothesis H(F )(iii) and (3.10) imply that

|fn(t)| ≤ aM (t) for a.a. t ∈ T, all n ∈ N.
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So, by the Dunford-Pettis theorem, we may assume that

(3.13) fn
w→ f0 in L1(T,RN ) as n → ∞ .

If in (3.12) we pass to the limit as n → ∞ and use (3.11) and (3.13), then

1

2
|u0(t)− x|2 ≤ 1

2
|u0(s)− x|2 +

∫ t

s
(f0(τ)− y, u0(τ)− y)RNdτ(3.14)

for all (x, y) ∈ GrA, all 0 ≤ s ≤ t ≤ b.

From (3.13) and Proposition 3.9 of Hu & Papageorgiou [11, p. 694], we have

f0(t) ∈ conv lim sup
n→∞

{fn(t)}n≥1

⊆ conv lim sup
n→∞

F (t, un(t))

⊆ convF (t, u0(t)) (see (3.11) and hypothesis H(f)(ii))

= F (t, u0(t)) for a.a. t ∈ T,

⇒ f0 ∈ S1
F (·,u0(·)) .

Then from (3.14) and Propositions 3.6 and 3.8, pp. 70 and 82 of Brezis [7] (see
also Theorem 2.1 of Barbu [5, p. 124]), we infer that u0 ∈ W 1,1((0, b),RN ) is a
solution of problem (3.1). �

4. Extremal solutions

In this section, we turn our attention to problem (1.1). To produce a solution for
this problem, we need to strengthen the conditions on the maximal monotone term
A(·) and the multivalued perturbation F (t, x).

The new conditions are the following:

H(A)′ : A : D ⊆ RN → 2R
N
is a maximal monotone map such that 0 ∈ A(0) and

c0|x|2 ≤ (h, x)RN for all (x, h) ∈ GrA, some c0 > 0.

H(F )′ : F : T × RN → Pkc(RN ) is a multifunction such that

(i) for all x ∈ RN , t 7→ F (t, x) is graph measurable;
(ii) for a.a. t ∈ T , x 7→ F (t, x) is h-continuous;
(iii) for every r > 0, there exists ar ∈ L1(T )+ such that

|F (t, x)| ≤ ar(t) for a.a. t ∈ T, all |x| ≤ r;

(iv) there exists M > 0 such that for a.a. t ∈ T , all x ∈ RN with |x| = M and
all v ∈ F (t, x) we have

(v, x)RN ≥ 0.

Remark 4.1. Hypotheses H(F )′(i), (ii) imply that (t, u) 7→ F (t, u) is graph mea-
surable and in particular for every u : T → RN measurable, the multifunction
t 7→ F (t, u(t)) is graph measurable (hence measurable, see Hu & Papageorgiou
[11]).

Theorem 4.2. If hypotheses H(A)′,H(F )′ hold, then problem (1.1) admits a solu-
tion û ∈ W 1,1((0, b),RN ).
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Proof. Hypothesis H(A)′ implies that Proposition 3.3 is true for the solution u(·)
of (1.1). So, we may replace F (t, x) by F̂ (t, x) (see (3.6)). We have

(4.1) |F̂ (t, x)| ≤ aM (t) for a.a. t ∈ T, all x ∈ RN .

Let E = {g ∈ L1(T,RN ) : |g(t)| ≤ aM (t) for a.a. t ∈ T}. For every g ∈ E, let
ξ0(g) ∈ W 1,1((0, b),RN ) be the unique solution of

−u′(t) ∈ A(u(t)) + g(t) for a.a. t ∈ T, u(0) = u(b).

On account of hypothesis H(A)′ and Proposition 3.2 we have that the solution
map ξ0 : L1(T,RN ) → C(T,RN ) is completely continuous, in particular then com-
pact. So, ξ0(E) is relatively compact in C(T,RN ). We set

K = conv ξ0(E) ∈ Pkc(C(T,RN )).

Invoking Theorem 8.31 of Hu & Papageorgiou [11, p. 260], we obtain a continuous
map γ : K → L1

w(T,RN ) such that

(4.2) γ(u) ∈ extS1
F̂ (·,u(·)) = S1

ext F̂ (·,u(·)) for all u ∈ K.

Consider the map η : K → C(T,RN ) defined by

η(u) = (ξ0 ◦ γ)(u) for all u ∈ K.

Using Lemma 2.8 of Hu & Papageorgiou [11, p. 24] together with the complete
continuity of ξ0, we infer that η is continuous. Also, by virtue of (4.1), η maps
K into itself. Therefore we can apply the Schauder fixed point theorem and find
u0 ∈ K such that

u0 = η(u0),

⇒ −u′0(t) ∈ A(u0(t)) + ext F̂ (t, u0(t))(4.3)

for a.a. t ∈ T, u0(0) = u0(b) (see (4.2)).

From Proposition 3.3, we have

|u0(t)| ≤ M for all t ∈ T,

⇒ F (t, u0(t)) = F̂ (t, u0(t)) for a.a. t ∈ T (see (3.6)),

⇒ u0 ∈ W 1,1((0, b),RN ) is a solution of (1.1) (see (4.3), (3.6)).

�

5. Strong relaxation

Let Sc be the solution set of the convexified problem (3.1). In this section we
prove a strong relaxation result approximating the elements of Sc with certain ex-
tremal trajectories. To do this we need to strengthen further the conditions on the
multivalued perturbation F (t, x).

The new stronger conditions on F (t, x), are the following.

H(F )′′ : F : T × RN → Pkc(RN ) is a multifunction such that

(i) for all x ∈ RN , t 7→ F (t, x) is graph measurable;
(ii) h(F (t, x), F (t, y)) ≤ k(t) |x − y| for a.a. t ∈ T , all x, y ∈ RN , with k ∈

L1(T )+;
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(iii) there exists a ∈ L2(T )+ such that

|F (t, x)| ≤ a(t)(1 + |x|) for a.a. t ∈ T, all x ∈ RN ;

(iv) there exists M > 0 such that for a.a. t ∈ T , all x ∈ RN with |x| = M and
all v ∈ F (t, x), we have

(v, x)RN ≥ 0.

Remark 5.1. Now the continuity and growth conditions on F (t, ·) are more re-
strictive.

Given x0 ∈ D̄, let Se(x0) be the solution set of the Cauchy problem

−u′(t) ∈ A(u(t)) + extF (t, u(t)) for a.a. t ∈ T, u(0) = x0.

With similar argument as in Section 4, we show that Se(x0) ̸= ∅. In fact for this
result we do not need hypothesis H(F )(iv) (the Hartman condition). Indeed in this
case, thanks to hypothesis H(F )′′(iii), we can produce an a priori bound for the
elements of Se(x0). To see this, let u ∈ Se(x0) ⊆ W 1,1((0, b),RN ). We have

(u′(t), u(t))RN + (f(t), u(t))RN ≤ 0 for a.a. t ∈ T, with f ∈ S1
extF (·,u(·))

(see hypothesis H(A)′)

⇒ 1

2
|u(t)|2 ≤ 1

2
|x0|2 +

∫ 1

0
|f(τ)||u(τ)|dτ,

⇒ |u(t)|2 ≤ c1 +

∫ t

0
2a(t)|u(τ)|2dτ for all t ∈ T, some c1 > 0,

⇒ |u(t)| ≤ M0 for all t ∈ T, some M0 > 0 (by Gronwall’s inequality).

So the arguments in Section 4 apply with M0 > 0 instead of M . In fact we have

that Se(x0)
C(T,RN )

is compact. Moreover, as before we may always assume that

|F (t, x)| ≤ a0(t) for a.a. t ∈ T, all x ∈ RN with a0 ∈ L2(T )+,

since we can always replace F (t, x) by

F̂ (t, x) =

{
F (t, x) if |x| ≤ M0

F (t, pM0(x)) if M0 < |x|.

Hypothesis H(F )′′(iv) is needed to guarantee that Sc ̸= ∅ (see Theorem 3.6).
Given u ∈ Sc, we will approximate it in the C(T,RN ) norm by a sequence in

Se(u(0)).

Theorem 5.2. If hypotheses H(A)′,H(F )′′ hold and u ∈ Sc, then we can find a
sequence {un}n≥1 ⊆ Se(u(0)) such that

un → u in C(T,RN ).

Proof. Since u ∈ Sc, we have

(5.1) −u′(t) ∈ A(u(t)) + f(t) for a.a. t ∈ T, u(0) = u(b)
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with f ∈ S1
F (·,u(·)). Let K ⊆ C(T,RN ) be the compact, convex set from the proof of

Theorem 4.2 (that is, K = conv ξ0(E) ∈ Pkc(C(T,RN ))). Given ϵ > 0 and v ∈ K,

consider the multifunction Lv
ϵ : T → 2R

N \{∅} defined by

Lv
ϵ (t) = {h ∈ RN : |f(t)− h| < ϵ

2m0b
+ d(f(t), F (t, v(t))), h ∈ F (t, v(t))}

with m0 = sup[||y||C(T,RN ) : y ∈ K] < ∞. It is clear that

GrLv
ϵ ∈ LT ×B(RN )

with LT being the Lebesgue σ-field of T . So, we can use the Yankov-von Neumann-
Aumann selection theorem and produce a measurable map l : T → RN such that
l(t) ∈ Lv

ϵ (t) for a.a. t ∈ T .

Now we consider the multifunction Γϵ : K → 2L
2(T,RN ) defined by

Γϵ(v) = {h ∈ S2
F (·,v(·)) : |f(t)− h(t)| < 1

2m0b
+ d(f(t), F (t, v(t))) for a.a. t ∈ T}.

We have just seen that Γϵ has nonempty values (in fact hypothesis H(F )′′(iii)
implies that Γϵ(v) ∈ Pwkc(L

2(T,RN )) for all v ∈ K). In addition, Γϵ(·) has de-
composable values and it is lsc (see Hu & Papageorgiou [11, Lemma 8.3, p. 239]).

Therefore u 7→ Γϵ(u) is lsc and we can apply Theorem 8.7 of Hu & Papageorgiou
[11, p. 245] and produce a continuous map γϵ : K → L2(T,RN ) such that

γϵ(v) ∈ Γϵ(v) for all v ∈ K.

This means that

|f(t)− γϵ(v)(t)| ≤ ϵ

2m0b
+ d(f(t), F (t, v(t)))

≤ ϵ

2m0b
+ h(F (t, u(t)), F (t, v(t)))

≤ ϵ

2m0b
+ k(t)|u(t)− v(t)| for a.a. t ∈ T(5.2)

(see hypothesis H(F )′′(ii)).

Also Theorem 8.31 of Hu & Papageorgiou [11, p. 260], gives a continuous map
rϵ : K → L1

w(T,RN ) such that

(5.3) rϵ(v) ∈ extS2
F (·,v(·)) = S2

extF (·,v(·)) and ||γϵ(v)− rϵ(v)||w ≤ ϵ for all v ∈ K.

Now let ϵn ↓ 0 and set γn = γϵn , rn = rϵn , x0 = u(0) = u(b). We consider the
following Cauchy problem

(5.4) −u′n(t) ∈ A(un(t)) + rn(un)(t) for a.a. t ∈ T, un(0) = x0.

We know that problem (5.4) has a solution un ∈ Se(x0) and Se(x0)
C(T,RN )

is
compact. So, we may assume that

(5.5) un → ũ in C(T,RN ).

From (5.1), (5.4) and hypothesis H(A)′ we have
(5.6)
(u′n(t)− u′(t), un(t)− u(t))RN + (f(t)− rn(un), un(t)− u(t))RN ≤ 0 for a.a. t ∈ T.
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Recall that

(u′n(t)− u′(t), un(t)− u(t))RN =
1

2

d

dt
|un(t)− u(t)|2.

Using this equality in (5.6) and integrating, we obtain

1

2
|un(t)− u(t)|2 ≤

∫ t

0
|f(τ)− γn(un)(τ)||un(τ)− u(τ)|dτ

+

∫ t

0
(γn(un)(τ)− rn(un)(τ), un(τ)− u(τ))RNdτ(5.7)

(recall that un(0) = u(0) = x0).

From (5.3), we have

||γn(un)− rn(un)||w ≤ ϵn,

⇒ γn(un)− rn(un)
||·||w−−−→ 0,

⇒ γn(un)− rn(un)
w→ 0 in L2(T,RN )

(see Hu & Papageorgiou [12, Lemma 2.8, p. 24])

⇒
∫ t

0
(γn(un)− rn(un), un − u)RNdt → 0.(5.8)

In addition, we have∫ t

0
|f(τ)− γn(un)(τ)||un(τ)− u(τ)|dτ

≤ ϵn +

∫ t

0
k(τ)|un(τ)− u(τ)|2dτ for all n ∈ N (see (5.2)).

Using (5.5) we deduce that

(5.9) lim sup
n→∞

∫ t

0
|f(τ)− γn(un)(τ)||un(τ)− u(τ)|dτ ≤

∫ t

0
k(τ)|ũ(τ)− u(τ)|2dτ .

We return to (5.7), pass to the limit as n → ∞ and use (5.5), (5.8), (5.9). Then

|ũ(t)− u(t)|2 ≤ 2

∫ t

0
k(τ)|ũ(τ)− u(τ)|2dτ for all t ∈ T,

⇒ ũ = u (by Gronwall’s inequality).

Then from (5.5) and Urysohn’s criterion, for the original sequence we have that

un → u in C(T,RN ) with un ∈ Se(u(0)) for all n ∈ N.

�
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