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SHAPE OPTIMIZATION FOR A FLUID-ELASTICITY SYSTEM

JEAN-FRANCOIS SCHEID AND JAN SOKOLOWSKI

ABSTRACT. In this paper, we are interested in a shape optimization problem for
a fluid-structure interaction system composed by an elastic structure immersed
in a viscous incompressible fluid. The cost functional to minimize is an energy
functional involving together the fluid and the elastic parts of the structure. The
shape optimization problem is introduced in the 2-dimensional case. However the
results in this paper are obtained for a simplified free-boundary 1-dimensional
problem. We prove that the shape optimization problem is wellposed. We study
the shape differentiability of the free-boundary 1-dimensional model. The full
characterization of the associated material derivatives is given together with the
shape derivative of the energy functional. A special case is explicitly solved,
showing the relevancy of this shape optimization approach for a simplified free
boundary 1-dimensional problem. The full model in two spatial dimensions is
under studies now.

1. INTRODUCTION

Free boundary problems are classical models e.g., for phase transitions or contact
problems in structural mechanics. The optimal control or shape optimization of free
boundary problems are challenging fields of research in the calculus of variations
and in the theory of nonlinear partial differential equations. The obtained results
can be verified by using numerical methods specific for the models. The questions to
be adressed within the shape optimization framework are the existence and unique-
ness of optimal shapes as well as the necessary and sufficient optimality conditions.
The velocity method of shape sensitivity analysis can be applied to shape optimiza-
tion problems. The existence of topological derivatives for the energy type shape
functionals in multiphysics can be considered.

An important class of free boundary problems [2] are variational inequalities [3].
The optimal control [1] and the shape optimization [10] of variational inequalities are
well understood for unilateral constraints. In such a case the polyhedricity property
of the solution with respect to the shape can be exploited. The concurrent approach
is the penalization technique as it is described e.g., in [1]. The multiphysics models
are new and important branch of applied shape optimization. In this paper a simple
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model of this type is rigorously analyzed from the point of view of sensitivity anal-
ysis. We present an approach of shape optimization to fluid structure interaction
which can be generalized to more complex structures.

We consider an elastic structure immersed in a viscous incompressible fluid. Let
w CC Uy CcC Q C R? be three bounded domains where Yy and Q are simply-
connected domains. The deformed elastic body occupies the domain Qg = Q' \@ C
R? and the elastic structure is attached to the inner fixed boundary dw. The fluid
fills up a bounded domain Qp = Q\ Q% = Q\ (s Uw) swrrounding the elastic
body g. We denote by I'rg = 0Qp N Qg the boundary between the fluid and

T'rs

FiGURE 1. The geometry of the fluid-elasticity system

the elastic structure and we have 0Qr = 'pg U X where ¥ = 0Q2. The boundary X
corresponds also to the outer boundary of the fluid domain Qp (see Figure 1).

The fluid flow is governed by the Stokes equations for the velocity u and the
pressure p of the fluid:

(1.1) —divo(u,p) = f inQp
(1.2) divu = 0 inQp
where o(u,p) = 2vD(u) — pl; is the Cauchy stress tensor with the symetric strain

tensor D(u) = % (Vu+ Vu'). The fluid is subjected to a given force f and v is
the viscosity of the fluid. At the boundary of the fluid domain, we impose

(1.3) u=0 ondQp=TpsUX.

The elastic structure (2g is a deformation of a given reference bounded domain
Qo C R? by a mapping X i.e. Qg = X(Qp) (see Figure 2).

The deformation mapping is given by X = I;+w where w is the elastic displace-
ment of the structure which satisfies the linearized elasticity equation

(1.4) —divII(w) =g in Qo
where II is the second Piola-Kirchhoff stress tensor of the elastic structure given by

(1.5) II(w) = Mr(D(w))Iq + 2pD(w)
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FIGURE 2. The elastic structure €)g is a deformation of a reference
domain g

with the Lamé coefficients A > 0, > 0. The elastic body is subjected to a given
external force g. Since the elastic structure is clamped to the inner boundary dw,
we have X(0w) = dw and

(1.6) w=0 on Jw.

We also denote by I'y the outer boundary of Qy and we have I'pg = X(T'y).
According to the action-reaction principle, we have

/ H(w)no-vonF:/ o(u,p)n-vdl
o

T'rs
for all function v defined on 2r. We denote by ng the normal unit vector directed
outwards to the domain 2y and n is the unit normal vector to I'pg directed from
Qg to Qp. This leads to the local relation

(1.7) I[I(w)ng = (o(u,p) o X)cof (VX)ng on Iy,

where cof (VX) denotes the cofactor matrix of the jacobian matrix (for an invertible

matrix A, we have A~! = #(A)cof(A)T). The relation (1.7) can also be written on

the boundary I'pg with

(1.8) o(u,p)n = (I(w) o X 1) cof (VX ')n on I'gg.
In summary, the fluid-elasticity system for (u,p, w) reads as

(1.9) —divo(u,p) f inQp

(1.10) divu = 0 inQp

(1.11) u =0 ondQp=IpsUl

(1.12) —divII(w) = g inp

(1.13) w = 0 ondw

(1.14) II(w)ng = (o(u,p)oX)cof(VX)ng on I.

In [7], the authors prove the existence of a solution to (1.9)—(1.14) using a fictitious
domain approach and a fixed point procedure involving convergence of domains.
This article contains in particular some interesting ideas that should be helpful
for the shape optimization study associated to (1.9)—(1.14). We also mention the
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results in [6] where the existence of a solution to a coupled fluid-elasticity system for
Stokes equation with a nonlinear elastic structure is established. A similar system to
(1.9)—(1.14) has also been studied in [4] with the stationary Navier-Stokes equations
and where the elastic structure is assumed to be a S*Venant—Kirchhoff material
involving the first nonlinear Piola—Kirchhoff stress tensor (see also [11]).

Remark. Due to the incompressibility property of the fluid, the volume of the
elastic structure is conserved during the deformation. Hence, we must have |Qg| =
|| and the elastic displacement w satisfies

(1.15) /Q det(VX) dy = |Qo].

We shall consider the shape optimization for a free boundary problem originated
from the fluid-structure interaction. There is the following structure of coupled
fields. Given a reference domain )y for the elasticity part of the system and a
vector field V defined on I'y, we solve the elasticity subproblem and find the dis-
placement field w = w(V) on I'y from the following boundary value problem with
nonhomogeneous Neumann boundary condition

(1.16) —divII(w) = g inQ
(1.17) w = 0 ondw
(1.18) II(w)ng = V onT,.

In other words, we consider the Neumann-to-Dirichlet mapping associated with the
elastic body. As a result, the deformation field X = X(V) is determined for the
boundary of the fluid subdomain

X=1I1;+w.
The Stokes problem for (u,p) = (u(V),p(V)) is solved in the new subdomain Qp:
(1.19) —divo(u,p) = f inQp
(1.20) divu = 0 inQp
(1.21) u = 0 ondp=TprsUX

and the fixed point condition for V on I'y reads
V = (c(u(V),p(V)) o X(V))cof (VX(V))ng on Ty

The existence of solutions for the free boundary problem is already shown in [7] and
in [6] for a nonlinear elastic structure. We are interested in the question of shape
sensitivity analysis for the free boundary problem. The first problem to solve is the
stability of the free boundary with respect to the sequence of domains Q. Such
sequence is produced by shape optimization techniques applied to a given shape
functional. In such a case, Q’g — Q§° is the minimizing sequence and we want to
assure that the corresponding fixed point conditions on Flg the outer boundary of
QIS:
Vk = (U(uk(vk),pk(vk)) o) Xk(Vk)) cof (VXk(Vk)) nyg on PIS,

also converges to the fixed point condition in the limiting domain Qg°. To our best
knowledge such results are not known in the literature.
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Shape optimization formulation. We describe the shape optimization problem
associated to (1.9)—(1.14). We aim to determine the optimal reference domain for
which an energy type functional is minimum. More precisely, we want to determine
a bounded domain f € U,q which minimizes

1.22 in J(Q
(1.22) Qin ()

where U, is the set of admissible domains :

Upg = {Q0 C R2, Qp = Dy \@ where Dy is a simply-connected,

bounded and regular domain containing w}.

The energy functional J(€) is defined by
(1.23 500 = [ 1D dxn [ DG dy
QF Qo

with a given parameter 77 > 0 and where u and X = I; + w satisfy (1.9)—(1.14). In
(1.23), we use the notation |D(u)|? = D(u) : D(u) where the double product ( : )
is defined by A : B = Ei, ; A;;B;; for two matrices A and B. The energy functional
J(€Qp) is composed by a fluid energy term and the elastic energy of deformation
weighted by the parameter 7.

2. A ONE-DIMENSIONAL FREE-BOUNDARY MODEL

In order to appreciate the relevance of the shape optimization problem presented
in the introduction, we study a simplified one-dimensional free-boundary model.
This system reads as follows. Let yo € (0,1) be given. We are seeking for two scalar
functions v and w satisfying

—0O0pgu(z) = f(z), x € (0,2%)
(2.1) w0) = ulz*)=0

(2.2) - yyzgﬁg - sOJ(y), y € (yo,1)

The (free) boundary point * is obtained by the deformation of the reference point
yo with

(2.3) z* =" (yo) = yo +w(yo)-
We also impose
(2.4) Oyu(x™) = dyw(yo)

which is the ld-analogous of (1.14). We point out that the 1d-model does not
account for the ”volume conservation” constraint (1.15) derived in the 2d model.

The energy functional associated to the system (2.1),(2.2) is given by

x* 1
(2.5) Ty = [ sl o [ oyl dy
0
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with a parameter 7 > 0. The one-dimensional shape optimization problem consists
in finding the reference point yg € Iy that minimizes

(2.6) min J(yo).
yo<lo

where Ip = {yp € (0,1) such that z* = 2*(yo) € (0,1)}.

2.1. Well-posedness. In this section, we show that for yg € (0,1) and for f and
g small enough, the problem (2.1)—(2.4) admits a unique solution (u,w,z*) with
x* € (0,1). This will be proved by a fixed point argument using the contraction
mapping theorem.

Let us fix yo € (0,1), f € L?(0,1) and g € L?(0,1). We introduce the mapping
T:

(27) T(S) = Yo + U(sayo) for s € (07 1)7
where v is the solution of
—0yyv(s,y) = 9(y), ¥ € (yo,1)

(2.8) v(s,1) = 0
Iyv(s,y0) = dyu(s)

—Oppu(z) = f(z), z €(0,s)
(2.9) w(0) = u(s)=0

For any s € (0,1), Problem (2.9) admits a unique solution u = u(s,-) € H}(0,5) N
H?2(0,s). The derivative d,u is then continuous in [0, s] and Problem (2.8) also
admits a unique solution v = v(s,-) € H?(yp,1). It is clear that z* € (0,1) is a
fixed point for T"i.e. z* = T'(z*) if and only if (u(x*,-),v(z*, ), x*) is a solution of
Problem (2.1)-(2.4). The following existence result holds.

Proposition 2.1. Let 0 < e < 1, yo € (g,1) and f,g € L>(0,1). There exists
do = 00(yo,€) > 0 such that if || f||.o + |9lloc < do then Problem (2.1)—(2.4) admits
a unique solution (u,w,x*) with u € H*(0,2*), w € H*(yo,1) and x* € (¢,1) which
satisfies the following relation

1 _ x*
210)  at =gt [ a-ggdy+ S0 [ p e

Yo
Moreover, dg can be choosen as a non-decreasing function of yo with

Yo — € 1
"1—yo 3(1—wo)

(2.11) 90(Y0,€) = 2min(1 ) > 0.

Proof. Let € € [0,1). We prove that for sufficiently small f and g, the mapping T
defined by (2.7) maps the interval (g,1) into itself and 7" is a contraction mapping
on (g,1). This ensures the existence and the uniqueness of a fixed point z* € (g,1)
for T.
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FIGURE 3. The bound d¢(yo,0) on f and g for the well-posedness of
(2.1)—(2.4) for yo € (0,1).

According to (2.7), if |v(s,y0)| < min(yo — ¢,1 — yo) for all s € (g,1) then
T(s) € (e,1) for all s € (e,1). Let s € (¢,1) be fixed. We estimate v(s,yp) with
respect to f and g. To this end, let us write

1

1
o(s,90) = — / dyu(s,y)dy = — [ 8,0(s,9)0,0(y) dy,

Yo Yo
with ¢(y) =y — 1. Since ¢(1) =0 and dy¢ =1 in (yo, 1), we obtain by integrating
by parts

1
ossa) = [ Buyo(si) (0= Dy + 0,005, 30) (o0 — 1
1

= —/ 9(y) (y — Ddy + 8yv(83y0) (yo—1)

Yo

1
(2.12) - / 9(y) (y — 1)dy + su(s) (yo — 1),

Yo
thanks to the boundary condition in (2.8). In addition, starting from (2.9) we have

—/ Droti() dx_/ e

with ¢(z) = x. Integrating by parts, using ¢(0) = 0 and 9,¢ = 1 in (0, s) together
with the boundary conditions for u in (2.9), we get
1 S
(2.13) Ou(s) = _s/ xf(x)dz
0

Combining (2.12) with (2.13), we finally obtain

(2.14) o) = [ =gy + S g do

Yo
We are now in position to estimate v(s,yo) :

1 1 — s
sl < ol [ G-+ S0 p [t

Yo
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(A —wo)* )

< 1910 (1 —y0)lIfll
(1 — %)
(2.15) < 5 gl + 11 Flloc)
We choose f and ¢ such that
. Yo —¢€
(2.16) Il + 171 < 2min(22= 1)
— Y%

so that we have |v(s,yo)| < min(yo —€,1 — yo) and thus T'(s) € (e, 1).

Now, we prove that T' is a contraction mapping on (0,1). According to (2.14),
we have, for any s1,s2 € (0,1), s1 # s9,

T(s1) —T(s2) = wv(s1,90) —v(s2,%0)

— (- ) (;/081xf(x)d:v—; OSQxf(x)dx>.

Without loss of generality we assume that s; > so and we write

7o) = Too) = (1= 0) (= L) [Tes@ans et iz).

This leads to
812 822 >

(1—yo>uf||oo( B0

2 s1] 2 2
( yo) 52 81 + s
1l (22425

2
) |81 —82|.
1

T(s1) — T(s2)| 2,1

IN

1 1
s 5

Since s1 > so, we obtain

(2.17) [T(s1) = T(s2)| < g(l—yo)HfHoo\Sl — 52|
We choose f such that
2

so that |T'(s1) — T'(s2)| < |s1 — s2| and thus T is a contraction mapping on (0, 1).
Let do = do(yo, €) = 2min(1, <5, 5775) > 0. Combining (2.16) with (2.18), we

conclude that if ||g||,, + || flloc < 6o then T" admits a unique fixed point z* € (e, 1)

which thus satisfies (2.10). O

2.2. A fixed domain formulation. In this section we transform the 1d fluid-
elastic system (2.1)-(2.4) in a nonlinear problem posed in reference intervals. Let
us fix two reference points Zg, 9o € (0,1). For given s and ¢ € (0,1), we introduce
the one-to-one regular mappings ¢, and ¢; defined in [0, 1] such that

o1 pu((0.d0]) = [0,5) with 9,(0) =0, (i) = 5

‘ ¢t([Q07 1]) = [t7 1] with Cbt(.@O) =1, ¢t(1) = ]-7

with
(220) (pj;o = Id, ¢1}0 = Id.
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We suppose that ¢, € C?([0,1]) for all s € (0,1) and s — p4(x) belongs to C1(0, 1)
for all z € [0, 1]. Similarly, we suppose ¢; € C2([0,1]) for all € (0,1) and t > ¢4(y)
belongs to C1(0, 1) for all y € [0,1]. We have that ¢’ > 0 in [0, £, for all s € (0, 1)
and ¢; > 0 in [go, 1], for all t € (0,1).

Let (u,w,z*) be the solution of (2.1)-(2.4). Then we define the following changes
of variables

a( w(z), f(&) = f(x) with 2 = @, (&) for & € [0, 2o,

w(y), §(9) = gy) with y = ¢y,(9) for § € [go, 1].

>

)
)

(
The functions (u,w) satisfy the following nonlinear problem posed in the reference
intervals [0, o] and [go, 1]:

(2.21)

s
<

! WE) | = ¢l.(2) f(2), % &
(2.22) ~% (%(@)af“(i’:)) = (@) f(&), 2 € (0,d0)
a(0) = a(@y) = 0
15) 1 O (Y = & () a7 7 e 1
(2.23) ~% <xyo(y) () ) = ¢y (9)3(9), 9§ € (Go,1)
(1) = 0
1 SN B
(2.24) o ooy IO = Gy O )

The mappings ¢,+ and ¢y, can be chosen for instance, as the unique solutions of
the two problems

(225) gog* =0in (011%0) i} qégo =0in (@0, 1)
P> (0) =0, Po* (-TO) = ¢y0(y0) = Yo, ¢y0(1) =1
that is
(@) = Ta = Y FDW0) o 5 0, 20]
(2.26) ?‘; ) 0
N 0 — N N ~
Pyo () = (Go—1) (G—1)+1 for g € [go, 1]

With that choices for ¢, and ¢,,, the unknows (@, w) satisfy

PPN 2
—aj;jﬂ(i‘) = <y0+Aw(y0)> f(j)a :%E(O’i‘())

a0) = alio) = 0
(2.27) 0wt — (I o o
' - @.@Ujiy) = g0—1> 9(9), 9 € (Yo,1)
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2.3. Existence of an optimal interval. We shall prove that the optimal prob-
lem (2.5),(2.6) admits an optimal reference point yy. More precisely, we have the
following result

Proposition 2.2. Let 0 < g1 < g9 < 1 and f, g € L>=(0,1). There exists ny =
no(e1) > 0 such that if || f|| o + 9]l < 10 then there exists yi € [e1, €] that realizes
min J(yo).

Yo€le1,e2]

Proof. We fix 0 < e; < g2 < 1. We define ng(e1) = do(e1,€1/2) > 0 where dg is
given by (2.11) in Proposition 2.1. We choose f, g € L*>°(0,1) such that ||f|| ., +
9]l < mole1) = do(e1,€1/2). Since dy is a non-decreasing function of yy, we have
no(e1) < do(yo,e1/2) for all yo € [e1,e2]. According to Proposition 2.1, Problem
(2.1)—(2.4) admits a unique solution for all yg € [e1,¢e2], with * € [e1/2,1). Thus,
J is well-defined in [e1,e2]. Let (yn)n>1 € [€1,€2] be a minimizing sequence of J i.e.
limy, oo J(Yn) = infy cle, co) J(Y0). There exists a subsequence still denoted y,, and
Yo € [e1,¢e2] such that lim,_, 1 yn = y5. We have to prove that lim,_, o J(yn) =
J(y). We denote by (up, wy, x}) € H?(0, %) X H?(yn, 1) X [¢1/2,1) the solution of

—Opzun(r) = f(x), © € (0,z},)
un(0) = up(zy) =0

(2.28) - yygzgg - g(y), Y€ (Yn, 1)
$:L = Yn+ wn(yn)

According to Section 2.2, we transform the system (2.28) on a fixed domain indepen-
dent of n by setting 4, (Z) = un(x) with = (&) for & € [0, g§] and W, (y) = wn(y)
with y = ¢(9) for g € [g5, 1]. The functions ¢ and ¢ (see (2.26)) are given by
pli) = LE U)o g e o, g
(2.29) Yo
" n—1) [ NI
¢(9) = EZS_S (H—-1+1 forge g1

The functions (i, wy,) satisfy

A * 2 R
(230 “stnle) = (M) ), ae 0.)
ﬂn(o) = ﬂn(?/é) =20
Opyon(®) = (=0)%9(0). € (5, )
(2.31) wn(l) = 0

* X X £ 1 X .
(8 )t = (B=1) oot

Yn + Wnp (yg) Un

Since z}, = yn + Wn(Yn) = Yn + Wn(yy) € [e1/2,1), we deduce from (2.30) that
||t || H2(0;) < € where C'> 0 is a constant independent of n. Then there exists

a subsequence still denoted 4, and g € H?(0,) such that i, —,_ 10 tip weakly
in H%(0,y3). From (2.31), we deduce that ||wnHH2(y8,1) < C" where C' > 0 is a



SHAPE OPTIMIZATION 203

constant independent of n. Then there exists a subsequence still denoted w,, and
o € H?(yg, 1) such that w, —p— 400 Wo weakly in H2(yg, 1) and w0y satisfies

(2.32) - yyzvvggzﬁ - g.(z)), g€ (y5,1)

Since z} = yn + W, (y5) and due to the compactness of the embedding H2(yg, 1) <
C*([yg,1]), we deduce that lim,—, o 2}, = z§ with

(2.33) o = Yo + wo(yo) € [e1/2,1] € (0,1].
In addition, we obtain that g satisfies

A n (A —  (Yotoyg)\2 £ . ¥
(2.34) Fpztio(2) = (B0)°f (@), &€ (0,4p)

Uo(0) = do(ys) = 0
and due to the compactness of the embedding H?(0,y;) < C*([0,y;]) we have
(2.35) () ostalu) = dpinluy
Yo + wo(yg)
We transform the problem (2.34), (2.35) on the interval (0, zf) by using the change

of variables (%) = up(x) with (see Section 2.2)

* * 0 *
_ Ty Wm for & € [0, yg)-
Yo Yo

Thus the function ug satisfies
—Oggup(z) = f(x), x € (0,3)
(2.37) up(0) = wug(xy) =0
dyup(zy) = Ogio(yg)

(2.36) x

Moreover, using the change of variable (2.29) we have
Ty 1
J(yn) = / |8xun2d$+77/ |8ywn‘2dy
0 Yn
* 5 * 1
_ Yo )/yoaﬂ 2 1% <yo_1>/ A2 gn
= | ———— 2l +n Oyt |~ dy
(yn+wn(yo) 0 | | yn—1) J, | Y |
We deduce that

. yS Yo ~ 12 ga ! ~ 12 ga
(2.38) lim J(yn) = 7(* / |0z0 d56+77/ |00~ d
y()) 0 Y

n—-+o00 yak + Wy B

Using the change of variable (2.36) with (2.33) in the right hand side of (2.38), we
obtain

5’38 1
(2.30) an@nz/ @wﬁm+n/ﬁww%w=ﬂ%>

n—-+o0o 0 e

where (ug, W) satisfies (2.32),(2.37). The proof is then complete. O
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2.4. Shape differentiability. In this section, we prove the existence of the mate-
rial derivatives associated to the solution (u,w) of the coupled problem (2.1)-(2.4).
A full characterization of the material derivatives is given as the solution of an
adjoint problem.

For a given ¢t € (0,1), we consider the following problem for (u, we, x}):

—Oueur(z) = f(2), x € (0,27)
Ut(O) = ut(a:;f) =0
(2.40) 3yyzﬁg - g(y), y € (t,1)
Opur(zf) = Oywy(t)
i = t+w(t).

Let yo € (0,1) and v > 0 given. We choose t € (yo — v, y0 +7) N (0,1). We assume
that the functions f, g € W1°°(0,1) and

11l 2o 0,1y + 191l oo (0,1) <00(y0 — 7,50 — 27)

(2.41) , gl 1
= 2min | 1, ,
1—yo+7 31—y +7)

where §g is given by (2.11). Since dp(yo,€) is a non-decreasing function of yo,
choosing € = yo—2v we have do(yo—", yo—27) < do(t,yo—27) forall t € (yo—,y0+
7). Then, according to Proposition 2.1, Problem (2.40) admits a unique solution
(ug, wy, xf) € H(0,27) x H?(t,1) x (yo — 27, 1), for all t € (yo — v, 0 +7) N (0, 1).

We emphasize that the solution (u, w, z*) of (2.1)-(2.4) coincides with the solution
of (2.40) with t = yo, i.e. (u,w,r") = (uy,, wy,, Ty, ). Moreover, since we choose f,
g € W12(0, 1), the solution of (2.1)-(2.4) has the additionnal regularity

(2.42) (u,w) € H3(0,2*) x H>(yo,1).

We are dealing with a fixed domain formulation by using the one-to-one regular
mappings ¢s and ¢; defined on [0, 1] such that (see Section 2.2) :

¢s([0,2%]) = [0,s] with ¢4(0) =0, ps(z*) =s

(2.43) Or(lyo, 1)) = [1,1] with du(yo) =1, ¢u(1) = 1.
with
(2.44) bor =la, by = 1a.

We suppose that ¢, € C?([0,1]) for all s € (0,1) and s — () belongs to C1(0,1)
for all z € [0, 1]. Similarly, we suppose ¢; € C2([0,1]) for all t € (0,1) and ¢ — ¢(y)
belongs to C1(0, 1) for all y € [0,1]. We have that ¢’ > 0 in [0, 2*], for all s € (0, 1)
and ¢} > 0 in [yo, 1], for all t € (0,1).

Following [5, p.13-14], we shall say that a map F : t € R+ f(t) € X where X is

a Banach space, is weakly continous at t = tq if for any sequence t,, — tg as n — oo,
we have f(t,) — f(to) weakly in X. The map F is weakly-differentiable at t = ¢y

if for any sequence t,, — to, there exists f/(tp) € X such that %:tﬁ(to) — f'(to)
weakly in X as n — oo.
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Proposition 2.3. Let yg € (0,1) and v € (0,1/4) given. We assume that f, g €
Whee(0,1) satisfy (2.41). For allt € (yo—",yo+7)N(0,1), we consider the solution
(ut, we, ) of (2.40) and let (s, ¢r) be the mappings defined by (2.43),(2.44). Then,
the map F : t = (ug 0 @gr,wy 0 ¢y, xy) € H*(0,2%) x H?(yo,1) x (0,1) defined for
t € (yo—",y0 +7v) N(0,1), is weakly-continuous and weakly-differentiable at t = yo
and the associated material derivative (u,1w,2*) € H?(0,2*) x H*(yo,1) x R is the
solution of

—Opalt = —i* Opa (8$“)ddis| ) in (0, z*)
(2.45) i0) = a@) =0 d N
=0y = =0y <(8yw)$|t > in (Yo, 1)
W(1) = 0 '
(2.46) dpn(x*) — x'*axu(x*)% (i(@), .

= Dyi(yo) — 8yw(yo)%(¢2(yo))

|t:yo

Moreover, the derivative £* is given by

1 —d* —(1—1y0)g(vo)
1+ (1 —yo)(d*/z* — f(z*))

(2.47) i =

I
with d* = */ xf(x)dx.
" Jo

Proof. We first prove that the map F : ¢ > (u¢(@qr), wi(¢r), vf) is weakly-continuous
at t = yo. More precisely, we shall prove that zj — z* and ut(goxzf) — u weakly in
H?(0,2%), wi(¢r) — w weakly in H?(yg, 1) as t — yo.
According to (2.10), for all t € (yo — 7,90 +v) N (0,1), x} satisfies
* ! (1 — t) i
(2.48) zy=t+ [ (1—y)g(y)dy + o xzf(x)dx.
t t 0
Since x; € (0,1), there exists a subsequence ¢, — yo such that zj — Z € [0,1]
which satisfies

1 B 7
(2.49) P+ [ (1 - o) dy + T /0 2f(x) do.

Since x* is the unique point satisfying (2.49) (see (2.10)), we have = z*. We can
also prove that the whole sequence z} is converging with ¢ — yg. Thus, we have

(2.50) ry =z ast— yo.

Now, we turn to the convergence of u; and wy. Using the changes of variables
U = ut(pgy) and w = wi(dy) (see (2.21)) with x = ¢+ (2) and y = ¢¢(7), the system
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(2.40) becomes (see (2.22), (2.23) and (2.24)):

(2.51) —Oa <@i*3xﬁ> = e [(@e) in (0,27)
Ca(0) = a(zt) = 0
(2.52) —0y <¢%3yﬁ) = $19(d) in (yo,1)
w(l) = 1
1 1
2.53 axA * :78 A
(259) e a) (") ) y(Yo)

We introduce
(2.54) c1p =10 —u=u(pzr) —u € H*(0,2%)
and substracting (2.51) with (2.40) at t = yo for u, we get

(2.55) —0Oy <cpllx*azcl,t> — 0y <(¢/i* - 1)3;&) = (9026,? f(par) — f) in (0,z*)
c1t(0) = cig(z*) = 0

Due to (2.50) and the fact that ||¢g|fec(g ) — 1 s s — 2, we have

1
(256) [ 1] ——0, e F ) = gy T O

Ty L>(0,z*) e ot
As a result, we deduce from (2.55) that for |t — yo| small enough,

Hcl,t HHQ(O,z*) < C

where C' > 0 does not depend on ¢t. Thus, there exists a subsequence ¢, — yo and
c1 € H%(0,z*) such that c1 4, — ¢; weakly in H? and ¢ satisfies

—0zzcr = 0in (0,2%)
c1(0) = e(z*) =0

Thus, we have ¢; = 0in (0, 2*) and in addition we can prove that the whole sequence
c1, is converging to 0. Thus,

(2.57) ug(pgr) — u  weakly in H?(0,2%) as t — yo.

Moreover, from the compactness of the embedding of H?(0, z*) into C*([0, 2*]), we
deduce that

(2.58) Ogci1(z*) = 0 ast— yo,
that is
(2.59) Ozut(pzr)(x™) = Ozu(x™) ast — yo.

Now, we introduce

(260) Cot = wW—w = wt(gbt) —w € HQ(yo, 1)
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Substracting (2.52) and (2.53) with (2.40) at ¢ = yo for w, we get
(2.61)

—0y (%;ayc?,» — 0y ((q%; - 1)8yw> = (¢ 9(dt) —9) in (yo,1)

02715(1) =0
ma’rcl,t(%*) + (m — 1ou(z*) = maycu(yo) + (m — 1)0yw(yo)
We deduce that for all v € H!(yo, 1) with v(1) = 0, we have
(2.62)
e )y (B o) + (s Do) ) vlao)
—7~0yc21(y)Oyv(y) dy + | ———=0xc14(x ——— — 1)0zu(z™) | v(y
yo O4ly) VY () " e (27) ’
1 1 1
[ (o~ 1) ooty dn + [ (@006 - o) o) s
Yo t\Y Yo
We recall that ¢} > 0 in [yo, 1] and [[¢}][ 00y 1) — 1 s ¢ — yo. Then,
1
2.63 ——1 —0 / — s vy — 0.
R8) gt et k) sl o
We take v = ¢ in (2.62). Using (2.58) and the trace inequality

lv(yo)| < C’HByUHLQ(yO ) forall v e H'(yp, 1) with v(1) = 0, where C' is independent
of v, we obtain that for |t — yo| small enough,
||027tHH1(y0,1) <C

where C' > 0 does not depend on ¢t. Going back to the strong form (2.61), we get
a uniform bound for ||0yzc2 | L2(yo,1) With respect to ¢ and thus for [t — yo| small
enough, we have

(2.64) lezell g2 (yo,1) < €

where C > 0 does not depend on t. Thus, there exists a subsequence ¢, — yo and
ca € H?(yo,1) such that cay, — co weakly in H? and c satisfies

(2.65) —0Oyyc2 = 01in (yo,1)

62(1) = 0
We can prove that the whole sequence cg; is converging. We have ¢z +(y0) — c2(vo)
as t — yo. Furthermore, since c2+(y0) = w(yo) — we(ée(vo)) = —yo + ™ +t — zf,

we deduce that ca¢(yo) — 0 as t — yo thanks to (2.50). Hence, we obtain that
c2(yo) = 0 and using (2.65) we conclude that co = 0 in (yg, 1). We have proved that

(2.66) wi(¢y) = w  weakly in H%(yo,1) as t — yo.
The properties (2.50),(2.57),(2.66) show that the map F : ¢ = (ut 0 pur, wi 0 ¢t 77)
is weakly-continuous at ¢t = yo.

Now, let us prove the weak-differentiability of F at ¢t = yo. We first prove that
the map t — zf is differentiable at ¢ = yy. Let us introduce

xf —a*

(2.67) T = with h =1t —yo.
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Starting from (2.10) and (2.48), we obtain that 7, satisfies the relation

(2.68) (1 —~ (1; ) (S¢ — d*)) n=14+R—d'

*
t

with X
1 xX
s = */ xf(x)dz
" Jo
1 Yo

R = / 1-— d
: — (L—y)g(y) dy
1 i
S; = — . / zf(z)dx
xf —x* o
d* *
We clearly have @ < || fllo and | *‘ < ’ ~ || fll o and then
xy Ty 2z}

*
Ty

[LE TR

x*
<(1-— 1
<+ (14 5 ) Il
for all t € (yo — 7v,y0 + ). Since x; — x* as t — yp, we deduce that for |t — yo
small enough, we have
1—1t

*
t

<21 =yo + M fllso-

2
The assumption (2.41) ensures that || f|,, < ] 7 and then we obtain
1—-1t
‘( ; )(St_d*) <4y
Tt
and therefore, for |t — yo| small enough,
1-1¢
(2.69) 1—(33*)(St—d*)21—47>0.

Hence 7y is well defined by (2.68) for |t — yo| small enough. Moreover, when ¢ — ypo,
we have

Thus, there exists * € R such that

(2.71) T = &F as t—yp
and we deduce from (2.68) and (2.70) that * satisfies
1—d"—(1-

1+ (1 —yo)(d¥far — f(z%))
Now, we turn to the differentiability of 4 and w. We define
U—u ut(@x;) —u
dl,t = h - h 5
(2.73) N
w—w wi(¢r) —w

A ho

with h =1 — yqg.
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The function dy; € H?(0,z*) satisfies
(2.74)

0 (stzonus) =0 (Rt ~00) = 3 (95 Se) 1) 0.2
t t
st(O) = dl,t(x*> =0
From (2.50), (2.71), we deduce that

1 1 dy!
_ — — 1]+ $*ﬁ
h SO;E: ds |s:z*

210) |3 (Halea) — 1) = 4" (6 100)

(2.75)

— 0 ast— yo
Le>(0,2*)

— 0 ast— 1y

S ‘s:z*

Lo (0,z*)
As a result, we deduce from (2.74) that for |t — yo| small enough,
Hdl’t”HQ(O,a:*) S C
where C' > 0 does not depend on ¢. Thus, there exists a subsequence ¢, — yo and
u € H?(0,z*) such that dy 4, — @ weakly in H? and 4 satisfies

s (A9 .d, , .
oy twitio (U o) = # e, i 0)

ds ds
w(0) = a(z*) =0
Using the fact that v € H3(0,2*) and —0u,u = O.f in (0,2%), we obtain by

straightforward calculations that

0. (0 o) - (s, =0m (@)% ) (o)

I - ds ds |,y

Then (2.77) becomes

. . dQOS .
_ X *
(2.78) Opzl T* Opa ((Bzu) 1 |S_I*) in (0,2%)
w(0) = a(z*) =0
In addition it can be proved that the whole sequence d; ; is converging to u*.

The function day € H?(yo, 1) satisfies

(2.79) —0y (%@Gydu) — 9, <%(¢% - 1)8yw> = +(¢g(d) —g) in (yo,1)
das(1) = 0

1 1 1
2.80) ———Bpdyo(z*) + —(——— — 1)dpu(z*
1 1 1

_ maydzt(%) T E(m

— 1)0yw(yo)

Moreover, we have that

(2.81) Hlll ( ! 1> L 4

gg— i | — 0 ast—=yo
—vo

L (yo,1)
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— 0 ast—yo

=00 || Loo (y5,1)

282 |} @laten - 9) - 5 (haten)

Proceeding as for the proof of the continuity of ca¢ (see (2.61)—(2.64)), we deduce
from (2.79) that there exists W € H?(yo, 1) such that da; — 1w weakly in H? as
t — yo and w satisfies

de; d
osy w0, (G au) = Seele),, mn)

dt |t:y0
w(l) = 0

|t:yo

Using the fact that w € H3(yp,1) and —dy,w = 9yg in (yo,1), we obtain by
straightforward calculations that

doy d ., _ doy :
o (5 o) — et = (O ) nn

Then (2.83) becomes

_— doy .
(2.84) Oy = —Oyy <(ayw)dt|ty0) in (yo,1)

w(l) = 0
Finally, (2.80) leads to
d
(2.85) Ogt(z*) — az*$(<p;(:z:*))‘ _Ozu(a”)
_ d
= Oyi(yo) = = (94 (w0)),,_, Dy (vo)

The proof of Proposition 2.3 is then complete. U

Remark 2.4. Due to the compactness of the embedding of H2(0, z*)x H?(yg, 1) into
C1([0, 2*]) x C*([yo, 1]), Proposition 2.3 ensures that the map t (utopgr, wiody) €
CL([0,2*]) x C*([yo,1]) is (strongly) differentiable at t = ypo.

Now, we are in position to compute the shape derivative of the solution of (2.1)-
(2.4). We first extend the solution (u:,w;) of (2.40) to the whole real line : u; €
HE(0,2*) is extended by 0 outside the interval (0,z*), so that we consider u; €
H!(R). In the same way, w; € H'(yo, 1) is extended to 0 outside (yo, 1) so that we
consider w; € L?(R).

Proposition 2.5. Under the hypothesis of Proposition 2.8, the map t — (ug, wy) €
L?*(R)x L?(R) is differentiable att = yo. The shape derivatives (u',w') € H*(0,x*)x
H?(yo,1) are given by

v = u—1*(0pu) dz:l in (0,2%)
(286) , . dast s=x* .
w = - (Oyw)—- in (yo, 1)
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and satisfy

r_ . *
(2.87) Ozt = 0 in (0,2%)

u'(0) 0
(2.88) u'(2%) = —3* Opu(x™)
Oyyw' = 0 in (yo,1)
(2.89) w'y(1) 0
(2.90) w'(yo) = & —1—9yw(yo)
(2.91) Oyw'(yo) — g(yo) = Oxu'(az™) — @ f(a")

Proof. The proof is a direct consequence of the derivability of & and w stated in
Proposition (2.3) (see also [10, Proposition 2.32] and [8, Lemme 5.3.3]. We start
from the relations

ur = (wopy;)o cp;%} =1do0 90;;1
wy = (wto@)ogbt_l :wo¢t_1.
The derivability of u; and w; with respect to ¢t at t = yg is a direct consequence
of the derivability of ¢ — (u,,z}) established in Proposition 2.3. We denote by

(v, w") the derivative of t — (us, wy) at t = yo. Differentiating (2.92) with ¢, we
obtain at t = yq:

(2.92)

dps
W = -3 (Bpu) di| e H'(0,2*)
d s=x*
W= - @)t € )
dt |t:y0
According to Proposition 2.3, we have that (v/,w’) € H?(0,z2*) x H?(yp,1) and
from (2.45),we deduce that (2.87), (2.88), (2.89) hold. Relation (2.46) yields (2.91).

Finally, differentiating the relation z} =t 4+ w(¢) in (2.40) leads to (2.90). O

We define the energy functional J associated to the solution (u¢, wy, z;) of (2.40)
by

xy 1
(2.93) () :/ ]8$ut\2dx+n/ 10, wi[2 dy.
0 t
From Proposition 2.5, we deduce the following differentiability result for the function

J.

Proposition 2.6. Under the hypothesis of Proposition 2.3, the functional t — J(t)
1s differentiable at t = yy and its derivative at t = yg is given by

(2.94) J'(30) = (9yw(y0))” (1 + Byw(yo) — n)
+ 0,0/ (o) (w0 = 1) (Dyw(y0))* = 2m(yo))
with

z*g(yo) — (1 + dyw(wo)) (Byw(yo) + =* f(z¥)) ‘

(2.95) Ay’ (yo) = (z* + 0 — 1)
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Proof. From (2.1) and (2.2), we deduce that

xy 1
(2.96) J(t) = /0 furdx —|—77/t gy dy — nwe (t)Oywy(t).

According to the differentiability result established in Proposition 2.5 (see also Re-
mark 2.4), we deduce that J is differentiable at ¢t = yy and differentiating (2.96) at
t = yo leads to

x* ) 1
f@mz/'fwmnaﬁumg+¢/gwwyw@@ﬂw)
0 SN—— Yo
(2.97) =0
d
= (w (9,wt))

|t:yo
Moreover, we have

jt(wt(t)aywt(t)) _ %(wt(t))

t:yo

_ aputyo) + o) g (2y(0)

= (w'(yo) + dyw(yo)) dyw(yo)
+w(yo) (8yw/(yo) =+ 8yyw(y0))
= w'(y0)dyw(yo) + w(yo)Oyw' (yo)
(2.98) + (9yw(yo))* — w(yo)g(vo)
Combining (2.97) and (2.98), we obtain
/ - L )
J" (o) /0 fu dx+?7/ gw' dy —n(dyw(yo))

Yo

|t:y0

(2.99)
— (W' (40) 1w (yo) + w(y0) ' (o) ).

Moreover, using the regularity of u and u’ with (2.88), we get

*

/ fu'dr = —/ (Opzu) dz:
0 0

*

= / Opu O’ dx — ' (2%)Opu(x™)
0

- / Opu Opu’ dx + &* (8xu(x*))2

0
- —/0 w Opptt’ dx + [ uO Oxu']ﬁ* + ¥ (&;u(aﬁ*))z
70 =

Then, we have

*

(2.100) /Oz fu'dz = 3* (Bxu(:zz*))2

Similarly, we obtain

1 1
/ gu'dy = — / (Oyyw)w' dy
Yo Yo
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1
= / Oyw 8yw’ dy + w’(yo)ﬁyw(yo)

Yo

1
E— / w Ay’ dy + [wdyu']}
N——

o T W' (0)Oyw(yo)
Yo

=0
Then, we have

1
(2.101) / gw' dy = —w(yo)dyw' (yo) + w' (yo)dyw(yo).
Yo

Relations (2.100), (2.101) with (2.4) in (2.99) lead to

(2.102) J'(y0) = (& =) (9yw(y0))” = 2w (yo) Ay’ (yo)

From (2.90), we have ©* = 1+ w'(yo) + 9yw(yo) and then we can express the
derivative J'(yo) as follows

2103 J(g0) = (14 (y0) + Byw(y0) — 1) (Byw(y0)” — 2mw(y0)d,u (o)

Now, we derive a relation between w’(yp) and dyw'(yo). For y € [yo, 1], we introduce
the function ¥ (y) = y — 1 which satisfies 99 = 1 in [yp, 1] and (1) = 0. Then, we
write

1
w' = — [ o' (y)dy d
(30) /y (10,0 (y) dy
1
- / Oy (y) Oyeb(y) dy — [Dyw' (y) ¥ (y)]
Yo :VO
= 3yw'(yo)¢(yo)

1
Yo

and thus we get
(2.104) w'(yo) = (yo — 1)Oyw' (yo)-
Combining (2.103) with (2.104), we obtain the desired formula (2.94).

Finally, we turn to the expression of dyw’(yo) with respect to dyw(yp). For
x € [0, 1], we introduce the function ¥ (x) = x which satisfies 9,7 = 1 in [0, 1] and
¥ (0) = 0. Then, we write

u'(z*) = /Oz O (2)0p1h(z) d

*

_ / " Bt () Otb(z) dz + [0y (2) ()]
0 =0

= Opu(x")¢ ()
and thus we have
(2.105) o (2%) = 20 (2%).

Combining (2.91) with (2.104), (2.105), (2.88) and(2.90), we obtain the desired
formula (2.95) for dyw’(yo). O
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1.0 ™

0.8

0.6

Yo

0.4

0.2

0.0

FIGURE 4. The admissible domain D (gray region) for the 1d case
with f =1 and g = a.

3. AN EXPLICIT ONE-DIMENSIONAL OPTIMAL SOLUTION

In this section, we study in details the particular case where the functions f and g
are two constants. These constants have to be chosen small enough for ensuring the
well-posedness of (2.1)—(2.4) (see Proposition 2.1). We choose f =1 and g=«a € R
a constant. The solution of Problem (2.1)—(2.4) is then given by

(3.1) u(z) = —%x(a: —z%), z€(0,z2%)

(3.2) wly) = (co - %(y - 1)) (y—1), y€ (yo,1)
with

(3.3) ¢ — 21— 10)(3 + yo) + 240

2(1 +yo)

a1 —yo)? + 2yo

(3.4) vt =2(a(n — 1) - o) = T

The constant a must be chosen small enough. In order to make certain that z*
lies in the interval (0,1), we shall see that we have to restrict the values of a and
1o Indeed, we have that

—2y0 1 )
(1—=y0)*" 1—yo
—1++v1-2
(= “1) ifa<o
@
1 .
(max((),l——), 1) ifa>0
e

Then, we introduce the admissible domain D where the parameters (yo,«) are
allowed to lie for ensuring z* € (0,1):
(3.5) D ={(yo, @) € (0,1) x R, yo € Io}.

The admissible domain D is drawn in Figure 4.

e (0,1) & ae[0:<

~ yOGIa:
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0.0835

0.0830

0.0825
—

J(yo

0.0820

0.08151

0.0810

e
Yo %

FIGURE 5. The energy functional yo — J(yo)

We recall that the energy functional J is given by

z* 1
(3.6) Hn) = [ fowuP dz o [ o, dy
0 Yo
with a parameter n > 0. Let a € R be fixed. The shape optimization problem
consists in finding the reference point yy that minimizes
(3.7) min J(yp).

yo€la
Using the explicit formula (3.1)-(3.4), we obtain

ny (z*)? /I

(38) Tyo) = (2 a) 24 3a’

where z* and ¢ are given by (3.3) and (3.4). This formula provides a fully explicit
expression of the functional J with yg. The derivative J'(yg) of the functional with
respect to yp can be computed exactly as well as the optimal value y that minimizes
J. It can be checked that this direct calculation coincides with the general formula
(2.94), (2.95) given in Proposition 2.6. In the sequel, we do not give this expression
for J'(yo), we only consider a numerical example of an optimal solution.

Numerical example. We choose o = 0.4 and 1 = 0.442. The energy functional
J(yo) is depicted on Figure 5. The minimum of J(yg) is reached at yg ~ 0.6868.
The corresponding optimal point z* is equal to x* ~ 0.8376. The optimal solutions
v and w are drawn on Figure 6. We point out that the functional J has a nontrivial
behaviour with respect to yp, in particular J is a nonconvex function of yg. This
indicates the difficulty and the pertinence of the two-dimensional shape optimization
problem (1.22),(1.23) introduced at the beginning of this paper.

4. CONCLUSION

We introduced a shape optimization problem for a fluid-structure interaction
system coupling the Stokes equations with the linear elasticity equation. We have
shown that a shape optimization problem for a simplified model in one spatial
dimension is well-posed and we are able to fully characterize the shape derivatives
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u

o
o
@

0.0 0.2 0.4 0.6 * 0.8 1.0
Yo z

FIGURE 6. The optimal solutions v and w.

associated to this one-dimensional free-boundary problem. All the (variational)
technical tools we have employed for the study of the one-dimensional free-boundary
problem have been made in the spirit to tackle and solve the two-dimensional shape
optimization problem presented in the introduction of this paper. We aim to extend
our one dimensional technics to the two dimensional problem for getting a rigorous
statement of the shape derivatives in two spatial dimensions.
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