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SENSITIVITY ANALYSIS OF PARAMETRIC ELLIPTIC
OPTIMAL CONTROL PROBLEMS

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU*

ABSTRACT. In this paper we investigate the sensitivity (variational stability) of
parametric optimal control problems driven by nonlinear elliptic equations. We
prove the continuity properties of the value function and of the multifunction of
the optimal state-control pairs.

1. INTRODUCTION

One of the main problems in optimal control theory is the analysis of variations
of the optimal solutions and of the value of the problem when we perturb the data,
namely the governing equation and the cost (objective) functional. Such a sensi-
tivity analysis (also known in the literature as ”variational stability”) is important
because it provides information concerning the tolerances that are permitted in
the specification of the mathematical models, it suggests ways to solve parametric
problems, and also can lead to numerical methods to treat the problem.

In this paper, we conduct such a study for a class of nonlinear optimal control
problems. We mention that Buttazzo-Dal Maso [5] provided a framework for the
sensitivity analysis of optimal control problems using the formalism of multiple
I"'—operators. They illustrated their method on optimal control problems driven by
ordinary differential equations. Later, Migorski [11] considered systems driven by
linear elliptic equations. A more detailed presentation of the subject can be found
in the books of Buttazzo [4] and Dontchev-Zolezzi [7]. Finally, we also mention
the relevant books of Ahmed [1] (identification of evolution systems) and Barbu [2]
(optimal control of stationary and dynamic variational inequalities).

Let © € RY be a bounded domain with a C?—boundary 99 and E a compact
metric space (the parameter space). We deal with the following parametric nonlinear
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elliptic optimal control problem

J(z,u,\) = [ L ),Dx(2),u(z),\) dz — inf = m(N\),
(Py) —dw a(Da:( ), )\) f(z x(z),/\)u(z) in Q, x|pn=0,
lu(z)| < 6(z,A) for a.a. z€Q

where L: QxR xRV xRXxE - R, f: OQxRxE >R, a:RY x E— RN and
0:Qx E— R+.

In the next section, we recall the main mathematical notions which will be used
in the analysis of problem (P).

2. MATHEMATICAL BACKGROUND

Let Z, W be Hausdorff topological spaces. We say that G : Z — 2W\ {@} is
“upper semicontinuous” (“usc” for short), if for all open subsets U C W, the set
Gt (U):={z2€ Z:G(z) CU} is open.

Also, let (X, 7) be a Hausdorff topological space with 7 denoting the topology of
X, and let {Cy},,5q C 2%\ {@}. We define

KT—liminfC’n:{xEX:x:T— li_}m Tn, Tn € Cp forallnGN},
n o0

n—0o0

K, —limsupC), = {x ceX:x=7— lim x,,, z,, €y, np < npt1,k € N} ,
n—00 k—o0

If C' = K, — liminf, 00 Cp = K; — limsup,, ,, Cy, then we write C,, 5 C.
Now suppose that (X, |.||) is a Banach space with dual X* and s denotes the
strong (norm) topology on X and w denotes the weak topology on X. Again let
{Cp},>1 € 2%\ {@}. We say that the sequence {C},}, -, converges to C in the sense

of Mosco, denoted by C), M C, if and only if we have
C =K, —limsupC,, = K — liminf C,,.

n—00 n—0oo
Let (X, ||.||) be a Banach space with dual X*, and ¢ : X — R. The duality pairing
between X* and X is denoted by (.,.). We say that ¢ is “locally Lipschitz”, if for
every x € X, we can find an open neighborhood O (z) of x and a constant k (x) > 0
such that

o (y) =@ (2) < k() lly — 2| forally, z €O (x).
If this inequality holds for all y, z € X and k(z) = k > 0 is independent of z,
then we have a Lipschitz continuous function. Clearly, if ¢ : X — R is Lipschitz
continuous on every bounded subset of X, then ¢ is locally Lipschitz. The converse
is true provided X is finite dimensional. We know that if ¢ : X — R is continuous
and convex or if ¢ € C1 (X,R), then ¢ is locally Lipschitz.

Given a locally Lipschitz function ¢ : X — R, the generalized directional de-
rivative of ¢ at z € X in the direction h € X, denoted by ¢° (x;h), is defined
by
o (@ +\h) — o ()

% (z;h) = limsup S

' =z
AL0
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Using ¢ (2; h) we can define the “generalized (or Clarke) subdifferential” of ¢ at
x € X, denoted by d.p (), as the set
Oep (z) = {z* € X* : (z*,h) < " (z;h) forallhe X }.

This set is always nonempty, convex and w*—compact. For a convex function
v: X - R =RU{+00}, we can define the “subdifferential in the sense of convex
analysis” of ¢ at z € X, to be the set
Op(z)={z" e X" : (2" y—2z) <p(y) —¢(z) forally € X}.
For continuous convex functions (hence locally Lipschitz, too), we have

Ocp () = O (x) for all z € X.

Finally, let X; and X2 be Hausdorff topological spaces and let f,, : X1 x Xo — R
be a sequence of functions. By Z (+) we denote the “sup” operator and by Z (—)
we denote the “inf” operator. For h € {1,2}, let S;, denote the set of sequences
{:L‘Z}n>1 converging to some xj, in X. Also, let ay, be one of the signs + or —. We
set

Dseq (X7, X5?) Wm f (z1,22) = Z(an)  Z(az) Z(=) Z(+)fn(an.27).

When the I'yeq -limit is independent on the sign 4 or — associated to one of the
spaces, then the sign is omitted. For example, if

I‘seq (X;, X2+) nh—>nolo fn (xlv 332) = I‘seq (X1+7 X2+) nh—g)lo fn (xlv x2)
then we indicate this common value by
1_‘seq (X17 XQJF) nh—>ngo In (3717 -T2) .

The following notation will be in effect throughout the paper. We will use |.| to
indicate both the absolute value on R and the norm on RY. The inner product
in RY will be denoted denoted by (.,.)gn . The norm in LP (Q) or LP (Q,RY),
1 < p < oo, will be designated by ||.[|,,, while (.,.), will be used for the inner product

in L? (Q, RN ) . We will use the symbol — to denote the weak convergence. Finally,
we recall that

Cy () ={ueC'(Q):ulpn=0}.
3. SENSITIVITY ANALYSIS

The hypotheses on the data of (Py) are the following;:

H(a): a(y,\) = 90 (y,\) where ¢ : RV x E—R is a function such that:
(i) for all A € E, y — ¢ (y, A) is convex, differentiable and 1 (0, \) = 0;
(i7) there exist 0 < C1 < Cy such that

Crlyl? <6y, 0) < Gy (1+]y?) for all (y,)) € RxE;
(#ii) there exists C3 > 0 such that for all y, 3’ € RY and all A\ € E, we have

Csly— '[P < (@@ ) —a (¥ Ay —y)gn:
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(iv) if A, = X in E, then v (y, A\,) — ¥ (y, A) for all y € RV,

Remark 3.1. Simple examples of functions 9 (y, A) which satisfy hypotheses H (a)
are the following

A
01 () = " 2 and s (5.0 = L P+ a ) ol L+ ).

with A — a (\) continuous from E into (0,00) .

H(f): f:QxRxE—R is a function such that:
(7) for all (z,\) € Rx E, z = f(z,2,A) is measurable and f(.,0,\) €
L?(Q) for all A € E;
(i) for a. a. 2 € Q, (z,\) — f(z,2,\) is continuous;
(7i1) for a. a. z€ Q, all A € F and all z, 2’ € R, we have

|f (2, 0) = f (22" A)| <k (2) |2 — 2|
with k € L> (Q), such that
k(z) < CsA; for a. a. z € €,

the inequality is strict on a set of positive measure, and Xl is the prin-
cipal eigenvalue of (—A, Hj (€2)) .

Remark 3.2. Whenever necessary, we will replace C7 and Cs in H (a) (i1), (ii1)
and H (f) (i73) by min {C1,Cs}.

Remark 3.3. We know that

~ Dzl|?
M:m{”w”xaﬁ@}

52 :
[P

and A; > 0 (see Gasinski-Papageorgiou [8]). Also, hypothesis H (f) (i7i) implies
that
(3.1) lf (z,2,N)| < k(2)|z|+ |f (2,0,\)] for a. a. z € Q,

allz € Rand all A € E.

H(): 0 :Qx E-Ry is a Carathéodory function (that is, for all A € E, z —
0 (z,A) is measurable and for a. a. z € Q, A — 6 (z, ) is continuous) and
10 (z,\)| <1fora. a zeQ al\ekE.

H(L): L:QxRxRY xR x E=R is an integrand such that
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(i) for a. a. z € Q, all M > 0, all |z], 2|, |y|, |¥/| < M, all Ju| <1, all
AeE:
L(.,0,0,u,\) € L* (Q)
and
‘L z2, 2, Yy, u,\) — L (z AT u,)\)|
<num(z (‘m—x‘—i—‘y y|),With’)7M€L1(Q);
(i) for a. a. z € Q, all (z,y,)) € R x RY x E, the function
u— L(z,z,y,u,\) is convex;
(i3i) for a. a. z € Q, all (z,y) € RxRY, all |u| < 1, the function A —
L(z,z,y,u,\) is continuous;
(v) for a. a. z € Q, all (z,7) € R x RY, all [u| < 1, all A € E we have

B(z) = Ca(lz| + |yl) < L(z,2,y,u,A)
with 8 € L' (Q), C4 > 0.

For A € E let
UN) ={ue L (Q):|u(z)] <0(z,A) for a. a. z € Q}.
This is the set of admissible control functions. A pair (z,u) € H} (Q) x L (Q) such
that u € U (A) and z is a solution of the Dirichlet elliptic equation
(3.2) —div a(Dz (2),\) = f(z,2(2),N)u(z) in Q, x|sn=0

governing the system is said to be an “admissible state-control pair”. We denote
by S (A) the set of all admissible state-control pairs. If for a pair (z,u) € S (\) we
have
J (@, u, A) =m(A)

then we say that (z,u) € S ()\) is an optimal pair. By Q (\) we denote the set of all
optimal pairs. Obviously Q (A\) C S ()).

We start by examining the state equation of (Py). So, for A € E, we consider
equation (3.2).

Proposition 3.4. If hypotheses H (a), H(f) hold, X € E and u € U (N\), then
problem (3.2) has a unique solution x = x (u) € C§ (Q)

Proof. Let ¢y : HE (2) — R be the energy (Euler) functional for problem (3.1),
defined by

:/¢(D1:,)\)dz—/ F(z,2,\)u dz for all z € H} (Q),
Q
with F (z,2,A) = [ f(z,5,\)ds. Hypotheses H (a) imply that

x = Yy (z /1/) (Dx,\)d

is continuous and convex, thus locally Lipschitz. Also, let o) : H& (Q) — R be
defined by

oA(x):/QF(z,:U,)\)udz for all z € HJ ().
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Evidently, o) € C! (H& (Q) ,]R) , hence it is also locally Lipschitz. Then

z = px(2) = ¥a(z) —ox(z)
is locally Lipschitz as well. Moreover, the convex functional vy (.) is sequentially
weakly lower semicontinuous.
Let z,, —» z in H} (Q) . By passing to a subsequence if necessary, we have

r, = xin L2 (Q), 2, (2) = z(2) fora. a. z € Q,
|z, (2)] <n(2) fora. a. z€Q, all n € N, withn € L?(Q).
Using (3.3) and Fatou’s lemma, we have

lim sup /Q F(z,zp(2),Nu(z)dz < / limsup F' (z,z, (2) ,\) u(z) dz

n—o00 Q) n—oo

(3.3)

~ [ PG u)d
Q

hence x — oy (z) is sequentially weakly upper semicontinuous on H} () . Therefore
we infer that

z = ox(x) = Pa(2) —ox(2)
is sequentially weakly lower semicontinuous on H} (€2). Also, using hypotheses
H (a) (ii), H(f) (i), (i), (3.1) and Remark 3.2, for every z € H} (Q) we have

1
oy (z) > Cy ||D:BH§ —5 /Q k() z%dz — Cs

> Cs (HD%‘H% - 1) for some C5, Cg > 0,

(see Papageorgiou-Kyritsi [12], Lemma 5.1.3, p.356), hence ¢, is coercive on Hg (€2) .
So, by the Weierstrass-Tonelli theorem, we can find x € Hg () such that

or () = inf {pr (0) v € HY (9)},
hence
0 € dc (Yx — o) () (Fermat’s rule)
C Ocx (x) — Doy (z) (see Clarke [6], pp. 38-39).

We know that
dcox (x) = o)\ (x) = Ny, (2)u

with fi (z,2) = f(z,2,A) and Np, (y)(.) = £ (,y()) for all y € H{ () (see
Papageorgiou-Kyritsi [12], Proposition 1.1.28, p.12).
Let Ky : L? (Q, RN) — R be the integral functional defined by

Ky (y) :/w(y,)\)dz for all y € L? (Q,RY).
Q
Then K is continuous and convex, and we have
Yr=KxoD

where D € L (H& (Q), L? (Q,]RN )) is the gradient operator. Using the nonlinear
Green’s identity (see, for example, Gasinski-Papageorgiou [8], p. 210), we have

D* = —div € L (L* (U RY),H™1 (Q)) .
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From the nonsmooth chain rule of Clarke ([6], Theorem 2.3.10, p. 45), we have
dcy (z) C —div (0c Ky (Dx)) .
But since K (.) is continuous and convex, we have
oKy (y) = 0K, (y) for all y € L* (Q,RY)
and from Theorem 4.5.16 of Gasinski-Papageorgiou ([8], p.570) it follows that
0K (y) = {h € L? (Q,RN) th(z)=0¢ (y(2),\) =a(y(z),)) fora. a. z€Q}.
So, finally we have
—div h* = Ny, (x)u with h* (2) = a (Dxz (2),\) for a. a. z € Q,
therefore
—div a(Dx (2),\) = f(z,2(2),AN)u(z) fora.a. ze€Q, x|po=0.

From Ladyzhenskaia-Uraltseva [9] (Theorem 7.1, p. 286) we know that

x € L™ ().
So, we can apply Theorem 1 of Lieberman [10], and conclude that

zeC} Q).

Now we show the uniqueness of this solution. So, suppose that z1, zo € H} (Q) are
two solutions of (3.2). From the first part of the proof we have z1, 7o € C} (ﬁ) .
We can find hj, hi € L? (Q,RY) such that

hi(z) =a(Dxi(2),\), h3(z) =a(Dxy(z),A) for a. a. z € Q,
—div h] = Ny, (x1)uw, —div hy = Ny, (x2)u .

So, we have

/ (hi — h3, Dxy — Dg)gy dz = / (f (z,21(2),A) = f (2,22 (2) , A)) u (21 — 32) d,
Q

Q

hence
Qme—Jhﬁgglfﬂdmud—xﬂ@Fw
(see hypotheses H (a) (iii) , H (f) (¢i1)), therefore
C7||Dx1 — D)3 < 0 for some Cy > 0

(see hypothesis H (f) (é4) and [12], p.356), and we conclude that z; = zo. This
proves the uniqueness of the solution z € C} (Q) of (3.2). O

In the next proposition, we determine the behavior of the set S (A) as A changes.

Proposition 3.5. If hypotheses H (a), H(f), H(0) hold and X\, — X in E, then

S() " s (V) in (@) x LH(Q).
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Proof. Let (z,u) € S (\). Hypothesis H (#) implies that
UN) LU\ in L (Q).
So, we can find u,, € U (\,) such that
U, — u in L (Q).

Let z,, € C} (ﬁ) be the unique state generated by the admissible control function
uy, (see Proposition 3.4). We have

(3.4) —div hy, = Ny, (zn)up for all n € N,
with h¥ € L? (Q,RN) satisfying
(3.5) h; =a(Dxy (z),\,) for a. a. z € Q,alln € N.

On (3.4) we act with 2, € C§ (Q) and obtain
(—div hy,xy,) = <kan (un) , o)

where (.,.) denotes the duality brackets for (H~! (), H} (€2)) . Then, by the non-
linear Green’s identity (see [8], p. 210), it follows that

(3.6) / (hy,, Dzp)pn dz = / (2, @0, A\p) upxndz.
Q Q

By (3.5) and since a (y, A) = 9¢ (y, \) , we have

(3.7)

(h%, Dp)gn > ¥ (D (2), Ay) > C1 |Diy, (2)]? for fora. a. z€ Q, alln e N
(see hypothesis H (a) (4i7)). Returning to (3.6) and using (3.7) , (3.1) and H (0),
we obtain

Cy || D —/ k(2) | (2)|* dz < / f(2,0, M) [2n (2)] dz,
Q Q
hence (see Remark 3.2 and [12], p. 356)
|Dz,||3 < Cs || Dy, for some Cg > 0, all n € N,

therefore
{zn},>1 C H;} (Q) is bounded.

Then as before, from Ladyzhenskaya-Uraltseva ([9], p. 286), it follows that there
exists Cy > 0 such that
|zl < Co for all n € N.

So, from the regularity theory of Lieberman [10], we know that there exist a € (0,1)
and C'g > 0 such that

Ty € C&’a (ﬁ) , ||£L'n||col,a(§) < (g for all n € N.

Exploiting the compact embedding of Col’a (ﬁ) into C’é (ﬁ) and passing to a subse-
quence if necessary, we have

(3.8) z, — 7 in C§ (Q).
Using the notation from the proof of Proposition 3.4, we conclude that
(3.9) h; = 0K, (Dxy,) .
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From (3.5) and (3.8) it follows that
{h:},s, C L* (Q,RN) is bounded.
So, we may assume that :
(3.10) i 2 h* in L2 (Q,RY).
From (3.9) we have
(hi, v —xn)y < Ky, (v) — Ky, (Dxy)

(3.11) = Jo [t (v (2),\n) = ¥ (D, An)] dz, for all v € L? (Q,]RN) )

Hypothesis H (a) (iv), (3.8) and Theorem 10.6, p. 88 of Rockafellar [13] imply
that

Y (v (2),\) = ¥ (v(2),\) and ¥ (Dxy, (2),\n) — (DT (2),\) for all z € Q,
hence (cf. H(a) (ii))

(3.12) /Q 4 (0(2) M) — 1 (D, An)] dz — /Q [ (0 (), A) — ¢ (DE (), \)] d=.

So, if in (3.11) we pass to the limit as n — oo and use (3.8), (3.10), (3.12), we
obtain

(h*v—3), < K (v) = Kx (D3) for all v e L? (QRY),

hence R
h* = 0K, (D7),
therefore
(3.13) —div h* € 0y (7).
Also, from (3.8), (3.1) and the dominated convergence theorem, we have
(3.14) Ny, (zn) un — Ny, (T)u in L*(Q).

Passing to the limit as n — oo in (3.4), (3.5), and using (3.10), (3.13) and (3.14),
we obtain
—div h* = Ny, (Z) u with h*=a (DZ (2),)) for a. a. z € Q,
hence
(Z,u) € S(A),
and we have
T = z (see Proposition 3.4).

Therefore we have produced a sequence {(xy,up)},,~; (denoted by the same index)
such that -

(3.15) zn, — 2 in C) (Q) and u, — uin L' (Q).

The uniqueness of z and Urysohn’s criterion for convergence of sequences imply
that (3.15) holds for the original sequence and so

(316) S (A) € Ky —liminf S(A,) = K —liminf S (An) in Cy (2) x L' ().



36 S. AIZICOVICI, N. S. PAPAGEORGIOU, AND V. STAICU

Next consider (z,u) € Kg, — limsup,,_,., S (As). Denoting subsequences with the
same index as the initial sequence, we can find (z,,u,) € S (\,) for all n € N such
that

(3.17) z, =z in Cj (Q) and u, — u in L' (Q).
Evidently u € U (A) (note that on account of hypothesis H (0), U (Ay,) My (N).
We have
(3.18) —div hy, = Ny, (zn)u, for all n € N,
with h¥ € L? (Q,RN) satisfying
h; (z) = a(Dzy (2),\,) fora. a. z € Q,all n € N.

As before, we may assume that

(3.19) hy 5 h* in L? (Q,RY).
Again we have

(3.20) h*(z) =a(Dx(z),\) for a. a. z € Q.
Also, we have

(3.21) Ny, () un — Ny, (z)u in L* (Q)

(see (3.14), (3.17) and hypothesis H (f)). Passing to the limit as n — oo in (3.18)
and using (3.19) and (3.21), we obtain

—div h* = Ny, (x)u

hence
(x,u) € S(A) (see (3.20), and recall that u € U (X)),
therefore
(3.22) Kgpy —limsup S (\,) CS(N).
n—o0
From (3.16) and (3.22), we conclude that
Sn) X s () in Cf (Q) x LM Q).

g

So far, we have examined only the constraints of problem (P)). Now we bring
the cost functional into the picture. First we show that for each A € E, problem
(Py) admits an optimal pair (that is, for all A € E, Q () # 9).

Proposition 3.6. If hypotheses H (a), H(f), H(0), H(L) hold, then for every
AEE, Q) # 2.

Proof. Let {(zpn,un)},~; €S (A) be a minimizing sequence for problem (Py), that
is B

J (T, Un, A) L m () as n — oo.
We know that

{(n,un) =1 C Hp () x L (Q) is bounded
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(see the proof of Proposition 3.5 and hypothesis H (#)). By passing to a suitable
subsequence if necessary, we may assume that

(3.23) T, — xin HY (Q) and u, 2% win L (Q).

From Theorem 2.1.28 of Papageorgiou-Kyritsi ([12], p. 72), we know that J (.,., \)
is sequentially lower semicontinuous on L? () x L> (Q),,. . So, from (3.23) and the
compact embedding of H} (Q) into L? (), it follows

(3.24) J(z,u, ) < liIr_1>ian (Tny Un, A) =m (A).

On the other hand, from (3.23) and the regularity theory of Lieberman [10], we
have

xnﬁﬁinC&(ﬁ),
hence
(z,u) € S(A) (see Proposition 3.5),
therefore
J(z,u,\) =m ()
and we conclude that
(r,u) € Q(\) # 2.
O
Now we are in a position to prove the theorem concerning the variational stability

of problem (Py). We show that (P)) is Hadamard well-posed.
The result reads as follows:

Theorem 3.7. If hypotheses H (a), H(f), H(0),H (L) hold, then the value func-
tion A — m () is continuous from E into R, and the solution multifunction Q :

E — 2% (Q)XLI(Q)w\ {@} is upper semicontinuous.

Proof. Let A\, — X\ in E. For every n € N, let (z,,u,) € Q(\,) (see Proposition
3.6). Then

(3.25) m (An) = J (Tp, tn, Ay) for all n € N.
From the proof of Proposition 3.5, we know that at least for a subsequence, we have
(3.26) zn, — 2 in C§ () and u,, — uin L' (Q).
Then Proposition 3.5 implies that
(3.27) (x,u) € S(N).
From the lower semicontinuity result of Berkovitz [3] we have
/QL (z,x2(2),Dx(2),u(z),\)dz < liggio%f QL(z,xn (2),Dxy, (2) ,upn (2) , An) dz,

hence

(3.28) m (A\) < liminfm (A,) (see (3.25),(3.27)).

n—oo

Next, let (z,u) € Q(A). Then
(3.29) m(\) =J(z,u,\).
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Proposition 3.5 implies that we can find (z,,u,) € S (\,) for all n € N such that
(3.30) z, =z in Cj (Q) and u, — uwin L' (Q).
We have
m(An) < J (T, Un, An)
= fQL(z,xn,D:Bn,un,/\n)dz
= fQ [L (2, Tn, DXy, Un, An) — L (2,2, Dz, up, \p)
+L (z,2, Dz, un, \p)] dz
< fQ v (2) [|zn — x| + |Dxy, — Dz|] dz
+ fQ L(z,z, Dz, un, A\y) dz

(3.31)

with M = sup {||:Un||01(§) in > 1} (see (3.30)). Note that

(3.32) / v (2) [|zn — x| + |Dxy, — Dz|]dz — 0 (see (3.30))
Q
and

(3.33) /QL (z,2(2),Dx (2),un (), A\n) dz — /QL (z,x2(2),Dx (2),u(2),\)dz

(see hypotheses H (L) (i3), (i7i) and Theorem 10.6, p. 88 of [13]).
Returning to (3.31), passing to the limit as n — oo and using (3.32) and (3.33),
we obtain

(3.34) limsupm (A,) < J (z,u,A) =m ().

n—oo

From (3.28) and (3.34) it follows that
m(An) = m(A)

hence
A — m(\) is continuous from FE into R.

Next we show the upper semicontinuity of the multifunction A — Q (). To this
end, let C C Cj () x L (Q),, be a closed set. We need to show that

Q (C):={NeE: Q\)NC # o}
is closed. So, let {A\,},cy € Q7 (C) and assume that A\, — X in E. Let
(T, un) € Q(A\n)NC, for all n € N.

From the proof of Proposition 3.5 and hypothesis H (6), we know that we may
assume that at least for a subsequence we have

(3.35) 2n, = 2 in G (Q) and up, — win L' (Q).
We have

m (An) = J (Tn, un, A) for all n € N,
hence
(3.36) m (A) = liminf J (2, un, Ap) > J (2, u, \)

n—oo
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(see (3.35) and recall that A — m () is continuous). From Proposition 3.5 we have
(z,u) € S (). Hence (3.36) becomes

mA) =J(z,u,\),
hence
(x,u) € Q(AN)NC
therefore A € Q= (C') . So, the set o1 (C) is closed and the proof is complete.. [

4. A MINIMAX PROBLEM

In this section we consider a particular case of the control system in problem
(Py), in which the function 0 (.) in the control constraint is independent of the
parameter. In other words, the control constraint set is fixed and does not depend
on the parameter \ € F.

So, we deal with the following nonlinear elliptic equation

/ —div a(Dx (2),\) = f (2,2 (2),\)u(z) in Q, = |se=0,
(7)) { lu(z)] <6(z) fora. a. z€ Q., A€ E. o

In this case the function 6 (.) satisfies
H () : 0:Q—R, is a measurable function such that 0 < 6 (z) < 1 for a. a. z € Q.

For every admissible control u, problem (Pj§) has a unique solution zy (u) €
C} (Q) (see Proposition 3.4).
To system (P3) we associate the integral cost functional defined by

~

TN = [ Lz @) (). Do () (2)u(2) V) de
Q
In this context we consider the following minimax problem
(4.1) inf sup j(u, A) =m,
u€Se \eE
with
Se={ue L' (Q):|u(z)| <0(z) for a. a. z € Q}.
So, in this problem, given an admissible control function v € S., the system analyst
determines the maximum cost (risk) over all possible parameter values and then

minimizes the maximum value over all admissible controls.
In what follows, given u € S., we set

(4.2) w(u):sup{j(u,)\) :/\EE}.

By a solution of the minimax control problem (4.1), we mean a control function
u* € S, such that

(4.3) o (u*) =1inf{p (u) :u e S.}.
Now the hypotheses on the cost integrand L are the following;:

H(L): L:QxRxRY xR x E-R = RU{+o00} is a measurable integrand such
that
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(1) for a. a. z € Q, (z,y,u,\) = L(z,x,y,u,\) is proper, lower semicon-
tinuous;
(i) for a. a. z € Q and all (z,y,)\) € RxRY x E, the function u —
L(z,z,y,u,\) is convex;
(iii) for every M > 0, there exist 7ay € L' (Q) and Cjy > 0 such that

v — Cor (|2 + |y) < L(z,2,y,u,\) for a. a. z € €,
all |z|, |yl < M, all |[u| <1, all A € E.

Let 7 : L' (Q) x E — H}(Q) be the map which to each pair (u,\) € S, x E
assigns the unique solution (state) z € H{ (€2) of equation (P{) (see Proposition
3.4). A byproduct of the proof of Proposition 3.5 is the following result concerning
the map 7 (.) :

Proposition 4.1. If hypotheses H (a) , H (f), H (0) hold, then the map 7 : L' (2),,x
E — H} () is sequentially continuous.

Using this proposition, we can find a solution for the minimax problem (4.1) .

Theorem 4.2. If hypotheses H (a), H(f), H(0)", H(L)' hold, then problem (4.1)
admits an optimal control u* € S, (see (4.2),(4.3)).

Proof. From Proposition 4.1 and Theorem 2.1.28 of Papageorgiou-Kyritsi ([12],
p.72), it follows that the function (u, A) — J (u, A) is sequentially lower semicontin-
uous on L' (Q),, x E. Let ¢ be defined by (4.2). We claim that ¢ : L' (), — R
= RU{+o0} is sequentially lower semicontinuous. To see this, let € R and con-
sider the sublevel set

Sy={ue L' (Q): ) <n}.

We need to show that S, is sequentially weakly closed.
So, let {un},cn € Sy and assume that

u, — uin L' (Q).

Then
j(u, A) <lim infj(un, A) < liminf ¢ (u,) <,
n— o0 n—oo
hence
f(u,/\) <nforall \ € F,
therefore

¢ (u) <m, that is u € S,,.

So, ¢ is sequentially lower semicontinuous on L' (Q), . By the Eberlein-Smulian
theorem, the set S, is sequentially compact in L! (), . Then, by the Weierstass-
Tonelli theorem, we can find u* € S, satisfying (4.3) . O
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5. ANOTHER SENSITIVITY RESULT

In this section, using the method of multiple I'—operators developed by Buttazzo-
Dal Maso [5], we prove another sensitivity (variational stability) result.

Now the cost integrand L is independent of the gradient of the state. So, the
conditions on L are the following;:

H(L)": L:QxRxRx E=R is a measurable integrand such that
(i) for a. a. z € Q, and all (z,\) € R x E, u — L(z,z,u,\) is convex;
(17) for a. a. z € Q, all (z,u) e RxR,andall A € E:
Ciluf* < L(z,z,u,\) < Cy (1 + 22 —|—u2) , with Cy, Cy > 0;
(797) for a. a. z € Q, all (u,\) € RxE, and all z, v € R with |z —v| < 1, we
have
|L (Z,ZU,’LL, )‘) - L(Z,U,U,AN < p(|l‘ - U|) (]‘ +$2 +U2)
with p : [0,1] — R4 increasing, continuous and such that p (0) = 0;
(iv) if Ay = X in E, then L* (., z,u, \y) — L* (., z,u,\) in L' (Q),, for all
(x,u) e RxR.

(Here L* (z,z,u, \) = supgeg {uu — L (z,z,u, A)}).
Now the cost functional is
Jo@u) = [ L) uz) ) de
Q

Using Lemma 3.1 of Butazzo-Dal Maso [5] and the fact that H{ (€2) is embedded
compactly in L? (), we have

Proposition 5.1. If hypotheses H (L)" hold and A\, — X in E, then
Jo (z,u, A) = Teq (H) (2),,, L% (0)) lim Jo (2, u, An) -

Also, combining our Proposition 3.5 with Example 2.1 of Butazzo-Dal Maso [5],
we obtain a convergence result for the indicator functions

_ 0 if (z,u) € S(\)
O50am) (7,1) = { +o0 otherwise » nEN.
Proposition 5.2. If hypotheses H (a), H(f), H(0), H(L)" hold and \, — X in
E, then
55()\) = 11seq (H(} (Q)w 7L2 (Q);) nh—>nolo 5S(/\n)'

Now Propositions 5.1 and 5.2 permit the use of Theorem 2.1 of [5], which leads
to the following sensitivity result:

Theorem 5.3. If hypotheses H (a), H(f), H(0), H(L)" hold and \, — X\ in E,
then for every n € N, problem (P,) (with J replaced by Jo), has an optimal pair
(xh,ur) € Q(A\n), and

(zh,uk) = (2*,u*) in Cj (Q) x L' (Q),, with (z*,u*) € Q(N).

Remark 5.4. In particular this theorem implies that:
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(1) A = m ()) is lower semicontinuous;
(i4) A — Q(\) is upper semicontinuous from E into C§ () x L' (2)

w *
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