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The aim of the shape optimization problem is to find the best shape or design
of the domain within that class to minimize some cost functional depending on the
domain through the solutions of some given PDE. This subject has been extensively
studied during the last decades both for elliptic equations and for evolution problems
(see, e.g., [?,?,?,?,?,?,?,?,?,?,?] and references therein). Among the methods and
techniques used to solve those shape optimization problems, calculus of variations,
Hadamard shape differentiation method and homogenization theory played a central
role.

Let us now describe the specific problem that we address in the present paper.

Parabolic optimal design problem. Let T > 0 be arbitrary. For any y0 ∈ L2(D),
any f ∈ L2(D) and any z ∈ H1

0 (D), consider the problem of minimizing the time
average performance

(1.1) (P T ) : inf
Ω∈ON

ω

JT (Ω)=
1

T

∫ T

0

∫
ω

(
|y(t, x)− z(x)|2 + |∇y(t, x)−∇z(x)|2

)
dxdt,

where y ∈ C
(
[0, T ];L2(Ω)

)
∩ L2(0, T ;H1

0 (Ω)) satisfies the heat equation in the
domain Ω

(1.2)


∂ty −△y = f in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(·, 0) = y0 in Ω.

Here, the control variable is the shape (or design) Ω in which the heat equation
evolves, and the heat source f in the equation is assumed to be independent of time
(although more general situations in which f depends on t but stabilizes as t → +∞
could be treated by similar methods). The target z = z(x) ∈ H1

0 (D) is given and,
when minimizing this functional, the goal is to steer the restriction to ω of solution
of the heat equation y as close as possible to z, by an optimal choice of the shape
Ω which is the domain where the Dirichlet heat equation (??) is considered.

Since the domain Ω ∈ ON
ω is the unknown in the above minimization problem, it

is useful to note that, for the heat equation (??) to be well posed in the functional
space C

(
[0, T ];L2(Ω)

)
∩ L2(0, T ;H1

0 (Ω)), it suffices that Ω be an open bounded

subset of R2, not being necessarily of class C2 (when Ω is C2, we have moreover
y(t, ·) ∈ H2(Ω) for a.e. t > 0).

We will prove further that (P T ) has at least one minimizer ΩT ∈ ON
ω .

In this problem, the time horizon T is regarded as a parameter. In order to
investigate the long-time behavior of optimal designs for the problem (P T ) as T →
+∞, we next consider a reference elliptic optimal design problem.

Associated elliptic optimal design problem. For the same z ∈ H1(ω) and
f ∈ L2(D) as above, we consider the shape optimization problem

(1.3) (P s) : inf
Ω∈ON

ω

Js(Ω) =

∫
ω

(
|p(x)− z(x)|2 + |∇p(x)−∇z(x)|2

)
dx,

where p ∈ H1
0 (Ω) is the unique solution to the Poisson equation in Ω

(1.4)

{−△p = f in Ω,

p = 0 on ∂Ω.
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Note that the control variable here is also the shape (or design), in which the
equation is fulfilled. We will prove further that (P s) has at least one minimizer
Ωs ∈ ON

ω .

Long-time behavior. For each realization of the domain Ω, the solution y(t, ·) of
(??) converges exponentially in H1

0 (Ω) as t → +∞ towards the solution of (??).
It is then natural to conjecture that the optimal shapes ΩT for the parabolic

optimal design problem (??) converge (in a sense to be made precise) to optimal
shapes Ωs for the elliptic optimal design problem (??) as T → +∞. The objective
of this paper is to show that this result holds, indeed, in the geometric setting above
in the complementary Hausdorff topology (see Section ?? for the precise definition).

In the next section, we will introduce some notations and then briefly report on
existence of minimizers for (P s) and (P T ) for T > 0 fixed, already established in
the existing literature (see, e.g., [?, ?, ?]).

Numerical approximation issues for the optimal design problems above have been
addressed in [?,?, ?], showing that the discrete optimal shapes (defined in a finite
element context) converge in the complementary Hausdorff topology, to an optimal
shape for the continuous one as the mesh-size tends to zero. This problem was
successfully formulated and solved in [?] for 2D elliptic problems with Dirichlet
boundary conditions and later extended to the heat equation case in [?], and to the
wave equation in [?].

Our objective is to address the following two specific issues:

• Convergence of minima:

lim
T→+∞

JT = Js,

where JT and Js are the optimal values for the problems (P T ) and (P s),
respectively.

• Convergence of minimizers: any closure point (in complementary Hausdorff
topology) as T → +∞ of minimizers of (P T ) is a minimizer of (P s).

Our main result hereafter solves these two questions.

Theorem 1.1. Given any y0 ∈ L2(D), any f ∈ L2(D) and any z ∈ H1
0 (Ω), there

exists C > 0 (not depending on the time horizon T ) such that

(1.5)
∣∣JT − Js

∣∣ ≤ C√
T

∀T > 0.

Moreover, the problems (P s) and (P T ), for every T , have at least one minimizer,
and any closure point (in complementary Hausdorff topology) of minimizers of (P T )
as T → +∞ is a minimizer of (P s).

In practical applications, optimal shapes are often computed on the basis of
the steady-state model, but they are then employed as quasi-optima for the time-
evolving problem, often without rigorous proofs (see, e.g., [?]). This approximation
is based on the intuitive idea that, if the time-evolving dynamics converges for long
time to the steady state one, elliptic optimal shapes should be nearly optimal for
the time-evolution problem as well. From (??) and (??) (in the proof of Theorem ??
below) we also derive the following result which justifies such an approximation.
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Corollary 1.2. For any minimizer Ωs of (P s), we have

∣∣JT (Ωs)− JT | ≤ O

(
1√
T

)
∀T > 0.

Similar results have been established in various contexts. For instance, in [?],
a shape optimization problem for the heat equation was considered, in which the
support of a Radon measure on the lateral boundary was selected in an optimal
way. Under certain compact assumptions, they first showed the existence of an
optimal solution for this optimization problem. They also proved convergence to
an optimal solution of the corresponding stationary optimization problem for long
time horizons. Recently, the authors of [?] have investigated the long-time behavior
of a two-phase optimal design problem. More precisely, they considered an optimal
design problem of minimizing the time average of the dissipated thermal energy dur-
ing a fixed time interval [0, T ] and in a fixed bounded domain, where the dissipation
is governed by a two-phase isotropic transient heat equation, the time independent
material properties being the design variables. Via a Γ-convergence technique and
the exponential decay of the energy for the heat equation, they proved that the
optimal solutions of an associated relaxed design problem converge, as T → +∞,
to an optimal relaxed design of the corresponding two-phase optimization problem
for the stationary heat equation.

There is a rich literature on the limiting asymptotic behavior of optimal control
problems as the time horizon goes to infinity. This problem, as previously indicated
in [?], is related to the so-called turnpike property, arising mainly in economy theory
(see [?, ?,?,?,?]). The work [?] addresses the problem of long time horizon versus
steady state control in the linear setting, both for finite-dimensional models, and also
PDE models, namely, the heat and the wave equations, proving that, under suitable
controllability assumptions and coercivity conditions in the cost functional, optimal
controls and controlled trajectories (resp., adjoint states) converge exponentially
to the corresponding stationary optimal controls and states (resp., adjoint states),
when the time horizon tends to infinity. This result was then extended to the more
general nonlinear controlled systems [?, ?, ?], in particular to a controlled system
with a time-periodic cost [?].

Note however that the problem which we address in this paper is simpler in nature
since the shapes under consideration are assumed to be time-independent.

The rest of this paper is organized as follows. In Section ??, we recall, in partic-
ular, the definitions of the complementary Hausdorff topology and the main results
in Γ-convergence. Section ?? is devoted to the proof of Theorem ??. Finally, in
Section ?? we conclude this paper with some further comments and open problems.

2. Preliminaries

2.1. Existence of optimal designs. We first recall the definition of the Hausdorff
topology and of the complementary Hausdorff topology.
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Definition 2.1. The Hausdorff distance between two compacts sets K1 and K2 in
R2 is defined by

dH(K1,K2) = max

(
max
x∈K2

min
y∈K1

∥x− y∥,max
x∈K1

min
y∈K2

∥x− y∥
)
,

where ∥ · ∥ is the Euclidean norm in R2.

Recall that O is the set of all open subsets of D. For any Ωi ∈ O, i = 1, 2, we
define the complementary Hausdorff distance by

dHc(Ω1,Ω2) = max

(
max
x∈Ωc

2

min
y∈Ωc

1

∥x− y∥,max
x∈Ωc

1

min
y∈Ωc

2

∥x− y∥
)
,

where Ωc
i = D̄ \ Ωi, i = 1, 2. Then, (O, dHc(·, ·)) is a complete metric space.

We say that Ωn
Hc

−→ Ω if and only if dHc(Ωn,Ω) −→ 0, as n → +∞.
We refer the interested reader to [?] for properties related to the Hausdorff con-

vergence and facts that might seem counterintuitive. For example, the convergence
of {Ωn}n≥1 to Ω in the Hc topology does not guarantee the convergence of the
Lebesgue measure of Ωn to that of Ω.

For each fixed N and each open subset ω, the set of admissible designs ON
ω , as

defined in the introduction, is well known (see, e.g., [?, ?, ?]) to be compact for the
complementary Hausdorff topology. This implies that, for any sequence (Ωj)j≥1 of

ON
ω , there exist Ω ∈ ON

ω and a subsequence {Ωk}k≥1 of {Ωj}j≥1 such that Ωk
Hc

−→ Ω
as k → +∞.

For any Ω ⊂ O, H1
0 (Ω) is defined as the closure, for the H1

0 (Ω) topology, of all
smooth functions with compact support in Ω. Accordingly, any function of H1

0 (Ω)
can be extended by 0 to a function of H1

0 (R2) (and H1
0 (D)). Here and in the sequel,

for any y ∈ H1
0 (Ω) with Ω ∈ O, we will denote by ỹ its extension by zero to the

fixed domain D.
Next, we introduce the notion of Γ-convergence for open subsets, which plays a

crucial role in the investigation of existence of optimal designs in shape optimization
problems.

Definition 2.2. We say that Ωn
Γ−→ Ω if for any f ∈ L2(D), the solution pn of the

Poisson equation {−△pn = f in Ωn,

pn = 0 on ∂Ωn,

satisfies

p̃n −→ p̃ in H1
0 (D),

where p is the solution to {−△p = f in Ω,

p = 0 on ∂Ω.

In general, Hc-convergence does not imply Γ-convergence. Indeed, it is well
known that homogenization phenomena may occur at the limit, when the sequence
of designs is allowed to develop an increasing number of holes. In this case the limit
of the solutions of the Dirichlet-Laplacian may be the solution of a different elliptic
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problem (see, e.g., [?, ?]). Fortunately, several situations are known where the Hc-
convergence does imply the Γ-convergence and the above relaxation phenomena do
not occur (see, e.g., [?, Theorem 4.6.7]). The following one is due to V. S̆verák.

Theorem 2.3 ( [?]). Let Ω and (Ωn)n≥1 belong to ON
ω . Then Ωn

Γ−→ Ω is equivalent

to Ωn
Hc

−→ Ω.

Since ON
ω is compact in the complementary Hausdorff topology, from Theorem ??

we deduce that for any sequence of designs (Ωn)n≥1 ⊂ ON
ω , there exist Ω ∈ ON

ω and

a subsequence (for simplicity we still denote it in the same way), such that Ωn
Hc

−→ Ω

and Ωn
Γ−→ Ω.

As corollaries of Theorem ??, the existence of minimizers of the shape optimiza-
tion problem (P s), as well as (P T ) with each T > 0, have already been established.
We now state it as follows.

Proposition 2.4. The problem (P s) has at least one minimizer, and for any T > 0,
the problem (P T ) has at least one minimizer.

For a proof, we refer the interested reader to [?] or [?] for the elliptic optimal
design problem, and to [?] for the heat one.

Uniqueness of optimal solutions is still an open and challenging issue in the
theory of shape optimization problems. For example, the authors of [?] constructed
a specific example for which there is an infinite number of optimal designs.

2.2. The uniform Poincaré inequality. We recall that for each open subset
Ω ∈ O, the first eigenvalue λ1(Ω) for the Laplace operator −△ in Ω, with zero
Dirichlet boundary conditions, is given by the Rayleigh formula (see, e.g., [?])

λ1(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u(x)|2 dx∫
Ω |u(x)|2 dx

.

Minimization problems for elliptic eigenvalue problems have received significant
attention in the literature since the first result by Faber and Krahn, concerning
the first eigenvalue of the Laplace operator −△ in 2D, with Dirichlet boundary
conditions, among open subsets with equal area, ensuring that λ1(Ω) ≥ λ1(B) > 0
for every Ω ∈ O, where B is a ball in R2 with area equal to the Lebesgue measure of
D (see, e.g., [?, Chapter 6] or [?]). Consequently, the following Poincaré inequality
holds uniformly in the class of open sets O, which will play a crucial role in the
proof of Theorem ??.

Lemma 2.5. There exists C > 0 depending only on the area of D, such that

(2.1)

∫
Ω
|u(x)|2 dx ≤ C

∫
Ω
|∇u(x)|2 dx,

for all Ω ∈ O and u ∈ H1
0 (Ω).
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3. Proof of Theorem ??

From Proposition ??, we have seen that the shape optimization problems (P s)
and (P T ), for any fixed T > 0, have minimizers in the class of admissible shapes
ON

ω . Based on a Γ-convergence argument, we next prove the long-time behavior of
the optimal design problems (P T ) stated in Theorem ??. For an introduction to
the theory of Γ-convergence in the calculus of variations, the interested reader is
referred to [?].

Proof of Theorem ??. We proceed in three steps.

Step 1. We first show the upper bound

(3.1) JT − Js ≤ C√
T

∀T > 0,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D), ∥z∥H1
0 (D)) > 0 not depending on

T . Recall that JT and Js are, respectively, the optimal values for the problems
(P T ) and (P s).

Assume that Ωs ∈ ON
ω is an optimal design of (P s). Then Js = Js(Ωs). Since

Ωs is an admissible design of (P T ), we obviously have JT ≤ JT (Ωs). Hence

(3.2) JT − Js ≤ JT (Ωs)− Js(Ωs).

Now, let us assume that ps ∈ H1
0 (Ω

s) is the solution of

(3.3)

{−△ps = f in Ωs,

ps = 0 on ∂Ωs.

The energy identity ensures that
∫
Ωs |∇ps(x)|2 dx =

∫
Ωs f(x)p

s(x) dx. By the uni-
form Poincaré inequality (??) in Lemma ?? and the Cauchy-Schwarz inequality,
there exists C = C(|D|) > 0 such that

(3.4) ∥∇ps∥L2(Ωs) ≤ C∥f∥L2(D),

and

(3.5) ∥ps∥L2(Ωs) ≤ C∥f∥L2(D).

We denote by yT (·) ∈ L∞(0, T ;L2(Ωs)) ∩ L2(0, T ;H1
0 (Ω

s)) the solution of

(3.6)


∂tyT −△yT = f(x) in Ωs × (0, T ),

yT = 0 on ∂Ωs × (0, T ),

yT (x, 0) = y0 in Ωs.

Let (S(t))t≥0 be the C0 semigroup in L2(Ωs) generated by the Laplace operator△ on
the domain D(△) = {u ∈ H1

0 (Ω
s) | △u ∈ L2(Ωs)} (see, e.g., [?]). Energy estimates

ensure that ∥S(t)∥L(L2(Ωs);L2(Ωs)) ≤ e−λt for every t ≥ 0, with λ = λ(|D|) > 0. Since

yT (t) = S(t)y0 +
∫ t
0 S(t− τ)f dτ for every t ∈ [0, T ], we infer that

(3.7) max
t∈[0,T ]

∥yT (t)∥L2(Ωs) ≤ ∥y0∥L2(D) +
1

λ
∥f∥L2(D).
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Multiplying by yT (·) the equation (??) and integrating by parts, we get

1

2

(
∥yT (T )∥2L2(Ωs) − ∥y0∥2L2(Ωs)

)
+

∫ T

0
∥∇yT (t)∥2L2(Ωs) dt

≤
∫ T

0

∫
Ωs

f(x)yT (x, t) dx dt ≤ T∥f∥L2(D) max
t∈[0,T ]

∥yT (t)∥L2(Ωs).

Combined with (??), this implies that

(3.8)

∫ T

0
∥∇yT (t)∥2L2(Ωs) dt ≤ CT,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D)) > 0 not depending on T .
Next, we set δyT (t) = yT (t) − ps, for every t ∈ [0, T ]. It follows from (??) and

(??) that δyT (·) is solution of the heat equation in Ωs,
∂tδyT −△δyT = 0 in Ωs × (0, T ),

δyT = 0 on ∂Ωs × (0, T ),

δyT (x, 0) = y0 − ps in Ωs.

It is easy to see that there exists C(|D|) > 0 (not depending on T ) such that∫ T
0 ∥δyT (t)∥2L2(Ωs) dt ≤ C(|D|)∥y0 − ps∥2L2(Ωs) and

∫ T
0 ∥∇δyT (t)∥2L2(Ωs) dt ≤ ∥y0 −

ps∥2L2(Ωs). These last two inequalities, combined with (??), imply that

(3.9)

∫ T

0
∥δyT (t)∥2L2(Ωs) dt+

∫ T

0
∥∇δyT (t)∥2L2(Ωs) dt ≤ C,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D)) > 0 not depending on T .
Note that

(3.10) JT (Ωs)− Js(Ωs) = I1 + I2

with

I1 =
1

T

∫ T

0

(
∥yT (t)− z∥L2(ω) + ∥ps − z∥L2(ω)

)
×
(
∥yT (t)− z∥L2(ω) − ∥ps − z∥L2(ω)

)
dt

and

I2 =
1

T

∫ T

0

(
∥∇yT (t)−∇z∥L2(ω) + ∥∇ps −∇z∥L2(ω)

)
×
(
∥∇yT (t)−∇z∥L2(ω) − ∥∇ps −∇z∥L2(ω)

)
dt.

We first estimate the term I1 as follows. By the triangle inequality∣∣∣∥yT (t)− z∥L2(ω) − ∥ps − z∥L2(ω)

∣∣∣ ≤ ∥yT (t)− ps∥L2(ω) ≤ ∥δyT (t)∥L2(Ωs),
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we get that

|I1| ≤
1

T

(∫ T

0

(
max
t∈[0,T ]

∥yT (t)∥L2(Ωs) + ∥ps∥L2(Ωs) + 2∥z∥L2(ω)

)2

dt

)1/2

×
(∫ T

0
∥δyT (t)∥2L2(Ωs) dt

)1/2

.

This, together with (??), (??) and (??), leads to

(3.11) |I1| ≤
C√
T
,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D), ∥z∥L2(ω)) > 0. Similarly, the
term I2 is estimated by

|I2| ≤
1

T

(∫ T

0

(
∥∇yT (t)∥L2(ω) + ∥∇ps∥L2(ω) + 2∥∇z∥L2(ω)

)2
dt

)1/2

×
(∫ T

0
∥∇δyT (t)∥2L2(Ωs) dt

)1/2

.

Combined with (??), (??) and (??), this implies that

(3.12) |I2| ≤
C√
T
,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D), ∥∇z∥L2(ω)) > 0. Therefore, we
obtain from (??), (??) and (??) that

(3.13)
∣∣JT (Ωs)− Js(Ωs)

∣∣ ≤ C√
T
,

with C > 0 as above (not depending on T ). The estimate (??) now follows from
(??) and (??).

Step 2. Let us establish the lower estimate

(3.14) JT − Js ≥ − C√
T

∀T > 0,

for some constant C = C(|D|, ∥y0∥L2(D), ∥f∥L2(D), ∥z∥H1(ω)) > 0 not depending on
T .

For any T > 0, we assume that ΩT ∈ ON
ω is a minimizer of (P T ). Reasoning as

in (??), we have

(3.15) JT − Js ≥ JT (ΩT )− Js(ΩT ).

Let yT ∈ L∞(0, T ;L2(ΩT )
)
∩L2

(
0, T ;H1

0 (Ω
T )
)
be the corresponding solution to the

optimal design ΩT for the problem (P T ). Using the arguments employed to obtain
the estimates (??) and (??), we also have that

(3.16) max
t∈[0,T ]

∥yT (t)∥L2(ΩT ) ≤ C,
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and ∫ T

0
∥∇yT (t)∥2L2(ΩT ) dt ≤ CT,

for some constant C = C(|D|, ∥f∥L2(D), ∥y0∥L2(D)) > 0 not depending on T .

Now, let pT ∈ H1
0 (Ω

T ) be the solution of{
−△pT = f in ΩT ,

pT = 0 on ∂ΩT .

By the uniform Poincaré inequality (??), as in (??) and (??), there exists C =
C(|D|) > 0 (not depending on T ) such that

∥∇pT ∥L2(ΩT ) ≤ C∥f∥L2(D),

and

(3.17) ∥pT ∥L2(ΩT ) ≤ C∥f∥L2(D).

Then δyT (t) = yT (t) − pT , t ∈ [0, T ] is solution of the heat equation on ΩT .
Reasoning as in (??), we obtain that

(3.18)

∫ T

0
∥δyT (t)∥2L2(ΩT ) dt+

∫ T

0
∥∇δyT (t)∥2L2(ΩT ) dt ≤ C ∀T > 0,

for some constant C = C(|D|, ∥y0∥L2(D), ∥f∥L2(D)) > 0.

We now write JT (ΩT )− Js(ΩT ) = I3 + I4 with

(3.19) I3 =
1

T

∫ T

0

(
∥yT (t)− z∥L2(ω) + ∥pT − z∥L2(ω)

)
×
(
∥yT (t)− z∥L2(ω) − ∥pT − z∥L2(ω)

)
dt,

and

I4 =
1

T

∫ T

0

(
∥∇yT (t)−∇z∥L2(ω) + ∥∇pT −∇z∥L2(ω)

)
×
(
∥∇yT (t)−∇z∥L2(ω) − ∥∇pT −∇z∥L2(ω)

)
dt.

For any t ∈ (0, T ), by the triangle inequality,∣∣∣∥yT (t)− z∥L2(ω) − ∥pT − z∥L2(ω)

∣∣∣ ≤ ∥yT (t)− pT ∥L2(ω) ≤ ∥δyT (t)∥L2(ΩT ),

and from (??) we see that

(3.20) |I3| ≤
1

T

(∫ T

0

(
max
t∈[0,T ]

∥yT (t)∥L2(ΩT ) + ∥pT ∥L2(ΩT ) + 2∥z∥L2(ω)

)2

dt

)1/2

×
(∫ T

0
∥δyT (t)∥2L2(ΩT ) dt

)1/2

.
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This, together with (??), (??) and (??), implies that |I3| ≤ C/
√
T for some con-

stant C = C(|D|, ∥y0∥L2(D), ∥f∥L2(D), ∥z∥L2(ω)) not depending on T . Also, similar
arguments as those for (??) lead to

(3.21) |I4| ≤
C√
T

for some constant C = C(|D|, ∥y0∥L2(D), ∥f∥L2(D), ∥∇z∥L2(ω)) > 0.
Hence, it follows from (??) and (??) that

(3.22)
∣∣JT (ΩT )− Js(ΩT )

∣∣ ≤ C√
T

∀T > 0,

for some constant C = C(|D|, ∥y0∥L2(D), ∥f∥L2(D), ∥z∥H1(ω)) > 0. Combined with
(??), this implies (??).

From Steps 1 and 2, the estimate (??) is now established.

Step 3. Finally, we now establish the long-time behavior of minimizers of (P T ). Let
(Tn)n≥1 be an increasing sequence of positive times such that limn→+∞ Tn = +∞.
For each Tn, we assume that ΩTn ∈ ON

ω is an optimal design for (P Tn). Since ON
ω

is compact in the complementary Hausdorff topology, up to a subsequence (still

denoted with the same notation), there exists Ω∗ ∈ ON
ω such that ΩTn

Hc

−→ Ω∗. Our
goal is to show that Ω∗ is an optimal design for (P s), i.e., that Js(Ω∗) = Js.

From Theorem ??, we have ΩTn
γ−→ Ω∗. In other words, the solution pn ∈

H1
0 (Ω

Tn) of {
−△pn = f in ΩTn ,

pn = 0 on ∂ΩTn

satisfies p̃n −→ p̃∗ in H1
0 (D) as n → +∞, where p∗ ∈ H1

0 (Ω
∗) is the solution of{

−△p∗ = f in Ω∗,

p∗ = 0 on ∂Ω∗

Hence,

(3.23) Js(ΩTn) → Js(Ω∗) as n → +∞.

Note that, for any n ∈ N, we have JTn = JTn(ΩTn) and∣∣Js − Js(Ω∗)
∣∣ ≤ ∣∣Js − JTn

∣∣+ ∣∣JTn(ΩTn)− Js(ΩTn)
∣∣+ ∣∣Js(ΩTn)− Js(Ω∗)

∣∣.
By letting n tend to infinity in the above inequality, we get from (??), (??) and
(??) that Js(Ω∗) = Js. This completes the proof. �

4. Conclusions and further comments

In this paper, we have established by Γ-convergence techniques that the optimal
designs for heat equations converge, as the time horizon tends to infinity, towards an
optimal design of the corresponding design problem for the elliptic Poisson equation,
in the sense of complementary Hausdorff topology.

Several remarks are in order.
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More general operators. In this paper, we fully rely on the geometric setting of
admissible designs and on the results established in [?], and therefore our conver-
gence result is restricted to 2D Dirichlet problem. Although we only considered the
Dirichlet-Laplacian operator, by the same techniques, it is likely that the results
of this paper also hold for more general 2D elliptic operators in divergence form
with Dirichlet boundary conditions, and for 2D elliptic Stokes system with Dirich-
let boundary conditions. We refer the reader to [?,?,?], for instance, for a discussion
of elliptic optimal design problems for those models.

Higher dimension. The method developed here may certainly be adapted to deal
with the heat equation in higher dimension, in an appropriate class of admissible
domains. Note that the proof of our main result relies on the following two key
facts:

(i) Compactness of admissible domains in the complementary Hausdorff topol-
ogy. Compactness holds in higher dimension in more restricted classes of do-
mains obtained, for instance, by imposing uniform BV -norm of the bound-
aries, on the perimeter, or by imposing the uniform exterior cone property
(see, e.g., [?] and [?, Page 1083]).

(ii) The Γ-convergence property of domains, allowing to pass to the limit on
the solutions of the Dirichlet elliptic problem. It can be guaranteed to hold,
for instance, in the class of convex sets, the class of domains satisfying a
uniform exterior cone property, or the class of domains satisfying a uniform
capacity density condition (see [?, Theorem 4.6.7]).

Damped wave equation. Our results and proofs heavily rely on the exponential
decay of the energy for the heat equation in a given domain. Accordingly, our
methods also apply for the shape optimization of strongly damped wave equations
in the geometric setting by S̆verák (see [?] for the extension of results in [?] to the
wave equation).

However, because of the lack of exponential decay for the conservative Schrödinger
and wave equations, the long-time behavior of shape optimization for these two
equations is an open problem. In fact, for conservative problems, it could well
be that the optimal shapes ΩT reproduce the oscillatory pattern of solutions as T
increases.

Time-dependent source term. The right-hand side term f has been taken to
be independent of t. But, as mentioned in the introduction, one could also con-
sider time-varying forcing terms f = f(t, x) under the condition that they converge
exponentially to a steady applied force f∗ as t → +∞.

Convergence rates. We proved that the optimal designs for heat equations con-
verge, as the time horizon tends to infinity, towards an optimal one for the station-
ary heat equation. Obtaining convergence rates is of interest, but this subject is
completely open.

This issue is even open for simpler problems. For instance, in [?], an optimal
control problem in a fixed domain, with an applied right-hand side time-independent
forcing control, was considered for a semilinear heat equation. By Γ-convergence
arguments, optimal controls were proved to converge to the steady-state ones. But
convergence rates have not been derived.
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Using the optimality system and Linear Quadratic Riccati theory, by means of
perturbations arguments, convergence rates were proved under suitable smallness
conditions on the target for semilinear heat equations. Optimality conditions could
also be useful in the context of shape optimization. But they usually require a more
limited geometric setting so that Hadamard shape derivatives can be employed (see,
e.g., [?,?,?, ?]). Whether this suffices to achieve convergence rates is an interesting
open problem.

Shape turnpike. In the context of time-varying shapes, the turnpike problem is
completely open (see [?,?,?]). The possible stabilization of optimal designs in large
time, when allowing the design to evolve in time as well as the evolution problem,
is a much more complex problem than the one we addressed here.

Initial data fixed or not. We have worked with fixed initial data and right-hand
side terms but one could consider more general situations. For instance, there are
at least two possible ways to allow the initial data to vary:

(i) Initial data depend (only) on the time horizon T and are all bounded uni-
formly.

(ii) Robust optimal shape designs: Initial data vary, for instance, in the unit
ball B1 of L2(D). One can then define the optimal design problem in some
uniform manner with respect to all these initial data, by considering the
min-max cost

min
Ω∈ON

ω

max
y0∈B1

JT (Ω, y0).

Since the constants in the proof of Theorem ?? depend on the L2-norm of the initial
data, the method of this paper can be applied to handle these problems.

It would also be interesting to consider shape optimization problems (and turn-
pike issues) for the heat equation with random initial data.

Randomization has been shown to be a useful tool for a number of optimal shape
design problems (see [?, ?,?]). In these works the PDE was formulated on a fixed
reference domain and the shapes to be optimized were the location of sensors and
actuators. Through randomization, the average value of the cost functional turned
out to have a spectrally diagonal structure. But, in these papers, the fact that
the PDE under consideration was settled on a fixed domain Ω played an important
role, since this allowed the randomization procedure to be defined in the basis of
eigenfunctions of the Dirichlet-Laplacian on this domain. However, in the present
context, the domain where the PDE holds varies, being the control variable. The
way of randomization needs to be implemented so as to simplify the cost under
consideration is an interesting open problem.

Terminal constraints. We have treated the shape optimization problem by let-
ting the terminal state y(T ) free. It would be interesting to address similar problems
in the context of controllability, the goal being to drive the solution to some given
target, employing time-varying shapes t → Ω(t) as controls. The problem of control-
ling the wave and Schrödinger equations using the shape of the domain as control
parameter has been analyzed, for instance, in [?,?,?]. There is plenty of issues to
investigate in that setting for heat-like equations and in particular to investigate
the turnpike property.
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