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we do not discuss those works here, since our main focus is the Agrachev–Sarychev
approach. We shall give a concise self-contained account of their method, using the
example of the 1D Burgers equation

(1.1) ∂tu− ν∂2xu+ u ∂xu = h(t, x) + η(t, x), x ∈ (0, π),

where ν > 0 is a fixed parameter, h is a given function, and η is a control. Equa-
tion (1.1) is supplemented with the Dirichlet boundary condition and an initial
condition at t = 0. It will be proved that, given any L2 function û and a continuous
mapping F : L2 → RN that possesses a right inverse on a ball centred at F (û), any
initial point can be steered to an arbitrary small neighbourhood of û in such a way
that the value of F on the solution coincides with F (û); see Section 4 for the exact
formulation. Finally, let us emphasise that the goal of this paper is to illustrate the
Agrachev–Sarychev method on a simple example, and we do not aim at doing it
under the most general hypotheses; the results presented in this paper can certainly
be extended in many directions.

The paper is organised as follows. In Section 2, we recall a well-posedness result
for the Burgers equation and establish some estimates and continuity properties
for the resolving operator. Section 3 is devoted to the problem of approximate
controllability. We formulate the result and give its detailed proof. In Section 4,
we establish the main result of the paper, extending the property of approximate
controllability. The appendix gathers some auxiliary assertions used in the main
text.

Notation. We write I = [0, π] and Jt = [0, t] for t > 0. For a closed interval J ⊂ R
and a Banach space X, we shall use the following functional spaces.

L2 = L2(I) is the space of square-integrable measurable functions u : I → R; the
corresponding norm and inner product are denoted by ∥ · ∥ and (·, ·).
Hs = Hs(I) denotes the Sobolev space of order s on the interval I with the standard
norm ∥ · ∥s.
Hs

0 = Hs
0(I) stands for the closure in Hs of the space of infinitely smooth functions

with compact support.

C(J,X) denotes the space of bounded continuous functions u : J → X.

Lp(J,X) is the space of Borel-measurable functions u : J → X such that

∥u∥Lp(J,X) =

(∫
J
∥u(t)∥pXdt

)1/p

<∞ ;

in the case p = ∞, this norm is replaced by ∥u∥L∞(J,X) = ess supt∈J ∥u(t)∥X .

We denote X (J) = C(J, L2) ∩ L2(J,H1
0 ). In the case J = JT , we shall write XT .

L(X,Y ) is the space of continuous linear operators from X to Y .

2. Cauchy problem
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2.1. Well-posedness. Let us consider the Burgers equation on the interval I =
[0, π] with the Dirichlet boundary condition:

∂tu− ν∂2xu+ u∂xu = f(t, x),(2.1)

u(t, 0) = u(t, π) = 0.(2.2)

Here u = u(t, x) is a real-valued unknown function, ν > 0 is a parameter, and f is
a given function. Equations (2.1), (2.2) are supplemented with the initial condition

(2.3) u(0, x) = u0(x).

The following theorem establishes the well-posedness of the Cauchy problem for the
Burgers equation in an appropriate functional space.

Theorem 2.1. Let T and ν be some positive numbers. Then, for any u0 ∈ L2 and
f ∈ L1(JT , L

2), there is a unique function u ∈ XT that satisfies (2.1)–(2.3).

Proof. We confine ourselves to a formal derivation of an a priori estimate for so-
lutions and to the proof of uniqueness of solution. A detailed account of initial–
boundary value problems for some non-linear PDEs can be found in [8, 17].

A priori estimate. Let us set

Eu(t) = ∥u(t)∥2 + 2ν

∫ t

0
∥∂xu(s)∥2ds.

We multiply Eq. (2.1) by 2u and integrate over I × Jr. After some simple transfor-
mations, we get

Eu(r) = ∥u0∥2 + 2

∫ r

0

(
f(s), u(s)

)
ds

≤ ∥u0∥2 + 2 ∥f∥L1(Jr,L2)

(
sup

0≤s≤r
∥u(s)∥

)
.

Taking the supremum over r ∈ [0, t], we see that

(2.4) Eu(t) ≤ 2∥u0∥2 + 4 ∥f∥2L1(Jt,L2) for 0 ≤ t ≤ T .

Uniqueness. If u1, u2 ∈ XT are two solutions, then the difference u = u1 − u2
satisfies the equation

∂tu− ν∂2xu+ u∂xu1 + u2∂xu = 0.

Multiplying this equation by 2u, integrating over I × Jt, and using the relations

(u2∂xu, 2u) = −(∂xu2, u
2), ∥u2∥ ≤ ∥u∥L∞∥u∥ ≤ C ∥u∥H1∥u∥,

we derive

Eu(t) =
∫∫

I×Jt

u2(∂xu2 − 2∂xu1) dxds

≤
∫ t

0
g(s)∥u(s)∥H1∥u(s)∥ds

≤ ∥u∥L2(Jt,H1)

(∫ t

0
g2(s)∥u(s)∥2ds

)1/2

,
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where g(t) = C ∥∂xu2 − 2∂xu1∥ is an L2 function of time. Estimating ∥u(t)∥ and

∥u∥L2(Jt,H1) by
√

Eu(t), it follows that

Eu(t) ≤ (2ν)−1

∫ t

0
g2(s)Eu(s) ds.

Applying the Gronwall inequality, we conclude that u ≡ 0. �

Remark 2.2. Let us denote by R : L2 × L1(JT , L
2) → XT the resolving operator

for problem (2.1)–(2.3), that is, a non-linear mapping that takes a pair (u0, f) to
the solution u ∈ XT . Using rather standard techniques (e.g., see the book [17] and
the references therein), one can prove that R is uniformly Lipschitz continuous on
bounded subsets. Moreover, the same property is true when L1(JT , L

2) is replaced
by L2(JT ,H

−1).

Remark 2.3. The above-mentioned results are valid in a slightly more general
setting. Namely, let us consider the equation

(2.5) ∂tu− ν∂2x(u+ w) + (u+ v) ∂x(u+ v) = f(t, x), x ∈ (0, π),

supplemented with the initial–boundary conditions (2.2) and (2.3). One can prove
that, for any u0 ∈ L2 and any functions

v ∈ XT + L2(JT ,H
2), w ∈ L1(JT ,H

2), f ∈ L1(JT , L
2) + L2(JT ,H

−1),

problem (2.5), (2.2), (2.3) has a unique solution u ∈ XT , and the associated resolving
operator that takes (v, w, f, u0) to u is uniformly Lipschitz continuous on bounded
subsets.

In what follows, we denote by Rt(u0, f) the restriction of R(u0, f) at time t.
That is, Rt takes (u0, f) to u(t), where u(t, x) is the solution of (2.1)–(2.3).

2.2. Continuity of the resolving operator in the relaxation norm. In the
previous subsection, we discussed the existence and uniqueness of solution for prob-
lem (2.1)–(2.3) and the Lipschitz continuity of the resolving operator. It turns out
that the latter property remains true if the right-hand side is endowed with a weaker
norm in t and a stronger norm in x. Namely, define the relaxation norm

(2.6) |||f |||s = sup
t∈JT

∥∥∥∥∫ t

0
f(r) dr

∥∥∥∥
Hs

on the space L1(JT ,H
s) and denote by Bs(R) the set of functions f ∈ L1(JT ,H

s)
such that |||f |||s ≤ R.

Proposition 2.4. For any positive numbers R and T , there is C > 0 such that

(2.7) ∥R(u01, f1)−R(u02, f2)∥XT
≤ C

(
∥u01 − u02∥+ |||f1 − f2|||1

)
,

where u01, u02 ∈ BL2(R) and f1, f2 ∈ B1(R) are arbitrary functions.

Proof. We first consider the linear equation

(2.8) ∂tu− ν∂2xu = f(t, x)
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supplemented with the zero initial and boundary conditions. By Theorem 2.1, this
problem has a unique solution Kf ∈ XT for any f ∈ L1(JT ,H

1), which can be
written in the form

(2.9) (Kf)(t) =

∫ t

0
eν(t−s)∂2

xf(s) ds = F (t) + ν

∫ t

0
eν(t−s)∂2

x∂2xF (s) ds,

where we set F (t) =
∫ t
0 f(s) ds. The function ∂2xF belongs to C(JT ,H

−1), and the

integral in the right-most term of (2.9) is a solution of (2.8) with f = ∂2xF . Since
the mapping f 7→ ∂2xF is continuous from the space L1(JT ,H

1) (endowed with the
norm ||| · |||1) to L1(JT ,H

−1), recalling Remark 2.2, we see that the mapping f 7→ Kf
is continuous from L1(JT ,H

1) to XT .
We now turn to the non-linear equation (2.1). Its solution can be written in the

form u = Kf + v, where v ∈ XT is the solution of the problem

∂tv − ν∂2xv + (v +Kf) ∂x(v +Kf) = 0, v(0) = u0.

By Remark 2.3, this problem has a unique solution v ∈ XT . Moreover, v ∈ XT

is a Lipschitz function of the pair (u0,Kf) varying in the space L2 × XT . As was
shown above, the mapping f 7→ Kf is continuous from the space L1(JT ,H

1) (with
the norm ||| · |||1) to XT . Hence, we obtain the required Lipschitz-continuity of the
mapping R(u0, f). �

In what follows, we shall need an analogue of Proposition 2.4 for Eq. (2.5) in
the case when the right-hand side is endowed with the weaker norm ||| · |||0. In this
situation, the resolving operator is only Hölder continuous in f . The following result
is one of the key points of the theory developed in the next two sections.

Proposition 2.5. Let ui ∈ XT , i = 1, 2 be solutions of problem (2.5), (2.2), (2.3)
corresponding to some data u0i ∈ L2, vi, wi ∈ L2(JT ,H

2), and fi ∈ L2(JT , L
2) that

belong to the balls of radius R centred at zero in the corresponding functional spaces.
Then there is a constant C > 0 depending only on R and T such that

(2.10) ∥u1 − u2∥XT
≤ C

(
∥u01 − u02∥+ |||f1 − f2|||1/30

+ ∥v1 − v2∥L2(JT ,H2) + ∥w1 − w2∥L2(JT ,H2)

)
.

Proof. Let us represent a solution u of Eq. (2.5) in the form u = Kf + ũ, where
the linear operator K is defined in the proof of Proposition 2.4 (see (2.9)). Then ũ
must satisfy the equation

∂tu− ν∂2x(u+ w) + (u+ v +Kf) ∂x(u+ v +Kf) = 0

and the initial–boundary conditions (2.2), (2.3). Therefore, applying Remark 2.3,
we see that

∥ũ1 − ũ2∥XT
≤ C

(
∥u01 − u02∥+ ∥Kf1 −Kf2∥XT

+ ∥v1 − v2∥L2(JT ,H2) + ∥w1 − w2∥L2(JT ,H2)

)
.

Thus, the required inequality (2.10) will be established if we prove that, for any R
and T , there is a constant C1 > 0 such that

(2.11) ∥Kf∥XT
≤ C1|||f |||1/30 ,
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where f ∈ L2(JT , L
2) is an arbitrary function whose norm is bounded by R.

To this end, note that

(2.12) ∥Kf∥C(JT ,H1) + ∥Kf∥L2(JT ,H2) ≤ C2.

Furthermore, we have the interpolation inequalities

∥z∥ ≤ C3∥z∥1/21 ∥z∥1/2−1 , ∥z∥1 ≤ C3∥z∥2/32 ∥z∥1/3−1 , z ∈ H2 ∩H1
0 .

Combining this with (2.12), we obtain

∥Kf∥XT
= ∥Kf∥C(JT ,L2) + ∥Kf∥L2(JT ,H1)

≤ C4

(
∥Kf∥1/2

C(JT ,H−1)
+ ∥Kf∥1/3

L2(JT ,H−1)

)
.

Thus, to prove (2.11), it suffices to show that

∥Kf∥C(JT ,H−1) ≤ C5|||f |||0.

This follows from (2.9) and the inequality ∥∂2xeτ∂
2
x∥L(L2,H−1) ≤ C6τ

−1/2, which is
true for τ > 0. The proof is complete. �

3. Approximate controllability

3.1. Formulation of the result and scheme of its proof. Let us consider
Eq. (1.1), in which h ∈ L1

loc(R+, L
2) is a given function and η is a control. We

fix an arbitrary number T > 0 and a subspace E ⊂ L2.

Definition 3.1. We shall say that Eq. (1.1) is approximately controllable at time T
by an E-valued control if for any u0, û ∈ L2 and any ε > 0 there is η ∈ L2(JT , E)
such that

(3.1) ∥RT (u0, h+ η)− û∥ < ε.

The following theorem shows that the approximate controllability is true for any
positive time with a control function taking values in a two-dimensional space.

Theorem 3.2. Let h ∈ L1
loc(R+, L

2) and let E be the vector span of the func-
tions sinx and sin 2x. Then Eq. (1.1) is approximately controllable at any time T
by an E-valued control.

This result is proved in Section 3.2–3.5. Here we present the scheme of the proof.

Outline of the proof of Theorem 3.2. Let us fix positive numbers T and ε, arbitrary
functions u0, û ∈ L2, and a finite-dimensional space G ⊂ H1

0 ∩ H2. We shall say
that Eq. (1.1) is ε-controllable by a G-valued control (for given data u0, û, and T ) if
there exists η ∈ L2(JT , G) such that (3.1) holds. Theorem 3.2 will be established if
we show that, for any u0, û ∈ L2, Eq. (1.1) is ε-controllable by an E-valued control.
The proof of this fact is divided into four steps.

Step 1: Extension principle. Along with (1.1), consider the equation

(3.2) ∂tu− ν∂2x(u+ ζ(t, x)) + (u+ ζ(t, x))∂x(u+ ζ(t, x)) = h(t, x) + η(t, x),
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where η and ζ are G-valued controls. We say that Eq. (3.2) is ε-controllable by G-
valued controls if there are functions η, ζ ∈ L2(JT , G) such that the solution u ∈ XT

of (3.2), (2.2), (2.3) satisfies the inequality

(3.3) ∥u(T )− û∥ < ε.

Even though Eq. (3.2) is “more controlled” than Eq. (1.1), it turns out that the
property of ε-controllability is equivalent for them. Namely, we have the following
result.

Proposition 3.3. For any finite-dimensional subspace G ⊂ H1
0 ∩ H2 and any

functions u0, û ∈ L2, Eq. (1.1) is ε-controllable by a G-valued control if and only if
so is Eq. (3.2).

Step 2: Convexification principle. Now let N ⊂ H2 ∩ H1
0 be another finite-

dimensional subspace such that

(3.4) N ⊂ G, B(N) ⊂ G,

where B(u) = u∂xu. Denote by F(N,G) the intersection of H2∩H1
0 with the vector

space spanned by the functions of the form1

(3.5) η + ξ∂xξ
′ + ξ′∂xξ,

where η, ξ ∈ G and ξ′ ∈ N . It is easy to see that F(N,G) ⊂ H2 ∩ H1
0 is a well-

defined finite-dimensional space containing G. The following proposition, which is
an infinite-dimensional analogue of the well-known convexification principle for con-
trolled ODE’s (e.g., see [1, Theorem 8.7]), is a key point of the proof of Theorem 3.2.

Proposition 3.4. Let N,G ⊂ H2 ∩ H1
0 be finite-dimensional subspaces satisfying

inclusions (3.4). Then (3.2) is ε-controllable by G-valued controls if and only if (1.1)
is ε-controllable by an F(N,G)-valued control.

Step 3: Saturating property. Propositions 3.3 and 3.4 imply the following result,
which is a kind of “relaxation property” for the controlled Navier–Stokes system.

Proposition 3.5. Let N,G ⊂ H2 ∩ H1
0 be finite-dimensional subspaces satisfying

inclusions (3.4). Then (1.1) is ε-controllable by a G-valued control if and only if it
is ε-controllable by an F(N,G)-valued control.

We now introduce the subspaces Ek = {sin(jx), 1 ≤ j ≤ k}, so that the space E
defined in Theorem 3.2 coincides with E2. We wish to apply Proposition 3.5 to the
subspaces N = E1 and G = Ek.

Lemma 3.6. For any integer k ≥ 2, we have F(E1, Ek) = Ek+1.

Proposition 3.5 and Lemma 3.6 imply that Eq. (1.1) is ε-controllable by an Ek-
valued control if and only if it is ε-controllable by an Ek+1-valued control. Thus,
Theorem 3.2 will be established if we find an integer N ≥ 2 such that (1.1) is

1Note that a function of the form (3.5) does not necessarily belong to H2 ∩H1
0 , and therefore

the space F(N,G) may coincide with G.
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ε-controllable by an EN -valued control. We shall be able to do that due to the
saturating property

(3.6)

∞∪
k=2

Ek is dense in L2,

which is a straightforward consequence of the definition of Ek.
Let us mention that, in general, explicit description of the subspace F(N,G) and

the proof of (3.6) are difficult tasks. In our situation, it is possible to do due to the
simple structures of trigonometric polynomials and of the domain on which they
are studied.

Step 4: Case of a large control space. It is easy to construct η ∈ C(JT , L
2) for

which (3.1) holds. Using (3.6), it is not difficult to approximate η, within any
accuracy δ > 0, by a function belonging to C(JT , EN ). Since Rt(u0, ·) is continuous,
what has been said implies that (3.1) holds for an EN -valued control η. This
completes the proof of Theorem 3.2. �

3.2. Extension. Let us prove Proposition 3.3. If Eq. (1.1) is ε-controllable by a
G-valued control, then so is (3.2), because one can take ζ ≡ 0. Let us establish the
converse assertion.

Let us denote by R̂ the resolving operator for problem (3.2), (2.2), (2.3), that
is, a mapping that takes a triple (u0, η, ζ) to the solution u ∈ XT of the problem

in question with h ≡ 0. By Remark 2.3, the operator R̂ is Lipschitz continuous
on bounded subsets of some appropriate functional spaces. Let η̂, ζ̂ ∈ L2(JT , G) be
arbitrary controls such that

(3.7) ∥R̂T (u0, h+ η̂, ζ̂)− û∥ < ε,

where R̂t stands for the restriction of R̂ at time t. In view of continuity of R̂T (u0, h+
η, ζ) with respect to ζ ∈ L2(JT , G), there is no loss of generality in assuming that

(3.8) ζ̂ ∈ C∞(JT , G), ζ̂(0) = ζ̂(T ) = 0.

Consider the function u(t) = R̂t(u0, h+ η̂, ζ̂)+ ζ̂(t). It is straightforward to see that

it belongs to the space XT and satisfies Eqs. (1.1), (2.2), (2.3) with η = η̂ + ∂tζ̂ ∈
L2(JT , G). Moreover, it follows from (3.7) and (3.8) that

u(0) = u0, ∥u(T )− û∥ = ∥R̂T (u0, h+ η̂, ζ̂)− û∥ < ε.

Thus, Eq. (1.1) is ε-controllable by a G-valued control.

3.3. Convexification. Let us prove Proposition 3.4. It follows from the extension
principle that if Eq. (3.2) is ε-controllable by G-valued controls, then (1.1) is ε-
controllable by a G-valued control and all the more by an F(N,G)-valued control.
The proof of the converse assertion is divided into several steps. We need to show
that if η1 : JT → F(N,G) is a square-integrable function such that

(3.9) ∥RT (u0, h+ η1)− û∥ < ε,

then there are η, ζ ∈ L2(JT , G) such that

(3.10) ∥R̂T (u0, h+ η, ζ)− û∥ < ε.
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Step 1. We first show that it suffices to consider the case in which η1 is a piecewise
constant function. Indeed, suppose Proposition 3.4 is proved in that case and denote
G1 = F(N,G). For a given η1 ∈ L2(JT , G1), we can find a sequence {ηm} of
piecewise constant G1-valued functions such that

∥η1 − ηm∥L2(JT ,G1) → 0 as m→ ∞.

By continuity of Rt, there is an integer n ≥ 1 such that

(3.11) ∥RT (u0, h+ ηn)− û∥ < ε.

Since the result is true in the case of piecewise constant controls, we can find η, ζ ∈
L2(JT , G) such that (3.10) holds.

Step 2. We now consider the case of piecewise constant G1-valued controls. A

simple iteration argument combined with the continuity of Rt and R̂t shows that
it suffices to consider the case of one interval of constancy. Thus, we shall assume
that η1(t) ≡ η1 ∈ G1.

We shall need the lemma below, whose proof is given at the end of this subsection.
Recall that B(u) = u∂xu.

Lemma 3.7. For any η1 ∈ F(N,G) and any δ > 0 there is an integer k ≥ 1,
numbers αj > 0, and vectors η, ζj ∈ G, j = 1, . . . , k, such that

k∑
j=1

αj = 1,(3.12)

∥∥∥η1 −B(u)−
(
η−

k∑
j=1

αj

(
B(u+ ζj)− ν∂2xζ

j
))∥∥∥ ≤ δ for u ∈ H1.(3.13)

We fix a small δ > 0 and choose numbers αj > 0 and vectors η, ζj ∈ G satisfy-
ing (3.12), (3.13). Let us consider the equation

(3.14) ∂tu− ν∂2xu+

k∑
j=1

αj

(
B(u+ ζj(x))− ν∂2xζ

j(x)
)
= h(t, x) + η(x).

This is a Burgers-type equation, and using the same arguments as in the case of the
Burgers equation, it can be proved that problem (3.14), (2.2), (2.3) has a unique
solution ũ ∈ XT . On the other hand, we can rewrite (3.14) in the form

(3.15) ∂tu− ν∂2xu+ u∂xu = h(t, x) + η1(x)− rδ(t, x),

where rδ(t, x) stands for the function under sign of norm on the left-hand side
of (3.13) in which u = ũ(t, x). Since Rt is Lipschitz continuous on bounded subsets,
there is C > 0 depending only on the L2 norm of η1 such that

∥RT (u0, h+ η1)− ũ(T )∥ = ∥RT (u0, h+ η1)−RT (u0, h+ η1 − rδ)∥

≤ C∥rδ∥L1(JT ,L2) ≤ CTδ,

where we used inequality (3.13). Combining this with (3.9), we see that if δ > 0 is
sufficiently small, then

(3.16) ∥ũ(T )− û∥ < ε.
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We shall show that there is a sequence ζm ∈ L2(JT , G) such that

(3.17) ∥R̂T (u0, h+ η, ζm)− ũ(T )∥ → 0 as m→ ∞.

In this case, inequalities (3.16) and (3.17) with m ≫ 1 will imply the required
estimate (3.10) in which ζ = ζm.

Step 3. Following a classical idea, we define a sequence ζm ∈ L2(JT , G) by the
relation ζm(t) = ζ(mt/T ), where ζ : R → G is a 1-periodic function such that

ζ(t) = ζj for 0 ≤ t− (α1 + · · ·+ αj−1) < αj , j = 1, . . . , k.

Let us rewrite (3.14) in the form

∂tũ− ν∂2x(ũ+ ζm(t, x)) +B(ũ+ ζm(t, x)) = h(t, x) + η(x) + fm(t, x),

where we set fm = fm1 + fm2,

fm1(t, x) = −ν∂2xζm + ν

k∑
j=1

αj∂
2
xζ

j ,(3.18)

fm2(t, x) = B(ũ+ ζm)−
k∑

j=1

αjB(ũ+ ζj).(3.19)

Note that the sequence {fm} is bounded in L2(JT , L
2). Therefore, by Proposi-

tion 2.5, we have

∥R̂T (u0, h+ η, ζm)− R̂T (u0, h+ η + fm, ζm)∥ ≤ C |||fm|||1/30 .

Since ũ(T ) = R̂T (u0, h+ η + fm, ζm) and fm = fm1 + fm2, convergence (3.17) will
be established if we prove that

(3.20) |||fm1|||0 + |||fm2|||0 → 0 as m→ ∞.

Step 4. We first estimate the norm of fm1. The definition of ζm implies that∫ tk

tk−1

fm1(s) ds = 0 for any integer k ≥ 1,

where tk = kT/m. It follows that∫ t

0
fm1(s) ds =

∫ t

t̂m

fm1(s) ds,

where t̂m is the largest number tk that does not exceed t. Since fm1(t) is bounded
as a function with range in H2, we conclude that

(3.21) |||fm1|||0 = sup
t∈JT

∥∥∥∥∫ t

t̂m

fm1(s) ds

∥∥∥∥ ≤ C1 sup
t∈JT

|t− t̂m| ≤ C2m
−1.

We now turn to the estimate for fm2. If the function ũ was independent of time,
we could apply an argument similar to the one used above. However, this is not
the case, and to prove the required estimate, we shall approximate ũ by piecewise
constant functions. Namely, it is easy to see that the operator B is Lipschitz
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continuous from L2(JT ,H
1) to L1(JT , L

2). It follows that for any ε > 0 there is a
piecewise constant function ũε : JT → H1

0 such that

∥fm2 − fεm2∥L1(JT ,L2) ≤ ε,

where fεm2 stands for the function given by (3.19) with ũ = ũε. It follows that
|||fm2 − fεm2|||0 ≤ Tε, and hence we can assume from the very beginning that ũ is
piecewise constant. In other words, there is a partition 0 = τ0 < τ1 < · · · < τN = T
of the interval [0, T ] and functions un ∈ H1

0 , n = 1, . . . , N , such that

fm2(t, x) = B(un + ζm)−
k∑

j=1

αjB(un + ζj) for τn−1 ≤ t < τn.

Now note that if [tk−1, tk] ⊂ [τn−1, τn], then∫ tk

tk−1

fm2(t, x) dt = 0.

Repeating the argument used for fm1, we easily prove that |||fm2|||0 ≤ C3m
−1 in

the case when ũ is piecewise constant. Combining this with (3.21), we obtain the
required convergence (3.20). The proof of Proposition 3.4 is complete.

Proof of Lemma 3.7. It suffices to find functions η, ζ̃j ∈ G, j = 1, . . . ,m, such that

(3.22)
∥∥∥η1 − η +

m∑
j=1

B(ζ̃j)
∥∥∥ ≤ δ.

If such vectors are constructed, then we can set k = 2m,

αj = αj+m =
1

2m
, ζj = −ζj+m =

√
m ζ̃j for j = 1, . . . ,m.

To construct η, ζ̃j ∈ G satisfying (3.22), note that if η1 ∈ F(N,G), then there
are functions η̃j , ξj ∈ G and ξ′j ∈ N such that

(3.23) η1 =
m∑
j=1

(
η̃j − ξj∂xξ

′
j − ξ′j∂xξj

)
.

Now note that, for any ε > 0,

ξj∂xξ
′
j + ξ′j∂xξj = B(εξj + ε−1ξ′j)− ε2B(ξj)− ε−2B(ξ′j).

Combining this with (3.23), we obtain

η1 −
m∑
j=1

(
η̃j + ε−2B(ξ′j)

)
+

m∑
j=1

B(εξj + ε−1ξ′j) = ε2
m∑
j=1

B(ξj).

Choosing ε > 0 sufficiently small and setting

η =

m∑
j=1

(
η̃j + ε−2B(ξ′j)

)
, ζ̃j = εξj + ε−1ξ′j ,

we arrive at (3.22). �
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3.4. Saturation. Let us prove Lemma 3.6 and the inclusion B(E1) ⊂ E2. For
ξ = sin(jx) and ξ′ = sinx, we have

ξ∂xξ
′ + ξ′∂xξ = sin(jx) cosx+ j sinx cos(jx)

=
1

2

(
(j + 1) sin(j + 1)x− (j − 1) sin(j − 1)x

)
.(3.24)

It follows that B(E1) ⊂ E2 and F(E1, Ek) ⊂ Ek+1. Furthermore, taking j = k
in (3.24), we write

sin(k + 1)x =
k − 1

k + 1
sin(k − 1)x+

2

k + 1

(
sin(kx) ∂x sinx+ sinx ∂x sin(kx)

)
.

This relation implies that the function sin(k+1)x belongs to F(E1, Ek) and therefore
Ek+1 ⊂ F(E1, Ek).

3.5. Case of a large control space. We wish to construct a control η ∈ L2(JT , EN )
with a large integer N ≥ 2 such that (3.1) holds. To this end, consider a function
uµ defined as

uµ(t, x) = T−1
(
teµ∂

2
x û+ (T − t)et∂

2
xu0

)
,

where µ > 0 is a small number that will be chosen below. The function uµ belongs
to the space XT and satisfies Eqs. (1.1), (2.2), (2.3) in which

η = ηµ := ∂tuµ − ν∂2xuµ + uµ∂xuµ − h.

This function belongs to L1(JT , L
2). Furthermore,

(3.25) ∥uµ(T )− û∥ = ∥eµ∂2
x û− û∥ → 0 as µ→ 0.

Choosing µ > 0 sufficiently small in (3.25) and approaching ηµ ∈ L1(JT , L
2) by

continuous L2-valued functions, we can find η̃ ∈ C(JT , L
2) such that

(3.26) ∥RT (u0, h+ η̃)− û∥ < ε.

Let us denote by Pk : L2 → L2 the orthogonal projection in L2 onto the sub-
space Ek. In view of the saturating property (3.6), we have

sup
t∈[0,T ]

∥Pkη̃(t)− η̃(t)∥ → 0 as k → ∞.

By continuity of Rt, we obtain

∥RT (u0, h+ Pkη̃)−RT (u0, h+ η̃)∥ → 0 as k → ∞.

Combining this with (3.26), we see that, for a sufficiently large N ≥ 1, the function
η = PN η̃ satisfies (3.1). This completes the proof of Theorem 3.2.

4. Exact controllability of finite-dimensional functionals

4.1. Main result. Let us introduce a controllability property which is stronger
than the approximate controllability. To this end, we first define the concept of a
regular point for a continuous function.
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Definition 4.1. Let X be a Banach space and let F : X → RN be a continuous
function. We shall say that û ∈ X is a regular point for F if there is a non-degenerate
closed ball B ⊂ RN centred at ŷ = F (û) and a continuous mapping2 F−1 : B → X
such that F−1(ŷ) = û and F−1 is the right inverse of F on F−1(B):

(4.1) F (F−1(y)) = y for y ∈ B.

For instance, if F : X → RN is an analytic function such that F (X0) contain
an open ball for some finite-dimensional affine subspace X0 ⊂ X, then the Sard
theorem implies that almost every point û ∈ X0 is regular for F . In particular, if F
is a finite-dimensional projection in X, then any point is regular for F .

Definition 4.2. Let E ⊂ L2 be a closed subspace. We shall say that the Burgers
equation (1.1) is controllable at time T > 0 by an E-valued control if for any con-
tinuous function F : L2 → RN the following property holds: for any initial function
u0 ∈ L2, any regular point û ∈ L2, and any ε > 0 there is η ∈ C∞(JT , E) such that

∥RT (u0, h+ η)− û∥ < ε,(4.2)

F
(
RT (u0, h+ η)

)
= F (û).(4.3)

Thus, the controllability property is stronger than the exact controllability in
observed projection (cf. [2, 4]), but is much weaker than the usual concept of exact
controllability.

Theorem 4.3. Let h and E be the same as in Theorem 3.2. Then Eq. (1.1) is
controllable at any time T > 0 by an E-valued control.

The proof of this result is outlined in the next subsection, and the details are
given in Sections 4.3–4.5.

4.2. Reduction to a uniform approximate controllability. The proof of The-
orem 4.3 is based on the property of uniform approximate controllability .

Definition 4.4. We shall say that Eq. (1.1) is uniformly approximately controllable
at time T by an E-valued control if for any ε > 0 and any compact set K ⊂ L2

there is a continuous mapping Ψ : K ×K → L2(JT , E) such that

Ψ(K ×K) ⊂ C∞(JT , E),(4.4)

sup
u0,û∈K

∥∥RT (u0, h+ Ψ(u0, û))− û
∥∥ < ε.(4.5)

Thus, the uniform approximate controllability can be regarded as a parameter
version of the approximate controllability. The following result is an analogue of
Theorem 3.2 for this concept.

Theorem 4.5. Under the hypotheses of Theorem 3.2, Eq. (1.1) is uniformly ap-
proximately controllable at any time T > 0 by an E-valued control.

We claim that if Eq. (1.1) is uniformly approximately controllable at time T by
an E-valued control, then it is controllable. Indeed, let û ∈ L2 be a regular point
for a continuous function F : L2 → RN , let u0 ∈ L2 be an initial function, and

2Let us emphasise that F−1 is just a notation.
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let ε > 0. We wish to construct a control η ∈ C∞(JT , E) such that (4.2) and (4.3)
hold.

By the definition of a regular point, there is a ball B ⊂ RN centred at the point
ŷ = F (û) and a continuous function F−1 : B → L2 such that F−1(ŷ) = û and (4.1)
holds. Without loss of generality, we can assume that the radius r of the ball B is
so small that

(4.6) sup
y∈B

∥F−1(y)− û∥ < ε

2
.

Denote K = F−1(B) ∪ {u0}, so that K is a compact subset of L2. Let us choose a
number δ ∈ (0, ε/2) such that

(4.7) ∥F (u1)− F (u2)∥ ≤ r for u1, u2 ∈ K, ∥u1 − u2∥ ≤ δ.

Theorem 4.5 implies that there is a continuous mapping Ψ : K → L2(JT , E) with
range in C∞(JT , E) such that

(4.8) sup
v∈K

∥∥RT

(
u0, h+ Ψ(v)

)
− v

∥∥ < δ.

Consider the mapping Φ : B → RN defined by

Φ(y) = F
(
RT (u0, h+ Ψ ◦ F−1(y))

)
.

It follows from (4.7) that

sup
y∈B

∥Φ(y)− y∥ = sup
y∈B

∥∥F (RT (u0, h+ Ψ ◦ F−1(y))
)
− F

(
F−1(y)

)∥∥ ≤ r.

Thus, applying the Brouwer theorem to the mapping Γ : B → B taking y to y −
Φ(y) + ŷ, we can find ȳ ∈ B such that Φ(ȳ) = ŷ. This equality coincides with
relation (4.3) in which η = Ψ ◦ F−1(ȳ). Furthermore, setting ū = F−1(ȳ) and
using (4.6) and (4.8), we obtain

∥RT (u0, h+ η)− û∥ ≤ ∥RT (u0, h+ Ψ(ū))− ū∥+ ∥F−1(ȳ)− û∥ < δ +
ε

2
< ε.

Thus, it suffices to prove Theorem 4.5. To this end, we repeat the scheme used
in Section 3, following carefully the dependence of controls on the initial and final
points. Namely, let us fix ε > 0, a compact set K ⊂ L2, and a finite-dimensional
subspace G ⊂ L2. We say that Eq. (1.1) is (ε,K)-controllable by a G-valued control
if there is a continuous mapping Ψ : K×K → L2(JT , G) satisfying (4.4) with E = G
and (4.5). We shall prove that some analogues of Propositions 3.3 and 3.4 are true
for (ε,K)-controllability. Once they are established, the required result will follow
from the saturating property and the fact that (1.1) is (ε,K)-controllable by an
EN -valued control with a sufficiently large N .

The realisation of the above scheme is based on a result on uniform approximation
of solutions for a Burgers-type equation. It is given in the next subsection. The
proof of Theorem 4.5 is presented in Sections 4.4 and 4.5.
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4.3. Uniform approximation of solutions. Let (C, dC) be a compact metric
space and let bi : C → R+, i = 1, . . . , q, be continuous functions such that

(4.9)

q∑
i=1

bi(y) = 1 for all y ∈ C.

Let us fix some functions ζi ∈ H2 ∩ H1
0 , i = 1, . . . , q, and consider the following

Burgers-type equation depending on the parameter y ∈ C:

(4.10) ∂tu− ν∂2xu+

q∑
i=1

bi(y)
(
B(u+ ζi(x))− ν∂2xζ

i(x)
)
= f(t, x).

For any y ∈ C and u0 ∈ L2, this equation has a unique solution u ∈ XT issued
from u0. Let us denote by S : C × L2 × L1(JT , L

2) → XT a mapping that takes the

triple (y, u0, f) to the solution u of problem (4.10), (2.2). Recall that R̂ stands for
the resolving operator of Eq. (3.2). The following result shows that the solutions
of (4.10) can be approximated by those of (3.2).

Proposition 4.6. Under the above hypotheses, for any positive numbers R, T ,
and ε there is a continuous function Ψ : C → L2(JT ,H

2) such that

Ψ(t; y) ∈ {ζ1, . . . , ζq} for all y ∈ C, t ∈ JT ,(4.11)

sup
y,u0,f

∥∥R̂(
u0, f, Ψ(y)

)
− S(y, u0, f)

∥∥
XT

≤ ε,(4.12)

where the supremum is taken over y ∈ C, u0 ∈ L2, and f ∈ L1(JT , L
2) such that

∥u0∥ ≤ R and ∥f∥L1(JT ,L2) ≤ R.

Proof. We repeat the argument used in Step 3 of the proof of Proposition 3.4.
The main point is to follow carefully the dependence on the parameter y and the
functions u0 and f .

Step 1. Define a sequence of mappings Ψm : C → L2(J,H2) by the formula

Ψm(t; y) = ζ(mt/T ; y),

where ζ = ζ(t; y) is a 1-periodic function depending on the parameter y such that

ζ(t; y) = ζi for 0 ≤ t− (b1(y) + · · ·+ bi−1(y)) < bi(y), i = 1, . . . , q.

The continuity of the functions bi implies that Ψm is also continuous. Let us denote
by u(y) = u(y, u0, f) ∈ XT the solution of (4.10), (2.2) and rewrite Eq. (4.10) in the
form

∂tu(y)− ν∂2x
(
u(y) + Ψm(y)

)
+B

(
u(y) + Ψm(y)

)
= f(t, x) + fm(t, x; y, u0, f),

where fm(t, x; y, u0, f) = fm1(t, x; y) + fm2(t, x; y, u0, f), and the functions fm1

and fm2 are defined by formulas (3.18) and (3.19) in which ζm and ũ are replaced
by Ψm(y) and u(y, u0, f), respectively. Since the norm of Ψm(y) in L2(JT ,H

2) is
bounded for m ≥ 1 and y ∈ C, Proposition 2.5 implies that

∥um(y, u0, f)− u(y, u0, f)∥XT
≤ C |||fm(y, u0, f)|||1/30 ,
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where um = um(y, u0, f) = R̂(u0, f, Ψ
m(y)). Thus, Proposition 4.6 will be proved

if we show that
sup
y,u0,f

|||fm(y, u0, f)|||0 → 0 as m→ ∞.

The fact that the relaxation norm of each function fm(y, u0, f) goes to zero as
m→ ∞ was established in Step 4 of the proof of Proposition 3.4. To prove that the
convergence is uniform in (y, u0, f), it suffices to prove that the family of mappings
fm : C × L2 × L1(JT , L

2) 7→ L1(J, L2) taking (y, u0, f) to fm(y, u0, f) is uniformly
equicontinuous, that is,

(4.13) sup
m≥1

∥fm(y1, u01, f1)− fm(y2, u02, f2)∥L1(J,L2) → 0,

as dC(y1, y2) + ∥u01 − u02∥+ ∥f1 − f2∥L1(JT ,L2) → 0.

Step 2. Since the bilinear term B(u) = u∂xu is continuous from H1 to L2, it
follows from relation (3.19) with ũ = u(y, u0, f) and ζm = Ψm(y) that conver-
gence (4.13) will be proved if we show that

(4.14) ∥u(y1, u01, f1)−u(y2, u02, f2)∥L2(J,H1)+sup
m≥1

∥Ψm(y1)−Ψm(y2)∥L2(J,H1) → 0.

The fact that the first term goes to zero follows immediately from the continuous
dependence of solutions for (4.10) on the problem data. Thus, we shall concentrate
on the second term.

In view of the definition of Ψm and the periodicity of ζ(t; y), we have

∥Ψm(y1)− Ψm(y2)∥2L2(J,H1) =

∫ T

0
∥ζ(mt/T ; y1)− ζ(mt/T ; y2)∥21dt

= T

∫ 1

0
∥ζ(t; y1)− ζ(t; y2)∥21dt

≤ C

q∑
i=1

|bi(y1)− bi(y2)|.

Since the continuous functions bi are uniformly continuous on the compact space C,
we see that the second term in (4.14) goes to zero as dC(y1, y2) → 0. This completes
the proof of Proposition 4.6. �

4.4. Extension and convexification with parameters. Let us consider the con-
trolled equation (3.2). Given a number ε > 0, a compact set K ⊂ L2, and a
finite-dimensional subspace G ⊂ H2, we say that Eq. (3.2) is (ε,K)-controllable by
G-valued controls if there exist two continuous functions Ψ1, Ψ2 : K×K → L2(JT , G)
such that

Ψi(K ×K) ⊂ C∞(JT , G), i = 1, 2,(4.15)

sup
u0,û∈K

∥∥R̂T (u0, h+ Ψ1(u0, û), Ψ2(u0, û))− û
∥∥ < ε.(4.16)

The following result is a parameter version of Proposition 3.3.

Proposition 4.7. Let G ⊂ H1
0 ∩H2. Then (1.1) is (ε,K)-controllable by a G-valued

control if and only if so is (3.2).
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Proof. Let Ψi : K × K → L2(JT , G), i = 1, 2 be two mappings satisfying (4.15)
and (4.16). Since C∞

0 (JT , G) is dense in L2(JT , G), we can assume that the images
of both mappings are contained in a finite-dimensional subspace of C∞

0 (JT , G); see
Proposition 5.1. It follows that (cf. proof of Proposition 3.3)

(4.17) R̂
(
u0, h+ Ψ1(y), Ψ2(y)

)
+ Ψ2(y) = R

(
u0, h+ Ψ1(y) + ∂tΨ2(y)

)
,

where we set y = (u0, û). Since all the norms on a finite-dimensional space are
equivalent, the mapping

Ψ : K ×K → L2(JT , G), y 7→ Ψ1(y) + ∂tΨ2(y),

is continuous, and its image is contained in C∞
0 (JT , G). Finally, combining (4.16)

and (4.17), we conclude that (4.5) also holds. The proof is complete. �

We now turn to a parameter version of the convexification principle.

Proposition 4.8. Under the hypotheses of Proposition 3.4, Eq. (3.2) is (ε,K)-con-
trollable by G-valued controls if and only if Eq. (1.1) is (ε,K)-controllable by an
F(N,G)-valued control.

Proof. We repeat essentially the scheme used to prove Proposition 3.5. The main
point is to follow the dependence of all the objects on the initial and target func-
tions u0 and û.

Step 1. To simplify notation, set G1 = F(N,G), C = K×K, and y = (u0, û). Let
us assume that Ψ : C → L2(JT , G1) is a continuous mapping satisfying (4.4) with
E = G1 and (4.5). By Proposition 5.2 and continuity of the resolving operator R,

we can construct a continuous function Ψ̂ : C → L2(JT , G1) that satisfies (4.5) and
has the form

(4.18) Ψ̂(y) =

s∑
r=1

L∑
l=1

clr(y)Ir,s(t)η
l,

where L = 2dimG1, η
1, . . . , ηL ∈ G1 are some vectors, and clr : C → R are non-

negative continuous functions such that

L∑
l=1

clr(y) ≡ 1 for r = 1, . . . , s.

We shall prove that, given any σ > 0, one can find continuous mappings Ψσ
i : C →

L2(JT , G), i = 1, 2 such that

(4.19) sup
y∈C

∥∥RT

(
u0, h+ Ψ̂(y)

)
− R̂T

(
u0, h+ Ψσ

1 (y), Ψ
σ
2 (y)

)∥∥ ≤ σ.

Once this property is proved, for a sufficiently small σ > 0 we shall have

sup
y∈C

∥∥R̂T

(
u0, h+ Ψσ

1 (y), Ψ
σ
2 (y)

)
− û

∥∥ < ε.

Finally, using Proposition 5.1, we can find continuous functions Ψ1, Ψ2 from C to a
finite-dimensional subspace of C∞

0 (JT , G) such that (4.16) holds. Thus, it suffices
to prove (4.19).
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Step 2. We first assume that s = 1, that is, there is only one interval of constancy.
In this case, we can rewrite (4.18) as

(4.20) Ψ̂(y) =

L∑
l=1

cl(y)η
l.

Applying Lemma 3.7 to the functions ηl, for any δ > 0 we can find numbers αjl ≥ 0

and vectors ξl, ζjl ∈ G such that (cf. (3.12), (3.13))

k∑
j=1

αjl = 1,(4.21)

∥∥∥ηl −B(u)−
(
ξl−

k∑
j=1

αjl

(
B(u+ ζjl)− ν∂2xζ

jl
))∥∥∥ ≤ δ for u ∈ H1,(4.22)

where l = 1, . . . , L. Consider the equation

(4.23) ∂tu− ν∂2xu+

k∑
j=1

L∑
l=1

αjlcl(y)
(
B(u+ ζjl)− ν∂2xζ

jl
)
= h+ ξ,

where we set

(4.24) ξ = ξ(x; y) =

L∑
l=1

cl(y)ξ
l(x).

Indexing the pairs (j, l) by a single sequence i = 1, . . . , q, we rewrite (4.23) as

(4.25) ∂tu− ν∂2xu+

q∑
i=1

bi(y)
(
B(u+ ζi(x))− ν∂2xζ

i(x)
)
= h(t, x) + ξ(x; y),

where bi are non-negative continuous functions whose sum is equal to 1. Equa-
tion (4.25) has a unique solution ũ = ũ(t; y) in XT issued from u0 ∈ K. On the
other hand, we can rewrite (4.25) in the form (cf. (3.15))

(4.26) ∂tu− ν∂2xu+ u∂xu = h(t, x) + Ψ̂(y)− rδ(t, x; y),

where rδ is defined by

rδ(y) = Ψ̂(y)−B(ũ)−
(
ξ(y)−

q∑
i=1

bi(y)
(
B(ũ+ ζi)− ν∂2xζ

i
))
.

Note that, in view of (4.22), we have

sup
y∈C

∥rδ(t; y)∥ ≤ Lδ.
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Combining this with the Lipschitz continuity of RT on bounded subsets, we see
that

sup
y∈C

∥∥RT (u0, h+ Ψ̂(y))− ũ(T ; y)
∥∥

= sup
y∈C

∥∥RT (u0, h+ Ψ̂(y))−RT (u0, h+ Ψ̂(y)− rδ(y))
∥∥

≤ C sup
y∈C

∥∥rδ(y)∥∥L1(JT ,L2)
≤ CTLδ.

Recalling now inequality (4.5) with Ψ replaced by Ψ̂ , we conclude that if δ > 0 is
sufficiently small, then

sup
y∈C

∥∥ũ(T ; y)− û
∥∥ < ε.

Thus, to prove (4.19) for s = 1, it suffices to construct, for any given σ > 0, a
continuous mapping Ψσ

2 : C → L2(JT , G) such that

(4.27) sup
y∈C

∥∥RT

(
u0, h+ ξ(y), Ψσ

2 (y)
)
− ũ(T ; y)

∥∥ ≤ σ.

The existence of such a mapping is a straightforward consequence of Proposition 4.6.

Step 3. We now turn to the case s ≥ 2. Let us note that the construction of the
previous step implies the following result on approximation of solutions.

Lemma 4.9. Let J ⊂ R be a finite interval and let (C, dC) be a compact metric space.
Then for any elements ηl ∈ F(N,G), l = 1, . . . , L, any non-negative continuous
functions cl : C → R whose sum is identically equal to 1, and any positive numbers σ
and R there are continuous functions

Ψ1 : C → G, Ψ2 : C → L2(J,G)

and a number δ > 0 such that, for any u0, v0 ∈ BL2(R) and y ∈ C satisfying the
inequality ∥u0 − v0∥ ≤ δ, we have∥∥R(

u0, h+ Ψ̂(y)
)
− R̂

(
v0, h+ Ψ1(y), Ψ2(y)

)∥∥
X (J)

≤ σ,

where Ψ̂(y) is defined by (4.20), and with a slight abuse of notation we denote by R
and R̂ the resolving operators for (1.1) and (3.2) on the interval J .

Let us set Jr = [tr−1, tr], r = 1, . . . , s, and define the restrictions of the required
mappings Ψσ

1 and Ψσ
2 to Jr consecutively from r = s to r = 1. Namely, let positive

numbers εs and R be such that

εs + sup
y∈C

∥∥RT

(
u0, h+ Ψ̂(y)

)
− û

∥∥ < ε, sup
y∈C

∥∥R(
u0, h+ Ψ(y)

)∥∥ ≤ R− 1.

If εr > 0 is constructed for some integer r ∈ [2, s], we apply Lemma 4.9 with J = Jr,
σ = εr, and the above choice of R to find mappings

Ψσ
1 (r, ·) : C → G, Ψσ

2 (r, ·) : C → L2(Jr, G)

and a number δ ∈ (0, 1) such that, for any v0 ∈ L2 satisfying the inequality ∥v0 −
Rtr−1(u0, h+ Ψ̂(y))∥ ≤ δ, we have

sup
y∈C

∥∥R(
u0, h+ Ψ̂(y)

)
− R̂

(
v0, h+ Ψ1(r; y), Ψ2(r; y)

)∥∥
X (Jr)

≤ εr.
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Setting εr−1 = δ, we can continue the construction up to r = 1. We now define the
required mappings by the relation

Ψσ
1 (y)

∣∣
Jr

= Ψσ
1 (r; y), Ψσ

2 (y)
∣∣
Jr

= Ψσ
2 (r; y), y ∈ C, r = 1, . . . , s.

It is easy to see that the constructed mappings satisfy the required inequality (4.19).
�

4.5. Completion of the proof of Theorem 4.5. Propositions 4.7 and 4.8 com-
bined with Lemma 3.6 imply that Eq. (1.1) is (ε,K)-controllable by an E-valued
control if and only if it is (ε,K)-controllable by an EN -valued control, where the
spaces Ek are defined after Proposition 3.5. Thus, the proof of Theorem 4.5 will be
complete if we establish the latter property with a large N ≥ 2.

Let uµ = uµ(u0, û) and ηµ = ηµ(u0, û) be the functions defined in Section 3.5.
Then ηµ maps continuously K ×K to L2(JT , L

2) and has the property that

sup
u0,û∈K

∥uµ(T )− û∥ = sup
u0,û∈K

∥RT (u0, h+ ηµ(u0, û))− û∥ → 0 as µ→ 0.

Using the density of C∞(JT , L
2) in L2(JT , L

2) and applying Proposition 5.1, for
any ε > 0 we can find a continuous function η̃ : K × K → L2(JT , L

2) whose image
is contained in a finite-dimensional subspace of C∞(JT , L

2) such that

sup
u0,û∈K

∥RT (u0, h+ η̃(u0, û))− û∥ < ε.

The required mapping Ψ : K×K → L2(JT , EN ) can now be constructed by repeating
literally the argument used in Section 3.5.

5. Appendix

5.1. Approximation of functions valued in a Hilbert space. The following
simple result implies, in particular, that when dealing with the property of uniform
approximate controllability, one can always assume that the image of the corre-
sponding control operator lies in a finite-dimensional subspace.

Proposition 5.1. Let C be a compact metric space, let H be a separable Hilbert
space, and let Ψ : C → H be a continuous mapping. Then, for any dense subspace
H0 ⊂ H and any δ > 0, there is a finite-dimensional subspace Hδ ⊂ H0 and a
continuous function Ψδ : C → H whose image is contained in Hδ such that

(5.1) sup
y∈C

∥Ψ(y)− Ψδ(y)∥H < δ.

Proof. Let Hn be an increasing sequence of finite-dimensional subspaces such that
∪nH

n is dense in H0 and, hence, in H. We denote by Pn the orthogonal projections
in H onto the subspace Hn. Then the sequence {Pn} converges to the identity in
the strong operator topology. It is well known that, in this case, Pnu→ u as n→ ∞
uniformly with respect to u varying in a compact subset of H. It follows that

sup
y∈C

∥Ψ(y)− PnΨ(y)∥H → 0 as n→ ∞.

We see that, for any δ > 0 and a sufficiently large integer n = n(δ), the function
Ψδ(y) = Pn(δ)Ψ(y) satisfies the required property. �
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5.2. Approximation by piecewise constant functions. Let us fix T > 0. For
given integers s ≥ 1 and r ∈ [1, s], we denote tr = rT/s and write Ir,s(t) for the
indicator function of the interval [tr−1, tr). The following proposition shows that one
can approximate square-integrable functions depending on a parameter by piecewise
constant functions of a special form.

Proposition 5.2. Let C be a compact metric space, let G be a d-dimensional vector
space, and let η : C → L2(JT , G) be a continuous function. Then for any basis
e1, . . . , ed of G the function η can be approximated, within any accuracy, by functions
of the form

(5.2) ζ(y) =

s∑
r=1

2d∑
l=1

clr(y)Ir,s(t)η
l,

where clr : C → R are non-negative continuous functions such that

(5.3)

2d∑
l=1

clr(y) ≡ 1 for any r = 1, . . . , s,

ηl = Cel for 1 ≤ l ≤ d, ηl = −Cel−d for d+ 1 ≤ l ≤ 2d, and C > 0 is a number.

Proof. We wish to prove that, for any ε > 0, there is a function ζ : C → L2(JT , G)
of the form (5.2) such that

sup
y∈C

∥η(y)− ζ(y)∥L2(JT ,G) < ε.

In view of Proposition 5.1, since C(JT , G) is dense in L2(JT , G), there is no loos of
generality in assuming that η is a continuous function from C to a finite-dimensional
subspace of C(JT , G).

Let us introduce a scalar product (·, ·) in G for which {el} is an orthonormal
basis. Then η can be written in the form

(5.4) η(y) = η(y; t) =

d∑
l=1

φl(y; t)el,

where φl(y; t) = (η(y; t), el). Note that φl is a real-valued continuous function
on C × JT . Let us set

M = max
l,y,t

|φl(y; t)|, C =Md,

where the maximum is taken over l = 1, . . . , d and (y; t) ∈ C × JT . Then (5.4) can
be rewritten as

η(y; t) =

d∑
l=1

φl(y; t) +M

2C
ηl +

d∑
l=1

M − φl(y; t)

2C
ηl+d =

2d∑
l=1

ψl(y; t)η
l,

where ψl : C × JT → R are non-negative continuous functions whose sum is iden-
tically equal to 1. It remains to note that ψl can be approximated, within any
accuracy, by piecewise constant functions of the form

∑
r cr(y)Ir,s(t). �
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T. Havârneanu, and C. Popa for invitation and excellent working conditions.

References

[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from Geometric Viewpoint, Springer-
Verlag, Berlin, 2004.

[2] A. A. Agrachev and A. V. Sarychev, Navier-Stokes equations: controllability by means of low
modes forcing, J. Math. Fluid Mech. 7 (2005), 108–152.

[3] A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier-Stokes equations
by degenerate forcing, Comm. Math. Phys. 265 (2006), 673–697.

[4] A. A. Agrachev and A. V. Sarychev, Solid controllability in fluid dynamics, Instability in
Models Connected with Fluid Flows. I, Int. Math. Ser. (N. Y.), vol. 6, Springer, New York,
2008, pp. 1–35.

[5] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems,
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