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(1.5) y = 0 :
∂w

∂y
= 0, y = l :

∂w

∂y
= G(w).

Solution in the cross section. Consider the problem

(1.6) Dw′′ + F (w) = 0,

(1.7) w′(0) = 0, w′(l) = G(w(l))

in the interval 0 < y < l. Here the prime denotes the derivative with respect to y.
We suppose the following two conditions to be satisfied.

Condition 1. There exist two solutions, w+(y) and w−(y) of problem (1.6), (1.7)
such that

w+(y) ≤ w−(y), 0 < y < l

and the eigenvalue problems

Dv′′ + F ′(w±(y))v = λv,

v′(0) = 0, v′(l) = G′(w±(l))v(l)

have all eigenvalues in the left-half plane.

Condition 2. For any other solution w(y) of problem (1.6), (1.7) such that

w+(y) ≤ w(y) ≤ w−(y), 0 < y < l,

the eigenvalue problems

Dv′′ + F ′(w±(y))v = λv,

v′(0) = 0, v′(l) = G′(w±(l))v(l)

have at least one eigenvalue in the right-half plane.

In the next section will introduce the corresponding operators and function
spaces. Section 3 is devoted to a priori estimates of solutions and existence of
waves is proved in Section 4. We apply the general results of the work to a model
of atherosclerosis in Section 5.
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2. Linear and nonlinear operators

2.1. Fredholm property. Consider the operator corresponding to problem (1.4),
(1.5) and linearized about a solution u(x, y):

(2.1) Av = D∆v + c
∂v

∂x
+ a(x, y)v, (x, y) ∈ Ω,

(2.2) Bv =

{
∂v
∂y , y = 0

∂v
∂y − b(x)v , y = l

,

where Ω = {−∞ < x <∞, 0 < y < l}, and
a(x, y) = F ′(u(x, y)), b(x) = G′(u(x, l)).

Here a(x, y) and b(x) are square matrices. We suppose that their coefficients are
Hölder continuous. Then the operator L = (A,B) is a bounded linear operator from
the space E = C2+α(Ω̄) into the space F = Cα(Ω̄)×C1+α(∂Ω) for some α ∈ (0, 1).
We will also consider the limiting operators

(2.3) A±v = D∆v + c
∂v

∂x
+ a±(y)v, (x, y) ∈ Ω,

(2.4) B±v =

{
∂v
∂y , y = 0

∂v
∂y − b±v , y = l

and the corresponding equations

(2.5) A±v = 0, B±v = 0.

Here

a±(y) = lim
x→±∞

a(x, y), b± = lim
x→±∞

b(x).

Denote by ṽ(ξ, y) the partial Fourier transform of v(x, y) with respect to x. Then
from (2.5) we obtain

(2.6) Dṽ′′ + (−Dξ2 + ciξ + a±(y))ṽ = 0, 0 < y < l,

(2.7) ṽ′(ξ, 0) = 0, ṽ′(ξ, l) = b±ṽ(ξ, l).

Since we consider the bistable case, then the eigenvalue problem

(2.8) Dv′′ + a±(y)v = λv, 0 < y < l, v′(0) = 0, v′(l) = b±v(l)

has all eigenvalues in the left-half plane. Therefore for each ξ ∈ R, problem (2.6),
(2.7) has only zero solution. Hence v(x, y) ≡ 0, and thus we have proved that
limiting problems do not have nonzero bounded solutions. This is also true for the
formally adjoint operator. Therefore the operator L satisfies the Fredholm property.
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It remains also true if the operator acts from W 2,2
∞ (Ω) into L2

∞(Ω) ×W
1/2,2
∞ (∂Ω)

([10], page 163) where the ∞-spaces are defined as follows. Let E be a Banach
space with the norm ∥ · ∥ and ϕi be a partition of unity. Then E∞ is the space of
functions for which the expression

∥u∥∞ = sup
i

∥uϕi∥

is bounded. This is the norm in this space.

Theorem 2.1. If both problems (2.8) have all eigenvalues in the left-half plane,
then the operator L = (A,B) acting from C2+α(Ω̄) into F = Cα(Ω̄)×C1+α(∂Ω) or

from W 2,2
∞ (Ω) into L2

∞(Ω)×W
1/2,2
∞ (∂Ω) satisfies the Fredholm property.

2.2. Properness and topological degree. Consider the nonlinear operator in
the domain Ω

(2.9) T τ0 (w) = D∆w + c
∂w

∂x
+ Fτ (w), (x, y) ∈ Ω,

and the boundary operator

(2.10) Qτ0(w) =

{
∂w
∂y , y = 0

∂w
∂y −Gτ (w) , y = l

,

where the functions Fτ and Gτ depend on the parameter τ ∈ [0, 1]. Everywhere
below we will assume that the functions Fτ (w), Gτ (w) are bounded and continuous
together with their derivatives of the third order with respect to w and of the second
order with respect to τ . These conditions allow the construction of the topological
degree [10].

Let w = u + ψ, where ψ(x, y) is an infinitely differentiable function such that
ψ(x, y) = u+(y) for x ≥ 1 and ψ(x, y) = u−(y) for x ≤ −1. Set

(2.11) Tτ (u) = T τ0 (u+ ψ) = D∆u+ c
∂u

∂x
+ Fτ (u+ ψ) + ∆ψ + c

∂ψ

∂x
, (x, y) ∈ Ω,

(2.12) Qτ (u) = Qτ0(u+ ψ) =

{
∂u
∂y , y = 0

∂u
∂y −Gτ (u+ ψ) + ∂ψ

∂y , y = l
.

We consider the operator Pτ = (Tτ , Qτ ) acting in weighted spaces,

Pτ = (Tτ , Qτ ) :W
2,2
∞,µ(Ω) → L2

∞,µ(Ω)×W 1/2,2
∞,µ (∂Ω).

with the weight function µ(x) =
√
1 + x2. The norm in the weighted space is defined

as follows:

∥u∥∞,µ = ∥uµ∥∞.
Consider the problem

Dw′′ + Fτ (w) = 0,(2.13)

w′(0) = 0, w′(l) = Gτ (w(l))(2.14)

in the interval 0 < y < l. We suppose the following two conditions to be satisfied.
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Condition 1’. There exist two solutions, wτ+(y) and wτ−(y) of problem (2.13),
(2.14) such that

wτ+(y) ≤ wτ−(y), 0 < y < l

and the eigenvalue problems

Dv′′ + F ′
τ (w±(y))v = λv,

v′(0) = 0, v′(l) = G′
τ (w±(l))v(l)

have all eigenvalues in the left-half plane.

Condition 2’. For any other solution wτ (y) of problem (2.13), (2.14) such that

wτ+(y) ≤ w(y) ≤ wτ−(y), 0 < y < l,

the eigenvalue problems

Dv′′ + F ′
τ (w±(y))v = λv,

v′(0) = 0, v′(l) = G′
τ (w±(l))v(l)

have at least one eigenvalue in the right-half plane.

For simplicity of presentation we will suppose in what follows that the functions
wτ±(y) do not depend on τ .

3. A priori estimates

3.1. Auxiliary results. We begin with some auxiliary results. Consider the prob-
lem

(3.1) D∆u+ c
∂u

∂x
+ F (u) = 0,

(3.2) y = 0 :
∂u

∂y
= 0, y = l :

∂u

∂y
= G(u).

The subscript τ is omitted where it is not necessary. We look for the solutions with
the limits

(3.3) lim
x→±∞

u(x, y) = u±(y), 0 < y < l

at infinity, u−(y) > u+(y). The proofs of the following lemmas are similar to those
in [1].

Lemma 3.1. Let U0(x, y) be a solution of problem (3.1), (3.2) such that ∂U0
∂x ≤ 0

for all (x, y) ∈ Ω̄. Then the last inequality is strict.

Lemma 3.2. Let un(x, y) be a sequence of solutions of problem (3.1), (3.2) such
that un → U0 in C1(Ω̄), where U0(x, y) is a solution monotonically decreasing with
respect to x. Then for all n sufficiently large ∂un

∂x < 0, (x, y) ∈ Ω̄.

We will now determine the sign of the speed of the wave connecting a stable and
an unstable solutions. This result will be used below for estimates of solutions.
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Lemma 3.3. Suppose u0(y) is a solution of problem (1.6), (1.7) in the cross section
of the domain, and u+(y) < u0(y) < u−(y). Assume, next, that the corresponding
eigenvalue problem

(3.4) v′′ + F ′(u0)v = λv, v′(0) = 0, v′(l) = G′(u0(l))v(l)

has some eigenvalues in the right-half plane. If a monotone with respect to x
function w(x, y) satisfies the problem

(3.5) D∆w + c
∂w

∂x
+ F (w) = 0,

(3.6) y = 0 :
∂w

∂y
= 0, y = l :

∂w

∂y
= G(w),

(3.7) lim
x→−∞

w(x, y) = u−(y), lim
x→∞

w(x, y) = u0(y),

then c > 0. If

lim
x→−∞

w(x, y) = u0(y), lim
x→∞

w(x, y) = u+(y),

instead of (3.7), then c < 0.

Lemma 3.4. If problem (3.1)-(3.3) has a solution w, then the value of the speed
admits the estimate |c| ≤ M , where the constant M depends only on
maxu∈[u+,u−] |F ′(u)|, |G′(u)|.

3.2. Functionalization of the parameter. Let w0(x, y) be a solution of problem
(3.1)-(3.3). Then the functions

wh(x, y) = w0(x+ h, y), h ∈ R

are also solutions of this problem. The existence of the family of solutions does not
allow one to use directly the topological degree because there is a zero eigenvalue of
the linearized problem and a uniform a priori estimate of solutions in the weighted
spaces does not occur.

In order to overcome this difficulty, we replace the unknown parameter c, the
wave speed, by a functional c(wh). This approach was suggested in [6] for periodic
solutions of ordinary differential systems of equations, and then used for travelling
waves in [8]. This functional determines a function of h, s(h) = c(wh). We will
construct this functional in such a way that s′(h) < 0 and s(h) → ±∞ as h→ ∓∞.
Then instead of the family of solutions we obtain a single solution for the value of
h for which c = s(h).

Let

ρ(wh) =

∫
Ω
(w0(x+ h, y)− u+(y))r(x)dxdy,

where r(x) is an increasing function satisfying the conditions:

r(−∞) = 0, r(+∞) = 1,

∫ 0

−∞
r(x)dx <∞.
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Since w0(x, y) is a decreasing function of x, then ρ(wh) is a decreasing function of
h, and

ρ(wh) →
{

0 , h→ +∞
+∞ , h→ −∞ .

Hence the function s(h) = c(wh) = ln ρ(wh) possesses the required properties.

3.3. Estimates of solutions. We consider next the problem

(3.8) D∆w + c
∂w

∂x
+ Fτ (w) = 0,

(3.9) y = 0 :
∂w

∂y
= 0, y = l :

∂w

∂y
= Gτ (w(l)),

(3.10) w(±∞, y) = u±(y).

The proof of the following lemma is similar to the proof for the single equation
[1], [2].

Lemma 3.5. Suppose that solution w(x, y) of problem (3.8)-(3.10) satisfies the
estimate |w| ≤M with some positive constant M , and

|F (i)
τ (w)|, |G(i)

τ (w)| ≤ K for |w| ≤M, i = 0, 1, 2, 3,

where K is a positive constant. Then the Hölder norm C2+α(Ω̄), 0 < α < 1 of the
solution is bounded by a constant which depends only on K, M and c.

Denote by wτ a solution of problem (3.8)-(3.10). We need to obtain a uniform

estimate of the solution uτ = wτ − ψ in the norm of the space W 2,2
∞,µ(Ω). Here

ψ(x, y) is an infinitely differentiable function such that ψ(x, y) = u+(y) for x ≥ 1

and ψ(x, y) = u−(y) for x ≤ −1. Since u ∈ C2+α(Ω̄), then the norm W 2,2
∞ (Ω) of the

solution is also uniformly bounded. However, the boundedness of the norm in the
weighted space does not follow from this and should be proved. In order to obtain
the estimate, it is sufficient to prove that the solution is bounded in the weighted
space, that is

(3.11) sup
(x,y)∈Ω

|(wτ (x, y)− ψ(x, y))µ(x)| ≤M

with some constant M independent of τ . If this estimate is satisfied, then the
derivatives of the solution up to the order two are also bounded. Indeed, the function
uτ = wτ − ψ satisfies the problem

D∆u+ c
∂u

∂x
+ Fτ (u+ ψ) + γ(x, y) = 0,

y = 0 :
∂u

∂y
= 0, y = l :

∂u

∂y
= Gτ (u+ ψ),

where γ(x, y) = ∆ψ + c∂ψ∂x . Then the function vτ = uτµ satisfies the problem

(3.12) D∆v + (c− 2µ1)
∂v

∂x
+ (−cµ1 + 2µ21 − µ2)v+

(Fτ (u+ ψ)− Fτ (ψ))µ+ (γ + Fτ (ψ))µ = 0,
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(3.13) y = 0 :
∂v

∂y
= 0, y = l :

∂v

∂y
= (Gτ (u+ ψ)−Gτ (ψ))µ+Gτ (ψ)µ,

where

µ1 =
µ′

µ
, µ2 =

µ′′

µ

are bounded infinitely differentiable functions converging to zero at infinity. Since

|(Fτ (u+ ψ)− Fτ (ψ))µ| ≤ sup
s

|F ′
τ (s)||uµ|,

|(Gτ (u+ ψ)−Gτ (ψ))µ| ≤ sup
s

|G′
τ (s)||uµ|,

then, by virtue of (3.11), the functions

Φ(u, x) = (Fτ (u+ ψ)− Fτ (ψ))µ+ (γ + Fτ (ψ))µ,

Ψ(u, x) = (Gτ (u+ ψ)−Gτ (ψ))µ+Gτ (ψ)µ

are bounded together with their second derivatives. Therefore solutions of problem
(3.12), (3.13) are uniformly bounded in the space C2+α(Ω). Then the normW 2,2

∞ (Ω)
is also bounded.

It remains to prove estimate (3.11). Consider first of all the behavior of solutions
at the vicinity of infinity. By virtue of the Fredholm property, |wτ (x, y) − u±(y)|
decay exponentially as x → ±∞. The decay rate is determined by the principal
eigenvalue of the corresponding operators in the cross-section of the cylinder. They
can be estimated independently of τ .

Let ϵ > 0 be small enough, N−(τ) and N+(τ) be such that |wτ (x, y)−u+(y)| ≤ ϵ
for x ≥ N+(τ) and |wτ (x, y)− u−(y)| ≤ ϵ for x ≤ N−(τ). For a polynomial weight
function µ(x) there exists a constant K independent of τ ∈ [0, 1] such that

|wτ (x, y)− u±(y)|µ(x) ≤ K, x ≷ N±(τ), τ ∈ [0, 1].

Since the functions wτ (x, y) are uniformly bounded, then (3.11) will follow from the
uniform boundedness of the values N±(τ).

First, let us note that the difference between them is uniformly bounded. Indeed,
if this is not the case and N+(τ) −N−(τ) → ∞ as τ → τ0 for some τ0, then there
are two solutions of problem (3.8), (3.9) for τ = τ0, w1 and w2 with the limits

w1(x, y) →
{
u−(y) , x→ −∞
u0(y) , x→ +∞ , w2(x, y) →

{
u0(y) , x→ −∞
u+(y) , x→ +∞ .

These solutions are obtained as limits of the solution wτ as τ → τ0. In order to
obtain them, consider a sequence of functions wτk(x, y), τk → τ0 and two sequences
of shifted functions: wτk(x+N−(τk), y) and wτk(x+N+(τk), y). The first sequence
gives in the limit the first solution, the second limit gives the second solution.

The existence of such solutions contradicts Lemma 3.3 since the first one affirms
that the speed is positive while the second one that it is negative.

Next, if one of the values |N±(τ)| tends to infinity as τ → τ0, then the modulus
|c(wh)| of the functional introduced in Section 3.2 also tends to infinity as τ → τ0.
This contradicts a priori estimates of the wave speed. Thus, we have proved the
following theorem.
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Theorem 3.6. Let the functions Fτ (w), Gτ (w) be bounded and continuous together
with their derivatives of the third order with respect to w and of the second order
with respect to τ . Suppose further that Conditions 1’ and 2’ are satisfied. If there
exists a solution wτ of problem (3.8)-(3.10) such that uτ = wτ −ψ ∈W 2,2

∞,µ(Ω), then
the norm ∥uτ∥W 2,2

∞,µ(Ω)
is bounded independently of τ and of the solution wτ .

4. Wave existence

4.1. Model problem. Consider the problem

D∆w + c
∂w

∂x
+ F0(w) = 0,(4.1)

y = 0 :
∂w

∂y
= 0, y = l :

∂w

∂y
= 0,(4.2)

w(±∞, y) = u±,(4.3)

where we put 0 instead of G(w) in the boundary condition, u+ and u− are some
vectors such that F0(u±) = 0, and the matrices F ′

0(u±) have all eigenvalues in the
left-half plane. Suppose, next, that for any other zero u0 such that u+ < u0 < u−
(inequalities are component-wise), the matrix F ′

0(u0) has an eigenvalue in the right-
half plane. In this case the problem

Dw′′ + cw′ + F0(w) = 0, w(±∞) = u±

has a solution w0(x) for a unique value of c (see, e.g., [8]). This function is also a
solution of problem (4.1)-(4.3). The uniqueness of this solution as a solution of the
two-dimensional problem is proved in the following lemma.

Lemma 4.1. There exists a unique monotone in x solution of problem (4.1)-(4.3)
up to translation in space.

Proof. Suppose that there exist two different monotone solutions of problem (4.1)-
(4.3), (w1, c1) and (w2, c2). We recall that the corresponding values of the speed c
can be different. Consider the equation

(4.4)
∂v

∂t
= D∆v + c1

∂v

∂x
+ F0(v)

with the boundary condition (4.2). The function w1(x, y) is a stationary solution of
this problem. It is proved in [9] that it is globally stable with respect to all initial
conditions v(x, y, 0), which are monotone with respect to x and such that the norm
∥v(x, y, 0)− w1(x, y)∥L2(Ω) is bounded.

Consider the initial condition v(x, y, 0) = w2(x, y). It is monotone and the L2

norm of the difference w2 − w1 is bounded since these functions approach expo-
nentially their limits at infinity. According to the stability result, the solution
converges to w1(x + h, y) with some h. On the other hand, the solution writes
u(x, y, t) = w2(x − (c2 − c1)t, y), and it cannot converge to w1. This contradiction
proves the lemma. �
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4.2. Existence. We consider next the problem (3.8)-(3.10) and the corresponding
operators

(4.5) Tτ (u) = D∆(u+ ψ) + c(u+ ψ)
∂(u+ ψ)

∂x
+ Fτ (u+ ψ), (x, y) ∈ Ω,

(4.6) Qτ (u) =

{
∂u
∂y , y = 0

∂u
∂y −Gτ (u+ ψ) , y = l

,

Pτ = (Tτ , Qτ ) :W
2,2
∞,µ(Ω) → L2

∞,µ(Ω)×W 1/2,2
∞,µ (∂Ω).

Suppose that gτ (u) ≡ 0 for τ = 0. Then the equation

(4.7) Pτ (u) = 0

has a unique solution u0 = w0 −ψ for τ = 0. The index of this solution, that is the
topological degree of this operator with respect to a small neighborhood of the solu-
tion, equal 1. Indeed, the index equals (−1)ν , where the ν is the number of positive
eigenvalues of the linearized operator [8], [10]. In the case under consideration, the
linearized operator has all eigenvalues in the left-half plane [9].

Theorem 4.2. Suppose that the functions Fτ (w), Gτ (w) are bounded and contin-
uous together with their derivatives of the third order with respect to w and of the
second order with respect to τ . Let G0(w) = 0. Assume, further, that Conditions 1’
and 2’ are satisfied. Then equation (4.7) has a solution for all τ ∈ [0, 1].

Proof. The proof of the theorem is based on the Leray-Schauder method. We con-
sider equation (4.7). The topological degree for the operator Pτ (u) is defined. De-
note by Γm the ensemble of solutions of equation (4.7) for all τ ∈ [0, 1] such that for
any u ∈ Γm the function w = u+ψ is monotone with respect to x. Let Γn be the set
of all solutions for which the function w = u+ψ is not monotone with respect to x.
Then the distance d between these two sets in the space E = W 2,2

∞,µ(Ω) is positive.
Indeed, suppose that this is not true. Then there exist two sequences uk ∈ Γm and
vk ∈ Γn such that ∥uk − vk∥E → 0 as k → ∞. From Lemma 3.2 it follows that the
functions wk = vk + ψ are monotone with respect to x for k sufficiently large. This
contradiction shows that the convergence cannot occur.

From Theorem 3.6, applicable for solutions from Γm, it follows that the set Γm is
bounded in E. Moreover, by virtue of properness of the operator Pτ it is compact.
Hence there exists a bounded domain G ⊂ E such that Γm ⊂ G and Γn ∩ Ḡ = ⊘.

Consider the topological degree γ(Pτ , G). Since

Pτ (u) ̸= 0, u ∈ ∂G,

then it is well defined. Since γ(P0, G) = 1, then γ(Pτ , G) = 1 for any τ ∈ [0, 1].
Hence equation (4.7) has a monotone solution for any τ ∈ [0, 1].

It remains to verify its uniqueness. We recall that

γ(Pτ , G) =
∑
i

ind ui,
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where ind ui is the index of a solution ui and the sum is taken with respect to all
solutions ui ∈ G. Since γ(Pτ , G) = 1 and ind ui = 1, then the solution is necessarily
unique. �

5. Application to a model of atherosclerosis

In this section we apply the result obtained above to a model of atherosclerosis
development. Let us recall that atherosclerosis is a chronic inflammation in blood
vessel walls where inflammatory cytokines activate receptors at the surface of the
endothelial cells separating intima (interior of the vessel wall) and blood flow. These
receptors stop monocytes rolling along the vessel wall. They penetrate intima,
differentiate into macrophages and eliminate inflammatory substances. However
they remain trapped in the intima and transform into foam cells which produce
even more inflammatory cytokines. This is a self-amplifying process which leads to
the inflammation spreading in the tissue [3]-[5].

Consider the system of two equations

(5.1) ∆u+ c
∂u

∂x
= 0,

(5.2) ∆v + c
∂v

∂x
+ f(u)− v = 0,

in the two-dimensional domain Ω,

Ω = {(x, y),−∞ < x <∞, 0 < y < l}

with the boundary conditions

(5.3) y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = l :

∂u

∂y
= g(v(x, l))− u(x, l),

∂v

∂y
= 0.

Here the two-dimensional domain Ω corresponds to the longitudinal cross section
of the blood vessel wall, u is the concentration of cells, v is the concentration of
cytokines. The function f(u) describes production of cytokines by cells, and the
function g(v) in the boundary condition shows how the cell flux through the bound-
ary depends on the cytokine concentration. The term −u in the same boundary
condition describes the decrease of cell flux as a function of cell concentration due
to the crowding effect.

5.1. Problem in the cross section. Consider the problem in the cross-section

(5.4)
u′′ = 0, v′′ + f(u)− v = 0,

u′(0) = v′(0) = 0, u′(l) = g(v(l))− u(l), v′(l) = 0.

We will study existence and stability of its solutions. The proof of the following
lemmas is straightforward.

Lemma 5.1. Problem (5.4) has only constant solutions that can be found as solu-
tions of the equations

f(u)− v = 0, g(v)− u = 0.
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Lemma 5.2. A constant solution (u, v) of problem (5.4) is stable (the principle
eigenvalue of the linearized problem is negative) if the eigenvalues of the matrix

A =

(
f ′(u) −1
−1 g′(v)

)
are negative. It is unstable (the principle eigenvalue of the linearized problem is
positive) if one of the eigenvalues of the matrix A is positive.

Next, we consider the following problem

(5.5) ∆u+ c
∂u

∂x
+ δ(g(v)− u) = 0,

(5.6) ∆v + c
∂v

∂x
+ f(u)− v = 0,

in the two-dimensional domain Ω,

Ω = {(x, y),−∞ < x <∞, 0 < y < l}
with the boundary conditions

(5.7) y = 0 :
∂u

∂y
= 0,

∂v

∂y
= 0, y = l :

∂u

∂y
= ϵ(g(v(x, l))− u(x, l)),

∂v

∂y
= 0.

For ϵ = 0 this problem has a unique solution. It depends on x and does not depend
on y. For ϵ = 1, δ = 0 we get problem (5.1)-(5.3).

Let us show that the problem in the cross section

(5.8) u′′ + δ(g(v)− u) = 0, v′′ + f(u)− v = 0,

(5.9) u′(0) = v′(0) = 0, u′(l) = ϵ(g(v(l))− u(l)), v′(l) = 0

has only constant solution for sufficiently small ϵ and δ.

Lemma 5.3. Problem (5.8), (5.9) has only constant solutions for all ϵ and δ suf-
ficiently small.

Proof. It can be easily verified that the assertion of the lemma is true for ϵ > 0
and δ = 0. From the implicit function theorem it follows that it remains true for
sufficiently small δ > 0 (depending on ϵ). Similarly, the lemma holds for δ > 0
(sufficiently small) and ϵ > 0 (depending on δ).

Let us consider the case where ϵ and δ are of the same order of magnitude and
set δ = kϵ for a fixed positive k. For simplicity of presentation we restrict ourselves
to the case g(v) = v which is sufficient to the construction of homotopy. (We can
also consider the case where k → 0 or ϵ = kδ and k → 0.)

It can be easily verified that for ϵ = 0 the problem has only constant solution.
Since the corresponding operator is proper, then the set of solutions (uϵ, vϵ) is
compact, and it converges to a constant solution (u0, v0) as ϵ→ 0 such that f(u0) =
v0. Hence we can write problem (5.8), (5.9) as follows:

(5.10) u′′+ kϵ(v−u) = 0, v′′+ f(u0)+ f
′(u0)(u−u0)+

1

2
f ′′(θ)(u−u0)2− v = 0,
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(5.11) u′(0) = v′(0) = 0, u′(l) = ϵ(v(l)− u(l)), v′(l) = 0,

where θ is some point, and search its solution in the form:

u = u0 + ϵu1, v = v0 + ϵv1.

We substitute these expressions into (5.10), (5.11) and keep the first-order terms
with respect to ϵ:

(5.12) u′′1 + k(v0 − u0) = 0, v′′1 + f ′(u0)u1 − v1 = 0,

(5.13) u′1(0) = v′1(0) = 0, u′1(l) = v0 − u0, v′1(l) = 0.

From the first equation in (5.12) we have u1(y) = a+by− k
2 (v0−u0)y

2. From the left
boundary condition we conclude that b = 0 and from the right boundary condition
that v0 = u0 since k > 0. Hence u1 ≡ const. Then from the second equation and
the boundary conditions we obtain that v1 ≡ const. If the solution u = u0 of the
equation f(u) = u is isolated, then u1 = v1 = 0. �

Let us note that for ϵ = δ = 0 problem (5.8), (5.9) linearized about the constant
solution has a zero eigenvalue. Therefore we cannot directly use the implicit func-
tion theorem to prove the uniqueness of solution. We should consider a subspace
orthogonal to the eigenfunction corresponding to the zero eigenvalue (constant).
The proof of the lemma represents another realization of this approach: in the sub-
space orthogonal to a constant (nonzero) function, problem (5.12), (5.13) has only
zero solution. Therefore in this subspace the zero solution is unique for sufficiently
small ϵ.

5.2. Existence of solutions. We can now prove the existence theorem.

Theorem 5.4. Suppose that the functions f(u) and g(v) are bounded and con-
tinuous together with their third derivatives, and the system of equations f(u) =
v, g(v) = u has three solutions: (u±, v±) and (u0, v0) such that u+ < u0 < u−, v+ <
v0 < v−. If f ′(u±)g

′(v±) < 1 and f ′(u0)g
′(v0) > 1, then problem (5.5)-(5.7) has a

solution for some value of c with the limits u→ u±, v → v± as x→ ±∞.

Proof. Consider problem (5.5)-(5.7). For ϵ = 1, δ = 0 it coincides with problem
(5.1)-(5.3). Let ϵ0, δ0 be such that problem (5.8), (5.9) has only constant solutions
for 0 ≤ ϵ ≤ ϵ0, 0 ≤ δ ≤ δ0 (Lemma 5.3).

We construct a homotopy of problem (5.1)-(5.3). It consists of the following
steps:

1. the value of ϵ in (5.5)-(5.7) changes from 1 to ϵ0, δ = 0,

2. the value of δ changes from 0 to δ0, ϵ = ϵ0,

3. the value of ϵ changes from ϵ0 to 0, δ = δ0.

During this homotopy the problem in the cross section (5.8), (5.9) has only constant
solutions (u±, v±) and (u0, v0). Moreover the solutions (u±, v±) are stable and
(u0, v0) is unstable. We can now apply Theorem 4.2.

�
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