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In 2013, using the resolvent Jf given by (1.1), Bačák [2, Theorem 1.4] obtained
a ∆-convergence theorem on the proximal point algorithm for convex functions in
Hadamard spaces, which generalizes the corresponding result by Brézis and Lions [7,
Théorème 9] in Hilbert spaces to more general Hadamard spaces. This algorithm
was first introduced by Martinet [20] for variational inequality problems and gener-
ally studied by Rockafellar [23] for maximal monotone operators in Hilbert spaces.
See also Bruck and Reich [9] on some related results for strongly nonexpansive
mappings in Banach spaces. Recently, Kimura and Kohsaka [16] obtained existence
and convergence theorems on two modified proximal point algorithms for convex
functions in Hadamard spaces.

On the other hand, Ohta and Pálfia [22, Definition 4.1 and Lemma 4.2] showed
that the resolvent Jf in (1.1) is well defined also in a complete CAT(1) space such
that diam(X) < π/2, where diam(X) denotes the diameter of X. Using this result,
they [22, Theorem 5.1] studied the proximal point algorithm for convex functions in
such spaces. We note that if X is a complete CAT(1) space such that diam(X) <
π/2, then every sequence in X has a ∆-convergent subsequence and every proper
lower semicontinuous convex function of X into (−∞,∞] has a minimizer; see [10,
Corollary 4.4] and [15, Corollary 3.3], respectively. Thus the condition diam(X) <
π/2 for a complete CAT(1) space X can be seen as a counterpart of the boundedness
condition for an Hadamard space X.

Considering the geometric difference between Hadamard spaces and complete
CAT(1) spaces, Kimura and Kohsaka [15, Definition 4.3] recently introduced the
concept of resolvents of convex functions in complete CAT(1) spaces as follows. Let
X be a complete CAT(1) space which is admissible, i.e.,

d(v, v′) <
π

2
(1.2)

for all v, v′ ∈ X and f a proper lower semicontinuous convex function of X into
(−∞,∞]. It is known [15, Theorem 4.2] that the resolvent Rf of f , which is given
by

Rfx = argmin
y∈X

{
f(y) + tan d(y, x) sin d(y, x)

}
(1.3)

for all x ∈ X, is a well-defined mapping of X into itself. It is also known [15,
Theorem 4.6] that F(Rf ) coincides with argminX f , the inequality(

C2
x(1 + C2

y )Cy + C2
y (1 + C2

x)Cx

)
cos d(Rfx,Rfy)

≥ C2
x(1 + C2

y ) cos d(Rfx, y) + C2
y (1 + C2

x) cos d(Rfy, x)
(1.4)

holds for all x, y ∈ X, and Rf is firmly spherically nonspreading, i.e.,

(Cx + Cy) cos
2 d(Rfx,Rfy) ≥ 2 cos d(Rfx, y) cos d(Rfy, x)(1.5)

for all x, y ∈ X, where Cz = cos d(Rfz, z) for all z ∈ X. The inequality (1.4) means
that Rf is firmly vicinal in the sense of this paper.

Moreover, Kimura and Kohsaka [15] obtained fixed point theorems and
∆-convergence theorems for firmly spherically nonspreading mappings and applied
them to convex optimization in complete CAT(1) spaces. However, they did not
study the fixed point problem for mappings satisfying (1.4). Since (1.4) is stronger
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than (1.5), we can obtain fixed point and ∆-convergence theorems which are inde-
pendent of the results in [15].

More recently, applying the resolvent Rf given by (1.3), Kimura and Kohsaka [17]
and Esṕınola and Nicolae [11] independently studied the proximal point algorithm
for convex functions in complete CAT(κ) spaces with a positive real number κ.

This paper is organized as follows. In Section 2, we recall some definitions and
results needed in this paper. In Section 3, we give the definitions of vicinal mappings
and firmly vicinal mappings in metric spaces such that the distance of two arbitrary
points is less than or equal to π/2; see (3.2) and (3.3). In Section 4, we obtain a
fixed point theorem for vicinal mappings and a ∆-convergence theorem for firmly
vicinal mappings in admissible complete CAT(1) spaces; see Theorems 4.1 and 4.5,
respectively. We also apply our results to convex optimization in such spaces; see
Corollary 4.8. In Section 5, we define the concepts of κ-vicinal mappings and firmly
κ-vicinal mappings and obtain two corollaries of our results in complete CAT(κ)
spaces with a positive real number κ; see Corollaries 5.1 and 5.2.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of all positive integers and
all real numbers, respectively. We denote by X a metric space with metric d. The
diameter of X is denoted by diam(X). The closed ball with radius r ≥ 0 centered at
p ∈ X is denoted by Sr[p]. For a mapping T of X into itself, we denote by F(T ) the
set of all u ∈ X such that Tu = u. For a function f of X into (−∞,∞], we denote
by argminX f or argminy∈X f(y) the set of all u ∈ X such that f(u) = inf f(X). In
the case where argminX f = {p} for some p ∈ X, we identify argminX f with p.

A mapping T of X into itself is said to be asymptotically regular if

lim
n→∞

d(Tn+1x, Tnx) = 0

for all x ∈ X. For a sequence {xn} in X, the asymptotic center A
(
{xn}

)
of {xn} is

defined by

A
(
{xn}

)
=

{
z ∈ X : lim sup

n→∞
d(xn, z) = inf

y∈X
lim sup
n→∞

d(xn, y)

}
.

The sequence {xn} is said to be ∆-convergent to a point p ∈ X if

A
(
{xni}

)
= {p}

for each subsequence {xni} of {xn}. If X is a Hilbert space, then the sequence
{xn} is ∆-convergent to p if and only if it is weakly convergent to the point. For a
sequence {xn} in X, we denote by ω∆

(
{xn}

)
the set of all z ∈ X such that there

exists a subsequence of {xn} which is ∆-convergent to z. See [3, 10, 19] for more
details on the concept of ∆-convergence.

Let λ be a positive real number. A metric space X is said to be λ-geodesic if
for each x, y ∈ X with d(x, y) < λ, there exists a mapping c : [0, l] → X such that
c(0) = x, c(l) = y, and

d
(
c(t1), c(t2)

)
= |t1 − t2|
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for all t1, t2 ∈ [0, l], where l = d(x, y). The mapping c is called a geodesic from x to
y. In this case, the geodesic segment [x, y] is defined by

[x, y] = {c(t) : 0 ≤ t ≤ l}
and the point αx⊕ (1− α)y is defined by

αx⊕ (1− α)y = c
(
(1− α)l

)
for all α ∈ [0, 1]. A subset C of a λ-geodesic space X such that d(v, v′) < λ for all
v, v′ ∈ C is said to be convex if

αx⊕ (1− α)y ∈ C

whenever x, y ∈ C, c is a geodesic from x to y, and α ∈ [0, 1]. We note that the set
[x, y] and the point αx⊕ (1−α)y depend on the choice of a geodesic c from x to y.
However, they are determined uniquely if the space X is uniquely λ-geodesic, i.e.,
there exists a unique geodesic from x to y for each x, y ∈ X with d(x, y) < λ. See
Bačák [3] and Bridson and Haefliger [8] for more details on geodesic spaces.

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and the induced norm
∥ · ∥ and SH the unit sphere of H. The spherical metric ρSH

on SH is defined by

ρSH
(x, y) = arccos ⟨x, y⟩

for all x, y ∈ SH . It is known that (SH , ρSH
) is a uniquely π-geodesic complete

metric space whose metric topology coincides with the relative norm topology on
SH . If x, y ∈ SH and 0 < ρSH

(x, y) < π, then the unique geodesic c from x to y is
given by

c(t) = (cos t)x+ (sin t) · y − ⟨x, y⟩x
∥y − ⟨x, y⟩x∥

for all t ∈ [0, ρSH
(x, y)]. The space (SH , ρSH

) is called a Hilbert sphere. We denote
by S2 the unit sphere of the three dimensional Euclidean space R3 with the spherical
metric ρS2 on S2.

Let X be a π-geodesic metric space and x1, x2, x3 points in X satisfying

d(x1, x2) + d(x2, x3) + d(x3, x1) < 2π.(2.1)

According to [8, Lemma 2.14 in Chapter I.2], there exist x̄1, x̄2, x̄3 ∈ S2 such that
d(xi, xi+1) = ρS2(x̄i, x̄i+1) for all i ∈ {1, 2, 3}, where x4 = x1 and x̄4 = x̄1. The sets
∆ and ∆̄ given by

∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] and ∆̄ = [x̄1, x̄2] ∪ [x̄2, x̄3] ∪ [x̄3, x̄1]

are called a geodesic triangle with vertices x1, x2, x3 and a comparison triangle for
∆ in S2, respectively. A point p̄ ∈ ∆̄ is called a comparison point for p ∈ ∆ if

p ∈ [xi, xj ], p̄ ∈ [x̄i, x̄j ], and d(xi, p) = ρS2(x̄i, p̄)

for some distinct i, j ∈ {1, 2, 3}.
A metric space X is said to be a CAT(1) space if it is π-geodesic and

d(p, q) ≤ ρS2(p̄, q̄)

whenever ∆ is a geodesic triangle with vertices x1, x2, x3 ∈ X satisfying (2.1), ∆̄ is
a comparison triangle for ∆ in S2, and p̄, q̄ ∈ ∆̄ are comparison points for p, q ∈ ∆,
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respectively. In this case, X is uniquely π-geodesic. It is known that Hilbert spaces,
Hilbert spheres, and Hadamard spaces are complete CAT(1) spaces. See Bačák [3],
Bridson and Haefliger [8], and Goebel and Reich [12] for more details on Hadamard
spaces, CAT(κ) spaces with a real number κ, and Hilbert spheres, respectively.

A CAT(1) space X is said to be admissible if (1.2) holds for all v, v′ ∈ X. A
sequence {xn} in X is said to be spherically bounded if

inf
y∈X

lim sup
n→∞

d(xn, y) <
π

2
.

In particular, if diam(X) < π/2, then the space X is admissible and every sequence
in X is spherically bounded.

We know the following fundamental lemmas.

Lemma 2.1 ([10, Proposition 4.1 and Corollary 4.4]). Let X be a complete CAT(1)
space and {xn} a spherically bounded sequence in X. Then A

(
{xn}

)
is a singleton

and {xn} has a ∆-convergent subsequence.

Lemma 2.2 ([18, Proposition 3.1]). Let X be a complete CAT(1) space and {xn}
a spherically bounded sequence in X such that {d(xn, z)} is convergent for each z
in ω∆

(
{xn}

)
. Then {xn} is ∆-convergent to an element of X.

Lemma 2.3 (See, for instance, [15, Lemma 2.3]). Let X be a CAT(1) space and
x1, x2, x3 points in X such that (2.1) holds. If d(x1, x3) ≤ π/2, d(x2, x3) ≤ π/2,
and α ∈ [0, 1], then

cos d
(
αx1 ⊕ (1− α)x2, x3

)
≥ α cos d(x1, x3) + (1− α) cos d(x2, x3).

Let X be an admissible CAT(1) space and f a function of X into (−∞,∞]. Then
f is said to be proper if f(a) ∈ R for some a ∈ X. It is also said to be convex if

f
(
αx⊕ (1− α)y

)
≤ αf(x) + (1− α)f(y)

whenever x, y ∈ X and α ∈ (0, 1). If C is a nonempty closed convex subset of X,
then the indicator function iC for C, which is defined by iC(x) = 0 if x ∈ C and ∞
if x ∈ X \C, is a proper lower semicontinuous convex function of X into (−∞,∞].
A function g of X into [−∞,∞) is said to be concave if −g is convex. See [14, 25]
on some examples of convex functions in CAT(1) spaces.

It is known [15, Theorem 4.2] that if X is an admissible complete CAT(1) space,
f is a proper lower semicontinuous convex function of X into (−∞,∞], and x ∈ X,
then there exists a unique x̂ ∈ X such that

f(x̂) + tan d(x̂, x) sin d(x̂, x) = inf
y∈X

{
f(y) + tan d(y, x) sin d(y, x)

}
.

Following [15, Definition 4.3], we define the resolvent Rf of f by Rfx = x̂ for all
x ∈ X. In other words, Rf is given by (1.3) for all x ∈ X. The resolvent of the
indicator function iC for a nonempty closed convex subset C of X coincides with
the metric projection PC of X onto C, i.e.,

RiC (x) = argmin
y∈X

{
iC(y) + tan d(y, x) sin d(y, x)

}
= argmin

y∈C
tan d(y, x) sin d(y, x) = argmin

y∈C
d(y, x) = PCx
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for all x ∈ X.
We recently obtained the following maximization theorem.

Theorem 2.4 ([17, Theorem 4.1]). Let X be an admissible complete CAT(1) space,
{zn} a spherically bounded sequence in X, {βn} a sequence of positive real numbers
such that

∑∞
n=1 βn = ∞, and g the real function on X defined by

g(y) = lim inf
n→∞

1∑n
l=1 βl

n∑
k=1

βk cos d(y, zk)(2.2)

for all y ∈ X. Then g is a concave and nonexpansive function of X into [0, 1] and
g has a unique maximizer.

We say that a real function f on a nonempty subset I of R is nondecreasing if
f(s1) ≤ f(s2) whenever s1, s2 ∈ I and s1 ≤ s2. We also say that f is nonincreasing
if −f is nondecreasing. It is clear that if A is a nonempty bounded subset of R, I is
a closed subset of R which contains A, and f is a continuous and nondecreasing real
function on I, then f(supA) = sup f(A) and f(inf A) = inf f(A). In fact, setting
α = supA, we have α ∈ I by the closedness of I. Since s ≤ α for all s ∈ A and f is
nondecreasing, we have f(s) ≤ f(α) for all s ∈ A. Thus we obtain sup f(A) ≤ f(α).
On the other hand, the definition of α implies that there exists a sequence {sn} in
A converging to α. Since f is continuous, we have f(α) = limn f(sn) ≤ sup f(A).
Thus we have f(α) = sup f(A). The second equality can be shown similarly. Using
these two equalities, we can show the following.

Lemma 2.5. Let I be a nonempty closed subset of R, {tn} a bounded sequence in
I, and f a continuous real function on I. Then the following hold.

(i) If f is nondecreasing, then f(lim supn tn) = lim supn f(tn);
(ii) if f is nonincreasing, then f(lim supn tn) = lim infn f(tn).

3. Vicinal mappings and firmly vicinal mappings

In this section, motivated by the fact that the resolvent Rf defined by (1.3)
satisfies the inequality (1.4), we give the definition of vicinal mappings and firmly
vicinal mappings. We also study some fundamental properties of these mappings.

Let X be a metric space such that d(v, v′) ≤ π/2 for all v, v′ ∈ X, T a mapping
of X into itself, and Cz the real number given by

Cz = cos d(Tz, z)(3.1)

for all z ∈ X.
The mapping T is said to be

• vicinal if(
C2
x(1 + C2

y ) + C2
y (1 + C2

x)
)
cos d(Tx, Ty)

≥ C2
x(1 + C2

y ) cos d(Tx, y) + C2
y (1 + C2

x) cos d(Ty, x)
(3.2)

for all x, y ∈ X;
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• firmly vicinal if(
C2
x(1 + C2

y )Cy + C2
y (1 + C2

x)Cx

)
cos d(Tx, Ty)

≥ C2
x(1 + C2

y ) cos d(Tx, y) + C2
y (1 + C2

x) cos d(Ty, x)
(3.3)

for all x, y ∈ X.

Recall that T is said to be

• spherically nonspreading [15] if

cos2 d(Tx, Ty) ≥ cos d(Tx, y) cos d(Ty, x)

for all x, y ∈ X;
• firmly spherically nonspreading [15] if

(Cx + Cy) cos
2 d(Tx, Ty) ≥ 2 cos d(Tx, y) cos d(Ty, x)

for all x, y ∈ X;
• quasi-nonexpansive if F(T ) is nonempty and d(Tx, y) ≤ d(x, y) for all x ∈ X
and y ∈ F(T ).

Since Cz ≤ 1 for all z ∈ X, every firmly spherically nonspreading mapping is
spherically nonspreading. We know the following result.

Lemma 3.1 ([15, Theorem 4.6]). Let X be an admissible complete CAT(1) space,
f a proper lower semicontinuous convex function of X into (−∞,∞], and Rf the
resolvent of f . Then Rf is a firmly vicinal mapping of X into itself such that F(Rf )
coincides with argminX f .

We first show the following fundamental lemma.

Lemma 3.2. Let X be a metric space such that d(v, v′) ≤ π/2 for all v, v′ ∈ X and
T a mapping of X into itself. Then the following hold.

(i) Suppose that T is firmly vicinal. Then T is vicinal. Further, if d(v, v′) < π/2
for all v, v′ ∈ X, then T is firmly spherically nonspreading;

(ii) if T is firmly vicinal and F(T ) is nonempty, then

cos d(Tx, x) cos d(Tx, y) ≥ cos d(x, y)

for all x ∈ X and y ∈ F(T );
(iii) if T is vicinal and F(T ) is nonempty, then it is quasi-nonexpansive;
(iv) if d(v, v′) < π/2 for all v, v′ ∈ X, T is firmly vicinal, and F(T ) is nonempty,

then T is asymptotically regular.

Proof. Let Cz be the real number given by (3.1) for all z ∈ C. We first prove (i).
Suppose that T is firmly vicinal. It is obvious that T is vicinal since Cz ≤ 1 for
all z ∈ X. Further, suppose that d(v, v′) < π/2 for all v, v′ ∈ X. Then, using
an idea in [15, Theorem 4.6], we show that T is firmly spherically nonspreading.
Let x, y ∈ X be given. By the definition of firm vicinality and the inequality of
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arithmetic and geometric means, we have(
C2
x(1 + C2

y )Cy + C2
y (1 + C2

x)Cx

)
cos d(Tx, Ty)

≥ C2
x cos d(Tx, y) + C2

y cos d(Ty, x)

+ C2
xC

2
y

(
cos d(Tx, y) + cos d(Ty, x)

)
≥ 2CxCy(1 + CxCy)

√
cos d(Tx, y) cos d(Ty, x).

(3.4)

On the other hand, we have

C2
x(1 + C2

y )Cy + C2
y (1 + C2

x)Cx = CxCy(Cx + Cy)(1 + CxCy).(3.5)

Noting that CxCy > 0, we have from (3.4) and (3.5) that

(Cx + Cy)
2 cos2 d(Tx, Ty) ≥ 4 cos d(Tx, y) cos d(Ty, x).

Since 2 ≥ Cx + Cy, we know that T is firmly spherically nonspreading.
We next prove (ii). Suppose that T is firmly vicinal and F(T ) is nonempty. Let

x ∈ X and y ∈ F(T ) be given. Since Ty = y and Cy = 1, we have(
2C2

x + (1 + C2
x)Cx

)
cos d(Tx, y) ≥ 2C2

x cos d(Tx, y) + (1 + C2
x) cos d(y, x)

and hence

(1 + C2
x)Cx cos d(Tx, y) ≥ (1 + C2

x) cos d(x, y).

Thus we obtain the conclusion.
We next prove (iii). Suppose that T is vicinal and F(T ) is nonempty. Let x ∈ X

and y ∈ F(T ) be given. Then we have(
2C2

x + (1 + C2
x)
)
cos d(Tx, y) ≥ 2C2

x cos d(Tx, y) + (1 + C2
x) cos d(y, x)

and hence

(1 + C2
x) cos d(Tx, y) ≥ (1 + C2

x) cos d(x, y).

This implies that

cos d(Tx, y) ≥ cos d(x, y)

and hence we obtain the conclusion.
We finally prove (iv). Suppose that d(v, v′) < π/2 for all v, v′ ∈ X, T is firmly

vicinal, and F(T ) is nonempty. Let x ∈ X and y ∈ F(T ) be given. Then it follows
from (i) and (iii) that T is quasi-nonexpansive. This implies that

d(Tn+1x, y) ≤ d(Tnx, y) ≤ d(x, y) <
π

2

for all n ∈ N and hence {d(Tnx, y)} converges to some l ∈ [0, π/2). Then it follows
from (ii) that

1 ≥ cos d(Tn+1x, Tnx) ≥ cos d(Tnx, y)

cos d(Tn+1x, y)
→ cos l

cos l
= 1.

This yields that cos d(Tn+1x, Tnx) → 1. Therefore we obtain the conclusion. �

The following example shows that there exists a discontinuous spherically non-
spreading mapping in an admissible complete CAT(1) space.
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Example 3.3. Let (SH , ρSH
) be a Hilbert sphere, both r and δ real numbers such

that

π

8
< r <

π

4
, 0 < δ < 1, and cos

π

8
≤ cos2

δπ

8
,

p an element of SH , A = {p}, B = Sδπ/8[p], C = Sπ/8[p], X = Sr[p], and both PA

and PB the metric projections of X onto A and B, respectively. Then the mapping
T given by

Tx =

{
PAx (x ∈ C);

PBx (x ∈ X \ C)

is a spherically nonspreading mapping of X into itself.

Proof. We denote by d the restriction of ρSH
on X ×X. Since

d(x, y) ≤ d(x, p) + d(p, y) ≤ 2r <
π

2

for all x, y ∈ X, the space X is admissible. We can see that X is a convex subset
of SH . In fact, if x, y ∈ X and α ∈ [0, 1], then Lemma 2.3 implies that

cos d
(
αx⊕ (1− α)y, p

)
≥ α cos d(x, p) + (1− α) cos d(y, p)

≥ α cos r + (1− α) cos r = cos r.

This implies that d(αx⊕ (1−α)y, p) ≤ r and hence αx⊕ (1−α)y ∈ X. Since X is
a nonempty closed convex subset of the complete CAT(1) space SH , the space X is
also a complete CAT(1) space. We can also see that B is a convex subset of X.

By Lemmas 3.1 and 3.2, we know that PA and PB are spherically nonspreading
and hence

cos2 d(Tx, Ty) ≥ cos d(Tx, y) cos d(Ty, x)

whenever (x, y) ∈ C2 or (x, y) ∈ (X \ C)2. Suppose that x ∈ X \ C and y ∈ C.
Then we have d(Tx, Ty) = d(PBx, p) ≤ δπ/8 and hence

cos2 d(Tx, Ty) ≥ cos2
δπ

8
.(3.6)

On the other hand, we have d(Ty, x) = d(p, x) > π/8 and hence

cos d(Ty, x) < cos
π

8
.(3.7)

By (3.6) and (3.7), we have

cos d(Tx, y) cos d(Ty, x) ≤ cos d(Ty, x) < cos
π

8
≤ cos2

δπ

8
≤ cos2 d(Tx, Ty).

Therefore T is spherically nonspreading. �
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4. Existence and approximation of fixed points

In this section, we study the existence and approximation of fixed points of vicinal
mappings and firmly vicinal mappings, respectively.

Using Theorem 2.4, we obtain the following fixed point theorem for vicinal map-
pings in admissible complete CAT(1) spaces.

Theorem 4.1. Let X be an admissible complete CAT(1) space and T a vicinal
mapping of X into itself. Then F(T ) is nonempty if and only if there exists x ∈ X
such that {Tnx} is spherically bounded and supn d(T

nx, Tn−1x) < π/2.

Proof. Let Cz be the real number given by (3.1) for all z ∈ C. The only if part is
obvious. In fact, if F(T ) is nonempty and x ∈ F(T ), then we have

sup
n

d(Tnx, Tn−1x) = 0 <
π

2

and

inf
y∈X

lim sup
n→∞

d(Tnx, y) = inf
y∈X

d(x, y) <
π

2
,

where the last inequality follows from the admissibility of X.
We next prove the if part. Suppose that there exists x ∈ X such that {Tnx} is

spherically bounded and supn d(T
nx, Tn−1x) < π/2. Set

xn = Tn−1x, βn =
C2
xn

1 + C2
xn

, and σn =
n∑

k=1

βk

for all n ∈ N and let g be the real function on X defined by

g(y) = lim inf
n→∞

1

σn

n∑
k=1

βk cos d(y, xk+1)

for all y ∈ X. Since

inf
n

Cxn = inf
n

cos d(Tnx, Tn−1x) = cos

(
sup
n

d(Tnx, Tn−1x)

)
> cos

π

2
= 0,

we have

σn =

n∑
k=1

βk ≥ 1

2

n∑
k=1

C2
xk

≥
(
inf
m

Cxm

)2 n

2
→ ∞

as n → ∞. Hence we have
∑∞

n=1 βn = ∞. Thus Theorem 2.4 ensures that g has a
unique maximizer p ∈ X.

On the other hand, the vicinality of T implies that(
C2
xk
(1 + C2

p) + C2
p(1 + C2

xk
)
)
cos d(xk+1, Tp)

≥ C2
xk
(1 + C2

p) cos d(xk+1, p) + C2
p(1 + C2

xk
) cos d(Tp, xk)
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and hence

C2
xk

1 + C2
xk

cos d(xk+1, Tp)

≥
C2
xk

1 + C2
xk

cos d(xk+1, p) +
C2
p

1 + C2
p

(
cos d(Tp, xk)− cos d(Tp, xk+1)

)
for all k ∈ N. This inequality yields

1

σn

n∑
k=1

βk cos d(xk+1, Tp)

≥ 1

σn

n∑
k=1

βk cos d(xk+1, p) +
1

σn
·

C2
p

1 + C2
p

(
cos d(Tp, x1)− cos d(Tp, xn+1)

)
.

Taking the lower limit in this inequality, we obtain g(Tp) ≥ g(p). Since p is the
unique maximizer of g, we conclude that Tp = p. Therefore T has a fixed point. �

Remark 4.2. In [15, Theorem 5.2], it was shown that if X is an admissible complete
CAT(1) space and T is a spherically nonspreading mapping of X into itself, then
F(T ) is nonempty if and only if there exists x ∈ X such that

lim sup
n→∞

d(Tnx, Ty) <
π

2

for all y ∈ X. Note that Theorem 4.1 is independent of this result.

As a direct consequence of Theorem 4.1, we obtain the following corollary.

Corollary 4.3. Let X be a complete CAT(1) space such that diam(X) < π/2. Then
every vicinal mapping T of X into itself has a fixed point.

Before obtaining a ∆-convergence theorem, we show the following demiclosedness
principle for vicinal mappings.

Lemma 4.4. Let X be a metric space such that d(v, v′) < π/2 for all v, v′ ∈ X, T
a vicinal mapping of X into itself, p an element of X, and {xn} a sequence in X
such that A

(
{xn}

)
= {p} and d(Txn, xn) → 0. Then p is a fixed point of T .

Proof. Let Cz be the real number given by (3.1) for all z ∈ C. Since d(Txn, xn) → 0,
we know that

lim
n→∞

Cxn = 1.(4.1)

On the other hand, since t 7→ cos t is nonexpansive and d(Txn, xn) → 0, we have

|cos d(xn, Tp)− cos d(Txn, Tp)| ≤ |d(xn, Tp)− d(Txn, Tp)|
≤ d(xn, Txn) → 0

and hence

lim
n→∞

(
d(xn, Tp)− cos d(Txn, Tp)

)
= 0.(4.2)
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The vicinality of T implies that(
C2
xn
(1 + C2

p) + C2
p(1 + C2

xn
)
)
cos d(Txn, Tp)

≥ C2
xn
(1 + C2

p) cos d(Txn, p) + C2
p(1 + C2

xn
) cos d(Tp, xn)

and hence

cos d(Txn, Tp)

≥ cos d(Txn, p) +
C2
p

1 + C2
p

·
1 + C2

xn

C2
xn

(
cos d(xn, Tp)− cos d(Txn, Tp)

)(4.3)

for all n ∈ N.
Using (4.1), (4.2), and (4.3), we have

lim inf
n→∞

cos d(Txn, Tp) ≥ lim inf
n→∞

cos d(Txn, p).

Then it follows from Lemma 2.5 that

cos

(
lim sup
n→∞

d(Txn, Tp)

)
= lim inf

n→∞
cos d(Txn, Tp)

≥ lim inf
n→∞

cos d(Txn, p) = cos

(
lim sup
n→∞

d(Txn, p)

)
and hence

lim sup
n→∞

d(Txn, Tp) ≤ lim sup
n→∞

d(Txn, p).

It then follows from d(Txn, xn) → 0 that

lim sup
n→∞

d(xn, Tp) = lim sup
n→∞

d(Txn, Tp)

≤ lim sup
n→∞

d(Txn, p) = lim sup
n→∞

d(xn, p).

Thus, since A
(
{xn}

)
= {p}, we conclude that Tp = p. �

We next obtain the following ∆-convergence theorem for firmly vicinal mappings
in admissible complete CAT(1) spaces.

Theorem 4.5. Let X be an admissible complete CAT(1) space and T a firmly
vicinal mapping of X into itself. If F(T ) is nonempty, then {Tnx} is ∆-convergent
to an element of F(T ) for each x ∈ X.

Proof. Let x ∈ X be given. By (i) and (iii) of Lemma 3.2, T is quasi-nonexpansive.
Combining this property with the admissibility of X, we have

d(Tn+1x, y) ≤ d(Tnx, y) ≤ d(x, y) <
π

2

for each y ∈ F(T ). This gives us that the sequence {d(Tnx, y)} converges to an
element of [0, π/2) for each y ∈ F(T ). Since

inf
y∈X

lim sup
n→∞

d(Tnx, y) ≤ inf
y∈F(T )

lim sup
n→∞

d(Tnx, y) ≤ inf
y∈F(T )

d(x, y) <
π

2
,

the sequence {Tnx} is spherically bounded.
Let z be any element of ω∆

(
{Tnx}

)
. By the definition of ω∆

(
{Tnx}

)
, there

exists a subsequence {Tnix} of {Tnx} which is ∆-convergent to z. Then we have
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A
(
{Tnix}

)
= {z}. By (iv) of Lemma 3.2, we know that T is asymptotically regular

and hence

lim
i→∞

d
(
T (Tnix), Tnix

)
= lim

n→∞
d(Tn+1x, Tnx) = 0.

According to Lemma 4.4, we have z ∈ F(T ). Thus ω∆

(
{Tnx}

)
is contained by

F(T ). Consequently, the real sequence {d(Tnx, z)} is convergent for each z in
ω∆

(
{Tnx}

)
. Then, it follows from Lemma 2.2 that {Tnx} is ∆-convergent to some

p ∈ X. Since every subsequence of {Tnx} is also ∆-convergent to p, we obtain

{p} = ω∆

(
{Tnx}

)
⊂ F(T ).

Therefore we conclude that p is a fixed point of T . �

Remark 4.6. In [15, Theorem 6.5], it was shown that if X is an admissible complete
CAT(1) space and T is a firmly spherically nonspreading mapping of X into itself
such that F(T ) is nonempty and

lim sup
n→∞

d(yn, T y) <
π

2
(4.4)

whenever {yn} is a sequence in X which is ∆-convergent to y ∈ X, then {Tnx} is
∆-convergent to an element of F(T ) for each x ∈ X. By Theorem 4.5, we know that
the assumption (4.4) is not needed for the special case where T is firmly vicinal.

As a direct consequence of Corollary 4.3 and Theorem 4.5, we obtain the following
corollary.

Corollary 4.7. Let X be a complete CAT(1) space such that diam(X) < π/2 and
T a firmly vicinal mapping of X into itself. Then {Tnx} is ∆-convergent to an
element of F(T ) for each x ∈ X.

As a direct consequence of Lemma 3.1, Theorems 4.1, and 4.5, we obtain the
following corollary.

Corollary 4.8. Let X be an admissible complete CAT(1) space, f a proper lower
semicontinuous convex function of X into (−∞,∞], and Rf the resolvent of f .
Then argminX f is nonempty if and only if there exists x ∈ X such that {Rn

fx}
is spherically bounded and supn d(R

n
fx,R

n−1
f x) < π/2. In this case, {Rn

fx} is ∆-

convergent to an element of argminX f for each x ∈ X.

5. Results in CAT(κ) spaces with a positive κ

In this section, we define the concepts of κ-vicinal mappings and firmly κ-vicinal
mappings and obtain two corollaries of our results for these mappings in complete
CAT(κ) spaces with a positive real number κ.

Let κ be a positive real number, X a metric space such that d(v, v′) ≤ π/(2
√
κ)

for all v, v′ ∈ X, T a mapping of X into itself, and C̃z the real number defined by

C̃z = cos
√
κd(Tz, z)

for all z ∈ X. The mapping T is said to be
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• κ-vicinal if(
C̃2
x(1 + C̃2

y ) + C̃2
y (1 + C̃2

x)
)
cos

√
κd(Tx, Ty)

≥ C̃2
x(1 + C̃2

y ) cos
√
κd(Tx, y) + C̃2

y (1 + C̃2
x) cos

√
κd(Ty, x)

for all x, y ∈ X;
• firmly κ-vicinal if(

C̃2
x(1 + C̃2

y )C̃y + C̃2
y (1 + C̃2

x)C̃x

)
cos

√
κd(Tx, Ty)

≥ C̃2
x(1 + C̃2

y ) cos
√
κd(Tx, y) + C̃2

y (1 + C̃2
x) cos

√
κd(Ty, x)

for all x, y ∈ X.

Note that 1-vicinal mappings and firmly 1-vicinal mappings are coincident with
vicinal mappings and firmly vicinal mappings, respectively.

Let κ be a positive real number, Dκ the real number given by Dκ = π/
√
κ, and

(Mκ, ρκ) the uniquely Dκ-geodesic space given by

(Mκ, ρκ) =

(
S2,

1√
κ
ρS2

)
.

A metric space X is said to be a CAT(κ) space if it is Dκ-geodesic and

d(p, q) ≤ ρκ(p̄, q̄)

whenever ∆ is a geodesic triangle with vertices x1, x2, x3 ∈ X satisfying

d(x1, x2) + d(x2, x3) + d(x3, x1) < 2Dκ,

∆̄ is a comparison triangle for ∆ in Mκ, and p̄, q̄ ∈ ∆̄ are comparison points for
p, q ∈ ∆, respectively. It is obvious that (X, d) is a complete CAT(κ) space such that
d(v, v′) < Dκ/2 for all v, v′ ∈ X if and only if (X,

√
κd) is an admissible complete

CAT(1) space.
As direct consequences of Theorems 4.1 and 4.5, we obtain the following two

corollaries, respectively.

Corollary 5.1. Let κ be a positive real number, X a complete CAT(κ) space such
that d(v, v′) < Dκ/2 for all v, v′ ∈ X, and T a κ-vicinal mapping of X into itself.
Then F(T ) is nonempty if and only if there exists x ∈ X such that

inf
y∈X

lim sup
n→∞

d(Tnx, y) <
Dκ

2
and sup

n
d(Tnx, Tn−1x) <

Dκ

2
.

Corollary 5.2. Let κ be a positive real number, X a complete CAT(κ) space such
that d(v, v′) < Dκ/2 for all v, v′ ∈ X, and T a firmly κ-vicinal mapping of X into
itself. If F(T ) is nonempty, then {Tnx} is ∆-convergent to an element of F(T ) for
each x ∈ X.
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