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elliptic optimal control problem

(Pλ)
J (x, u, λ) :=

∫
Ω L (z, x (z) , Dx (z) , u (z) , λ) dz → inf =: m (λ) ,

−div a (Dx (z) , λ) = f (z, x (z) , λ)u (z) in Ω, x |∂Ω= 0,
|u (z)| ≤ θ (z, λ) for a .a. z ∈ Ω

where L : Ω × R × RN × R × E → R, f : Ω × R × E → R, a : RN × E → RN and
θ : Ω× E → R+.

In the next section, we recall the main mathematical notions which will be used
in the analysis of problem (Pλ) .

2. Mathematical background

Let Z, W be Hausdorff topological spaces. We say that G : Z → 2W \ {∅} is
“upper semicontinuous” (“usc” for short), if for all open subsets U ⊆ W, the set
G+ (U) := {z ∈ Z : G (z) ⊆ U} is open.

Also, let (X, τ) be a Hausdorff topological space with τ denoting the topology of
X, and let {Cn}n≥1 ⊆ 2X\ {∅} . We define

Kτ − lim inf
n→∞

Cn =
{
x ∈ X : x = τ − lim

n→∞
xn, xn ∈ Cn for all n ∈ N

}
,

Kτ − lim sup
n→∞

Cn =

{
x ∈ X : x = τ − lim

k→∞
xnk

, xnk
∈ Cnk

, nk < nk+1, ∀k ∈ N
}
,

If C = Kτ − lim infn→∞Cn = Kτ − lim supn→∞Cn, then we write Cn
Kτ→ C.

Now suppose that (X, ∥.∥) is a Banach space with dual X∗ and s denotes the
strong (norm) topology on X and w denotes the weak topology on X. Again let
{Cn}n≥1 ⊆ 2X\ {∅} .We say that the sequence {Cn}n≥1 converges to C in the sense

of Mosco, denoted by Cn
M→ C, if and only if we have

C = Kw − lim sup
n→∞

Cn = Ks − lim inf
n→∞

Cn.

Let (X, ∥.∥) be a Banach space with dualX∗, and φ : X → R. The duality pairing
between X∗ and X is denoted by ⟨., .⟩ . We say that φ is “locally Lipschitz”, if for
every x ∈ X, we can find an open neighborhood O (x) of x and a constant k (x) > 0
such that

|φ (y)− φ (z)| ≤ k (x) ∥y − z∥ for all y, z ∈ O (x) .

If this inequality holds for all y, z ∈ X and k (x) = k > 0 is independent of x,
then we have a Lipschitz continuous function. Clearly, if φ : X → R is Lipschitz
continuous on every bounded subset of X, then φ is locally Lipschitz. The converse
is true provided X is finite dimensional. We know that if φ : X → R is continuous
and convex or if φ ∈ C1 (X,R) , then φ is locally Lipschitz.

Given a locally Lipschitz function φ : X → R, the generalized directional de-
rivative of φ at x ∈ X in the direction h ∈ X, denoted by φ0 (x;h) , is defined
by

φ0 (x;h) = lim sup
x′→x
λ↓0

φ (x′ + λh)− φ (x′)

λ
.
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Using φ0 (x;h) we can define the “generalized (or Clarke) subdifferential” of φ at
x ∈ X, denoted by ∂cφ (x) , as the set

∂cφ (x) =
{
x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ φ0 (x;h) for all h ∈ X

}
.

This set is always nonempty, convex and w∗−compact. For a convex function
φ : X → R = R∪{+∞} , we can define the “subdifferential in the sense of convex
analysis” of φ at x ∈ X, to be the set

∂φ (x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ φ (y)− φ (x) for all y ∈ X} .

For continuous convex functions (hence locally Lipschitz, too), we have

∂cφ (x) = ∂φ (x) for all x ∈ X.

Finally, let X1 and X2 be Hausdorff topological spaces and let fn : X1×X2 → R
be a sequence of functions. By Z (+) we denote the “sup” operator and by Z (−)
we denote the “inf” operator. For h ∈ {1, 2} , let Sh denote the set of sequences{
xhn

}
n≥1

converging to some xh in Xh. Also, let αh be one of the signs + or −. We
set

Γseq (X
α1
1 , Xα2

2 ) lim
n→∞

fn (x1, x2) = Z (α1)
{x1

n}n≥1∈S1

Z (α2)
{x2

n}n≥1∈S2

Z (−)
k∈N

Z (+)
n≥k

fn
(
x1n, x

2
n

)
.

When the Γseq -limit is independent on the sign + or − associated to one of the
spaces, then the sign is omitted. For example, if

Γseq

(
X−

1 , X
+
2

)
lim
n→∞

fn (x1, x2) = Γseq

(
X+

1 , X
+
2

)
lim
n→∞

fn (x1, x2)

then we indicate this common value by

Γseq

(
X1, X

+
2

)
lim
n→∞

fn (x1, x2) .

The following notation will be in effect throughout the paper. We will use |.| to
indicate both the absolute value on R and the norm on RN . The inner product
in RN will be denoted denoted by (., .)RN . The norm in Lp (Ω) or Lp

(
Ω,RN

)
,

1 < p <∞, will be designated by ∥.∥p , while (., .)2 will be used for the inner product

in L2
(
Ω,RN

)
.We will use the symbol

w−→ to denote the weak convergence. Finally,
we recall that

C1
0

(
Ω
)
=

{
u ∈ C1

(
Ω
)
: u |∂Ω= 0

}
.

3. Sensitivity analysis

The hypotheses on the data of (Pλ) are the following:

H (a) : a (y, λ) = ∂yψ (y, λ) where ψ : RN×E→R is a function such that:
(i) for all λ ∈ E, y → ψ (y, λ) is convex, differentiable and ψ (0, λ) = 0;
(ii) there exist 0 < C1 < C2 such that

C1 |y|2 ≤ ψ (y, λ) ≤ C2

(
1 + |y|2

)
for all (y, λ) ∈ R×E;

(iii) there exists C3 > 0 such that for all y, y′ ∈ RN and all λ ∈ E, we have

C3

∣∣y − y′
∣∣2 ≤ (

a (y, λ)− a
(
y′, λ

)
, y − y′

)
RN ;
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(iv) if λn → λ in E, then ψ (y, λn) → ψ (y, λ) for all y ∈ RN .

Remark 3.1. Simple examples of functions ψ (y, λ) which satisfy hypotheses H (a)
are the following

ψ1 (y, λ) =
a (λ)

2
|y|2 and ψ2 (y, λ) =

1

2
|y|2 + a (λ) |y| ln (1 + |y|) ,

with λ→ a (λ) continuous from E into (0,∞) .

H (f) : f : Ω× R×E→R is a function such that:
(i) for all (x, λ) ∈ R × E, z → f (z, x, λ) is measurable and f (., 0, λ) ∈

L2 (Ω) for all λ ∈ E;
(ii) for a. a. z ∈ Ω, (x, λ) → f (z, x, λ) is continuous;
(iii) for a. a. z ∈ Ω, all λ ∈ E and all x, x′ ∈ R, we have∣∣f (z, x, λ)− f

(
z, x′, λ

)∣∣ ≤ k (z)
∣∣x− x′

∣∣
with k ∈ L∞ (Ω)+ such that

k (z) ≤ C3λ̂1 for a. a. z ∈ Ω,

the inequality is strict on a set of positive measure, and λ̂1 is the prin-
cipal eigenvalue of

(
−△,H1

0 (Ω)
)
.

Remark 3.2. Whenever necessary, we will replace C1 and C3 in H (a) (ii) , (iii)
and H (f) (iii) by min {C1, C3} .

Remark 3.3. We know that

λ̂1 = inf

{
∥Dx∥22
∥x∥22

: x ∈ H1
0 (Ω)

}

and λ̂1 > 0 (see Gasinski-Papageorgiou [8]). Also, hypothesis H (f) (iii) implies
that

|f (z, x, λ)| ≤ k (z) |x|+ |f (z, 0, λ)| for a. a. z ∈ Ω,(3.1)

all x ∈ R and all λ ∈ E.

H (θ) : θ : Ω × E→R+ is a Carathéodory function (that is, for all λ ∈ E, z →
θ (z, λ) is measurable and for a. a. z ∈ Ω, λ → θ (z, λ) is continuous) and
|θ (z, λ)| ≤ 1 for a. a. z ∈ Ω, all λ ∈ E.

H (L) : L : Ω× R× RN × R× E→R is an integrand such that
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(i) for a. a. z ∈ Ω, all M > 0, all |x| , |x′| , |y| , |y′| ≤ M, all |u| ≤ 1, all
λ ∈ E :

L (., 0, 0, u, λ) ∈ L1 (Ω)

and ∣∣L (z, x, y, u, λ)− L
(
z, x′, y′, u, λ

)∣∣
≤ ηM (z)

(∣∣x− x′
∣∣+ ∣∣y − y′

∣∣) , with ηM ∈ L1 (Ω) ;

(ii) for a. a. z ∈ Ω, all (x, y, λ) ∈ R× RN × E, the function
u→ L (z, x, y, u, λ) is convex;

(iii) for a. a. z ∈ Ω, all (x, y) ∈ R× RN , all |u| ≤ 1, the function λ →
L (z, x, y, u, λ) is continuous;

(iv) for a. a. z ∈ Ω, all (x, y) ∈ R× RN , all |u| ≤ 1, all λ ∈ E we have

β (z)− C4 (|x|+ |y|) ≤ L (z, x, y, u, λ)

with β ∈ L1 (Ω) , C4 > 0.

For λ ∈ E let

U (λ) =
{
u ∈ L1 (Ω) : |u (z)| ≤ θ (z, λ) for a. a. z ∈ Ω

}
.

This is the set of admissible control functions. A pair (x, u) ∈ H1
0 (Ω)×L1 (Ω) such

that u ∈ U (λ) and x is a solution of the Dirichlet elliptic equation

(3.2) −div a (Dx (z) , λ) = f (z, x (z) , λ)u (z) in Ω, x |∂Ω= 0

governing the system is said to be an “admissible state-control pair”. We denote
by S (λ) the set of all admissible state-control pairs. If for a pair (x, u) ∈ S (λ) we
have

J (x, u, λ) = m (λ)

then we say that (x, u) ∈ S (λ) is an optimal pair. By Q (λ) we denote the set of all
optimal pairs. Obviously Q (λ) ⊆ S (λ) .

We start by examining the state equation of (Pλ) . So, for λ ∈ E, we consider
equation (3.2) .

Proposition 3.4. If hypotheses H (a) , H (f) hold, λ ∈ E and u ∈ U (λ) , then
problem (3.2) has a unique solution x = x (u) ∈ C1

0

(
Ω
)
.

Proof. Let φλ : H1
0 (Ω) → R be the energy (Euler) functional for problem (3.1) ,

defined by

φλ (x) =

∫
Ω
ψ (Dx, λ) dz −

∫
Ω
F (z, x, λ)u dz for all x ∈ H1

0 (Ω) ,

with F (z, x, λ) =
∫ x
0 f (z, s, λ) ds. Hypotheses H (a) imply that

x→ ψλ (x) =

∫
Ω
ψ (Dx, λ) dz

is continuous and convex, thus locally Lipschitz. Also, let σλ : H1
0 (Ω) → R be

defined by

σλ (x) =

∫
Ω
F (z, x, λ)u dz for all x ∈ H1

0 (Ω) .
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Evidently, σλ ∈ C1
(
H1

0 (Ω) ,R
)
, hence it is also locally Lipschitz. Then

x→ φλ (x) = ψλ (x)− σλ (x)

is locally Lipschitz as well. Moreover, the convex functional ψλ (.) is sequentially
weakly lower semicontinuous.

Let xn
w−→ x in H1

0 (Ω) . By passing to a subsequence if necessary, we have

(3.3)
xn → x in L2 (Ω) , xn (z) → x (z) for a. a. z ∈ Ω,

|xn (z)| ≤ η (z) for a. a. z ∈ Ω, all n ∈ N, with η ∈ L2 (Ω) .

Using (3.3) and Fatou’s lemma, we have

lim sup
n→∞

∫
Ω
F (z, xn (z) , λ)u (z) dz ≤

∫
Ω
lim sup
n→∞

F (z, xn (z) , λ)u (z) dz

=

∫
Ω
F (z, x (z) , λ)u (z) dz,

hence x→ σλ (x) is sequentially weakly upper semicontinuous on H1
0 (Ω) . Therefore

we infer that
x→ φλ (x) = ψλ (x)− σλ (x)

is sequentially weakly lower semicontinuous on H1
0 (Ω). Also, using hypotheses

H (a) (ii), H (f) (i) , (iii) , (3.1) and Remark 3.2, for every x ∈ H1
0 (Ω) we have

φλ (x) ≥ C1 ∥Dx∥22 −
1

2

∫
Ω
k (z)x2dz − C5

≥ C6

(
∥Dx∥22 − 1

)
for some C5, C6 > 0,

(see Papageorgiou-Kyritsi [12], Lemma 5.1.3, p.356), hence φλ is coercive onH1
0 (Ω) .

So, by the Weierstrass-Tonelli theorem, we can find x ∈ H1
0 (Ω) such that

φλ (x) = inf
{
φλ (v) : v ∈ H1

0 (Ω)
}
,

hence

0 ∈ ∂C (ψλ − σλ) (x) (Fermat’s rule)

⊆ ∂Cψλ (x)− ∂Cσλ (x) (see Clarke [6], pp. 38-39).

We know that
∂Cσλ (x) = σ′λ (x) = Nfλ (x)u

with fλ (z, x) = f (z, x, λ) and Nfλ (y) (.) = fλ (., y (.)) for all y ∈ H1
0 (Ω) (see

Papageorgiou-Kyritsi [12], Proposition 1.1.28, p.12).
Let Kλ : L2

(
Ω,RN

)
→ R be the integral functional defined by

Kλ (y) =

∫
Ω
ψ (y, λ) dz for all y ∈ L2

(
Ω,RN

)
.

Then Kλ is continuous and convex, and we have

ψλ = Kλ ◦D
where D ∈ L

(
H1

0 (Ω) , L
2
(
Ω,RN

))
is the gradient operator. Using the nonlinear

Green’s identity (see, for example, Gasinski-Papageorgiou [8], p. 210), we have

D∗ = −div ∈ L
(
L2

(
Ω,RN

)
,H−1 (Ω)

)
.
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From the nonsmooth chain rule of Clarke ([6], Theorem 2.3.10, p. 45), we have

∂Cψλ (x) ⊆ −div (∂CKλ (Dx)) .

But since Kλ (.) is continuous and convex, we have

∂CKλ (y) = ∂Kλ (y) for all y ∈ L2
(
Ω,RN

)
and from Theorem 4.5.16 of Gasinski-Papageorgiou ([8], p.570) it follows that

∂Kλ (y) =
{
h ∈ L2

(
Ω,RN

)
: h (z) = ∂ψ (y (z) , λ) = a (y (z) , λ) for a. a. z ∈ Ω

}
.

So, finally we have

−div h∗ = Nfλ (x)u with h∗ (z) = a (Dx (z) , λ) for a. a. z ∈ Ω,

therefore

−div a (Dx (z) , λ) = f (z, x (z) , λ)u (z) for a. a. z ∈ Ω, x |∂Ω= 0.

From Ladyzhenskaia-Uraltseva [9] (Theorem 7.1, p. 286) we know that

x ∈ L∞ (Ω) .

So, we can apply Theorem 1 of Lieberman [10], and conclude that

x ∈ C1
0

(
Ω
)
.

Now we show the uniqueness of this solution. So, suppose that x1, x2 ∈ H1
0 (Ω) are

two solutions of (3.2) . From the first part of the proof we have x1, x2 ∈ C1
0

(
Ω
)
.

We can find h∗1, h
∗
2 ∈ L2

(
Ω,RN

)
such that

h∗1 (z) = a (Dx1 (z) , λ) , h
∗
2 (z) = a (Dx2 (z) , λ) for a. a. z ∈ Ω,

−div h∗1 = Nfλ (x1)u , − div h∗2 = Nfλ (x2)u .

So, we have∫
Ω
(h∗1 − h∗2, Dx1 −Dx2)RN dz =

∫
Ω
(f (z, x1 (z) , λ)− f (z, x2 (z) , λ))u (x1 − x2) dz,

hence

C3 ∥Dx1 −Dx2∥22 ≤
∫
Ω
k (z) |x1 (z)− x2 (z)|2 dz

(see hypotheses H (a) (iii) ,H (f) (iii)), therefore

C7 ∥Dx1 −Dx2∥22 ≤ 0 for some C7 > 0

(see hypothesis H (f) (iii) and [12], p.356), and we conclude that x1 = x2. This
proves the uniqueness of the solution x ∈ C1

0

(
Ω
)
of (3.2) . �

In the next proposition, we determine the behavior of the set S (λ) as λ changes.

Proposition 3.5. If hypotheses H (a) , H (f) , H (θ) hold and λn → λ in E, then

S (λn)
K×M−→ S (λ) in C1

0

(
Ω
)
× L1 (Ω) .
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Proof. Let (x, u) ∈ S (λ) . Hypothesis H (θ) implies that

U (λn)
M−→ U (λ) in L1 (Ω) .

So, we can find un ∈ U (λn) such that

un → u in L1 (Ω) .

Let xn ∈ C1
0

(
Ω
)
be the unique state generated by the admissible control function

un (see Proposition 3.4). We have

(3.4) −div h∗n = Nfλn
(xn)un for all n ∈ N,

with h∗n ∈ L2
(
Ω,RN

)
satisfying

(3.5) h∗n = a (Dxn (z) , λn) for a. a. z ∈ Ω, all n ∈ N.

On (3.4) we act with xn ∈ C1
0

(
Ω
)
and obtain

⟨−div h∗n, xn⟩ =
⟨
Nfλn

(un) , xn
⟩

where ⟨., .⟩ denotes the duality brackets for
(
H−1 (Ω) ,H1

0 (Ω)
)
. Then, by the non-

linear Green’s identity (see [8], p. 210), it follows that

(3.6)

∫
Ω
(h∗n, Dxn)RN dz =

∫
Ω
f (z, xn, λn)unxndz.

By (3.5) and since a (y, λ) = ∂ψ (y, λ) , we have
(3.7)

(h∗n, Dxn)RN ≥ ψ (Dxn (z) , λn) ≥ C1 |Dxn (z)|2 for for a. a. z ∈ Ω, all n ∈ N
(see hypothesis H (a) (iii)). Returning to (3.6) and using (3.7) , (3.1) and H (θ) ,
we obtain

C1 ∥Dxn∥22 −
∫
Ω
k (z) |xn (z)|2 dz ≤

∫
Ω
f (z, 0, λn) |xn (z)| dz,

hence (see Remark 3.2 and [12], p. 356)

∥Dxn∥22 ≤ C8 ∥Dxn∥2 for some C8 > 0, all n ∈ N,
therefore

{xn}n≥1 ⊆ H1
0 (Ω) is bounded.

Then as before, from Ladyzhenskaya-Uraltseva ([9], p. 286), it follows that there
exists C9 > 0 such that

∥xn∥∞ ≤ C9 for all n ∈ N.
So, from the regularity theory of Lieberman [10], we know that there exist α ∈ (0, 1)
and C10 > 0 such that

xn ∈ C1,α
0

(
Ω
)
, ∥xn∥C1,α

0 (Ω) ≤ C10 for all n ∈ N.

Exploiting the compact embedding of C1,α
0

(
Ω
)
into C1

0

(
Ω
)
and passing to a subse-

quence if necessary, we have

(3.8) xn → x̂ in C1
0

(
Ω
)
.

Using the notation from the proof of Proposition 3.4, we conclude that

(3.9) h∗n = ∂Kλn (Dxn) .
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From (3.5) and (3.8) it follows that

{h∗n}n≥1 ⊆ L2
(
Ω,RN

)
is bounded.

So, we may assume that

(3.10) h∗n
w−→ ĥ∗ in L2

(
Ω,RN

)
.

From (3.9) we have

(3.11)
(h∗n, v − xn)2 ≤ Kλn (v)−Kλn (Dxn)

=
∫
Ω [ψ (v (z) , λn)− ψ (Dxn, λn)] dz, for all v ∈ L2

(
Ω,RN

)
.

Hypothesis H (a) (iv) , (3.8) and Theorem 10.6, p. 88 of Rockafellar [13] imply
that

ψ (v (z) , λn) → ψ (v (z) , λ) and ψ (Dxn (z) , λn) → ψ (Dx̂ (z) , λ) for all z ∈ Ω,

hence (cf. H(a) (iii))

(3.12)

∫
Ω
[ψ (v (z) , λn)− ψ (Dxn, λn)] dz →

∫
Ω
[ψ (v (z) , λ)− ψ (Dx̂ (z) , λ)] dz.

So, if in (3.11) we pass to the limit as n → ∞ and use (3.8) , (3.10) , (3.12) , we
obtain (

ĥ∗, v − x̂
)
2
≤ Kλ (v)−Kλ (Dx̂) for all v ∈ L2

(
Ω,RN

)
,

hence

ĥ∗ = ∂Kλ (Dx̂) ,

therefore

(3.13) −div ĥ∗ ∈ ∂ψλ (x̂) .

Also, from (3.8) , (3.1) and the dominated convergence theorem, we have

(3.14) Nfλn
(xn)un → Nfλ (x̂)u in L2 (Ω) .

Passing to the limit as n → ∞ in (3.4), (3.5) , and using (3.10) , (3.13) and (3.14) ,
we obtain

−div ĥ∗ = Nfλ (x̂)u with ĥ∗ = a (Dx̂ (z) , λ) for a. a. z ∈ Ω,

hence

(x̂, u) ∈ S (λ) ,

and we have

x̂ = x (see Proposition 3.4).

Therefore we have produced a sequence {(xn, un)}n≥1 (denoted by the same index)
such that

(3.15) xn → x in C1
0

(
Ω
)
and un → u in L1 (Ω) .

The uniqueness of x and Urysohn’s criterion for convergence of sequences imply
that (3.15) holds for the original sequence and so

(3.16) S (λ) ⊆ Kss − lim inf
n→∞

S (λn) = K − lim inf
n→∞

S (λn) in C1
0

(
Ω
)
× L1 (Ω) .
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Next consider (x, u) ∈ Ksw − lim supn→∞ S (λn) . Denoting subsequences with the
same index as the initial sequence, we can find (xn, un) ∈ S (λn) for all n ∈ N such
that

(3.17) xn → x in C1
0

(
Ω
)
and un

w−→ u in L1 (Ω) .

Evidently u ∈ U (λ) (note that on account of hypothesis H (θ) , U (λn)
M−→ U (λ)).

We have

(3.18) −div h∗n = Nfλn
(xn)un for all n ∈ N,

with h∗n ∈ L2
(
Ω,RN

)
satisfying

h∗n (z) = a (Dxn (z) , λn) for a. a. z ∈ Ω, all n ∈ N.

As before, we may assume that

(3.19) h∗n
w−→ h∗ in L2

(
Ω,RN

)
.

Again we have

(3.20) h∗ (z) = a (Dx (z) , λ) for a. a. z ∈ Ω.

Also, we have

(3.21) Nfλn
(xn)un

w−→ Nfλ (x)u in L2 (Ω)

(see (3.14) , (3.17) and hypothesis H (θ)). Passing to the limit as n → ∞ in (3.18)
and using (3.19) and (3.21) , we obtain

−div h∗ = Nfλ (x)u

hence
(x, u) ∈ S (λ) (see (3.20) , and recall that u ∈ U (λ) ),

therefore

(3.22) Ksw − lim sup
n→∞

S (λn) ⊆ S (λ) .

From (3.16) and (3.22) , we conclude that

S (λn)
K×M−→ S (λ) in C1

0

(
Ω
)
× L1 (Ω) .

�
So far, we have examined only the constraints of problem (Pλ) . Now we bring

the cost functional into the picture. First we show that for each λ ∈ E, problem
(Pλ) admits an optimal pair (that is, for all λ ∈ E, Q (λ) ̸= ∅).

Proposition 3.6. If hypotheses H (a) , H (f) , H (θ) , H (L) hold, then for every
λ ∈ E, Q (λ) ̸= ∅.

Proof. Let {(xn, un)}n≥1 ⊆ S (λ) be a minimizing sequence for problem (Pλ) , that
is

J (xn, un, λ) ↓ m (λ) as n→ ∞.

We know that

{(xn, un)}n≥1 ⊆ H1
0 (Ω)× L∞ (Ω) is bounded
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(see the proof of Proposition 3.5 and hypothesis H (θ)). By passing to a suitable
subsequence if necessary, we may assume that

(3.23) xn
w−→ x in H1

0 (Ω) and un
w∗
−→ u in L∞ (Ω) .

From Theorem 2.1.28 of Papageorgiou-Kyritsi ([12], p. 72), we know that J (., ., λ)
is sequentially lower semicontinuous on L2 (Ω)×L∞ (Ω)w∗ . So, from (3.23) and the
compact embedding of H1

0 (Ω) into L
2 (Ω) , it follows

(3.24) J (x, u, λ) ≤ lim inf
n→∞

J (xn, un, λ) = m (λ) .

On the other hand, from (3.23) and the regularity theory of Lieberman [10], we
have

xn → x in C1
0

(
Ω
)
,

hence
(x, u) ∈ S (λ) (see Proposition 3.5),

therefore
J (x, u, λ) = m (λ)

and we conclude that
(x, u) ∈ Q (λ) ̸= ∅.

�
Now we are in a position to prove the theorem concerning the variational stability

of problem (Pλ) . We show that (Pλ) is Hadamard well-posed.
The result reads as follows:

Theorem 3.7. If hypotheses H (a) , H (f) , H (θ) ,H (L) hold, then the value func-
tion λ → m (λ) is continuous from E into R, and the solution multifunction Q :

E → 2C
1
0(Ω)×L1(Ω)w\ {∅} is upper semicontinuous.

Proof. Let λn → λ in E. For every n ∈ N, let (xn, un) ∈ Q (λn) (see Proposition
3.6). Then

(3.25) m (λn) = J (xn, un, λn) for all n ∈ N.
From the proof of Proposition 3.5, we know that at least for a subsequence, we have

(3.26) xn → x in C1
0

(
Ω
)
and un

w−→ u in L1 (Ω) .

Then Proposition 3.5 implies that

(3.27) (x, u) ∈ S (λ) .

From the lower semicontinuity result of Berkovitz [3] we have∫
Ω
L (z, x (z) , Dx (z) , u (z) , λ) dz ≤ lim inf

n→∞

∫
Ω
L (z, xn (z) , Dxn (z) , un (z) , λn) dz,

hence

(3.28) m (λ) ≤ lim inf
n→∞

m (λn) (see (3.25) , (3.27) ).

Next, let (x, u) ∈ Q (λ) . Then

(3.29) m (λ) = J (x, u, λ) .
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Proposition 3.5 implies that we can find (xn, un) ∈ S (λn) for all n ∈ N such that

(3.30) xn → x in C1
0

(
Ω
)
and un → u in L1 (Ω) .

We have

(3.31)

m (λn) ≤ J (xn, un, λn)

=
∫
Ω L (z, xn, Dxn, un, λn) dz

=
∫
Ω [L (z, xn, Dxn, un, λn)− L (z, x,Dx, un, λn)

+L (z, x,Dx, un, λn)] dz

≤
∫
Ω ηM (z) [|xn − x|+ |Dxn −Dx|] dz

+
∫
Ω L (z, x,Dx, un, λn) dz

with M = sup
{
∥xn∥C1(Ω) : n ≥ 1

}
(see (3.30)). Note that

(3.32)

∫
Ω
ηM (z) [|xn − x|+ |Dxn −Dx|] dz → 0 (see (3.30) )

and

(3.33)

∫
Ω
L (z, x (z) , Dx (z) , un (z) , λn) dz →

∫
Ω
L (z, x (z) , Dx (z) , u (z) , λ) dz

(see hypotheses H (L) (ii) , (iii) and Theorem 10.6, p. 88 of [13]).
Returning to (3.31) , passing to the limit as n→ ∞ and using (3.32) and (3.33) ,

we obtain

(3.34) lim sup
n→∞

m (λn) ≤ J (x, u, λ) = m (λ) .

From (3.28) and (3.34) it follows that

m (λn) → m (λ)

hence

λ→ m (λ) is continuous from E into R.
Next we show the upper semicontinuity of the multifunction λ → Q (λ) . To this
end, let C ⊆ C1

0

(
Ω
)
× L1 (Ω)w be a closed set. We need to show that

Q− (C) := {λ ∈ E : Q (λ) ∩ C ̸= ∅}
is closed. So, let {λn}n∈N ⊆ Q− (C) and assume that λn → λ in E. Let

(xn, un) ∈ Q (λn) ∩ C, for all n ∈ N.
From the proof of Proposition 3.5 and hypothesis H (θ) , we know that we may
assume that at least for a subsequence we have

(3.35) xn → x in C1
0

(
Ω
)
and un

w−→ u in L1 (Ω) .

We have

m (λn) = J (xn, un, λn) for all n ∈ N,
hence

(3.36) m (λ) = lim inf
n→∞

J (xn, un, λn) ≥ J (x, u, λ)
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(see (3.35) and recall that λ→ m (λ) is continuous). From Proposition 3.5 we have
(x, u) ∈ S (λ) . Hence (3.36) becomes

m (λ) = J (x, u, λ) ,

hence

(x, u) ∈ Q (λ) ∩ C
therefore λ ∈ Q− (C) . So, the set Q−1 (C) is closed and the proof is complete.. �

4. A minimax problem

In this section we consider a particular case of the control system in problem
(Pλ) , in which the function θ (.) in the control constraint is independent of the
parameter. In other words, the control constraint set is fixed and does not depend
on the parameter λ ∈ E.

So, we deal with the following nonlinear elliptic equation

(P ′
λ)

{
−div a (Dx (z) , λ) = f (z, x (z) , λ)u (z) in Ω, x |∂Ω= 0,
|u (z)| ≤ θ (z) for a. a. z ∈ Ω., λ ∈ E.

In this case the function θ (.) satisfies

H (θ)′ : θ : Ω→R+ is a measurable function such that 0 ≤ θ (z) ≤ 1 for a. a. z ∈ Ω.

For every admissible control u, problem (P ′
λ) has a unique solution xλ (u) ∈

C1
0

(
Ω
)
(see Proposition 3.4).

To system (P ′
λ) we associate the integral cost functional defined by

Ĵ (u, λ) =

∫
Ω
L (z, xλ (u) (z) , Dxλ (u) (z) , u (z) , λ) dz.

In this context we consider the following minimax problem

(4.1) inf
u∈Sc

sup
λ∈E

Ĵ (u, λ) = m,

with

Sc =
{
u ∈ L1 (Ω) : |u (z)| ≤ θ (z) for a. a. z ∈ Ω

}
.

So, in this problem, given an admissible control function u ∈ Sc, the system analyst
determines the maximum cost (risk) over all possible parameter values and then
minimizes the maximum value over all admissible controls.

In what follows, given u ∈ Sc, we set

(4.2) φ (u) = sup
{
Ĵ (u, λ) : λ ∈ E

}
.

By a solution of the minimax control problem (4.1) , we mean a control function
u∗ ∈ Sc such that

(4.3) φ (u∗) = inf {φ (u) : u ∈ Sc} .
Now the hypotheses on the cost integrand L are the following:

H (L)′ : L : Ω × R× RN × R × E→R = R∪{+∞} is a measurable integrand such
that
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(i) for a. a. z ∈ Ω, (x, y, u, λ) → L (z, x, y, u, λ) is proper, lower semicon-
tinuous;

(ii) for a. a. z ∈ Ω and all (x, y, λ) ∈ R× RN × E, the function u →
L (z, x, y, u, λ) is convex;

(iii) for every M > 0, there exist η̂M ∈ L1 (Ω) and ĈM > 0 such that

η̂M − ĈM (|x|+ |y|) ≤ L (z, x, y, u, λ) for a. a. z ∈ Ω,

all |x| , |y| ≤M, all |u| ≤ 1, all λ ∈ E.

Let τ : L1 (Ω) × E → H1
0 (Ω) be the map which to each pair (u, λ) ∈ Sc × E

assigns the unique solution (state) x ∈ H1
0 (Ω) of equation (P ′

λ) (see Proposition
3.4). A byproduct of the proof of Proposition 3.5 is the following result concerning
the map τ (.) :

Proposition 4.1. If hypotheses H (a) ,H (f) ,H (θ)′ hold, then the map τ : L1 (Ω)w×
E → H1

0 (Ω) is sequentially continuous.

Using this proposition, we can find a solution for the minimax problem (4.1) .

Theorem 4.2. If hypotheses H (a) , H (f) , H (θ)′ , H (L)′ hold, then problem (4.1)
admits an optimal control u∗ ∈ Sc (see (4.2) , (4.3)).

Proof. From Proposition 4.1 and Theorem 2.1.28 of Papageorgiou-Kyritsi ([12],

p.72), it follows that the function (u, λ) → Ĵ (u, λ) is sequentially lower semicontin-
uous on L1 (Ω)w × E. Let φ be defined by (4.2) . We claim that φ : L1 (Ω)w → R
= R∪{+∞} is sequentially lower semicontinuous. To see this, let η ∈ R and con-
sider the sublevel set

Sη :=
{
u ∈ L1 (Ω) : φ (u) ≤ η

}
.

We need to show that Sη is sequentially weakly closed.
So, let {un}n∈N ⊆ Sη and assume that

un
w−→ u in L1 (Ω) .

Then

Ĵ (u, λ) ≤ lim inf
n→∞

Ĵ (un, λ) ≤ lim inf
n→∞

φ (un) ≤ η,

hence

Ĵ (u, λ) ≤ η for all λ ∈ E,

therefore

φ (u) ≤ η, that is u ∈ Sη.

So, φ is sequentially lower semicontinuous on L1 (Ω)w . By the Eberlein-Smulian
theorem, the set Sc is sequentially compact in L1 (Ω)w . Then, by the Weierstass-
Tonelli theorem, we can find u∗ ∈ Sc satisfying (4.3) . �
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5. Another sensitivity result

In this section, using the method of multiple Γ−operators developed by Buttazzo-
Dal Maso [5], we prove another sensitivity (variational stability) result.

Now the cost integrand L is independent of the gradient of the state. So, the
conditions on L are the following:

H (L)′′ : L : Ω× R× R×E→R is a measurable integrand such that
(i) for a. a. z ∈ Ω, and all (x, λ) ∈ R× E, u→ L (z, x, u, λ) is convex;
(ii) for a. a. z ∈ Ω, all (x, u) ∈ R× R, and all λ ∈ E :

C̃1 |u|2 ≤ L (z, x, u, λ) ≤ C̃2

(
1 + x2 + u2

)
, with C̃1, C̃2 > 0;

(iii) for a. a. z ∈ Ω, all (u, λ) ∈ R×E, and all x, v ∈ R with |x− v| < 1, we
have

|L (z, x, u, λ)− L (z, v, u, λ)| ≤ ρ (|x− v|)
(
1 + x2 + u2

)
with ρ : [0, 1] → R+ increasing, continuous and such that ρ (0) = 0;

(iv) if λn → λ in E, then L∗ (., x, u, λn)
w−→ L∗ (., x, u, λ) in L1 (Ω)w for all

(x, u) ∈ R× R.

(Here L∗ (z, x, u, λ) = supu∈R {uu− L (z, x, u, λ)}).
Now the cost functional is

J0 (x, u, λ) =

∫
Ω
L (z, x (z) , u (z) , λ) dz.

Using Lemma 3.1 of Butazzo-Dal Maso [5] and the fact that H1
0 (Ω) is embedded

compactly in L2 (Ω) , we have

Proposition 5.1. If hypotheses H (L)′′ hold and λn → λ in E, then

J0 (x, u, λ) = Γseq

(
H1

0 (Ω)w , L
2 (Ω)−w

)
lim
n→∞

J0 (x, u, λn) .

Also, combining our Proposition 3.5 with Example 2.1 of Butazzo-Dal Maso [5],
we obtain a convergence result for the indicator functions

δS(λn) (x, u) =

{
0 if (x, u) ∈ S (λn)

+∞ otherwise
, n ∈ N.

Proposition 5.2. If hypotheses H (a) , H (f) , H (θ) , H (L)′′ hold and λn → λ in
E, then

δS(λ) = Γseq

(
H1

0 (Ω)w , L
2 (Ω)−w

)
lim
n→∞

δS(λn).

Now Propositions 5.1 and 5.2 permit the use of Theorem 2.1 of [5], which leads
to the following sensitivity result:

Theorem 5.3. If hypotheses H (a) , H (f) , H (θ) , H (L)′′ hold and λn → λ in E,
then for every n ∈ N, problem (Pλn) (with J replaced by J0), has an optimal pair
(x∗n, u

∗
n) ∈ Q (λn) , and

(x∗n, u
∗
n) → (x∗, u∗) in C1

0

(
Ω
)
× L1 (Ω)w with (x∗, u∗) ∈ Q (λ) .

Remark 5.4. In particular this theorem implies that:
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(i) λ→ m (λ) is lower semicontinuous;
(ii) λ→ Q (λ) is upper semicontinuous from E into C1

0

(
Ω
)
× L1 (Ω)w .
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