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[19]. In those algorithms, each approximation step consists of choosing randomly
ξ ∈ S and moving in the direction of a negative (sub)gradient of the function f(·, ξ).
In contrast, the stochastic proximal point algorithm (PPA) appeared only very re-
cently in [31] and the aim of our paper is to further extend this approach. Recall
that the basic proximal point algorithm is due to Martinet [20], Rockafellar [27] and
Brézis&Lions [13].

The stochastic PPA is based on resolvent mappings associated with the marginal
functions

Jξ
λx := argmin

y∈H

[
f(y, ξ) +

1

2λ
d(x, y)2

]
, x ∈ H,

where λ > 0 is a given parameter. Note that in Hilbert spaces one has Jξ
λ =

(I + λ∂f(·, ξ))−1 . In Hadamard spaces, the resolvent of a convex function was first
studied by J. Jost [16] and U. Mayer [21]. The stochastic proximal point algorithm
is defined as follows.

Algorithm 1.1. Let (λi) be a sequence of positive reals and let (ξi) be a sequence of
independent random variables ξi : Ω → S with distribution µ. Here Ω := SN. Choose
an arbitrary starting point x0 ∈ H and set

(1.2) xi := Jξi
λi
xi−1,

for each i ∈ N. Note that xi : Ω → S is a random variable.

We prove the convergence of the sequence (xi) to a minimizer of F under weaker
assumptions than in the existing literature and moreover we demonstrate the ap-
plicability of the stochastic PPA into several classical optimization problems in
Euclidean space as well as into a recent statistical model for phylogenetic inference
[7], where the underlying space is Hadamard. In all these examples, the resolvents of
marginal functions are easy to compute in a closed form, which makes the algorithm
readily usable in practice. The PPA as an implicit minimization method has better
stability and convergence properties than gradient descent methods (see [11] for
detailed and authoritative arguments), which makes our algorithm attractive even
in Euclidean space. Moreover, in Hadamard spaces without a differentiable struc-
ture, gradient descent methods cannot be used and the stochastic PPA is therefore
the only possible option. Our choice of a Hadamard space setting in the present
paper is, inter alia, justified by the minimization problem in Example 4.4 below.
The relevance of Hadamard spaces for analysis and optimization is described in [3].
In particular, minimization algorithms are discrete time analogs of gradient flows,
which in Hadamard spaces originated independently in [18] and [21] and were later
generalized into much more general singular metric spaces [1].

In the remainder of the Introduction, we describe the relation of our work to the
existing literature. D. Bertsekas [11] was the first to introduce the proximal point
algorithm for convex optimization problems with objective functions of the form

(1.3) f :=

N∑
n=1

fn,

where fn : Rd → R are all convex and continuous. This is a special case of (1.1).
Bertsekas’ work [11] has been very influential: the algorithm was generalized into
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locally compact Hadamard space [2] and subsequently applied in computational
phylogenetics [7]. S. Ohta and M. Pálfia [24] then continued along these lines
and proved convergence in some positively curved metric spaces (also considering
marginal functions over general probability space). The algorithm has also been
extended into the 1-dimensional sphere S1 and applied in image restoration [8, 9, 10];
with further developments following in [4]. For a survey, see G. Steidl’s paper [28].
Another interesting result on the PPA in Hadamard spaces is due to S. Banert [5].
In Hilbert spaces, H. Iiduka has recently studied a random PPA in combination
with Halpern’s fixed point method [15].

M. Wang and D. Bertsekas [31] also minimize a convex function of the form (1.1)
by the stochastic proximal point algorithm, but their goals and means are somewhat
different from ours. Namely, we work in locally compact Hadamard spaces whereas
[31] requires Rd, and moreover, our growth conditions on the marginal functions
f(·, ξ) are weaker and allow applications like (4.2), whereas [31] requires the exis-
tence of a common Lipschitz constant L in [31, Assumption 1] and a Lipschitz-like
condition with constant L on all subgradients, which excludes important applica-
tions such as Example 4.3. This makes our results new even in Euclidean spaces.

An implicit stochastic minimization has also recently emerged in statistics [30,
29].

In conclusion, the present paper can be viewed as an continuation of and im-
provement upon [2] for allowing general probability distributions as well as weaker
growth conditions on the marginal functions. Function (1.1) and (1.3) are some-
times called expected risk and empirical risk, respectively. Naturally, we want to
minimize expected risk rather than empirical risk provided the former is available
(for instance, if we can sample arbitrary amount of data from µ). Hence the present
paper enables an expected risk minimization, whereas the results of [2] applied to
empirical risk only.

Our convergence theorem as well as its proof is inspired by Lyapunov’s stability
theory of dynamical systems. Specifically, the distance function squared (which is
strongly convex in Hadamard spaces) plays the role of a Lyapunov function and we
need to arrive at estimate (3.1) in order to apply the Robbins-Siegmund lemma.
Furthermore, our Lipschitz-like growth condition (ii) from Theorem 3.1 is also fa-
miliar from the theory of dynamical systems.

2. Preliminaries

For a background in Hadamard space theory, the reader is referred to [3, 14, 17].
Here we recall that a metric space (X, d) is called a geodesic space if for each pair
of points x, y ∈ X there exists a mapping γ : [0, 1] → X, called a geodesic, such that
γ(0) = x, γ(1) = y, and

d (γ(s), γ(t)) = d(x, y) |s− t|,

for each s, t ∈ [0, 1]. If, additionally, for each point z ∈ X, geodesic γ : [0, 1] → X,
and t ∈ [0, 1], we have

(2.1) d (z, γ(t))2 ≤ (1− t)d (z, γ(0))2 + td (z, γ(1))2 − t(1− t)d (γ(0), γ(1))2 ,
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we say that (X, d) is a CAT(0) space. Inequality (2.1) expresses the fact that CAT(0)
spaces have nonpositive curvature. In particular, it implies that geodesics are
uniquely determined by their endpoints. A complete CAT(0) space is called a Hada-
mard space. The class of Hadamard spaces comprises for instance Hilbert spaces,
complete simply connected Riemannian manifolds of nonpositive sectional curva-
ture, R-trees, Euclidean buildings and the Billera-Holmes-Vogtmann tree space,
which is a special type of a CAT(0) cubical complex discussed in Example 4.4 be-
low.

Given a function f : H → (−∞,∞] we denote the set of its minimizers by Min f,
that is,

Min f := {x ∈ H : f(x) = inf f}.
We say that a function f : H → (−∞,∞] is convex if, for each geodesic γ : [0, 1] →
H, the function f ◦ γ : [0, 1] → (−∞,∞] is convex.

We shall need the following well known lemma.

Lemma 2.1. If h : H → (−∞,∞] is a convex lsc function and Jh
λ stands for its

resolvent, then

h
(
Jh
λ (x)

)
− h(y) ≤ 1

2λ
d(x, y)2 − 1

2λ
d
(
Jh
λ (x), y

)2
,

for every x, y ∈ H.

Proof. See [3, Lemma 2.2.23]. �
Like in the above listed literature [2, 11, 31], our proof of Theorem 3.1 uses the

famous Robbins-Siegmund theorem [26].

Theorem 2.2. Let
(
Ω,F , (Fk)k∈N0

,P
)
be a filtered probability space. Assume

(Uk) , (Yk) , (Zk) and (Wk) are sequences of nonnegative real-valued random vari-
ables defined on Ω and assume that

(i) Uk, Yk, Zk,Wk are Fk-measurable for each k ∈ N0,
(ii) E

(
Yk+1

∣∣Fk

)
≤ (1 + Uk)Yk − Zk +Wk, for each k ∈ N0,

(iii)
∑

k Uk < ∞ and
∑

k Wk < ∞.

Then the sequence (Yk) converges to a finite random variable Y almost surely, and∑
k Zk < ∞ almost surely.

Proof. [26, Theorem 1]. �

3. Main convergence theorem

In this Section we prove that if the marginal functions f(·, ξ) satisfy a rather
mild growth condition, the stochastic PPA converges to a minimizer of the convex
integral functional in question. Notice that the growth condition in (ii) is somewhat
delicate, because there is no absolute value on the left hand side. It is also weaker
than [31, Assumption 1], which requires the existence of a constant L > 0 such that
for almost every ξ ∈ S, the subgradients of f(·, ξ) satisfy a Lipschitz-like condition
with Lipschitz constant L.

Theorem 3.1 (Convergence of the stochastic PPA). Assume that

(i) a function F is of the form (1.1) and has a minimizer,
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(ii) there exists p ∈ H and an L2-function L : S → (0,∞) such that

f (x, ξ)− f (y, ξ) ≤ L(ξ) [1 + d(x, p)] d(x, y),

whenever x, y ∈ H,
(iii)

∑∞
i=1 λi = ∞ and

∑∞
i=1 λ

2
i < ∞.

Then there exists a random variable x : Ω → MinF such that for almost every ω ∈ Ω
the sequence (xi(ω)) given by (1.2) converges x(ω).

Proof. Denote Fi := σ (ξ0, . . . , ξi) . We claim that for each y ∈ H there exits a
constant Cy,p > 0, depending also on p, such that

E
[
d (xi+1, y)

2
∣∣Fi

]
≤

(
1 + 2Cy,pλ

2
iE

[
L (ξ)2

])
d (xi, y)

2

− 2λi [F (xi)− F (y)] + 2Cy,pλ
2
iE

[
L (ξ)2

]
,(3.1)

almost surely and for every i ∈ N. Here of course the sequence xi depends on ω ∈ Ω
and one should write xi(ω) instead of xi to be more precise. We will now prove this
claim.

Let us fix i ∈ N. By Lemma 2.1 we have

d (xi+1, y)
2 ≤ d (xi, y)

2 − 2λi [f (xi+1, ξi)− f (y, ξi)] .

Taking the conditional expectation with respect to Fi gives

E
[
d (xi+1, y)

2
∣∣Fi

]
≤ d (xi, y)

2 − 2λiE
[
f (xi+1, ξi)− f (y, ξi)

∣∣Fi

]
.

Let us now denote by xξi the result of the algorithm at the i-th step if it is the case
that ξi(ω) = ξ. Then we get

E
[
d (xi+1, y)

2
∣∣Fi

]
≤ d (xi, y)

2 − 2λiE
[
f
(
xξi+1, ξ

)
− f (y, ξ)

]
= d (xi, y)

2 − 2λi [F (xi)− F (y)]

+ 2λiE
[
f (xi, ξ)− f

(
xξi+1, ξ

)]
.

By the assumptions we have

E
[
f (xi, ξ)− f

(
xξi+1, ξ

)]
≤ (1 + d (xi, p))E

[
L (ξ) d

(
xi, x

ξ
i+1

)]
≤ 2λi (1 + d (xi, p))

2 E
[
L (ξ)2

]
≤ 4λi

(
1 + d (xi, p)

2
)
E
[
L (ξ)2

]
,

since

d
(
xi, x

ξ
i+1

)
≤ 2λi

f (xi, ξ)− f
(
xξi+1, ξ

)
d
(
xi, x

ξ
i+1

) ≤ 2λiL (ξ) (1 + d (xi, p)) .

Thus, for each y ∈ H, there exits a constant Cy,p > 0 such that

E
[
f (xi, ξ)− f

(
xξi+1, ξ

)]
≤ Cy,pλi

(
1 + d (xi, y)

2
)
E
[
L (ξ)2

]
.
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We hence finally obtain

E
[
d (xi+1, y)

2
∣∣Fi

]
≤

(
1 + 2Cy,pλ

2
iE

[
L (ξ)2

])
d (xi, y)

2

− 2λi [F (xi)− F (y)] + 2Cy,pλ
2
iE

[
L (ξ)2

]
,

which finishes the proof of (3.1).
Next, choose a countable dense subset {vn} of MinF. This is possible because

MinF is a locally compact Hadamard space, its closed balls are therefore compact
by the Hopf-Rinow theorem [14, p. 35] and consequently it is separable. Fix vn for
a moment and for each i ∈ N apply (3.1) with y = vn to obtain

E
[
d (xi+1(ω), vn)

2
∣∣Fi

]
≤

(
1 + 2Cvn,pλ

2
iE

[
L (ξ)2

])
d (xi(ω), vn)

2

− 2λi [F (xi(ω))− F (vn)] + 2Cvn,pλ
2
iE

[
L (ξ)2

]
,

for every ω from a full measure set Ωvn ⊂ Ω. Theorem 2.2 immediately gives that
d (vn, xi(ω)) converges and that

(3.2)

∞∑
i=0

λi [F (xi(ω))− inf F ] < ∞,

for every ω ∈ Ωvn . Next denote

Ω∞ :=
∩
n∈N

Ωvn ,

which is by countable subadditivity again a set of full measure. For each ω ∈ Ω∞,
we have from (3.2) that

(3.3) lim inf
i→∞

F (xi(ω)) = inf F.

Since (xi(ω)) is bounded, it has a cluster point x(ω) ∈ H. By the lower semiconti-
nuity of F and by (3.3) we obtain that x(ω) ∈ MinF.

We will now show that, given z ∈ MinF, the sequence d (z, xi(ω)) converges.
Indeed, for each ε > 0 there exists vn(ε) ∈ {vn} such that

d
(
z, vn(ε)

)
< ε.

Because the sequence d
(
xi(ω), vn(ε)

)
converges, there exists k ∈ N such that for

each i, j ≥ k we have ∣∣d (xi(ω), vn(ε))− d
(
xj(ω), vn(ε)

)∣∣ < ε.

Therefore,

|d (xi(ω), z)− d (xj(ω), z)| <
∣∣d (xi(ω), vn(ε))− d

(
xj(ω), vn(ε)

)∣∣
+ d

(
z, vn(ε)

)
+ d

(
z, vn(ε)

)
< 3ε,

for each i, j ≥ k. Hence, the sequence d (z, xi(ω)) converges and consequently also
xi(ω) → x(ω).

As the measurability of x is obvious, the proof is complete. �
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4. Applications

Here we apply our theorem to a few classical optimization problems (Examples
4.1, 4.2, 4.3) as well as to a recent statistical model for phylogenetic inference (Ex-
ample 4.4). In all these examples, the resolvents of the marginal functions have a
simple form and can thus be evaluated exactly. Since implicit methods are prefer-
able to explicit ones for their better stability [11], one can conclude that Theorem
3.1 provides us with a more powerful tool than the stochastic gradient method. In
Example 4.4 the underlying space is a CAT(0) cubical complex without a differen-
tiable structure, which means that minimization methods based on (sub)gradients
are not applicable at all. The minimization problem in Example 4.3 can be solved
by the stochastic PPA thanks to Theorem 3.1, the convergence theorems by other
authors mentioned in the Introduction do not apply for their too restrictive growth
conditions.

In the following examples we identify a Hadamard space H, probability space S
and random variable ξ in order to make a connection with the previous sections.

Example 4.1 (Medians). Let S := Rd and ξ := b ∈ S along with f(x, ξ) := ∥x− b∥ .
We are to minimize the function

F (x) := E ∥x− b∥ , x ∈ Rd.

One can easily verify that the Assumptions of Theorem 3.1 are satisfied and the
resolvent of f(·, ξ) is easy to compute. A minimizer of F is called a median.

Example 4.2 (Least non-squares). Let S := Rd+1 and ξ := (a, b), where a ∈ Rd

and b ∈ R, along with f(x, ξ) := |⟨a, x⟩ − b| . Here the objective function is

F (x) := E |⟨a, x⟩ − b| , x ∈ Rd.

The growth condition (ii) is satisfied provided a ∈ L2.

Again, the resolvents can be expressed in a closed form. If a = 0, then Jξ
λx = x

for every x ∈ Rd. Otherwise,

(4.1) Jξ
λx =


x−min

{
λ, ⟨a,x⟩−b

∥a∥2

}
a, if ⟨a, x⟩ ≥ b,

x+min
{
λ, b−⟨a,x⟩

∥a∥2

}
a, if ⟨a, x⟩ < b,

for every x ∈ Rd. See [8, Lemma 3.1] for an explicit calculation.

Example 4.3 (Least squares). Let S := Rd+1 and ξ := (a, b), where a ∈ Rd and

b ∈ R, along with f(x, ξ) := 1
2 (⟨a, x⟩ − b)2 . We obtain the function

(4.2) F (x) :=
1

2
E (⟨a, x⟩ − b)2 , x ∈ Rd.

It is straightforward to show that if a2, ba ∈ L2, then the growth condition (ii) is
satisfied and one can also check that

(4.3) Jξ
λx = x− λ

⟨a, x⟩ − b

1 + λ ∥a∥2
a

for every x ∈ Rd; see [8, Lemma 3.4].
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In particular, this applies into the classical least squares: given a matrix A ∈
RD×d and vector b ∈ RD, minimize F : x 7→ 1

2∥Ax− b∥2. If we denote the k-th row
of A by ak and the k-th entry of b by bk, then the loss function is

(4.4) F (x) :=
1

2
∥Ax− b∥2 = 1

2D

D∑
k=1

(⟨ak, x⟩ − bk)
2 ,

and hence ξ = k ∈ {1, . . . , D} with fk = 1
2 (⟨ak, ·⟩ − bk)

2 .
One can also use a regularization of the objective function F, that is, to minimize

a new function F + µ∥ · ∥2, where µ > 0, and Theorem 3.1 still applies and the
resolvents are equally easy to compute. Recall that regularizations are used in
statistics and machine learning as a standard tool against overfitting the data under
consideration, as well as in optimization to handle ill-posed problems.

Example 4.4 (Posterior median and mean in tree space). Let Tn be the Billera-
Holmes-Vogtmann (shortly BHV) tree space of orthant dimension n − 2, that is,
Tn is the moduli space of metric trees whose leaves are labeled by 0, 1, . . . , n. This
space was constructed and proved to be a CAT(0) cubical complex (hence a locally
compact Hadamard space) in [12]. Further details and the original phylogenetic
motivation can be found either in the original paper [12] or in [3].

A recent statistical model for phylogenetic inference [7] relies upon minimizing
the function

F (x) :=

∫
Tn

d(x, t)q dµD(t), x ∈ Tn,

where µD stands for a posterior distribution given data D and q ∈ {1, 2}. In [7] the
above function F was approximated by empirical averages and they were minimized.
Thanks to Theorem 3.1 however, one can now minimize the function F directly,
since it is possible generate samples from µD on-the-fly. Again, the resolvents of
the marginal functions are easy to compute in a closed form [2, 3, 7]. To put this
example into the perspective of Theorem 3.1, note that S = Tn and µ = µD. For
recent developments in statistics in the BHV tree space, the interested reader is
referred also to [6, 22, 23].

Acknowledgements. I would like to thank the referee for reading my paper care-
fully and suggesting various improvements.
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[1] L. Ambrosio and N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space
of Probability Measures, Birkhäuser Verlag, Basel, 2008.
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