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STEKLOV-TYPE EIGENVALUES OF A, + A,

NICUSOR COSTEA AND GHEORGHE MOROSANU

ABSTRACT. The Steklov-like eigenvalue problem associated with the equation
Apu+Agu=0 in Q is investigated, where p € [2,00), g € (1,00), p # ¢, and Q
is a bounded open subset of RY, N > 2, with Lipschitz boundary. A complete
description of the set of eigenvalues is provided in this nonhomogeneous case
(p # q). Note that this case is complementary to the homogeneous case p = ¢
for which a full description of the set of eigenvalues is known only if p = g = 2.

1. INTRODUCTION

Throughout this paper € is a bounded domain of RN, N > 2, with a Lipschitz
boundary 9f2. Consider the eigenvalue problem

11 Au =0, in Q,

(1.1) % = MufP"%u, on 99,

where Au = Apu+ Aqu, p € [2,00), ¢ € (1,00), p # ¢, and
ou ou
Bl p—2 q—2\ 2~
ooy (IVulP™ + [Vu*™) =

with v being the unit outward normal to 9€2. The solutions u will be sought in

the space V := Whmax{r.a}(Q), so that the normal derivative 88712 (associated with

operator A) exists in a trace sense (see [2]), and the above problem is satisfied in
the distribution sense. Using a Green formula (see [2, Corollary 2, p. 71]) one can
define the eigenvalues of our problem in terms of weak solutions u € V' as follows:
A € R is an eigenvalue of problem (1.1) if there exists uy € V' \ {0} such that

(1.2) / ([Vup [P~ + |Vuy |7 2) Vuy - Vo do = )\/ lur|P 2uyv ds, YoveV.
Q o0

Conversely, by virtue of the same Green formula, if A is an eigenvalue then any eigen-
function w € V' \ {0} corresponding to it satisfies problem (1.1) in the distribution
sense.

Note that the usual Steklov problem (i.e., the case when A, is missing), including
the classic Steklov’s case (p = 2), has received considerable attention since 1902
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when W. Steklov published his famous pioneering paper [13]. See, e.g., [6, 8, 16, 19]
and the references therein.

In the present paper we are able to find the full set of eigenvalues of problem
(1.1). The fact that problem (1.1) is nonhomogeneous (i.e., p # ¢q) is the key
condition that insures a complete description of the set of eigenvalues. Recall that
in the homogeneous case ¢ = p a full description of the set of eigenvalues is known
only if ¢ = p = 2; otherwise (i.e., if ¢ = p # 2) it is only known that, in view of
the infinite dimensional Ljusternik-Schnilerman theory, there exists a sequence of
positive eigenvalues converging to +o0o, but this sequence may not constitute the
whole spectrum [16] (see also [1], [6, Introduction]).

The Neumann eigenvalue problem associated with the negative A has been solved
in [5, 10, 11]. The Dirichlet case can be adressed in a similar manner. As far as the
Steklov problem (1.1) is concerned, a separate analysis is needed since some specific
situations have to be addressed, including those related to the trace on 0.

The Steklov eigenvalue problem (1.1) is of mathematical interest, since it is a
model problem for which the full description of the eigenvalue set is possible. It
might also be of interest in fluid mechanics. In the case ¢ = p = 2 problem (1.1) is
a model for an elastic membrane whose mass is concentrated on the boundary.

2. SOME COMMENTS AND PRELIMINARY RESULTS

Choosing v = uy in (1.2) yields

(2.1) /|Vu>\|p dm+/ (Vap |7 da::/\/ lual? ds.
Q Q o0

In particular (2.1) shows that no negative A can be an eigenvalue of problem (1.1).
It is also readily seen that A\g = 0 is an eigenvalue of this problem (the corresponding
eigenfunctions being the nonzero constant functions). Therefore any other eigen-
value belongs to (0, 4+00).

If A > 0 is an eigenvalue of problem (1.1), then choosing v = 1 in (1.2) we obtain

(2.2) / lux|P~2uy ds = 0.
oN

Therefore all eigenfunctions corresponding to positive eigenvalues necessarily belong
to the set

(2.3) D := {v e V = whmaxdpa() . / [P 2vds = 0} .
o0N

Obviously, D is a nonempty symmetric cone. Moreover, using the continuity of the
trace operator from V' to LP(9€2) and Lebesgue’s Dominated Convergence Theorem,
one can easily check that D is weakly closed in V. In addition, the following example
shows that D contains nonzero elements.

Let x1,z2 € 00 be such that x; # x9, fix r € (0,|z1 — x2|/3) and define the
functions wy, : RV — R as follows

R S
wp(e)= | € TP i € By(a),
0, otherwise.
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Obviously vy = wg|q belongs to V' for kK = 1,2. Now let T'y = 9Q N B,(xx) and
define

a = / k[P~ 2u ds > 0, k=1,2.
I

One can easily show that the function

< 1 )1/(171) ( 1 )1/(p1)
v=1\|— U1 — | — V2,
aq a9

is a nonzero element of D (and obviously so is tv for all t € R\ {0}).

We also point out the fact that A = 0 is the only eigenvalue whose corresponding
eigenvalues do not change sign on 0€). Arguing by contradiction, assume that u) is
an eigenfunction corresponding to some eigenvalue A > 0 and u) > 0 on 2. Then

0—/ lux|P~2uy, ds —/ luy [P~ ds,
o0 oN

hence uy = 0 a.e. on 9€2. On the other hand, (2.2) implies

/|Vu>\|p dm:/ |Vuyl? de =0,
Q Q

so, having in mind Weyl’s regularity lemma (see Stroock [14, p. 2]), we infer that
uy is a constant function in €). Since its trace on 02 vanishes, it follows that wu) is
the null function, a contradiction.

Here and hereafter, for a given u € V', we adopt the notation

I(u) :={x € 00 : u(x)#0}.

According (2.1), any eigenfunction u) corresponding to a positive eigenvalue A sat-
isfies

(2.4) meas (I'(uy)) > 0,

since this condition is equivalent to

(2.5) / luxlP ds # 0.
oN

Summarizing, we see that any eigenfunction corresponding to a positive eigenvalue
necessarily satisfies two restrictions: (2.1) and (2.5), respectively.

Now, consider the Steklov-type eigenvalue problem

{ Apu =0, in Q,

(2.6) |Vu\p_2% = plulP~2u, on 09,

As usual, the number p € R is said to be an eigenvalue of problem (2.6) if there
exists a function u, € WP(Q)\ {0} such that

(27) /Q \VUMVJ—QVUIL Vv dr = M/@Q |u,“4|p_2ull«v dS, Y v c Wl,p(Q) ]

Obviously, po = 0 is an eigenvalue of problem (2.6) and any other eigenvalue belongs
to (0, +00).
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Following an idea of Véron [17], Torné [16] established an interesting variational
characterization of the least (first) positive eigenvalue of (2.6). If w C €2 is an open
subset denote by Wi*(w) the subset of WP(2) consisting of functions which are
zero a.e. in 2\ @ and let A be the family of pairs (w,@) such that w and @ are
disjoint nonempty open subsets of Q. Then, according to [16, Theorem 1.3], the
least positive eigenvalue of (2.6) satisfies

(2.8) p1 = (w,idrjl)feA max{v(w),v(®)},

where

1 1
v(w):= inf {—/ |Vul|P do - —/ |ulP ds = 1},
uGW*Lp(w) PJa P Joq

if the quantity in the right-hand side of the equality is well defined and v(w) := +o0
otherwise.

If p > 2 we use the Lagrange multiplier rule to give a different variational charac-
terization for the least (first) positive eigenvalue of problem (2.6) as follows. Keeping
in mind that problem (2.6) is a particular case of problem (1.1) (corresponding to
g =p and u = 2)\), we are led to consider the constraint sets

E = {v e whr(Q): / [v|P~2%v ds = O} ,
o0

Ey = {v c Whr(Q): / lv|P~%v ds = 0, / [v|P ds = 1} .
o9 o9

Note that V = WP(Q) if ¢ < p, so D = E. On the other hand, if ¢ > p, then
V = WH4(Q), hence D is a proper subset of E. Consequently E contains nonzero
elements and Ej is nonempty.

Consider now the minimization problem

2.9 = inf F
(2.9) o1 = inf (v),

and

where F : WHP(Q) — R is the convex, lower semicontinuous functional

F(v) ::/Q\vvp dz.

Lemma 2.1. Ifp € (1,400), then there exists ug € E1 such that
0< F(UO) =0].
Moreover, if p > 2 then pu; = o01.

This result is probably known, however, for the convenience of the reader, we
provide a proof of it which makes use of the following version of the Lagrange
multiplier rule (see, e.g., [7, Theorem 5.5.26, p. 701], or [20, Theorem 3.3.3., p.
179]).

Lemma 2.2. Let X and Y are two Banach spaces and assume f : X — R is
Fréchet differentiable at xg, g : X = Y is continuously Fréchet differentiable at xg
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with ¢'(x0) € L(X,Y) being surjective and g € C :={xz € X : g(x) = 0} is a finite
local minimizer of the constraint problem

(Fo):  min f(z).

Then there exist y* € Y* such that
(2.10) f(zo) +y*od (z0) =0, in X"

Proof of Lemma 2.1. Let {u,} C E; be a minimizing sequence for F, i.e. F(u,) —
o1. We claim that {u,} is bounded in W1?(Q). Arguing by contradiction, let us
assume that, up to a subsequence, [|un|r() — +00, as n — +oo. Then, the

HMIT#(Q) is bounded in W'P(Q) and satisfies ||vn||p(q) = 1, for all

n > 1. Consequently, there exists vg € W1P(Q) such that, up to a subsequence,

vy, — g, in WHP(Q),

sequence v, =

and
Up = Vg, in LP(0N), v, — vy, in LP(Q).

Thus,

VulP de <liminf [ |Vuv,[P dz = liminf F =0

el o <t f 19l = it ) =0
and
1
/ lvo|P ds = lim [vp|P ds = lim ——m— =0,
Gl =0 Joq =400 {7, q)

which together show that vy is the null function. This contradicts the fact that
[vollLr(q) = 1.

Since {u,} is bounded in WP(Q), then there exists ug € W1?(Q) such that, on
a subsequence again denoted {u,},

Uy — up, in WHP(Q),

and
Up — ug, in LP(Q), wu, — ug, in LP(0N).

The last convergence and Lebesgue’s Dominated Convergence Theorem ensure that
ug € E1, which combined with the weak lower semicontinuity of F' shows that

o1 = F(up) = grelgi F(v).

It can be easily seen that o7 > 0.

Now let us asumme p > 2 and prove that o is the least (first) positive eigenvalue
of problem (2.6). To this purpose we can apply Lemma 2.2 for X = WHP(Q),
Y = sz C = Elv Ty = Uo, and g(’l)) - (gl(v)th(U))’ gl(’l)) = faQ ”U|p ds — 17
92(v) =[50 v[P~2vds. Obviously, the dual Y* can be identified with R?. It is
easily seen that all the conditions from the statement of Lemma 2.2 are fulfilled,
including the surjectivity of ¢’(ug), which means that: for any pair (¢1,(2) € R?
there exists w € X = WHP(Q) such that (g} (ug),w) = (1 and (gh(up),w) = (o.
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Indeed, choosing in these equations w = aug + b, with a, b € R and keeping in mind
that ug € E1, we obtain

ap/ wlP ds = ¢,
o0

b(P—l)/ luglP2ds = (o,
20

0 a, b can be uniquely determined, hence ¢'(ug) is surjective, as asserted. Conse-
quently, Lemma 2.2 is indeed applicable to the minimization problem (2.9), that is,
there exists y* = (y1,y2) € R? such that (see equation (2.10))

(2.11) p/ |Vu0|p2Vu0Vvd:c+y1p/ u0|p2uovd5+y2(p—1)/ lug|P~2vds = 0,
Q o0 o0

for all v € X. Testing with v =1 in (2.11) we deduce that y, = 0. Now, choosing
v =1g in (2.11) we get y; = —o1. With this y; and y2 = 0, equation (2.11) shows
that o is an eigenvalue of problem (2.6), and ug is a corresponding eigenfunction.
In particular pu; < o3.

To complete the proof we need to show that oy < p;. Assume u,, is an eigen-
function corresponding to 1. Then [[u,,[|rr@a0) # 0 (see (2.5)) and the function

u

— K1
Vyy = Tarllorom belongs to E1, so
f |V, [P de
o1 < F(v ):/|Vv Pde ="~ — .
- Q a f(‘)Q ‘Um P ds
O
1/

A direct consequence of Lemma 2.1 is that o, /¥ is the best constant in the

following Poincaré-Wirtinger type inequality.
Proposition 2.3. Assume p € (1,400). Then, there exists C > 0 such that
[ullLron) < ClIVullpyn, Vu € E.

Now, define

(2.12) Ay :=inf {/ VolP dez: veV, / |v|P~2v ds = 0, / [P ds = 1}.
Q oN [2/9]

Note that A; can be expressed as

A1 = inf G
1= inf G(v),

where

Dl:—{veD: \v]pds—l},

o0
and G : V — R is defined by

G(v) :/ |Voul? dx,
Q

therefore Ay =01 if ¢ <pand A\ > o1 if ¢ > p.
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We also point out the fact that A\; may be expressed in terms of Rayleigh quotients
as follows

Vol|P d
(2.13) M= inf JolVoPdr
vE Do faQ |’U|p ds
and for g # p,
1 1
= Vol|P dx + = Vol|? dx
(214) )\1 — inf pr‘ ‘1 qu‘ ’ :
vEDy P fag ‘U|p ds
with

Dy :={v e D: meas(I'(v)) > 0}.
The fact that (2.13) holds is trivial. The following inequality is also trivial
i, %fQ |Vol|P do + % Jo |Vv]? da

vED2g %fag ”U|p ds B

1,

For the converse inequality fix w € Dy and ¢t > 0. Then tw € D5 and
1 1
e 5 Jo IVolP do + 4 o [V|? do - JolVwlP p o fo [Vt de
vEDy %fag lv|P ds T foqlwlPds g Joq lwlP ds

Letting ¢ tend to 400 if ¢ < p, respectively to 0 if ¢ > p, then taking the infimum
over all w € Dy we get the desired inequality.

3. MAIN RESULT
The main result of this paper is given by the following theorem.

Theorem 3.1. Assume p € [2,00), q € (1,00) and p # q. Then the set of eigen-
values of problem (1.1) is precisely {0} U (A1, +00), where A1 is defined above by
(2.12).

Proof. We already know from the previous section that Ay = 0 is an eigenvalue of
problem (1.1) and any other eigenvalue belongs to (0, +o0c). We prove next that no
eigenvalue belongs (0, A\1]. Arguing by contradiction assume problem (1.1) possesses
an eigenvalue A € (0, A;] with corresponding eigenfunction uy. Then

/|VU)\’p d:lt—l—/ |Vuy|? dx—)\/ lux|P ds,

/ |’U,)\|p72u)\ ds =0 and meas (F(u)\)) > 07
o0

and u) satisfies

that is, uy € Ds. Using the characterization of \; given by (2.13) we get
Jo IVurlP dz X [oq lualP ds — [q [Vua|? do Jo [Vua|? da
o [unlP ds Jog lual? ds Jog lual? ds

Obviously this is a contradiction if A < Ay, while A = Ay forces

/ |Vuy|? de =0,
Q

A1
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which combined with u) € D yields uy = 0, thus contradicting the fact that u) €

V\ {0}.

For the second part of the proof fix A € (A,+00) and define the functional

J:V—->NR
1 1 A
J(w) ::—/ IVl dx+—/ Vu? da;——/ P ds.
PJa qJq P Joq

Standard arguments can be employed in order to prove that J € C1(V \ {0},R)
and

(J'(u),v) = / |Vu|P~2Vu - Vo dx + / |Vu|!2Vu - Vo do — )\/ lulP~uw ds,
Q Q o0N

for all w € V'\ {0} and all v € V. Clearly, A is an eigenvalue of (1.1) with corre-
sponding eigenfunction wy if and only if uy € V' \ {0} is a critical point of J. We
fix p € [2,4+00) and consider the following cases.

Case 1: q € (p, +00).
Then V = Wh4(Q), D is a proper subset of E and A\; > o1 = 1 > 0.
According to the Theorem on Equivalent Norms in Sobolev Spaces (see, e.g.,
Denkowski, Migérski and Papageorgiou [3, Cor. 3.9.56], or Necas[12, Thm. 7.1])

1/q

lul|lr :== </ |Vul dw—i—/ |u|? d3> ,
Q o0

1/q

lulls = (/ IVl dx—i—/ [uf? ds> ,
Q o0

are equivalent norms in W14(Q), hence there exist positive constants c¢;,ca such
that

and

lulls < ellullig, Yue WH(S),
and
lullz > eallullig, Yu e WH(Q),

where by || - ||1,, we have denoted the usual norm of Wh4(Q).
Using (2.13) we get

1 1 A 1
—/ [VulP d:c+—/ Vulfdz > 22 [ |ulf ds+—/ Vul! dz
P Ja q.Jq P Joq q.Jq

. 1 )\1} q
min§ —, — ¢ |[u|l5,
{q ) [[ull3
for all uw € D.

On the other hand, Hélder’s inequality ensures that

V

v

p/q
/8 ) lu|Pds < (meas (92))(a-P)/a < /8 ) |u|qu> < (meas (99)) 7P/ |2,

for all w € W14(Q2). Sumarizing, we conclude that for any v € D

. 1 ) A _
J(u) > & min {5, ;1} = 2k (aneas (99T P/,
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which shows that J is coercive on D with respect to V, that is,
lim J(u) = +oo.
llully,q—+oc

ueD

Recall that J is weakly lower semicontinuous and D is weakly closed in V, thus (see,
e.g., [15, Theorem 1.2, p. 4]) J is bounded below on D and there exists u, € D
such that

(3.1) J(ux) :Jgfp J(u).

Consequently we can apply again Lemma 2.2 with X =V, Y =R, C=D, f=J,
xo = u, and g(u) = [, [u[P~?u ds to deduce that there exists y* € R such that (see
(2.10))

(3.2) (J (us),v) + y*(p — 1)/ lus[P"2v ds =0, YwveV.
00

Choosing v = 1 in (3.2) and keeping in mind that u, € D we get

v (p—1) / P2 ds = 0,
oN

which shows that either y* = 0, or meas (I'(us)) = 0. Arguing by contradiction
assume the latter occurs. Then

1 1
0< —/ ]Vu*\p dx + —/ |VU*‘q dr = J('LL*) < J('U)7 Vv e Dy C D,
P Ja q.Ja
that is,
%fQ |Vo|P do + % Jo IVv|? dz

%faﬂ |v|P ds

Taking the infimum over all v € Dy and using (2.14) we reach the following contra-
diction

A< , Yv €& Das.

AL <A< AL
Therefore y* = 0, u, € V' \ {0} and (3.2) becomes
(J'(uy),v) =0, YveV.

Case 2: g € (1,p).

Recall that V = W'P(Q), D = E and A\; = 01 = 1 > 0 in this case.

A careful analysis shows that the functional J is no longer coercive in this case,
hence we cannot use the same arguments as above to prove the existence of a
nontrivial critical point. However, not everything is lost. We saw in the previous
section that any eigenfunction corresponding to a positive eigenvalue satisfies the
(2.2), (2.5), i.e., it belongs to D9 and satisfies (2.1), hence it makes sense to consider
the following set of constraints

N = {u € Dy: / |VulP da:—i—/ |Vul|? de = /\/ |ulP ds}.
Q Q o0

It is readily seen that A is the following Nehari-type manifold,
N={ueDy: (J'(u),u) =0}.
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Since D = FE, it follows from Lemma 2.1 that there exists ug € D such that
A1 :/ |Vugl? dz and / lugl? ds = 1.
Q a0
For any t > 0, tug € D and
/ IV (tuo) Pda +/ IV (fuo) |7dz — )\/ ltup|Pds = P(Ay — ) + tq/ Vuo|?da,
Q Q o0 Q

which shows that A is nonempty, as tug € N for

t= L s Vugl? d 7
= )\_)\1 /Q’ UO‘ i

Consequently, we can consider the following minimization problem

(3.3) m = Jg/{/J(u)

We point out the fact that for any u € N,
1 1
Ju) = —/ Vul? d:z—i——/ |vu\de—5/ P ds
P Ja q.J0 P Joa
1 1
(3.4) = <— - —>/ |Vul? dz
q p Q
1 1
(3.5) _ (-- —> ()\/ ful? ds—/ Vul? dac).
qQ p o0 Q

In particular J(u) > 0, for all w € N and m > 0. We prove next that any minimizing
sequence for J is bounded in V. Arguing by contradiction, assume there exists
{un} C N such that

J(up) = m and  |juy|1p — 400, asn — +oo,

where by || - |1, we have denoted the usual norm of W?(Q). Then (3.5) ensures
that
1
(3.6) / P ds > —/ Vunl? da.
o0 AJo

On the other hand,

1/p
||u|| == </ |VulP dx—f—/ |u|P ds) )
Q o0

is an equivalent norm in WHP(€2) (see, e.g. [3, Corollary 3.9.56, p. 361]). Then

. . J— Un
(3.6) implies |lun||1pa0) — +00 as n — +o00. Next, the sequence w,, := Tanlercom

satisfies ||| 1r(a0) = 1, for all n € N, and (see (3.6))
1 1
/ |Vwy,|P de = */ |Vu,|P de < ﬁ)\/ |un|P ds = A,
Q ||un||Lp(aQ) Q ”unHLp(aQ) o0

that is, {w,} is bounded in W1P(Q). Consequently, there exists wy € W1P({) such
that, up to a subsequence,

w, — wo, in WHP(Q),
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and
wy, — wp, in LP(0N).
It follows that ||wol/zr90) = 1 and wy € D. Moreover, the fact that ¢ < p implies
w, — wp, in WHI(Q).
Thus, using (3.4) we obtain
L J(u

/ |Vwpl? dz < hmmf/ |Vw,|? de = hmmf 1) =0,
p

||un||Lp (692) %
which combined with wy € D shows that wy = 0 and this contradicts the fact that
lwoll r (o) = 1. Therefore, any minimizing sequence for J is indeed bounded in V.
Let {un} C N be such a minimizing sequence for J. Then there exists u, €
WLP(Q) such that u, — u, in WP(Q) and u,, — u, in LP(9Q). Moreover, u, € D
and, since ¢ < p,
Uy — Us, in WHYQ).

Therefore,

)\/ lux|P ds = liminf X |un|pds
onN

n—-+0o00

> liminf/ |V, |P dm+liminf/ |Vug|? dz
n—+00 Jo n—+o00 [
(3.7) > L/yvqudx+:/yvu4qd$
Q Q

We claim that u, € N. Arguing by contradiction assume this is not the case. Then
either

(3.8) /ymw@_a
o2

or

(3.9) A/ mwds>/ﬁvmwdx+/ﬁvmwdm
o0 Q Q

If (3.8) occurs, then (3.7) gives

/ |Vus|P de = / |Vuy|? de =0,
Q Q

that is, ux = 0 in W1P(Q). On the other hand, the sequence w, := Lo

lunllLe a0)
satisfies |lwnllLran) = 1 and [[Vwn| oy < AP Consequently, there exists
wp € WIP(Q) such that w, — wop in W'P(Q) and w, — wy in LP(d). Then
wo € D and ||wol|Lr(a0) = 1. Moreover, since {u,} C N

0< /|vuﬂqu::—ﬂlnmun)=-£i-< /ﬂ|uﬁpd5—¥/\VuMpdx).
Q p—q p—q o0
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Dividing the above relation by Hun||%p(8m # 0, we get

Apq _
/Q |[Vw,|? de < ZTqHUnHipgaQ) — 0, as n — +o0.

Then
/ |Vwp|? dx < lim inf/ |Vwy|? dz =0,

which combined with wg € D shows that wqg is the null function. This contradicts
|wol|zr(a) = 1, hence (3.8) cannot hold. Then u. € Dz and (2.13) shows that

/ |Vuy|P de > /\1/ |us|P ds > 0,
Q [2/9]
since A\; = p11 > 0 (see Lemma 1). Obviously we also have
(3.10) / VP dz > 0,

Q

so if (3.9) occurs, then the number
1
Vu,|P d -
e Jo [Vu.|” d " e 0,1).
A foq [uxP ds — [ |Vu|P da

Moreover, one can easily check that tu, € N, therefore

1 1
0<m < J(tuy) = (— - —> tq/ |Vu,|? de < t?liminf J(u,) = t9m.
qa p Q

n——+oo

This is clearly a contradiction if m > 0, while m = 0 forces [, |Vu|? dz = 0 and
this contradicts (3.10).
In conclusion, u, € N and

m < J(ux) < liminf J(uy) =m,

n—-+0o00

that is, u, is a solution of the minimization problem (3.3). Consequently, we can
apply Lemma 2.2 with X =V, Y =R? f = J, 19 = us and g(u) = (g91(u), g2(u))
defined by

nw)= [ upuds, g = [ [Vupdos [ Valtdo - [ s,
o0 Q Q o0

to deduce that there exists y* = (y1,y2) € R? such that
<J,(u*)7 U> + yl(p - 1) / |u*|p_2U ds + y2p/ |VU* ’p—QVU* Vv dz
o0 Q
+y2q/ V92V, - Vo dz — yg)\p/ uy [P 2upv ds = 0, Yo € V.
Q o0

Choosing in the above equation v = 1 and keeping in mind that u, € N we get

yi(p— 1)/ |u.[P~* ds =0,
[2)9]

so y1 = 0, while for v = u, we get

yg(q—p)/ |Vu|? dx = 0.
Q
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Therefore y; = y2 = 0 and (3.11) becomes
(J'(uy),v) =0, VYveV,
concluding the proof. (Il
We show next that any eigenfunction of (1.1) is essentially bounded.

Theorem 3.2. Assume uy is an eigenfunction of problem (1.1) corresponding to
some X € {0} U (A1, +00). Then uy € L>=(R).

Proof. Following the ideas of Drébek, Kufner and Nicolosi [4], Winkert [18] used
the Moser iteration technique to prove global a priori bounds for a class of varia-
tional inequalities involving second-order elliptic differential operators. In particu-
lar, Winkert’s results (see [18, Corrolary 3.1 and Example a)]) ensure that any weak
solution of the following problem

{ div(a(z,u, Vu)) =0, in Q,

(3.11) a(z,u,Vu) - v+ j'(x,u) =0 on 09,

belongs to L>(Q), provided that @ ¢ RY (N > 1) is a bounded domain with
Lipschitz boundary 02 and a : QxRxRY — RY, j : 90 xR — R are Carathéodory
functions which satisfy the following structure conditions:

There exist positive constants a;, bj, ¢x (i,7 € {1,2,3}, k € {1,2}) and fixed numbers
r, 81,89 with 1 <r < oo, r < sy <r* r <sy <r, such that

hl) a(z,t,€) - € > a1|é|” — as|t|®' — as, for a.e. x € Q, all t € R and all £ € RY;
h2) |a(z,t,€)| < by|€[" L +bo|t|s = +by, for ae. z € Q, allt € R and all € € RY;
h3) j is differentiable with respect to the second variable and
7" (2, )] < ealt]* ™ + o,
for a.e. x € 002 and all t € R.

Here, r* and r, stand for the critical exponents,

[ itr<N, A e o,
+o00, otherwise, 400, otherwise.

One can easily check that problem (1.1) can be written equivalently in the form
(3.11) simply by choosing a(x,t,£) = (|€[P~2 + [£]972)¢ and j(x,t) = —%|t|p. A
simple example for which conditions h1)-h3) hold is to take r = s; = s9 = max{p, ¢},
a; = 1forie {1,2,3}, b; =2forj € {1,2,3} and ¢ = A for k € {1, 2}, respectively.
Thus any weak solution of problem (1.1), i.e. any eigenfunction corresponding to

A, belongs to L>(9). O
We close this paper by stating some open problems as follows.

e As already pointed out, the eigenalue set in the case ¢ = p is not completely
known, except for the classical case ¢ = p = 2. An idea to solve this open problem
would be to use our main result here (Theorem 1) and let ¢ tend to p (either from



88

N. COSTEA AND G. MOROSANU

the left or from the right). It is expected that such a limiting process provide
information about the eigenvalue set of A,, p > 2.

e Another interesting problem is to investigate the Steklov eigenvalues for A, or
for Ay + A

e The case 1 < p < 2 also remains open.
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