

STEKLOV-TYPE EIGENVALUES OF $\Delta_p + \Delta_q$

NICUŞOR COSTEA AND GHEORGHE MOROŞANU

ABSTRACT. The Steklov-like eigenvalue problem associated with the equation $\Delta_p u + \Delta_q u = 0$ in Ω is investigated, where $p \in [2, \infty), q \in (1, \infty), p \neq q$, and Ω is a bounded open subset of \mathbb{R}^N , $N \geq 2$, with Lipschitz boundary. A complete description of the set of eigenvalues is provided in this nonhomogeneous case $(p \neq q)$. Note that this case is complementary to the homogeneous case p = q for which a full description of the set of eigenvalues is known only if p = q = 2.

1. Introduction

Throughout this paper Ω is a bounded domain of \mathbb{R}^N , $N \geq 2$, with a Lipschitz boundary $\partial\Omega$. Consider the eigenvalue problem

(1.1)
$$\begin{cases} Au = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu_A} = \lambda |u|^{p-2} u, & \text{on } \partial\Omega, \end{cases}$$

where $Au := \Delta_p u + \Delta_q u$, $p \in [2, \infty)$, $q \in (1, \infty)$, $p \neq q$, and

$$\frac{\partial u}{\partial \nu_A} := \left(|\nabla u|^{p-2} + |\nabla u|^{q-2} \right) \frac{\partial u}{\partial \nu},$$

with ν being the unit outward normal to $\partial\Omega$. The solutions u will be sought in the space $V := W^{1,\max\{p,q\}}(\Omega)$, so that the normal derivative $\frac{\partial u}{\partial \nu_A}$ (associated with operator A) exists in a trace sense (see [2]), and the above problem is satisfied in the distribution sense. Using a Green formula (see [2, Corollary 2, p. 71]) one can define the eigenvalues of our problem in terms of weak solutions $u \in V$ as follows: $\lambda \in \mathbb{R}$ is an eigenvalue of problem (1.1) if there exists $u_{\lambda} \in V \setminus \{0\}$ such that

$$(1.2) \quad \int_{\Omega} \left(|\nabla u_{\lambda}|^{p-2} + |\nabla u_{\lambda}|^{q-2} \right) \nabla u_{\lambda} \cdot \nabla v \ dx = \lambda \int_{\partial \Omega} |u_{\lambda}|^{p-2} u_{\lambda} v \ ds, \quad \forall \ v \in V.$$

Conversely, by virtue of the same Green formula, if λ is an eigenvalue then any eigenfunction $u \in V \setminus \{0\}$ corresponding to it satisfies problem (1.1) in the distribution sense.

Note that the usual Steklov problem (i.e., the case when Δ_q is missing), including the classic Steklov's case (p=2), has received considerable attention since 1902

²⁰¹⁰ Mathematics Subject Classification. 35J60, 35J92, 46E30, 49R05.

Key words and phrases. Eigenvalue problem, Sobolev space, Nehari manifold, variational methods.

The author Nicuşor Costea was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0021.

when W. Steklov published his famous pioneering paper [13]. See, e.g., [6, 8, 16, 19] and the references therein.

In the present paper we are able to find the full set of eigenvalues of problem (1.1). The fact that problem (1.1) is nonhomogeneous (i.e., $p \neq q$) is the key condition that insures a complete description of the set of eigenvalues. Recall that in the homogeneous case q = p a full description of the set of eigenvalues is known only if q = p = 2; otherwise (i.e., if $q = p \neq 2$) it is only known that, in view of the infinite dimensional Ljusternik-Schnilerman theory, there exists a sequence of positive eigenvalues converging to $+\infty$, but this sequence may not constitute the whole spectrum [16] (see also [1], [6, Introduction]).

The Neumann eigenvalue problem associated with the negative A has been solved in [5, 10, 11]. The Dirichlet case can be adressed in a similar manner. As far as the Steklov problem (1.1) is concerned, a separate analysis is needed since some specific situations have to be addressed, including those related to the trace on $\partial\Omega$.

The Steklov eigenvalue problem (1.1) is of mathematical interest, since it is a model problem for which the full description of the eigenvalue set is possible. It might also be of interest in fluid mechanics. In the case q = p = 2 problem (1.1) is a model for an elastic membrane whose mass is concentrated on the boundary.

2. Some comments and preliminary results

Choosing $v = u_{\lambda}$ in (1.2) yields

(2.1)
$$\int_{\Omega} |\nabla u_{\lambda}|^p dx + \int_{\Omega} |\nabla u_{\lambda}|^q dx = \lambda \int_{\partial \Omega} |u_{\lambda}|^p ds.$$

In particular (2.1) shows that no negative λ can be an eigenvalue of problem (1.1). It is also readily seen that $\lambda_0 = 0$ is an eigenvalue of this problem (the corresponding eigenfunctions being the nonzero constant functions). Therefore any other eigenvalue belongs to $(0, +\infty)$.

If $\lambda > 0$ is an eigenvalue of problem (1.1), then choosing $v \equiv 1$ in (1.2) we obtain

(2.2)
$$\int_{\partial\Omega} |u_{\lambda}|^{p-2} u_{\lambda} \, ds = 0.$$

Therefore all eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

(2.3)
$$D := \left\{ v \in V = W^{1, \max\{p, q\}}(\Omega) : \int_{\partial \Omega} |v|^{p-2} v \, ds = 0 \right\}.$$

Obviously, D is a nonempty symmetric cone. Moreover, using the continuity of the trace operator from V to $L^p(\partial\Omega)$ and Lebesgue's Dominated Convergence Theorem, one can easily check that D is weakly closed in V. In addition, the following example shows that D contains nonzero elements.

Let $x_1, x_2 \in \partial \Omega$ be such that $x_1 \neq x_2$, fix $r \in (0, |x_1 - x_2|/3)$ and define the functions $w_k : \mathbb{R}^N \to \mathbb{R}$ as follows

$$w_k(x) = \begin{cases} e^{-\frac{1}{r^2 - |x - x_k|^2}}, & \text{if } x \in B_r(x_k), \\ 0, & \text{otherwise.} \end{cases}$$

Obviously $v_k = w_k|_{\Omega}$ belongs to V for k = 1, 2. Now let $\Gamma_k = \partial \Omega \cap B_r(x_k)$ and define

$$a_k = \int_{\Gamma_k} |v_k|^{p-2} v_k \ ds > 0, \quad k = 1, 2.$$

One can easily show that the function

$$v = \left(\frac{1}{a_1}\right)^{1/(p-1)} v_1 - \left(\frac{1}{a_2}\right)^{1/(p-1)} v_2,$$

is a nonzero element of D (and obviously so is tv for all $t \in \mathbb{R} \setminus \{0\}$).

We also point out the fact that $\lambda = 0$ is the only eigenvalue whose corresponding eigenvalues do not change sign on $\partial\Omega$. Arguing by contradiction, assume that u_{λ} is an eigenfunction corresponding to some eigenvalue $\lambda > 0$ and $u_{\lambda} \geq 0$ on Ω . Then

$$0 = \int_{\partial \Omega} |u_{\lambda}|^{p-2} u_{\lambda} \ ds = \int_{\partial \Omega} |u_{\lambda}|^{p-1} \ ds,$$

hence $u_{\lambda} = 0$ a.e. on $\partial \Omega$. On the other hand, (2.2) implies

$$\int_{\Omega} |\nabla u_{\lambda}|^p dx = \int_{\Omega} |\nabla u_{\lambda}|^q dx = 0,$$

so, having in mind Weyl's regularity lemma (see Stroock [14, p. 2]), we infer that u_{λ} is a constant function in Ω . Since its trace on $\partial\Omega$ vanishes, it follows that u_{λ} is the null function, a contradiction.

Here and hereafter, for a given $u \in V$, we adopt the notation

$$\Gamma(u) := \{ x \in \partial\Omega : \ u(x) \neq 0 \}.$$

According (2.1), any eigenfunction u_{λ} corresponding to a positive eigenvalue λ satisfies

(2.4)
$$\operatorname{meas}\left(\Gamma(u_{\lambda})\right) > 0,$$

since this condition is equivalent to

$$(2.5) \qquad \int_{\partial\Omega} |u_{\lambda}|^p \, ds \neq 0.$$

Summarizing, we see that any eigenfunction corresponding to a positive eigenvalue necessarily satisfies two restrictions: (2.1) and (2.5), respectively.

Now, consider the Steklov-type eigenvalue problem

(2.6)
$$\begin{cases} \Delta_p u = 0, & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \mu |u|^{p-2} u, & \text{on } \partial \Omega, \end{cases}$$

As usual, the number $\mu \in \mathbb{R}$ is said to be an eigenvalue of problem (2.6) if there exists a function $u_{\mu} \in W^{1,p}(\Omega) \setminus \{0\}$ such that

(2.7)
$$\int_{\Omega} |\nabla u_{\mu}|^{p-2} \nabla u_{\mu} \cdot \nabla v \, dx = \mu \int_{\partial \Omega} |u_{\mu}|^{p-2} u_{\mu} v \, ds, \quad \forall \, v \in W^{1,p}(\Omega).$$

Obviously, $\mu_0 = 0$ is an eigenvalue of problem (2.6) and any other eigenvalue belongs to $(0, +\infty)$.

Following an idea of Véron [17], Torné [16] established an interesting variational characterization of the least (first) positive eigenvalue of (2.6). If $\omega \subseteq \Omega$ is an open subset denote by $W^{1,p}_*(\omega)$ the subset of $W^{1,p}(\Omega)$ consisting of functions which are zero a.e. in $\Omega \setminus \overline{\omega}$ and let A be the family of pairs $(\omega, \tilde{\omega})$ such that ω and $\tilde{\omega}$ are disjoint nonempty open subsets of Ω . Then, according to [16, Theorem 1.3], the least positive eigenvalue of (2.6) satisfies

(2.8)
$$\mu_1 = \inf_{(\omega, \tilde{\omega}) \in A} \max\{\nu(\omega), \nu(\tilde{\omega})\},$$

where

$$\nu(\omega) := \inf_{u \in W^{1,p}_*(\omega)} \left\{ \frac{1}{p} \int_{\Omega} |\nabla u|^p \ dx : \ \frac{1}{p} \int_{\partial \Omega} |u|^p \ ds = 1 \right\},$$

if the quantity in the right-hand side of the equality is well defined and $\nu(\omega) := +\infty$ otherwise.

If $p \ge 2$ we use the Lagrange multiplier rule to give a different variational characterization for the least (first) positive eigenvalue of problem (2.6) as follows. Keeping in mind that problem (2.6) is a particular case of problem (1.1) (corresponding to q = p and $\mu = 2\lambda$), we are led to consider the constraint sets

$$E := \left\{ v \in W^{1,p}(\Omega) : \int_{\partial \Omega} |v|^{p-2} v \, ds = 0 \right\},\,$$

and

$$E_1 := \left\{ v \in W^{1,p}(\Omega) : \int_{\partial \Omega} |v|^{p-2} v \ ds = 0, \int_{\partial \Omega} |v|^p \ ds = 1 \right\}.$$

Note that $V = W^{1,p}(\Omega)$ if $q \leq p$, so D = E. On the other hand, if q > p, then $V = W^{1,q}(\Omega)$, hence D is a proper subset of E. Consequently E contains nonzero elements and E_1 is nonempty.

Consider now the minimization problem

(2.9)
$$\sigma_1 := \inf_{v \in E_1} F(v),$$

where $F: W^{1,p}(\Omega) \to \mathbb{R}$ is the convex, lower semicontinuous functional

$$F(v) := \int_{\Omega} |\nabla v|^p \, dx.$$

Lemma 2.1. If $p \in (1, +\infty)$, then there exists $u_0 \in E_1$ such that

$$0 < F(u_0) = \sigma_1.$$

Moreover, if $p \geq 2$ then $\mu_1 = \sigma_1$.

This result is probably known, however, for the convenience of the reader, we provide a proof of it which makes use of the following version of the Lagrange multiplier rule (see, e.g., [7, Theorem 5.5.26, p. 701], or [20, Theorem 3.3.3., p. 179]).

Lemma 2.2. Let X and Y are two Banach spaces and assume $f: X \to \mathbb{R}$ is Fréchet differentiable at x_0 , $g: X \to Y$ is continuously Fréchet differentiable at x_0

with $g'(x_0) \in \mathcal{L}(X,Y)$ being surjective and $x_0 \in C := \{x \in X : g(x) = 0\}$ is a finite local minimizer of the constraint problem

$$(P_C): \min_{x \in C} f(x).$$

Then there exist $y^* \in Y^*$ such that

$$(2.10) f'(x_0) + y^* \circ g'(x_0) = 0, in X^*.$$

Proof of Lemma 2.1. Let $\{u_n\} \subset E_1$ be a minimizing sequence for F, i.e. $F(u_n) \to \sigma_1$. We claim that $\{u_n\}$ is bounded in $W^{1,p}(\Omega)$. Arguing by contradiction, let us assume that, up to a subsequence, $\|u_n\|_{L^p(\Omega)} \to +\infty$, as $n \to +\infty$. Then, the sequence $v_n := \frac{u_n}{\|u_n\|_{L^p(\Omega)}}$ is bounded in $W^{1,p}(\Omega)$ and satisfies $\|v_n\|_{L^p(\Omega)} = 1$, for all $n \geq 1$. Consequently, there exists $v_0 \in W^{1,p}(\Omega)$ such that, up to a subsequence,

$$v_n \rightharpoonup v_0$$
, in $W^{1,p}(\Omega)$,

and

$$v_n \to v_0$$
, in $L^p(\partial\Omega)$, $v_n \to v_0$, in $L^p(\Omega)$.

Thus,

$$\int_{\Omega} |\nabla v_0|^p \ dx \le \liminf_{n \to +\infty} \int_{\Omega} |\nabla v_n|^p \ dx = \liminf_{n \to +\infty} \frac{1}{\|u_n\|_{L^p(\Omega)}^p} F(u_n) = 0,$$

and

$$\int_{\partial\Omega} |v_0|^p \ ds = \lim_{n \to +\infty} \int_{\partial\Omega} |v_n|^p \ ds = \lim_{n \to +\infty} \frac{1}{\|u_n\|_{L^p(\Omega)}^p} = 0,$$

which together show that v_0 is the null function. This contradicts the fact that $||v_0||_{L^p(\Omega)} = 1$.

Since $\{u_n\}$ is bounded in $W^{1,p}(\Omega)$, then there exists $u_0 \in W^{1,p}(\Omega)$ such that, on a subsequence again denoted $\{u_n\}$,

$$u_n \rightharpoonup u_0$$
, in $W^{1,p}(\Omega)$,

and

$$u_n \to u_0$$
, in $L^p(\Omega)$, $u_n \to u_0$, in $L^p(\partial \Omega)$.

The last convergence and Lebesgue's Dominated Convergence Theorem ensure that $u_0 \in E_1$, which combined with the weak lower semicontinuity of F shows that

$$\sigma_1 = F(u_0) = \min_{v \in E_1} F(v).$$

It can be easily seen that $\sigma_1 > 0$.

Now let us assumme $p \geq 2$ and prove that σ_1 is the least (first) positive eigenvalue of problem (2.6). To this purpose we can apply Lemma 2.2 for $X = W^{1,p}(\Omega)$, $Y = \mathbb{R}^2$, $C = E_1$, $x_0 = u_0$, and $g(v) = (g_1(v), g_2(v))$, $g_1(v) = \int_{\partial\Omega} |v|^p ds - 1$, $g_2(v) = \int_{\partial\Omega} |v|^{p-2}v ds$. Obviously, the dual Y^* can be identified with \mathbb{R}^2 . It is easily seen that all the conditions from the statement of Lemma 2.2 are fulfilled, including the surjectivity of $g'(u_0)$, which means that: for any pair $(\zeta_1, \zeta_2) \in \mathbb{R}^2$ there exists $w \in X = W^{1,p}(\Omega)$ such that $\langle g'_1(u_0), w \rangle = \zeta_1$ and $\langle g'_2(u_0), w \rangle = \zeta_2$.

Indeed, choosing in these equations $w = au_0 + b$, with $a, b \in \mathbb{R}$ and keeping in mind that $u_0 \in E_1$, we obtain

$$ap \int_{\partial\Omega} |u_0|^p ds = \zeta_1,$$

$$b(p-1) \int_{\partial\Omega} |u_0|^{p-2} ds = \zeta_2,$$

so a, b can be uniquely determined, hence $g'(u_0)$ is surjective, as asserted. Consequently, Lemma 2.2 is indeed applicable to the minimization problem (2.9), that is, there exists $y^* = (y_1, y_2) \in \mathbb{R}^2$ such that (see equation (2.10))

$$(2.11) \ p \int_{\Omega} |\nabla u_0|^{p-2} \nabla u_0 \nabla v dx + y_1 p \int_{\partial \Omega} |u_0|^{p-2} u_0 v ds + y_2 (p-1) \int_{\partial \Omega} |u_0|^{p-2} v ds = 0,$$

for all $v \in X$. Testing with $v \equiv 1$ in (2.11) we deduce that $y_2 = 0$. Now, choosing $v = u_0$ in (2.11) we get $y_1 = -\sigma_1$. With this y_1 and $y_2 = 0$, equation (2.11) shows that σ_1 is an eigenvalue of problem (2.6), and u_0 is a corresponding eigenfunction. In particular $\mu_1 \leq \sigma_1$.

To complete the proof we need to show that $\sigma_1 \leq \mu_1$. Assume u_{μ_1} is an eigenfunction corresponding to μ_1 . Then $\|u_{\mu_1}\|_{L^p(\partial\Omega)} \neq 0$ (see (2.5)) and the function $v_{\mu_1} = \frac{u_{\mu_1}}{\|u_{\mu_1}\|_{L^p(\partial\Omega)}}$ belongs to E_1 , so

$$\sigma_1 \le F(v_{\mu_1}) = \int_{\Omega} |\nabla v_{\mu_1}|^p \, dx = \frac{\int_{\Omega} |\nabla u_{\mu_1}|^p \, dx}{\int_{\partial \Omega} |u_{\mu_1}|^p \, ds} = \mu_1.$$

A direct consequence of Lemma 2.1 is that $\sigma_1^{-1/p}$ is the best constant in the following Poincaré-Wirtinger type inequality.

Proposition 2.3. Assume $p \in (1, +\infty)$. Then, there exists C > 0 such that

$$||u||_{L^p(\partial\Omega)} \le C||\nabla u||_{L^p(\Omega)^N}, \quad \forall u \in E.$$

Now, define

(2.12)
$$\lambda_1 := \inf \left\{ \int_{\Omega} |\nabla v|^p \ dx : \ v \in V, \ \int_{\partial \Omega} |v|^{p-2} v \ ds = 0, \ \int_{\partial \Omega} |v|^p \ ds = 1 \right\}.$$

Note that λ_1 can be expressed as

$$\lambda_1 = \inf_{v \in D_1} G(v),$$

where

$$D_1 := \left\{ v \in D : \int_{\partial \Omega} |v|^p \, ds = 1 \right\},\,$$

and $G: V \to \mathbb{R}$ is defined by

$$G(v) = \int_{\Omega} |\nabla v|^p dx,$$

therefore $\lambda_1 = \sigma_1$ if $q \leq p$ and $\lambda_1 \geq \sigma_1$ if q > p.

We also point out the fact that λ_1 may be expressed in terms of Rayleigh quotients as follows

(2.13)
$$\lambda_1 = \inf_{v \in D_2} \frac{\int_{\Omega} |\nabla v|^p \, dx}{\int_{\partial \Omega} |v|^p \, ds},$$

and for $q \neq p$,

(2.14)
$$\lambda_1 = \inf_{v \in D_2} \frac{\frac{1}{p} \int_{\Omega} |\nabla v|^p dx + \frac{1}{q} \int_{\Omega} |\nabla v|^q dx}{\frac{1}{p} \int_{\partial \Omega} |v|^p ds},$$

with

$$D_2 := \{ v \in D : \max(\Gamma(v)) > 0 \}.$$

The fact that (2.13) holds is trivial. The following inequality is also trivial

$$\inf_{v \in D_2} \frac{\frac{1}{p} \int_{\Omega} |\nabla v|^p \, dx + \frac{1}{q} \int_{\Omega} |\nabla v|^q \, dx}{\frac{1}{p} \int_{\partial \Omega} |v|^p \, ds} \ge \lambda_1,$$

For the converse inequality fix $w \in D_2$ and t > 0. Then $tw \in D_2$ and

$$\inf_{v \in D_2} \frac{\frac{1}{p} \int_{\Omega} |\nabla v|^p \ dx + \frac{1}{q} \int_{\Omega} |\nabla v|^q \ dx}{\frac{1}{p} \int_{\partial \Omega} |v|^p \ ds} \ \le \ \frac{\int_{\Omega} |\nabla w|^p}{\int_{\partial \Omega} |w|^p \ ds} + \frac{p}{q} t^{q-p} \frac{\int_{\Omega} |\nabla w|^q \ dx}{\int_{\partial \Omega} |w|^p \ ds}$$

Letting t tend to $+\infty$ if q < p, respectively to 0 if q > p, then taking the infimum over all $w \in D_2$ we get the desired inequality.

3. Main result

The main result of this paper is given by the following theorem.

Theorem 3.1. Assume $p \in [2, \infty)$, $q \in (1, \infty)$ and $p \neq q$. Then the set of eigenvalues of problem (1.1) is precisely $\{0\} \cup (\lambda_1, +\infty)$, where λ_1 is defined above by (2.12).

Proof. We already know from the previous section that $\lambda_0 = 0$ is an eigenvalue of problem (1.1) and any other eigenvalue belongs to $(0, +\infty)$. We prove next that no eigenvalue belongs $(0, \lambda_1]$. Arguing by contradiction assume problem (1.1) possesses an eigenvalue $\lambda \in (0, \lambda_1]$ with corresponding eigenfunction u_{λ} . Then

$$\int_{\Omega} |\nabla u_{\lambda}|^p dx + \int_{\Omega} |\nabla u_{\lambda}|^q dx = \lambda \int_{\partial \Omega} |u_{\lambda}|^p ds,$$

and u_{λ} satisfies

$$\int_{\partial\Omega} |u_{\lambda}|^{p-2} u_{\lambda} \, ds = 0 \quad \text{and} \quad \text{meas} (\Gamma(u_{\lambda})) > 0,$$

that is, $u_{\lambda} \in D_2$. Using the characterization of λ_1 given by (2.13) we get

$$\lambda_1 \leq \frac{\int_{\Omega} |\nabla u_{\lambda}|^p \, dx}{\int_{\partial \Omega} |u_{\lambda}|^p \, ds} = \frac{\lambda \int_{\partial \Omega} |u_{\lambda}|^p \, ds - \int_{\Omega} |\nabla u_{\lambda}|^q \, dx}{\int_{\partial \Omega} |u_{\lambda}|^p \, ds} = \lambda - \frac{\int_{\Omega} |\nabla u_{\lambda}|^q \, dx}{\int_{\partial \Omega} |u_{\lambda}|^p \, ds}.$$

Obviously this is a contradiction if $\lambda < \lambda_1$, while $\lambda = \lambda_1$ forces

$$\int_{\Omega} |\nabla u_{\lambda}|^q dx = 0,$$

which combined with $u_{\lambda} \in D$ yields $u_{\lambda} = 0$, thus contradicting the fact that $u_{\lambda} \in V \setminus \{0\}$.

For the second part of the proof fix $\lambda \in (\lambda_1, +\infty)$ and define the functional $J: V \to \mathbb{R}$

$$J(u) := \frac{1}{p} \int_{\Omega} |\nabla u|^p \ dx + \frac{1}{q} \int_{\Omega} |\nabla u|^q \ dx - \frac{\lambda}{p} \int_{\partial \Omega} |u|^p \ ds.$$

Standard arguments can be employed in order to prove that $J \in C^1(V \setminus \{0\}, \mathbb{R})$ and

$$\langle J'(u), v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx + \int_{\Omega} |\nabla u|^{q-2} \nabla u \cdot \nabla v \, dx - \lambda \int_{\partial \Omega} |u|^{p-2} uv \, ds,$$

for all $u \in V \setminus \{0\}$ and all $v \in V$. Clearly, λ is an eigenvalue of (1.1) with corresponding eigenfunction u_{λ} if and only if $u_{\lambda} \in V \setminus \{0\}$ is a critical point of J. We fix $p \in [2, +\infty)$ and consider the following cases.

Case 1: $q \in (p, +\infty)$.

Then $V = W^{1,q}(\Omega)$, D is a proper subset of E and $\lambda_1 \geq \sigma_1 = \mu_1 > 0$.

According to the Theorem on Equivalent Norms in Sobolev Spaces (see, e.g., Denkowski, Migórski and Papageorgiou [3, Cor. 3.9.56], or Nečas[12, Thm. 7.1])

$$||u||_1 := \left(\int_{\Omega} |\nabla u|^q dx + \int_{\partial \Omega} |u|^q ds\right)^{1/q},$$

and

$$||u||_2 := \left(\int_{\Omega} |\nabla u|^q dx + \int_{\partial \Omega} |u|^p ds\right)^{1/q},$$

are equivalent norms in $W^{1,q}(\Omega)$, hence there exist positive constants c_1, c_2 such that

$$||u||_1 \le c_1 ||u||_{1,q}, \quad \forall u \in W^{1,q}(\Omega),$$

and

$$||u||_2 \ge c_2 ||u||_{1,q}, \quad \forall u \in W^{1,q}(\Omega),$$

where by $\|\cdot\|_{1,q}$ we have denoted the usual norm of $W^{1,q}(\Omega)$.

Using (2.13) we get

$$\frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx + \frac{1}{q} \int_{\Omega} |\nabla u|^q \, dx \ge \frac{\lambda_1}{p} \int_{\partial \Omega} |u|^p \, ds + \frac{1}{q} \int_{\Omega} |\nabla u|^q \, dx$$

$$\ge \min \left\{ \frac{1}{q}, \frac{\lambda_1}{p} \right\} ||u||_2^q,$$

for all $u \in D$.

On the other hand, Hölder's inequality ensures that

$$\int_{\partial\Omega} |u|^p ds \le (\text{meas } (\partial\Omega))^{(q-p)/q} \left(\int_{\partial\Omega} |u|^q ds \right)^{p/q} \le (\text{meas } (\partial\Omega))^{(q-p)/q} \|u\|_1^p,$$

for all $u \in W^{1,q}(\Omega)$. Sumarizing, we conclude that for any $u \in D$

$$J(u) \ge c_2^q \min\left\{\frac{1}{q}, \frac{\lambda_1}{p}\right\} \|u\|_{1,q}^q - \frac{\lambda}{p} c_1^p \left(\text{meas } (\partial\Omega)\right)^{(q-p)/q} \|u\|_{1,q}^p,$$

which shows that J is coercive on D with respect to V, that is,

$$\lim_{\substack{\|u\|_{1,q} \to +\infty \\ u \in D}} J(u) = +\infty.$$

Recall that J is weakly lower semicontinuous and D is weakly closed in V, thus (see, e.g., [15, Theorem 1.2, p. 4]) J is bounded below on D and there exists $u_* \in D$ such that

$$(3.1) J(u_*) = \inf_{u \in D} J(u).$$

Consequently we can apply again Lemma 2.2 with X = V, $Y = \mathbb{R}$, C = D, f = J, $x_0 = u_*$ and $g(u) = \int_{\partial\Omega} |u|^{p-2}u \, ds$ to deduce that there exists $y^* \in \mathbb{R}$ such that (see (2.10))

(3.2)
$$\langle J'(u_*), v \rangle + y^*(p-1) \int_{\partial \Omega} |u_*|^{p-2} v \, ds = 0, \quad \forall v \in V.$$

Choosing $v \equiv 1$ in (3.2) and keeping in mind that $u_* \in D$ we get

$$y^*(p-1) \int_{\partial \Omega} |u_*|^{p-2} ds = 0,$$

which shows that either $y^* = 0$, or meas $(\Gamma(u_*)) = 0$. Arguing by contradiction assume the latter occurs. Then

$$0 \le \frac{1}{p} \int_{\Omega} |\nabla u_*|^p \ dx + \frac{1}{q} \int_{\Omega} |\nabla u_*|^q \ dx = J(u_*) \le J(v), \quad \forall v \in D_2 \subset D,$$

that is,

$$\lambda \le \frac{\frac{1}{p} \int_{\Omega} |\nabla v|^p \, dx + \frac{1}{q} \int_{\Omega} |\nabla v|^q \, dx}{\frac{1}{p} \int_{\partial \Omega} |v|^p \, ds}, \quad \forall v \in D_2.$$

Taking the infimum over all $v \in D_2$ and using (2.14) we reach the following contradiction

$$\lambda_1 < \lambda \leq \lambda_1$$
.

Therefore $y^* = 0$, $u_* \in V \setminus \{0\}$ and (3.2) becomes

$$\langle J'(u_*), v \rangle = 0, \quad \forall v \in V.$$

Case 2: $q \in (1, p)$.

Recall that $V = W^{1,p}(\Omega)$, D = E and $\lambda_1 = \sigma_1 = \mu_1 > 0$ in this case.

A careful analysis shows that the functional J is no longer coercive in this case, hence we cannot use the same arguments as above to prove the existence of a nontrivial critical point. However, not everything is lost. We saw in the previous section that any eigenfunction corresponding to a positive eigenvalue satisfies the (2.2), (2.5), i.e., it belongs to D_2 and satisfies (2.1), hence it makes sense to consider the following set of constraints

$$\mathcal{N} := \left\{ u \in D_2 : \int_{\Omega} |\nabla u|^p \, dx + \int_{\Omega} |\nabla u|^q \, dx = \lambda \int_{\partial \Omega} |u|^p \, ds \right\}.$$

It is readily seen that \mathcal{N} is the following Nehari-type manifold,

$$\mathcal{N} = \left\{ u \in D_2 : \langle J'(u), u \rangle = 0 \right\}.$$

Since D = E, it follows from Lemma 2.1 that there exists $u_0 \in D$ such that

$$\lambda_1 = \int_{\Omega} |\nabla u_0|^p dx$$
 and $\int_{\partial \Omega} |u_0|^p ds = 1.$

For any t > 0, $tu_0 \in D$ and

$$\int_{\Omega} |\nabla (tu_0)|^p dx + \int_{\Omega} |\nabla (tu_0)|^q dx - \lambda \int_{\partial \Omega} |tu_0|^p ds = t^p (\lambda_1 - \lambda) + t^q \int_{\Omega} |\nabla u_0|^q dx,$$

which shows that \mathcal{N} is nonempty, as $tu_0 \in \mathcal{N}$ for

$$t = \left(\frac{1}{\lambda - \lambda_1}\right)^{\frac{1}{p-q}} \left(\int_{\Omega} |\nabla u_0|^q dx\right)^{\frac{1}{p-q}}.$$

Consequently, we can consider the following minimization problem

$$(3.3) m := \inf_{u \in \mathcal{N}} J(u).$$

We point out the fact that for any $u \in \mathcal{N}$,

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx + \frac{1}{q} \int_{\Omega} |\nabla u|^q dx - \frac{\lambda}{p} \int_{\partial \Omega} |u|^p ds$$

$$= \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\Omega} |\nabla u|^q dx$$
(3.4)

$$= \left(\frac{1}{q} - \frac{1}{p}\right) \left(\lambda \int_{\partial\Omega} |u|^p \, ds - \int_{\Omega} |\nabla u|^p \, dx\right).$$

In particular J(u) > 0, for all $u \in \mathcal{N}$ and $m \geq 0$. We prove next that any minimizing sequence for J is bounded in V. Arguing by contradiction, assume there exists $\{u_n\} \subset \mathcal{N}$ such that

$$J(u_n) \to m$$
 and $||u_n||_{1,p} \to +\infty$, as $n \to +\infty$,

where by $\|\cdot\|_{1,p}$ we have denoted the usual norm of $W^{1,p}(\Omega)$. Then (3.5) ensures that

(3.6)
$$\int_{\partial\Omega} |u_n|^p ds > \frac{1}{\lambda} \int_{\Omega} |\nabla u_n|^p dx.$$

On the other hand,

$$||u|| := \left(\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} |u|^p ds \right)^{1/p},$$

is an equivalent norm in $W^{1,p}(\Omega)$ (see, e.g. [3, Corollary 3.9.56, p. 361]). Then (3.6) implies $||u_n||_{L^p(\partial\Omega)} \to +\infty$ as $n \to +\infty$. Next, the sequence $w_n := \frac{u_n}{||u_n||_{L^p(\partial\Omega)}}$ satisfies $||w_n||_{L^p(\partial\Omega)} = 1$, for all $n \in \mathbb{N}$, and (see (3.6))

$$\int_{\Omega} |\nabla w_n|^p \ dx = \frac{1}{\|u_n\|_{L^p(\partial\Omega)}^p} \int_{\Omega} |\nabla u_n|^p \ dx \le \frac{1}{\|u_n\|_{L^p(\partial\Omega)}^p} \lambda \int_{\partial\Omega} |u_n|^p \ ds = \lambda,$$

that is, $\{w_n\}$ is bounded in $W^{1,p}(\Omega)$. Consequently, there exists $w_0 \in W^{1,p}(\Omega)$ such that, up to a subsequence,

$$w_n \rightharpoonup w_0$$
, in $W^{1,p}(\Omega)$,

and

$$w_n \to w_0$$
, in $L^p(\partial\Omega)$.

It follows that $||w_0||_{L^p(\partial\Omega)} = 1$ and $w_0 \in D$. Moreover, the fact that q < p implies

$$w_n \rightharpoonup w_0$$
, in $W^{1,q}(\Omega)$.

Thus, using (3.4) we obtain

$$\int_{\Omega} |\nabla w_0|^p \, dx \le \liminf_{n \to +\infty} \int_{\Omega} |\nabla w_n|^q \, dx = \liminf_{n \to +\infty} \frac{1}{\|u_n\|_{L^p(\partial\Omega)}^q} \frac{J(u_n)}{\frac{1}{q} - \frac{1}{n}} = 0,$$

which combined with $w_0 \in D$ shows that $w_0 \equiv 0$ and this contradicts the fact that $\|w_0\|_{L^p(\partial\Omega)} = 1$. Therefore, any minimizing sequence for J is indeed bounded in V. Let $\{u_n\} \subset \mathcal{N}$ be such a minimizing sequence for J. Then there exists $u_* \in W^{1,p}(\Omega)$ such that $u_n \rightharpoonup u_*$ in $W^{1,p}(\Omega)$ and $u_n \to u_*$ in $L^p(\partial\Omega)$. Moreover, $u_* \in D$ and, since q < p,

$$u_n \rightharpoonup u_*$$
, in $W^{1,q}(\Omega)$.

Therefore,

$$\lambda \int_{\partial\Omega} |u_*|^p ds = \liminf_{n \to +\infty} \lambda \int_{\partial\Omega} |u_n|^p ds$$

$$= \liminf_{n \to +\infty} \left(\int_{\Omega} |\nabla u_n|^p dx + \int_{\Omega} |\nabla u_n|^q dx \right)$$

$$\geq \liminf_{n \to +\infty} \int_{\Omega} |\nabla u_n|^p dx + \liminf_{n \to +\infty} \int_{\Omega} |\nabla u_n|^q dx$$

$$\geq \int_{\Omega} |\nabla u_*|^p dx + \int_{\Omega} |\nabla u_*|^q dx.$$
(3.7)

We claim that $u_* \in \mathcal{N}$. Arguing by contradiction assume this is not the case. Then either

(3.8)
$$\int_{\partial \Omega} |u_*|^p \, ds = 0,$$

or

(3.9)
$$\lambda \int_{\partial \Omega} |u_*|^p ds > \int_{\Omega} |\nabla u_*|^p dx + \int_{\Omega} |\nabla u_*|^q dx.$$

If (3.8) occurs, then (3.7) gives

$$\int_{\Omega} |\nabla u_*|^p dx = \int_{\Omega} |\nabla u_*|^q dx = 0,$$

that is, $u_* = 0$ in $W^{1,p}(\Omega)$. On the other hand, the sequence $w_n := \frac{u_n}{\|u_n\|_{L^p(\partial\Omega)}}$ satisfies $\|w_n\|_{L^p(\partial\Omega)} = 1$ and $\|\nabla w_n\|_{L^p(\Omega)^N} \leq \lambda^{1/p}$. Consequently, there exists $w_0 \in W^{1,p}(\Omega)$ such that $w_n \rightharpoonup w_0$ in $W^{1,p}(\Omega)$ and $w_n \to w_0$ in $L^p(\partial\Omega)$. Then $w_0 \in D$ and $\|w_0\|_{L^p(\partial\Omega)} = 1$. Moreover, since $\{u_n\} \subset \mathcal{N}$

$$0 < \int_{\Omega} |\nabla u_n|^q dx = \frac{pq}{p-q} J(u_n) = \frac{pq}{p-q} \left(\lambda \int_{\partial \Omega} |u_n|^p ds - \int_{\Omega} |\nabla u_n|^p dx \right).$$

Dividing the above relation by $||u_n||_{L^p(\partial\Omega)}^q \neq 0$, we get

$$\int_{\Omega} |\nabla w_n|^q dx \le \frac{\lambda pq}{p-q} ||u_n||_{L^p(\partial\Omega)}^{p-q} \to 0, \text{ as } n \to +\infty.$$

Then

$$\int_{\Omega} |\nabla w_0|^q dx \le \liminf_{n \to +\infty} \int_{\Omega} |\nabla w_n|^q dx = 0,$$

which combined with $w_0 \in D$ shows that w_0 is the null function. This contradicts $||w_0||_{L^p(\partial\Omega)} = 1$, hence (3.8) cannot hold. Then $u_* \in D_2$ and (2.13) shows that

$$\int_{\Omega} |\nabla u_*|^p \ dx \ge \lambda_1 \int_{\partial \Omega} |u_*|^p \ ds > 0,$$

since $\lambda_1 = \mu_1 > 0$ (see Lemma 1). Obviously we also have

$$(3.10) \qquad \int_{\Omega} |\nabla u_*|^p \, dx > 0,$$

so if (3.9) occurs, then the number

$$t := \left(\frac{\int_{\Omega} |\nabla u_*|^p \, dx}{\lambda \int_{\partial \Omega} |u_*|^p \, ds - \int_{\Omega} |\nabla u_*|^p \, dx}\right)^{\frac{1}{p-q}} \in (0,1).$$

Moreover, one can easily check that $tu_* \in \mathcal{N}$, therefore

$$0 \le m \le J(tu_*) = \left(\frac{1}{q} - \frac{1}{p}\right) t^q \int_{\Omega} |\nabla u_*|^q \, dx \le t^q \liminf_{n \to +\infty} J(u_n) = t^q m.$$

This is clearly a contradiction if m > 0, while m = 0 forces $\int_{\Omega} |\nabla u_*|^q dx = 0$ and this contradicts (3.10).

In conclusion, $u_* \in \mathcal{N}$ and

$$m \le J(u_*) \le \liminf_{n \to +\infty} J(u_n) = m,$$

that is, u_* is a solution of the minimization problem (3.3). Consequently, we can apply Lemma 2.2 with X = V, $Y = \mathbb{R}^2$, f = J, $x_0 = u_*$ and $g(u) = (g_1(u), g_2(u))$ defined by

$$g_1(u) = \int_{\partial \Omega} |u|^{p-2} u \ ds, \quad g_2(u) = \int_{\Omega} |\nabla u|^p \ dx + \int_{\Omega} |\nabla u|^q \ dx - \lambda \int_{\partial \Omega} |u|^p \ ds,$$

to deduce that there exists $y^* = (y_1, y_2) \in \mathbb{R}^2$ such that

$$\langle J'(u_*), v \rangle + y_1(p-1) \int_{\partial \Omega} |u_*|^{p-2} v \, ds + y_2 p \int_{\Omega} |\nabla u_*|^{p-2} \nabla u_* \cdot \nabla v \, dx$$
$$+ y_2 q \int_{\Omega} |\nabla u_*|^{q-2} \nabla u_* \cdot \nabla v \, dx - y_2 \lambda p \int_{\partial \Omega} |u_*|^{p-2} u_* v \, ds = 0, \ \forall v \in V.$$

Choosing in the above equation $v \equiv 1$ and keeping in mind that $u_* \in \mathcal{N}$ we get

$$y_1(p-1) \int_{\partial \Omega} |u_*|^{p-2} ds = 0,$$

so $y_1 = 0$, while for $v = u_*$ we get

$$y_2(q-p)\int_{\Omega} |\nabla u_*|^q dx = 0.$$

 \Box

Therefore $y_1 = y_2 = 0$ and (3.11) becomes

$$\langle J'(u_*), v \rangle = 0, \quad \forall v \in V,$$

concluding the proof.

We show next that any eigenfunction of (1.1) is essentially bounded.

Theorem 3.2. Assume u_{λ} is an eigenfunction of problem (1.1) corresponding to some $\lambda \in \{0\} \cup (\lambda_1, +\infty)$. Then $u_{\lambda} \in L^{\infty}(\Omega)$.

Proof. Following the ideas of Drábek, Kufner and Nicolosi [4], Winkert [18] used the Moser iteration technique to prove global a priori bounds for a class of variational inequalities involving second-order elliptic differential operators. In particular, Winkert's results (see [18, Corrolary 3.1 and Example a)]) ensure that any weak solution of the following problem

(3.11)
$$\begin{cases} \operatorname{div}(a(x,u,\nabla u)) = 0, & \text{in } \Omega, \\ a(x,u,\nabla u) \cdot \nu + j'(x,u) = 0 & \text{on } \partial\Omega, \end{cases}$$

belongs to $L^{\infty}(\Omega)$, provided that $\Omega \subset \mathbb{R}^N$ (N > 1) is a bounded domain with Lipschitz boundary $\partial\Omega$ and $a: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$, $j: \partial\Omega \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions which satisfy the following structure conditions:

There exist positive constants a_i, b_j, c_k $(i, j \in \{1, 2, 3\}, k \in \{1, 2\})$ and fixed numbers r, s_1, s_2 with $1 < r < \infty, r \le s_1 < r^*, r \le s_2 < r_*$ such that

$$h1)$$
 $a(x,t,\xi)\cdot\xi\geq a_1|\xi|^r-a_2|t|^{s_1}-a_3$, for a.e. $x\in\Omega$, all $t\in\mathbb{R}$ and all $\xi\in\mathbb{R}^N$;

$$|a(x,t,\xi)| \le b_1 |\xi|^{r-1} + b_2 |t|^{s_1 \frac{r-1}{r}} + b_3$$
, for a.e. $x \in \Omega$, all $t \in \mathbb{R}$ and all $\xi \in \mathbb{R}^N$;

h3) j is differentiable with respect to the second variable and

$$|j'(x,t)| \le c_1|t|^{s_2-1} + c_2,$$

for a.e. $x \in \partial \Omega$ and all $t \in \mathbb{R}$.

Here, r^* and r_* stand for the critical exponents,

$$r^* = \left\{ \begin{array}{l} \frac{Nr}{N-r}, & \text{if } r < N, \\ +\infty, & \text{otherwise,} \end{array} \right. \quad r_* = \left\{ \begin{array}{l} \frac{(N-1)r}{N-r}, & \text{if } r < N, \\ +\infty, & \text{otherwise.} \end{array} \right.$$

One can easily check that problem (1.1) can be written equivalently in the form (3.11) simply by choosing $a(x,t,\xi)=(|\xi|^{p-2}+|\xi|^{q-2})\xi$ and $j(x,t)=-\frac{\lambda}{p}|t|^p$. A simple example for which conditions h1)-h3) hold is to take $r=s_1=s_2=\max\{p,q\}$, $a_i=1$ for $i\in\{1,2,3\}$, $b_j=2$ for $j\in\{1,2,3\}$ and $c_k=\lambda$ for $k\in\{1,2\}$, respectively. Thus any weak solution of problem (1.1), i.e. any eigenfunction corresponding to λ , belongs to $L^{\infty}(\Omega)$.

We close this paper by stating some open problems as follows.

• As already pointed out, the eigenalue set in the case q = p is not completely known, except for the classical case q = p = 2. An idea to solve this open problem would be to use our main result here (Theorem 1) and let q tend to p (either from

the left or from the right). It is expected that such a limiting process provide information about the eigenvalue set of Δ_p , p > 2.

- Another interesting problem is to investigate the Steklov eigenvalues for Δ_{∞} or for $\Delta_p + \Delta_{\infty}$.
- The case 1 also remains open.

References

- [1] A. Anane, O. Chakrone, B. Karim and A. Zerouali, *Eigencurves for a Steklov problem*, Electron. J. Differential Equations **2009** (2009), 1–8.
- [2] E. Casas and L. A. Fernández, A Green's formula for quasilinear elliptic operators, J. Math. Anal. Appl. 142 (1989), 62-73.
- [3] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Springer, New York, 2003.
- [4] P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
- [5] M. Fărcășeanu, M. Mihăilescu and D. Stancu-Dumitru, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal. 116 (2015), 19–25.
- [6] J. Garcia-Azorero, J. J. Manfredi, I. Peral and J. D. Rossi, Steklov eigenvalues for the ∞-Laplacian, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17 (2006), 199–210.
- [7] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC Taylor & Francis Group, Boca Raton, 2005.
- [8] P. D. Lamberti, Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems, Complex Var. Elliptic Equ. **59** (2014), 309–323.
- [9] A. Lê, Eigenvalue problems for p-Laplacian, Nonlinear Anal. 64 (2006), 1057–1099.
- [10] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Comm. Pure Appl. Anal. 10 (2011), 701–708.
- [11] M. Mihăilescu and G. Moroşanu, Eigenvalues of $-\Delta_p \Delta_q$ under Neumann boundary condition, Canad. Math. Bull. **59** (2016), 606–616.
- [12] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer, Berlin, 2012.
- [13] W. Stekloff, Sur les problèmes fundamentaux de la physique mathématique, Ann. Sci. École Norm. Sup. 3^e série, tome **19** (1902), 455–490.
- [14] D. W. Stroock, Weyl's lemma, one of many, Groups and analysis, 164-173, London Math. Soc. Lecture Notes Ser., 354, Cambridge Univ. Press, Cambridge, 2008.
- [15] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1998.
- [16] O. Torné, Steklov problem with an indefinite weight for the p-Laplacian, Electron. J. Differential Equations 2005 (2005), 1–8.
- [17] L. Véron, Première valeur propre non nulle du p-Laplacien et équations quasilinéaires elliptiques sur une variété riemanniene compacte, C. R. Acad. Sci. Paris 314 (1992), 271–276.
- [18] P. Winkert, On the boundedness of solutions to elliptic variational inequalities, Set-Valued Var. Anal. 22 (2014), 763–781.
- [19] C. Xia and Q. Wang, *Inequalities for the Steklov eigenvalues*, Chaos, Solitons & Fractals 48 (2013), 61–67.
- [20] C. Zălinescu, Mathematical Programming in Infinite Dimensional Normed Spaces (in Romanian), Editura Academiei, Bucharest, 1998.

N. Costea

Department of Mathematics and Computer Science, "Politehnica" University, 313 Splaiul Independenței, 060042 Bucharest, Romania

 $E\text{-}mail\ address: \verb|nicusorcostea@yahoo.com||$

G. Moroşanu

Faculty of Mathematics and Informatics, Babeş-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania

 $E\text{-}mail\ address{:}\ \texttt{morosanu@math.ubbcluj.ro}$