


242 DAN TIBA

Another drawback is the difficult numerical implementation of many such meth-
ods: the unknown domain changes and has to be remeshed in each iteration of the
algorithm; the mass matrix has to be recomputed as well, etc.

An answer to such questions is searched by the so-called ”fixed domain methods”,
which have received much attention in the recent mathematical literature. Even the
classical mapping method is of this type: the unknown domains Ω are transported
on a given domain B (a ball, for instance) via a smooth bijective transformation
T : Ω → B. Then, T and its derivatives appear in the coefficients of the trans-
formed state equation and the shape optimization problem becomes a control by
the coefficients problem.

There are other numerous ways to reduce certain shape optimization problems
to optimal control problems via geometric controllability properties or the use of
characteristic functions, etc., Lions [12], Pironneau [23], Neittaanmäki, Sprekels and
Tiba [17]. In Neittaanmaki and Tiba [19] the case of Neumann boundary conditions
is discussed via the controllability approach.

This paper is devoted to a new fixed domain approach using functional variations
of the geometry, introduced in Neittaanmäki, Pennanen and Tiba [16]. See as well
the recent survey Neittaanmäki and Tiba [18]. In [31], the case of boundary cost
functionals is discussed in this setting. These papers discuss mainly the case of
Dirichlet boundary conditions and use essentially a penalization idea going back to
Natori and Kawarada [14], that cannot be extended to other boundary conditions. It
is the aim of the present article to extend this methodology to Neumann conditions.

Functional variations are based on implicit representations of domains, but are
different from the level set method of Osher and Sethian [21] (for instance, no time
variable and no ”evolution” of domains is used, no Hamilton-Jacobi equation is
needed). A certain comparison may be made with the second method discussed in
the classical work of Santosa [24].

The paper is organized as follows. In the next section, we briefly recall some
preliminaries: the recent implicit parametrization theorem [30], [20] which will play
a key role in the sequel and the case with Dirichlet boundary conditions. For recent
related approaches, see [11], [33]. The last section is devoted to the examination
of the main objective of the paper: shape optimization problems with Neumann
boundary conditions.

2. Preliminaries

We briefly discuss the implicit parametrization approach in dimension two, ac-
cording to [30], [20]. A general treatment of the implicit parametrization theorem,
including the critical case and applications in nonlinear programming can be found
in the recent preprint [32]. Notice that in geometric optimization problems, the
case of dimension two is a case of interest. Moreover, starting with dimension
three, iterated Hamiltonian systems are necessary for implicit parametrizations and
the complexity of numerical approaches in shape optimization becomes prohibitive.

We consider the implicit equation:

(2.1) g(x, y) = 0, (x, y) ∈ D ⊂ R2.
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and assume that D is a bounded domain, g ∈ C1(D) and g(x0, y0) = 0, for some
given (noncritical) (x0, y0) in D.

We associate to (2.1) the Hamiltonian system:

(2.2) x′(t) = −∂g

∂y
(x(t), y(t)),

(2.3) y′(t) =
∂g

∂x
(x(t), y(t)),

(2.4) x(0) = x0, y(0) = y0.

By the Peano theorem, the system (2.2)–(2.4) has at least one local solution
around (x0, y0), for t ∈ Imax = (T−, T+), the maximal existence interval and we
have:

g(x(t), y(t)) = 0, ∀ t ∈ Imax.

This is in fact the conservation property of Hamiltonian systems. The geometric
remark behind the system (2.2)–(2.4) is that ∇g(x, y) is the normal vector to the

level curve (2.1), if nonzero. Then
(
− ∂g

∂y ,
∂g
∂x

)
is the tangent vector. This is valid just

in dimension two and is well known [29], p.61. In higher dimension, the construction
is more involved, [32].

Remark 2.1. We have a local solution for (2.2)–(2.4) on t ∈ Imax, in the usual sense
for differential equations. We underline that this sense is different from that of local
solution as appearing in the implicit function theorem. Namely, in the classical
implicit function theorem, the requirement to obtain locally a function is essentially
influenced by the choice of the axes, which is completely arbitrary. Consequently,
the parametrization [x(t), y(t)] provides a better description of the manifold.

We consider functional variations in (2.1):

(2.5) g(x, y) + λh(x, y) = 0, in D,

λ ∈ R and h ∈ C1(D) with g(x0, y0) = h(x0, y0) = 0.

We associate to (2.5) the perturbed Hamiltonian system

(2.6) x′λ = −∂g

∂y
(xλ, yλ)− λ

∂h

∂y
(xλ, yλ),

(2.7) y′λ =
∂g

∂x
(xλ, yλ) + λ

∂h

∂y
(xλ, yλ),

(2.8) xλ(0) = x0, yλ(0) = y0.

By well known properties of ordinary differential systems, [8], the solutions
(xλ(t), yλ(t)) exist for |λ| small on a common compact interval I, with 0 ∈ int I.
We denote by:

(2.9) zλ =
xλ − x

λ
, wλ =

yλ − y

λ
, t ∈ I, λ ̸= 0.

It is known that
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Proposition 2.2. Assume that g ∈ C2(D), h ∈ C1(D), with locally Lipschitzian
derivatives of the highest order. We have zλ → z, wλ → w in C1(I) and z, w satisfy
the system in variations:

(2.10) z′ = −∇
[
∂g

∂y
(x, y)

]
· (z, w)− ∂h

∂y
(x, y), in I,

(2.11) w′ = ∇
[
∂g

∂x
(x, y)

]
· (z, w) + ∂h

∂x
(x, y), in I,

(2.12) z(0) = w(0) = 0.

Remark 2.3. The existence interval for (2.10)–(2.12) is the same as for (2.2)–(2.4),
via some usual extension procedure.

We briefly comment now on the Dirichlet case in shape optimization problems,
following [16], [18]:

(2.13) Min
Ω∈O

∫
Λ
j(x, yΩ(x))dx,

(2.14) −∆yΩ = f in Ω,

(2.15) yΩ = 0 on ∂Ω.

Here, O is a family of admissible domains in R2, satisfying certain regularity
hypotheses and conditions like

(2.16) E ⊂ Ω ⊂ D, ∀ Ω ∈ O,

where E ⊂ D are given (bounded) domains, E may be even void, etc.
Function f ∈ L2(D) and Λ may be either E (if nonvoid) or Ω, ∂Ω. The integrand

j(·, ·) : D ×R → R is of Carathéodory type.
A more general setting concerning the operators, the integrand functionals, the

restrictions (for instance state constraints on the state yΩ), etc., may be considered
as well.
A first property, specific to Dirichlet boundary conditions, ensures the approximate
extension of the boundary value problem (2.14), (2.15) from the unknown and
variable domain Ω to the fixed given domain D. We associate the approximating
problem (ε > 0):

(2.17) −∆ŷ +
1

ε
(1−HΩ)ŷ = f in D,

(2.18) ŷ = 0 on ∂D.

Here, HΩ : D → R is the characteristic function of Ω in D.
In order to use functional variations, we define the class O of admissible domains

by:

(2.19) Ω = Ωg = int{x ∈ D; g(x) ≥ 0},
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where g ∈ X(D) ⊂ C(D) and X(D) is some functional space on D. Examples of
such spaces X(D) may be finite element spaces. In numerical applications, it is
enough to take g piecewise continuous and bounded, Philip and Tiba [22].

Under representation formula (2.19), if we impose

(2.20) g ≥ 0 in E,

then constraint (2.16) is fulfilled. If H : R → R is the Heaviside function, then
H(g) : D → R is the characteristic function of Ωg. Notice that in the critical case
for g, the set {x ∈ D; g(x) = 0} may have even positive measure, but Ωg is always

a Carathéodory set, i.e. Ωg = int Ωg.
Denote by Hε : R → R a smoothing of the Yosida approximation of the maximal

monotone extension of H to R × R. Then Hε(g) : D → R is an approximation
of the characteristic function HΩ. Such regularization procedures have been intro-
duced in Makinen, Neittaanmäki and Tiba [13]. They are frequently used in image
reconstruction problems and are sometimes called the Chan-Vese regularization, [3].

We further approximate (2.17) by

(2.21) −∆yε +
1

ε
(1−Hε(g))yε = f in D,

(2.22) yε = 0 on ∂D.

Proposition 2.4. If Ω = Ωg is of class C, then yε|Ωg → y (the solution of (2.14),

(2.15)) weakly in H1(Ωg).

This is a consequence of the Hedberg - Keldys stability property for domains of
class C (i.e. with continuous boundary), [17], [16]. Notice the very weak regularity
assumptions on the admissible domains Ω ∈ O.

Based on Proposition 2.4, we approximate the shape optimization problem (2.13)–
(2.16) by (2.13), (2.21), (2.22), (2.16). We underline that this is again a control by
coefficients problem with the control g entering just the lower order term of the dif-
ferential operator and the state equation (2.21) being a simple penalization of (2.14).
This is a very direct approach compared, for instance, with the mapping method.
Its numerical implementation is very efficient and some examples are reported in
[16], [22].

The ”functional variations” [16], [18] g + λh, g, h ∈ X(D), λ ∈ R may generate
very complex geometric variations of Ω = Ωg combining boundary, interior and
topological variations in (2.13)–(2.16). By combining Propositions 2.2, 2.4 one
obtains the form of the gradient in the approximating shape optimization problem
(2.13), (2.21), (2.22), (2.16). Theoretical results and numerical examples of this
type can be found in [18], [31] as well.

It is the aim of this paper to provide at least a partial answer to the question how
the above techniques can be extended to other boundary conditions. The extension
and approximation provided by Proposition 2.4 are no more valid for Neumann or
mixed boundary conditions, etc. Clearly, more regularity hypotheses have to be
imposed on the admissible domains Ω ∈ O in this case.
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3. Extension of the Neumann problem and shape optimization

We fix now Ω = Ωg as in (2.19), under the assumption that g ∈ C1(D) and
|∇g(x, y)| > 0 for g(x, y) = 0. In this non critical case, we have Ωg = {g(x, y) > 0}
and regularity conditions may be imposed on ∂Ωg by increasing the regularity of g.
We denote by zg ∈ C1(Ig)

2 a parametrization of ∂Ωg, obtained as in the previous
section, with Ig being its maximal existence interval (see (2.2)–(2.4)). If we also
impose g(x) < 0 on ∂D, then ∂Ωg does not meet ∂D.

Notice that under the above hypothesis and the implicit functions theorem, the
curve {zg(t), t ∈ Ig} has no selfintersections. It may be periodic, Clarke [4], p.279,
or intersect ∂D or it may have a spiral type structure as in the Bendixson theorem,
[8]. It is unclear how to handle this last case and we assume that {zg(t), t ∈ Ig},
Ig bounded, provides a complete description of ∂Ωg. In the case Ωg is not simply
connected, such parametrizations are supposed for each of the (assumed finitely
many) components of the boundary ∂Ωg and, in particular, the integral in relation
(3.3) below has to be replaced by a corresponding sum of integrals. The subsequent
arguments remain valid under straightforward modifications.

We discuss the Neumann boundary value problem:

(3.1) −∆yg + yg = f in Ωg,

(3.2)
∂yg
∂n

= 0 on ∂Ωg.

More complex elliptic operators may be handled in a similar way.
We associate to (3.1), (3.2) a distributed optimal control problem in D (s > 2):

(3.3) Min
u∈Ls(D)

∫
Ig

|∇g(zg) · ∇yu(zg)|2dt,

(3.4) −∆yu + yu = f + (1−H(g))u in D,

(3.5)
∂yu
∂n

= 0 on ∂D,

where ∇g(zg) ̸= 0, under our assumptions.
We assume that u, f ∈ Ls(D) and, consequently, yu ∈ W 2,s(D) with ∇yu ∈

C(D)2 by the Sobolev theorem (due to s > 2) if ∂D is C1,1. Then, the cost
functional (3.3) makes sense.

Here, as in §2, H : R → R is the Heaviside function and (3.4), (3.5) represents
the alternative for the Neumann problem to the ”extension system” (2.17), (2.18)
used for Dirichlet boundary conditions.

Proposition 3.1. The optimal control problem (3.3)–(3.5) has at least one optimal
pair [u∗, y∗] ∈ Ls(D)×W 2,s(D). The optimal value is 0.
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Proof. We have smoothness for ∂Ωg by the implicit functions theorem and ∂D is
assumed smooth. By the trace theorem, there is an extension ỹg ∈ W 2,s(D), not

necessarily unique, with ỹg|Ωg = yg,
∂ỹg
∂n = 0 on ∂D.

We denote by ug = −∆ỹg + ỹg − f ∈ Ls(D) and the pair [ug, ỹg] is admissible for
(3.4), (3.5).

Notice that ∇g(zg) · ∇ỹg(zg) = 0 due to the condition
∂ỹg
∂n = 0 on ∂Ωg, i.e. due

to (3.2), since ∇g(zg) is normal to ∂Ωg.
Then, the cost (3.3) is null for [ug, ỹg] and [ug, ỹg] is an optimal pair denoted by

[u∗, y∗]. �

Proposition 3.2. If [u∗, y∗] ∈ Ls(D)×W 2,s(D) is an optimal pair of (3.3)–(3.5),
then y∗|Ωg is the solution of (3.1), (3.2).

Proof. As the coefficient 1 −H(g) is null in Ωg, we see that y∗|Ωg satisfies (3.1) in
the strong sense. We also have∫

Ig

|∇g(zg) · ∇y∗(zg)|2 = 0

and this gives ∂y∗

∂n |∂Ωg = 0 since ∇g(zg) ̸= 0 and zg is a parametrization of the whole
∂Ωg, according to our hypotheses. �

Remark 3.3. In the work of Joly and Rhaouty [10], the same problem is han-
dled via a Lagrange multipliers approach, under C1,1 regularity assumptions on the
boundary ∂Ω. The approach that we develop is purely analytic, not involving the
geometry, in order to allow an efficient use in shape optimization problems. In the
case of hyperbolic equations, C. Tsogka, J. Rodriguez, E. Bécache [1], apply an
approach similar to [10].

We introduce now the approximation/regularization of (3.3)–(3.5), which will
play an essential role later:

(3.6) Min{1
2

∫
Ig

|∇g(zg) · ∇yε(zg)|2 +
c(ε)

2
|(1−Hε(g))u|2Ls(D)},

where c(ε) → 0 for ε → 0 and is defined in (3.15),

(3.7) −∆yε + yε = f + (1−Hε(g))u in D,

(3.8)
∂yε
∂n

= 0 on ∂D.

Without loss of generality, we may require Hε(r) = 1, r ≥ 0, Hε(r) = 0, r ≤ −ε
and 0 < Hε(r) < 1 for −ε < r < 0. See [13], [16].

Theorem 3.4. The problem (3.6)–(3.8) has an optimal pair [u∗ε, y
∗
ε ] such that [(1−

Hε(g))u∗ε, y
∗
ε ] ∈ Ls(D)×W 2,s(D) and the optimal value J(u∗ε, y

∗
ε) → 0 for ε → 0.

Moreover, on a subsequence, we have

(3.9) y∗ε → y∗ weakly in W 2,s(D),

(3.10) (1−Hε(g))u∗ε → u∗ weakly in Ls(D),

where [u∗, y∗] is an optimal pair of (3.3)–(3.5).
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Proof. Take in (3.7), u = ug as defined in the proof of Proposition 3.1. We compute

(3.11) vεg = f + (1−Hε(g))ug +∆ỹg − ỹg = −Hε(g)ug,

again as in the proof of Proposition 3.1.
We have that {vεg} is bounded in Ls(D), s > 2, by |Hε(g)| ≤ 1 a.e. in D and

ug ∈ Ls(D).
Moreover, by the properties of Hε and since ug = 0 in Ωg, we have v

ε
g ̸= 0 just in

the set {x ∈ D;−ε < g < 0} = Gε and µ(Gε) → 0 for ε → 0 due to the regularity

assumptions on g and Weyl tube formula [6]. Namely, on a subsequence, Gε → G̃
in the Hausdorff-Pompeiu metric and their distance gives the radius of the tube.

As g is continuous, we get immediately that G̃ = {(x, y) ∈ D; g(x, y) = 0}.
As the limit is unique, we have the convergence on the whole sequence. Then Gε

is contained in a ”shrinking” tube around the curve G̃ (and G̃ has zero measure by
the Stampacchia property [30]).

Then, on a subsequence, vεg → 0 a.e. in D.
The Lions lemma (see lemma 2.2.8, [17]) gives vεg → 0 strongly in Lp(D), for any

p ∈]2, s[ (and without taking subsequence since the limit is uniquely determined).
Denote by yεg the solution of (3.7), (3.8) corresponding to ug. By (3.11), we have

(3.12) −∆(yεg − ỹg) + yεg − ỹg = vεg.

Consequently yεg − ỹg → 0 strongly in W 2,p(D) and ∇yεg −∇ỹg → 0 strongly in

C(D)2.
That is, by (3.12) we infer

(3.13)

∫
Ig

|∇g(zg) · ∇yεg(zg)|2dt →
∫
Ig

|∇g(zg) · ∇ỹg(zg)|2dt = 0.

The optimal value of the problem (3.6)–(3.8) is estimated from above by the
value corresponding to the admissible pair [yεg, ug] and (3.13) proves that its limit
for ε → 0 is indeed 0.

Moreover, the existence of an optimal pair such that [(1−Hε(g)u∗ε, y
∗
ε ] ∈ Ls(D)×

W 2,s(D) is obvious since the optimal control problem is linear quadratic in these
two terms. Then J(u∗ε, y

∗
ε) → 0 for ε → 0.

We need now a more precise computation:

(3.14)

∫
Ig

|∇g(zg) · ∇y∗ε |2dt ≤
∫
Ig

|∇g(zg) · ∇yεg(zg)|2dt+

+
c(ε)

2
|(1−Hε(g))ug|2Ls(D) ≤ kc(ε) + c|yεg − ỹg|2C1(D)

≤ kc(ε) + C|vεg|2Lp(D)

with some p ∈]2, s[ and some constants c, C independent of ε.
By (3.11), we get

(3.15)

∫
D

|vεg|p ≤
∫

−ε<g<0

|ug|p = c(ε)p → 0 for ε → 0,

by the Hölder inequality (ug ∈ Ls(D), s > p) and Weyl tube formula.
Notice that (3.15) gives the definition of c(ε) as well.
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From (3.14), we get

c(ε)

2
|(1−Hε(g))u∗ε|2Ls(D) ≤

∫
Ig

|∇g(zg) · ∇yεg(zg)|2dt+

+
c(ε)

2
|(1−Hε(g))ug|2Ls(D) ≤ kc(ε) + Cc(ε)2.

This yields {(1−Hε(g))u∗ε} bounded in Ls(D). And (4.7) gives {y∗ε} bounded in
W 2,s(D).

Denote by [û, ŷ] the weak limits on a subsequence, in Ls(D)×W 2,s(D) of these
functions.

Since 1−Hε(g) ≡ 0 for g ≥ 0, then we have (1−H(g))û = û a.e. D as {g(x) = 0}
has zero measure in our hypotheses. One can pass to the limit in (3.7), (3.8) and
see that [û, ŷ] satisfies (3.4), (3.5).

We have

0 = lim
ε→0

J(u∗ε, y
∗
ε) =

1

2

∫
Ig

|∇g(zg) · ∇ŷ(zg)|2dt.

This shows that the pair [û, ŷ] is optimal for the problem (3.3)–(3.5) and we
denote it by [u∗, y∗]. �

Theorem 3.5. The first order optimality system for the control problem (3.6)–
(3.8) is given by the state equation (3.7), (3.8), the adjoint state system (pε ∈
Ls′(D), 1

s +
1
s′ = 1):

(3.16)

∫
D

pε(−∆r + r) =

∫
Ig

[∇g(zg) · ∇y∗ε(zg)][∇g(zg) · ∇r(zg)]dt,

∀ r ∈ W 2,s(D),
∂r

∂n
= 0 on ∂D,

and the maximum principle:

(3.17) (1−Hε(g))pε + c(ε)F [(1−Hε(g))u∗ε] = 0.

Above, F : Ls(D) → Ls′(D) is the duality mapping.

Proof. We take variations around [u∗ε, y
∗
ε ] of the form [u∗ε, y

∗
ε ] + λ[u,w], λ ∈ R,

v ∈ Ls(D) and w defined by the equation in variations

−∆w + w = (1−Hε(g))v in D,

∂w

∂n
= 0 on ∂D.

Comparing the cost associated to the above variation with the optimal one, di-
viding by λ ̸= 0 and letting λ → 0, we get∫

Ig

[∇g(zg) · ∇y∗ε(zg)][∇g(zg) · ∇w(zg)] + c(ε)F [(1−Hε(g))u∗ε]dx = 0.
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Taking into account (3.16) and the equation in variations, we infer∫
D

pε(1−Hε(g))vdx+ c(ε)

∫
D

vF [(1−Hε(g))u∗ε]dx = 0,

which yields (3.17) since v is arbitrary. �
Remark 3.6. The unique solution of (3.16) is defined in the transposition sense,

pε ∈ Ls′(D). One can eliminate uε from the state equation, via (3.17). The ob-
tained result is a system of equations with unknowns y∗ε , pε that constitutes the
approximate extension of the Neumann problem from Ωg to D. We should note
that the adjoint eqation (3.16) includes a source term on ∂Ωg, which is a similar
situation with [1], [10]. Other related works are [16], [18]. The main novelty here
is that everything is explicit, due to the tools developped in the previous section.
The unknown geometry of the problem (i.e. Ωg or ∂Ωg) is completely replaced by
g and D, that is our formulation is purely analytic.

Proposition 3.7. We have {pε} bounded in Ls′(D), pε → p∗ weakly in Ls′(D) on
a subsequence and p∗ = 0 a.e. in D \ Ωg. Moreover:

(3.18)

∫
D

p∗(−∆r + r) =

∫
Ig

[∇g(zg) · ∇y∗(zg)][∇g(zg) · ∇r(zg)],

∀ r ∈ W 2,s(D),
∂r

∂n
= 0 on ∂D.

Proof. The boundedness of {pε} in Ls′(D) is a consequence of (3.16) and (3.9),
while p∗ = 0 in D \Ωg is obtained by passing to the limit in (3.17). Relation (3.18)
is again a consequence of (3.16), (3.9). �
Remark 3.8. The state system (3.4), (3.5), the equation (3.18) and the relation

(3.19) (1−H(g))p∗ = 0 in D

give the optimality conditions in the problem (3.3)–(3.5).
In particular, (3.19) expresses the fact that the gradient of the cost is null at

the optimal pair. In applying iterative gradient algorithms to (3.3)–(3.5), in itera-
tion n one has un, computes yn by (3.4), (3.5), then pn by (3.18). The gradient is
(1−H(g))pn and gives the descent direction. In this case, it is not possible to elim-
inate the control mapping. The justification of the approximation/regularization
approach of this section is given by the smooth character of the mapping g → Hε(g).
Then, the mapping g → yε as defined by (3.7), (3.8) is smooth as well.

We consider an example involving both boundary cost functionals and Neumann
boundary conditions in the state system.

The family O of admissible domains in R2 is defined by (2.19) with

(3.20) g ∈ C1(D), ∇g(x, y) ̸= 0 for g(x, y) = 0, g(x, y) < 0 on ∂D.

We also impose the Sverak [28] hypothesis that the number of the connected
components of the complementary sets of the admissible domains is bounded from
above (and, consequently, in (3.3) just finite sums may appear).
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The shape optimization problem has the form

(3.21) Min
Ω∈O

{
∫
∂Ω

|yΩ − yd|2dσ +

∫
Ω

dx},

subject to

(3.22) −∆yΩ + yΩ = f in Ω,

(3.23)
∂yΩ
∂n

= 0 on ∂Ω,

where f ∈ Ls(D), s > 2 is given.
By the well-known Stampacchia property [30], under conditions (3.20), the defi-

nition of Ω = Ωg can be written in the form

(3.24) Ω = Ωg = {(x, y) ∈ D; g(x, y) > 0}.
We have the description (2.2)–(2.4) for the boundary ∂Ω = ∂Ωg of Ω from (3.24)

and, by the results in this section, the problem (3.21)–(3.23) is approximated by:

(3.25) Min
g∈Gad

{
∫
Ig

|yε(zg)− yd(zg)|2
√

(z′g)
2dt+

∫
D

Hε(g)dx},

subject to:

(3.26) −∆yε + yε = f + c(ε)−1F−1[(Hε(g)− 1)pε] in D,

(3.27)
∂yε
∂n

= 0 on ∂D,

(3.28)

∫
D

pε(−∆r + r)dx =

∫
Ig

[∇g(zg) · ∇yε(zg)][∇g(zg) · ∇r(zg)],

∀ r ∈ W 2,s(D),
∂r

∂n
= 0 on ∂D.

This is a consequence of Theorem 3.5 and Gad is the class of admissible shape
functions g from (3.20). In the numerical approximation of the optimization problem
(3.21)–(3.23), one has to fix some ε > 0 and may fix c(ε) = ε by adding in the
definition (3.20), the condition

∫
−ε<g<0

|ug|p = εp. This set of controls is nonvoid

since g may be scaled by a positive function without affecting (3.24) or (3.20).
Moreover, ug used in the proof of Proposition 3.1 and here, and Ωg are not influenced
by such a scaling. In fact, the family of admissible geometries Ωg remains unchanged
in case this supplementary restriction is added to (3.20).

We notice that the problem (3.25)–(3.28) is a control (mapping g) by the coeffi-
cients problem defined in the given domain D. The state system (3.26)–(3.28) is the
optimality system for the optimal control problem (3.6)–(3.8), after the elimination
of the control uε (see Remark 3.6).

The geometry behind he formulation (3.25)–(3.28) is completely hidden. We
look for a suboptimal solution g̃ε of (3.25)–(3.28) and then find an approxima-
tion of the solution to the shape optimization problem (3.21)–(3.23) by using the
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definition (3.24). The approximation property is with respect to the value of the
cost functional. A detailed analysis of the control problem (3.25)–(3.28) with the
corresponding solution methods will be investigated in a future work.
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[13] R. Makinen, P. Neittaanmäki and D. Tiba, On a fixed domain approach for a shape opti-

mization problem, In: Computational and applied mathematics II (W.F. Ames, P.J. van der
Houwen Eds.), Amsterdam, North-Holland, 1992, pp. 317-326.

[14] M.Natori and H. Kawarada, An application of the integrated penalty method to free boundary
problems of Laplace equation, Numer. Funct. Anal. Optim. 3 (1981), 1–17.

[15] S.A. Nazarov and J. Sokolowski, Asymptotic analysis of shape functionals, J. Math. Pures
Appl. 82 (2003), 125–196.
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