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8, 9, 11, 18]). In [9], Castaing studied for the first time the second-order sweeping
process of the following form:

(1.3)

 ü(t) ∈ −NC(u(t))(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0 ∈ C(0), u̇(0) = v0 ∈ C(u0),

where C : H → 2H is a set-valued mapping with convex and compact values. In a
recent paper [1], the authors considered the (possibly) unbounded convex second-
order sweeping processes with perturbation in a Hilbert space of the following form

(S)

{
ü(t) ∈ −NC(t,u(t))(u̇(t))−F(t, u(t), u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0, u̇(0) = v0 ∈ C(0, u0),

where C : [0, T ] ×H → 2H , (t, x) 7→ C(t, x) ⊂ H has closed convex and possibly
unbounded values, and F : [0, T ] × H × H → 2H , (t, x, y) 7→ F(t, x, y) ⊂ H is a
given set-valued map. In addition, the set C(t, .) is assumed to satisfy a Lipschitz
variation of intersection with some particular ball, a property that is verified by
many unbounded sets. The set-valued perturbation F is supposed to be upper
semicontinuous with convex and weakly compact values, and only need to satisfy
the weak linear growth condition (i.e. the intersection between the ball with linear
growth and the perturbation is nonempty). To go beyond the convexity assumption
of the moving set, which could too restrictive in some applications, the notion
of prox-regularity seems to be suitable to handle first and second-order sweeping
processes in the infinite dimensional Hilbert spaces settings (see, e.g. [2, 3] and the
references therein). The prox-regular second-order state-dependent case in a Hilbert
space was firstly studied in [12] by using a discretization technique. Recently it was
also considered in [19] by using Schauder’s fixed point theorem and in [2] when the
moving set varies in a bounded variation way which allows discontinuous solutions.
However, these last works use the global Hausdorff distance that may not allow
the moving set to be unbounded. We propose to analyze in the current paper
the prox-regular and unbounded moving set associated to the dynamic (S), which
could be of great interest in many applications in unilateral mechanical systems
and nonregular electrical circuits. Note that we only use a kind of local one-sided
Lipschitz continuity property (local excess) rather than the usual Hausdorff distance
to describe the way the set of constraints is moving.

The paper is organized as follows. In Section 2, we recall some basic notations,
definitions and results that will be used throughout the paper. The existence of
solutions are thoroughly analyzed in Section 3 by using an implicit discretization
scheme which allows the unboundedness of the moving set and adapted to the prox-
regular settings. Some conclusions and perspectives end the paper in Section 4.

2. Definitions and preliminaries

We begin with some notations, definitions and mathematical backgrounds that
will be used later. Let H be a real Hilbert space. We denote by ⟨·, ·⟩ , ∥·∥ the scalar
product and the corresponding norm in H. Denote by I the identity operator, by
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B the unit ball in H and Br := rB, Br(x) := x + rB. The distance from a point
s ∈ H to a set C ⊂ H, denoted by d(s, C) or dC(s), is defined by

d(s, C) := inf
x∈C

∥s− x∥.

The excess of C1 over C2 is defined by

e(C1, C2) := sup
x1∈C1

d(x1, C2).

The set of all points in C that are nearest to s ∈ H is denoted by

Proj(C, s) := {x ∈ C : ∥s− x∥ = d(s, C)}.

When Proj(C, s) = {x}, we can write x = proj(C, s) to emphasize the single-
valuedness property. Let x ∈ Proj(C, s) and t ≥ 0, then the vector t(s−x) is called
proximal normal to C at x. The set of all such vectors is a cone, called proximal
normal cone of C at x and denoted by NP (C, x). It is a known result [14] that
ξ ∈ NP (C, x) if and only if there exists some σ > 0 and δ > 0 such that

⟨ξ, y − x⟩ ≤ δ∥y − x∥2 for all y ∈ C ∩ Bσ(x).

The Fréchet normal cone NF (·), the limiting (Mordukhovich) normal cone NL(·),
the Clarke normal cone NC(·) are defined respectively as follows

NF (C, x) :=
{
ξ ∈ H : ∀δ > 0, ∃σ > 0 s.t. ⟨ξ, y − x⟩ ≤ δ∥y − x∥ ∀y ∈ C ∩ Bσ(x)

}
,

NL(C, x) :=
{
ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NP (C, xn), xn → x in C

}
=

{
ξ ∈ H : ∃ ξn → ξ weakly and ξn ∈ NF (C, xn), xn → x in C

}
,

NC(C, x) := co NL(C, x).

If x /∈ C, one has NP (C, x) = NF (C, x) = NL(C, x) = NC(C, x) = ∅ and for all
x ∈ C:

NP (C, x) ⊂ NF (C, x) ⊂ NL(C, x) ⊂ NC(C, x).

If C is a closed and convex subset of H, then these normal cones coincide. The
equality of these four normal cones is also valid for prox-regular sets (see Definition
1). In this case, we write only N(C, x) for simplicity. For more details, we refer to
[26, 28].

Definition 2.1. Let r ∈]0,+∞]. The closed set C ⊂ H is called r-prox-regular iff
each point in the r-enlargement of C defined by

Ur(C) := {w ∈ H : d(w,C) < r},

has a unique nearest point in C and the mapping proj(C, ·) is continuous in Ur(C).

Definition 2.2. Let A : H → 2H be a set-valued mapping. It is said to be
hypomonotone if there exists a constant k > 0 such that for all x, y ∈ H and
x′ ∈ A(x), y′ ∈ A(y), we have

⟨x− y, x′ − y′⟩ ≥ −k∥x− y∥2.

If k = 0, then A is called monotone.
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Proposition 2.3 ([27]). Let C be a closed set in H and r ∈]0,+∞]. The followings
are equivalent:
(i) C is r-prox-regular.
(ii) For all s ∈ C and v ∈ NL(C, s), we have

⟨v, s′ − s⟩ ≤ ∥v∥
2r

∥s′ − s∥2 ∀ s′ ∈ C.

(iii) (Hypomonotonicity) For all s, s′ ∈ C, v ∈ NL(C, s) ∩ B, v′ ∈ NL(C, s′) ∩ B, we
have

⟨v − v′, s− s′⟩ ≥ −1

r
∥s− s′∥2.

If the closed set C is r-prox-regular with r = +∞, then C is convex [15]. Some
familiar examples of prox-regular sets [4]:

(1) The finite union of disjoint intervals is nonconvex but r-prox-regular where
r depends on the distances between the intervals.

(2) More generally, any finite union of disjoint convex subsets in H is nonconvex
but r-prox-regular where r depends on the distances between the sets.

Definition 2.4. Let φ : H → R ∪ {+∞} be a proper lower semicontinuous
function and x ∈ H such that φ(x) is finite. One say that ξ is a proximal
(Fréchet, limiting, Clarke, resp.) subgradient of φ at x, written by ξ ∈ ∂Pφ(x)
(ξ ∈ ∂Fφ(x), ξ ∈ ∂Lφ(x), ξ ∈ ∂Cφ(x), resp.) iff (ξ,−1) ∈ NP

epiφ(x, φ(x)) ((ξ,−1) ∈
NF

epiφ(x, φ(x)),(ξ,−1) ∈ NL
epiφ(x, φ(x)),(ξ,−1) ∈ NC

epiφ(x, φ(x)), resp.).

Proposition 2.5 ([4]). Let C be a nonempty closed and r-prox-regular subset in
H. Then
(i) ∂PdC(x) = NP

C (x) ∩ B, x ∈ C.
(ii) If dC(x) < r, then ∂PdC(x) = ∂CdC(x) is a closed and convex set. In this case,
one can write for simplicity ∂dC(x).

Proposition 2.6 ([8]). Let C be a nonempty closed and r-prox-regular subset in H.
Then for all x ∈ C and for all ξ ∈ ∂dC(x), one has

⟨ξ, y − x⟩ ≤ 2

r
∥y − x∥2 + dC(y),

for all y ∈ Ur(C) (the r-enlargement of C).

Proposition 2.7 ([4, 8]). Let 0 < r′ < r and the Hausdorff-continuous set-valued
mapping C : Ω → 2H with uniformly r-prox-regular values, where Ω ⊂ [0, T ] ×
H. Then the set-valued mapping (z, x) 7→ ∂dC(z)(x) is upper semicontinuous from
{(z, x) ∈ Ω×H : x ∈ C(z)+ (r− r′)B} to H endowed with the weak topology, which
is equivalent to the upper semicontinuity of the function (z, x) 7→ σ(∂dC(z)(x); ξ) on
{(z, x) ∈ Ω×H : x ∈ C(z) + (r − r′)B}, for any ξ ∈ H, where

σ(∂dC(z)(x); ξ) = sup
η∈∂dC(z)(x)

⟨η, ξ⟩,

denotes the support function of ∂dC(z)(x) at ξ.

Let us recall a continuous and a discrete versions of Gronwall’s inequality (see,
e.g., Lemma 4.1 in [29]).
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Lemma 2.8. Let T > 0 be given and a(·), b(·) ∈ L1([0, T ];R) with b(t) ≥ 0 for
almost all t ∈ [0, T ]. Let the absolutely continuous function w : [0, T ] 7→ R+ satisfy

(2.1) (1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0, T ],

where 0 ≤ α < 1. Then for all t ∈ [0, T ]:

(2.2) w1−α(t) ≤ w1−α(0)exp
( ∫ t

0
a(τ)dτ

)
+

∫ t

0
exp

( ∫ t

s
a(τ)dτ

)
b(s)ds.

Lemma 2.9. Let α > 0 and (un), (βn) be nonnegative sequences satisfying

(2.3) un ≤ α+
n−1∑
k=0

βkuk, ∀n = 0, 1, 2, . . . (with β−1 = 0).

Then for all n, we have

un ≤ α exp
( n−1∑
k=0

βk
)
.

Finally, we recall the definition of the Kuratowski measure of non-compactness and
some of its properties (see, e.g., Proposition 9.1 in [16]).

Definition 2.10. The Kuratowski measure of non-compactness of a bounded set
B in H is defined by

γ(B) := inf
{
r > 0 : B =

n∪
i=1

Bi for some n and Bi with diam(Bi) ≤ r
}
.

We collect some properties of the Kuratowski measure in the following lemma.

Lemma 2.11. [16] Let B1 and B2 be two bounded sets of an infinite dimensional
Hilbert space H. Then

(1) γ(B1) = 0 ⇔ B1 is relatively compact.
(2) If B1 ⊂ B2, then γ(B1) ≤ γ(B2).
(3) γ(B1 +B2) ≤ γ(B1) + γ(B2).
(4) γ(x0 + rB) = 2r for some x0 ∈ H and r > 0.

3. Main results

In this section, we use a discretization technique by giving an implicit scheme to
analyze the existence property of the sweeping process (S). First let us assume the
following assumptions:

Assumption 1. (i) For all t ∈ [0, T ] and x ∈ H, C(t, x) is a nonempty closed,
r-prox-regular subset of H and there exists LC > 0 such that

e
(
C(t, x) ∩M1B;C(s, y)

)
≤LC(|t− s|+ ∥x− y∥),(3.1)

∀s, t ∈ [0, T ] and x, y ∈ M1B.

(ii) For all t ∈ [0, T ], C(t,M1B) ∩ 2M1B is relatively compact in H, or equivalently

γ(C(t,M1B) ∩ 2M1B) = 0,
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where γ is the Kuratowski measure of non-compactness and

(3.2) M1 := ∥u0∥+ ∥v0∥+ (LC + 2LF )T + e(LC+2LF+1)T .

Assumption 2. The set-valued function F : gph(C) → 2H is upper semicontinuous
with nonempty convex, weakly compact values in H and satisfies the weak linear
growth condition, i.e. there exists LF > 0 such that for all t ∈ [0, T ], x ∈ H and
y ∈ C(t, x), we have

(3.3) F(t, x, y) ∩ LF
(
1 + ∥x∥+ ∥y∥

)
B ̸= ∅.

We are now in position to state and prove the main result of the paper.

Theorem 3.1. Let H be a real Hilbert space and let Assumptions 1, 2 hold. Then
for each initial condition u0 ∈ H and v0 ∈ C(0, u0), there exists a solution u :
[0, T ] → H of the sweeping process (S) in the following sense:

(i) (S) is satisfied for a.e. t ∈ [0, T ];
(ii) u(0) = u0, u̇(0) = v0;
(iii) u ∈ C1([0, T ];H) and ü ∈ L∞([0, T ];H).

Proof. By setting α := ∥u0∥ + ∥v0∥ + (LC + 2LF )T and β := LC + 2LF + 1, the
constant M1 defined in (3.2) can be rewritten as M1 = α + eβT . We choose some
positive integer n0 such that

(3.4) n0 >
T

r
(LC + LF )(1 +M1).

Let be given some positive integer n ≥ n0, define hn := T/n and tni := ih for
0 ≤ i ≤ n. For 0 ≤ i ≤ n − 1, given uni and vni , our aim is to find uni+1, v

n
i+1 such

that

(3.5)


vni+1−vni

hn
+ fn

i ∈ −NC(tni+1,u
n
i+1)

(vni+1),

uni+1 = uni + hnv
n
i ,

where fn
i ∈ F(tni , u

n
i , v

n
i ). Clearly we can compute uni+1 in terms of uni and vni . The

inclusion in (3.5) can be rewritten as

(3.6) vni − hnf
n
i ∈ vni+1 +NC(tni+1,u

n
i+1)

(vni+1),

which is equivalent to

vni+1 = proj
(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
,

provided d
(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
< r. We have the following algorithm to con-

struct the sequences (uni )
n
i=0, (v

n
i )

n
i=0 and (fn

i )
n
i=0.

Algorithm

• un0 = u0, v
n
0 = v0 ∈ C(0, u0), f

n
0 = f0 ∈ F(0, u0, v0) ∩ LF (1 + ∥u0∥+ ∥v0∥)B.

For 0 ≤ i ≤ n− 1:
• uni+1 = uni + hnv

n
i and

(3.7) vni+1 = proj
(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
.
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• Choose fn
i+1 ∈ F(tni+1, u

n
i+1, v

n
i+1) ∩ LF (1 + ∥uni+1∥+ ∥vni+1∥)B.

We will show by induction that for all i = 0, 1, . . . , n− 1 one has

(3.8) ∥uni ∥+ ∥vni ∥ ≤ M1 and d
(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
< r,

and then the algorithm is well-defined. Indeed when i = 0, we have ∥un0∥+ ∥vn0 ∥ ≤
M1 and

d
(
C(tn1 , u

n
1 ); v0 − hnf0

)
≤ e

(
C(0, u0) ∩M1B;C(tn1 , u

n
1 )
)
+ hn∥f0∥

≤ hnLC(1 + ∥v0∥) + hnLF (1 + ∥u0∥+ ∥v0∥)
≤ hn(LC + LF )(1 +M1) < r,

thanks to (3.4). Suppose that (3.8) holds for i = 0, . . . , k − 1 for some positive
k ≤ n. One has

vni+1 = proj
(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
,

for all i = 0, . . . , k − 1. Hence

∥vni+1 − vni + hnf
n
i ∥ = d

(
C(tni+1, u

n
i+1); v

n
i − hnf

n
i

)
≤ e

(
C(tni , u

n
i ) ∩M1B;C(tni+1, u

n
i+1)

)
+ hn∥fn

i ∥
≤ hnLC(1 + ∥vni ∥) + hnLF (1 + ∥uni ∥+ ∥vni ∥),(3.9)

which implies that

∥vni+1∥ ≤ ∥vni ∥+ hn
(
LC + 2LF + 2LF∥uni ∥+ (LC + 2LF )∥vni ∥

)
.

Consequently
(3.10)

∥vni+1∥ ≤ ∥v0∥+ (i+ 1)hn(LC + 2LF ) + hn
(
2LF

i∑
j=0

∥unj ∥+ (LC + 2LF )
i∑

j=0

∥vnj ∥
)
.

On the other hand

(3.11) ∥uni+1∥ ≤ ∥uni ∥+ hn∥vni ∥ ≤ . . . ≤ ∥u0∥+ hn

i∑
j=0

∥vnj ∥.

From (3.10) and (3.11), one has

∥uni+1∥+ ∥vni+1∥ ≤ α+ βhn

i∑
j=0

(∥unj ∥+ ∥vnj ∥), i = 0, . . . , k − 1,

where α = ∥u0∥+ ∥v0∥+ (LC + 2LF )T and β = LC + 2LF + 1. Using Lemma 2.9,
we obtain

(3.12) ∥uni ∥+ ∥vni ∥ ≤ α+ eβihn ≤ α+ eβT = M1, i = 0, . . . , k.

Then

d
(
C(tnk+1, u

n
k+1); v

n
k − hnf

n
k

)
≤ e

(
C(tnk , u

n
k) ∩M1B;C(tnk+1, u

n
k+1)

)
+ hn∥fn

i ∥
≤ hnLC(1 + ∥vnk∥) + hnLF (1 + ∥unk∥+ ∥vnk∥)
≤ hn(LC + LF )(1 +M1) < r,

due to (3.4). As a consequence, (3.8) holds for i = k and thus the algorithm is well-
defined. Furthermore, from the arguments above, the sequences (uni )

n
i=0, (v

n
i )

n
i=0
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constructed by this algorithm are bounded by M1 and the sequence (fn
i )

n
i=0 is

bounded by LF (1 + M1) since F satisfies the weak linear-growth condition. In

addition, the sequence (
vni+1−vni

hn
)ni=0 is also bounded by M2 := (LC + 2LF )(1 +M1)

thanks to (3.9) and (3.12).
We construct the sequences of functions (un(·))n, (vn(·))n, (fn(·))n from [0, T ] to

H as follows: un(0) = u0, vn(0) = v0 and on In,i := [tni , t
n
i+1) for 0 ≤ i ≤ n − 1, we

set

un(t) = uni +
uni+1 − uni

hn
(t− tni ) , vn(t) = vni +

vni+1 − vni
hn

(t− tni ), fn(t) = fn
i ,

and

(3.13) θn(t) = tni and ηn(t) = tni+1.

Then for all t ∈ (tni , t
n
i+1)

u̇n(t) =
uni+1 − uni

hn
= vni ∈ C(tni , u

n
i ), v̇n(t) =

vni+1 − vni
hn

,

and

(3.14) max
{

sup
t∈[0,T ]

|θn(t)− t|, sup
t∈[0,T ]

|ηn(t)− t|
}
≤ hn → 0 as n → +∞.

Consequently, the sequence (vn(·))n is equi-Lipschitz with constant M2. We will
prove that the set Ω(t) = {vn(t), n ≥ n0} is relatively compact for all t ∈ [0, T ].
Indeed, suppose that there exists t0 ∈ [0, T ] such that Ω(t0) is not relatively com-
pact. Then let 3σ := γ(Ω(t0)) > 0. Note that Ω(t0) ⊂ M1B, hence 3σ = γ(Ω(t0)) ≤
γ(M1B) = 2M1, which implies that σ ≤ M1. For each n, we can find i such that
t0 ∈ [tni , t

n
i+1). Then

∥un(t0)− uni ∥ = ∥
uni+1 − uni

hn
∥∥(t0 − tni )∥ ≤ M1hn,(3.15)

∥vn(t0)− vni ∥ = ∥
vni+1 − vni

hn
∥∥(t0 − tni )∥ ≤ M2hn.(3.16)

On the other hand, because of Assumption 1 (i), one has

vni ∈ C(tni , u
n
i ) ∩M1B ⊂ C(t0, un(t0)) + LC(M1 + 1)hnB

⊂ C(t0,M1B) + LC(M1 + 1)hnB.

Thus

vn(t0) ∈ C(t0,M1B) + (LCM1 + LC +M2)hnB.

We can find n1 ≥ n0 large enough such that for all n ≥ n1,

(LCM1 + LC +M2)hn = (LCM1 + LC +M2)T/n ≤ σ.

Hence for all n ≥ n1, we have

vn(t0) ∈ (C(t0,M1B) ∩ (M1 + σ)B) + σB ⊂ (C(t0,M1B) ∩ 2M1B) + σB.
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Note that the set C(t0,M1B) ∩ 2M1B is relatively compact (Assumption 1) hence
γ(C(t0,M1B) ∩ 2M1B) = 0. Then by using Lemma 2.11, one has

3σ = γ(Ω(t0)) = γ({vn(t0) : n ≥ n1}) ≤ γ((C(t0,M1B) ∩ 2M1B) + σB)
≤ γ((C(t0,M1B) ∩ 2M1B)) + γ(σB) = 2σ,

which is a contradiction. Hence the set Ω(t) = {vn(t), n ≥ 2} is relatively compact
for all t ∈ [0, T ]. By applying the Arzela–Ascoli theorem, there exists a Lipschitz
function v(·) : [0, T ] 7→ H with ratio M2 and

• (vn) converges strongly to v(·) in C([0, T ];H);
• (v̇n) converges weakly to v̇(·) in L1([0, T ];H).

In particular v(0) = v0. Let u : [0, T ] → H, t 7→ u(t) = u0 +
∫ t
0 v(s)ds. Then

u(0) = u0, u̇ = v and ü ∈ L∞([0, T ];H). Let us show that un(·) converges strongly
in C([0, T ];H) to u(·). Indeed, we have

max
t∈[0,T ]

∥un(t)− u(t)∥ = max
t∈[0,T ]

∥∥un(0) + ∫ t

0
vn(θn(s))ds− u(0)−

∫ t

0
v(s)ds

∥∥
= max

t∈[0,T ]

∥∥∫ t

0
(vn(θn(s))− vn(s) + vn(s)− v(s))ds

∥∥
≤ max

t∈[0,T ]

∫ t

0
(M2|θn(s)− s|+ ∥vn(s)− v(s)∥ds

≤
∫ T

0
(M2|θn(s)− s|+ ∥vn(s)− v(s)∥)ds → 0,

as n → +∞ which is due to (3.14) and the strong convergence of vn(·) to v(·) in
C([0, T ];H).

In the next step, we prove that u̇(t) = v(t) ∈ C(t, u(t)) for every t ∈ [0, T ]. From
the fact that vni ∈ C(tni , u

n
i ) for all i and by using Assumption 1 (i), we deduce that

for all t ∈ [0, T ]

vn(θn(t)) ∈ C(θn(t), un(θn(t))) ∩M1B
⊂ C(t, u(t)) + LC

(
|θn(t)− t|+ ∥un(θn(t))− u(t)∥

)
B.

It is easy to see that for every t ∈ [0, T ], vn(θn(t)) → v(t) = u̇(t) and

|θn(t)− t|+ ∥un(θn(t))− u(t)∥ → 0 as n → +∞
due to (3.14) and the strong convergence of vn(·) to v(t), un(·) to u(·) in C([0, T ];H).
Since C(t, u(t)) is closed, we obtain that u̇(t) ∈ C(t, u(t)) for every t ∈ [0, T ]. It
remains to prove that

(3.17) ü(t) ∈ −NC(t,u(t))(u̇(t))−F(t, u(t), u̇(t)), a.e. t ∈ [0, T ].

From (3.5), we have for almost every t ∈ [0, T ] that

(3.18) v̇n(t) + fn(t) ∈ −N
C
(
ηn(t),un(ηn(t))

)(vn(ηn(t))).
Let us recall that v̇n(·), fn(·) are bounded on [0, T ] by M2. Thus

(3.19) ∥v̇n(t) + fn(t)∥ ≤ 2M2.
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Thus by Proposition 2.5, one has

(3.20) −v̇n(t)− fn(t) ∈ 2M2∂dC
(
ηn(t),un(ηn(t))

)(vn(ηn(t))) a.e. t ∈ [0, T ].

Since ∥fn(t)∥ ≤ M2 for all t ∈ [0, T ], there exists a subsequence, without relabelling
for simplicity, converging weakly to some mapping f in L1([0, T ];H). So we have
v̇n+fn converges weakly to ü+f in L1([0, T ];H). Applying the Castaing’s technique
(see, e.g., [11]) and using the Mazur’s lemma, one implies for almost every t ∈ [0, T ]
that

(3.21) −ü(t)− f(t) ∈
∩
n

co{−v̇k(t)− fk(t) : k ≥ n},

where co denotes the closed convex hull. Fix some t ∈ [0, T ] such that (3.21) holds
and ξ ∈ H. The inclusion (3.21) implies that

(3.22) ⟨ξ,−ü(t)− f(t)⟩ ≤ inf
n

sup
k≥n

⟨ξ,−v̇k(t)− fk(t)⟩.

Combining with (3.20), we get

⟨ξ,−ü(t)− f(t)⟩ ≤ 2M2 lim sup
n→+∞

σ(∂dC(ηn(t),un(ηn(t)))(vn(ηn(t))); ξ)

≤ 2M2σ(∂dC(t,u(t))(v(t)); ξ),(3.23)

where the last inequality holds due to the upper semicontinuity of the proximal subd-
ifferential (Proposition 2.7) and the fact that ηn(t) → t, un(ηn(t)) → u(t), vn(ηn(t)) →
v(t) strongly. Note that the set ∂dC(t,u(t))(v(t)) is closed convex and u̇(t) = v(t) ∈
C(t, u(t)). Thus, we get

(3.24) −ü(t)− f(t) ∈ 2M2∂dC(t,u(t))(u̇(t)) ⊂ NC(t,u(t))(u̇(t)), a.e. t ∈ [0, T ].

On the other hand, one has fn(t) ∈ F
(
θn(t), un(θn(t)), vn(θn(t))

)
and F is upper

semicontinuous with nonempty convex, weakly-compact values. Using [10, Theorem
V-14], we obtain that f(t) ∈ F(t, u(t), u̇(t)). Thus

(3.25) ü(t) ∈ −NC(t,u(t))(u̇(t))−F(t, u(t), u̇(t)), a.e. t ∈ [0, T ].

The proof of Theorem 3.1 is thereby completed. �

Remark 3.2. Assumption 1-(ii) is satisfied particularly in finite-dimensional spaces.
In infinite-dimensional spaces, for each t ∈ [0, T ], we only need to check the rela-
tive compactness for a fixed bounded set (see [1] for more comments). In addition,
similarly as in [1], the relative compactness assumption can be omitted if for each
t ∈ [0, T ], −C(t, ·) and F are both hypomonotone with respect to the third vari-
able on gph(C), i.e., there exists k > 0 such that for all (ti, xi, yi) ∈ gph(C) and
zi ∈ F(ti, xi, yi) (i = 1, 2), one has

⟨z1 − z2, y1 − y2⟩ ≥ −k(∥y1 − y2∥2 + ∥x1 − x2∥2 + |t1 − t2|2).

For simplicity w.l.o.g, we can assume that −C(t, ·) is monotone for each t ∈ [0, T ]
and F is monotone with respect to the third variable on gph(C) (i.e., k = 0). The
following theorem can be considered as an extension of [1, 6, 8] in the prox-regular
settings by using similar techniques.
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Theorem 3.3. Let the assumptions of Theorem 3.1 hold and Assumption 1-(ii) is
replaced by the monotonicity of −C(t, ·) for each t ∈ [0, T ]. Furthermore, assume
that F is monotone with respect to the third variable on gph(C). Then for each
initial condition, there exists a solution in the sense of Theorem 3.1.

Proof. We construct the sequences (uni )
n
i=0, (v

n
i )

n
i=0, (f

n
i )

n
i=0 and the sequences of

functions (un(·))n, (vn(·))n, (fn(·))n, (θn(·))n, (ηn(·))n as in Theorem 3.1. From the
proof of Theorem 3.1, it is sufficient to prove the strong convergence of sequence
vn(·) in C([0, T ];H). First we prove the convergence of un(·). For all positive integers
m,n ≥ n0, let

φm,n(t) :=
1

2
∥um(t)− un(t)∥2.

Then φm,n is differentiable almost every t ∈ [0, T ]. Let t ∈ [0, T ) be at which φm,n

is differentiable. Then there exist i, j such that t ∈ [tmi , tmi+1) ∩ [tnj , t
n
j+1) and hence

for almost all t ∈ [0, T ]

d

dt
φm,n(t) = ⟨um(t)− un(t), u̇m(t)− u̇n(t)⟩ = ⟨um(t)− un(t), v

m
i − vnj ⟩.

We have vmi ∈ C(tmi , umi ) ⊂ C(t, umi )+hmLCB, vnj ∈ C(tnj , u
n
j ) ⊂ C(t, unj )+hnLCB.

From the monotonicity of −C(t, ·) and the boundedness of umi , unj by M1, one has

⟨vmi − vnj , u
m
i − unj ⟩ ≤ 2M1(hn + hm)LC .

Hence,

d

dt
φm,n(t) = ⟨um(t)− un(t), v

m
i − vnj ⟩

≤ ⟨um(t)− umi , vmi − vnj ⟩+ ⟨umi − unj , v
m
i − vnj ⟩+ ⟨unj − un(t), v

m
i − vnj ⟩

≤ 2M2
1hm + 2M1(hn + hm)LC + 2M2

1hn

≤ 2M1(M1 + LC)(hn + hm),

due to the M1-Lipschitz continuity of um(·), un(·) and the boundedness by M1 of
umi , unj , v

m
i , vnj . Consequently,

(3.26)
1

2
∥um(t)−un(t)∥2 = φm,n(t) ≤ 2M1T (M1+LC)(hn+hm) for all t ∈ [0, T ],

which implies that (un(·))n is a Cauchy sequence in C([0, T ];H). Thus, there exists
a M1-Lipschitz function u(·) such that un(·) converges to u(·) uniformly and

∥un(t)− u(t)∥ ≤ 2
√

M1T (M1 + LC)hn.

We choose positive integer n∗ ≥ n0 such that

(3.27)
(
2LC +M2 + 2LCM1 + 2

√
M1T (M1 + LC))

)√
hn∗ < r,
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where hn∗ = T/n∗. Next, we show the uniform convergence of (vn(·))n≥n∗ . First
one has the following estimation

d
C
(
ηn(t),un(ηn(t))

)(vm(t))

≤ dH
(
C
(
ηn(t), un(ηn(t))

)
;C

(
ηm(t), um(ηm(t))

))
+ ∥vm(ηm(t))− vm(t)∥

≤ LC

(
hm + hn + ∥un(ηn(t))− um(ηm(t))∥

)
+M2hm

≤ (2LC +M2)hn∗ + LC(∥un(ηn(t))− un(ηm(t))∥+ ∥un(ηm(t))− um(ηm(t))∥)
≤ (2LC +M2)hn∗ + 2LCM1hn∗ + 2

√
M1T (M1 + LC)hn∗

≤
(
2LC +M2 + 2LCM1 + 2

√
M1T (M1 + LC))

)√
hn∗ < r,

due to the Lipschitz continuity of C, un(·), vm(·), (3.14) and (3.26). In particular,
we infer that d

C
(
ηn(t),un(ηn(t))

)(vm(t)) → 0 as m,n → +∞. Using Proposition 2.6

and the fact that −v̇n(t)−fn(t) ∈ 2M2∂dC(ηn(t),un(ηn(t)))(vn(ηn(t))) (see (3.20)), one
has

(3.28) ⟨v̇n(t) + fn(t), vn(ηn(t))− vm(t)⟩

≤ 4M2

r
∥vn(ηn(t))− vm(t)∥2 + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t)).

We have

⟨v̇n(t), vn(t)− vm(t)⟩
≤ ⟨v̇n(t), vn(t)− vn(ηn(t))⟩ − ⟨fn(t), vn(ηn(t))− vm(t)⟩

+
4M2

r
∥vn(ηn(t))− vm(t)∥2 + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t))

≤ M1M2hn − ⟨fn(t), vn(t)− vm(t)⟩+M2
2hn

+
8M2

r
∥vn(t)− vm(t)∥2 + 8M3

2

r
h2n + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t))

=
8M2

r
∥vn(t)− vm(t)∥2 − ⟨fn(t), vn(t)− vm(t)⟩+ βn,m(t),

where

βn,m(t) := M1M2hn +M2
2hn +

8M3
2

r
h2n + 2M2dC

(
ηn(t),un(ηn(t))

)(vm(t)),

satisfying

∥βn,m∥∞ → 0 as m,n → +∞.

Similarly, one has

(3.29) ⟨v̇m(t), vm(t)− vn(t)⟩

≤ 8M2

r
∥vm(t)− vn(t)∥2 − ⟨fm(t), vm(t)− vn(t)⟩+ βm,n(t).
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As a consequence, we have for almost every t ∈ [0, T ] that

A := ⟨v̇m(t)− v̇n(t), vm(t)− vn(t)⟩

≤ 16M2

r
∥vm(t)− vn(t)∥2 − ⟨fm(t)− fn(t), vm(t)− vn(t)⟩+ βm,n(t) + βn,m(t)

≤ 16M2

r
∥vm(t)− vn(t)∥2 − ⟨fm(t)− fn(t), vm(θm(t))− vn(θn(t))⟩+ αm,n(t)

≤ 16M2

r
∥vm(t)− vn(t)∥2 + αm,n(t),

(3.30)

where

αm,n(t) = βm,n(t) + βn,m(t)− ⟨fm(t)− fn(t), vm(t)− vm(θm(t))⟩
− ⟨fm(t)− fn(t), vn(θn(t))− vn(t)⟩.

The last inequality holds since

fm(t) ∈ F
(
θm(t), um(θm(t)), vm(θm(t))

)
, fn(t) ∈ F

(
θn(t), un(θn(t)), vn(θn(t))

)
,

and F is monotone with respect to the third variable. Note that

∥⟨fm(t)− fn(t), vm(t)− vm(θm(t))⟩+ ⟨fm(t)− fn(t), vn(θn(t))− vn(t)⟩∥
≤ 2M2

2 (hm + hn).

Hence

∥αn,m∥∞ → 0 as m,n → +∞.

From (3.30), one has

d

dt
∥vm(t)− vn(t)∥2 = 2A ≤ 32M2

r
∥vm(t)− vn(t)∥2 + 2αm,n(t).

Using Gronwall’s inequality and the fact that vm(0) = vn(0) = v0, one obtains
for all t ∈ [0, T ] that

∥vm(t)− vn(t)∥2 ≤ 2

∫ t

0
e32M2(t−s)/rαm,n(s)ds ≤ 2Te32M3T/r∥αn,m∥∞.

Consequently, (vn(·))n is a Cauchy sequence in C([0, T ];H) which leads to the uni-
form convergence of (vn(·))n. The proof of Theorem 3.3 is thereby completed. �

4. Conclusion

In this paper, by using tools from set-valued and variational analysis and by
using an implicit discrete scheme, the existence of solutions of a class of unbounded
nonconvex second-order sweeping processes under perturbation in Hilbert space
has been thoroughly studied. Many concrete problems are formulated outside the
hilbertian setting (for example lp, Lp orWm,p, 1 < p < +∞). It would be interesting
to extend these results to the more general setting of Banach spaces. This is out of
the scope of the current work and will be the subject of a future research project.
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