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and superdifferentials of this function i.e. A = ∂h|0, B = ∂h|0 and h = hA − hB.
As we know a pair (A,B) is not unique. However, by [4] or [15] a pair (A,B) of
inclusion-minimal sub- and superdifferentials in the plane is unique up to trans-
lation. Inclusion-minimal means that if h = hA − hB = h′A − h′B, A

′ ⊂ A and
B′ ⊂ B then A = A′ and B = B′. Our method produces minimal pair of sets
(minimal quasidifferential). Because of Minkowski duality, minimal pair (A,B) of
sub- and superdifferentials of a given ds-function h gives us a pointwise-minimal
representation of h as a difference h1 − h2 of sublinear functions.

2. Minimal representation of ds-function as a difference of two
support functions

In this section we present a specific construction for a given ds-function h satis-
fying certain assumptions of two convex sets A and B such that h is a difference
of support functions hA − hB of mentioned sets. The constructed pair of convex
sets appears to be inclusion-minimal and as inclusion-minimal it is unique up to
translation.

Let h : R2 −→ R be a positively homogenous (ph-) function. Let φ : [0, 2π] −→ R
be defined by φ(t) := h(eit). Here we write eit := cos t+ i sin t instead of (cos t, sin t)
for the sake of brevity. In this paper we identify the plane R2 with the plane of com-
plex numbers C whenever it is convenient. On the other hand h(x) = ∥x∥φ(Argx) =
∥x∥φ(−i log x

∥x∥). Let us notice that continuity of φ is equivalent to the continuity

of the ph-function h.

We consider right derivative φ′(t) = lims→0+
φ(t+s)−φ(t)

s . We assume that φ′(2π) =
φ′(0) so that the domain of φ′ is the interval [0, 2π]. The existence of all directional
derivatives of h is equivalent to the existence of right and left derivatives of φ.
Namely,

h′(x; v) = lim
t→0+

h(x+ tv)− h(x)

t
=

1

∥x∥
(⟨v, x⟩φ(Argx) + ⟨v, ix⟩φ′(Argx))

for ⟨v, ix⟩ > 0, where ⟨v, x⟩ is the inner product of vectors (v1, v2), (x1, x2) and ⟨v, ix⟩
is the inner product of vectors (v1, v2), (−x2, x1). Our considerations are limited to
the right derivative. Analogous results can be obtained for the left derivative.

Theorem 2.1. Let h : R2 −→ R be a positively homogenous (ph-) function. Let
φ : [0, 2π] −→ R, φ(t) := h(eit). If the function h is continuous and the right
derivative φ′ of φ exists and has bounded variation then h is a difference of sublinear
functions, namely h = hA−hB, where hA and hB are support functions of compact
convex sets A and B described as follows. Let

f(t) :=

∫ t

0
φ(s)ds+ φ′(t)− φ′(0),

f+(t) :=
1

2
(V t

0 (f) + f(t)), f−(t) :=
1

2
(V t

0 (f)− f(t)),

where V t
0 (f) is the variation of f on the interval [0, t]. Denote b :=

∫ 2π
0 ieisdf+(s).

Let

g(t) :=

{
0 0 6 t < Arg(ib)
∥b∥ Arg(ib) 6 t 6 2π

,
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F+(t) :=

∫ t

0
ieisd(f+ + g)(s), F−(t) :=

∫ t

0
ieisd(f− + g)(s)

and

A := φ(0) + iφ′(0) + convF+([0, 2π]), B := convF−([0, 2π]).

Moreover, (hA, hB) is a minimal pair of sublinear functions such that h = hA−hB.
If also (h1, h2) is any other minimal pair with h1 − h2 = h then h1 = hA + l,
h2 = hB + l, where l is a linear functional.

Proof. Let positively homogenous function h satisfy the assumptions of the theo-

rem. First, notice that for the function f̄(t) :=
∫ t
0 φ(s)ds its variation is equal to

V 2π
0 (f̄) =

∫ 2π
0 |f̄ ′(s)|ds =

∫ 2π
0 |φ(s)|ds. Since φ is continuous, the last integral is

finite. Therefore the function f is a function of bounded variation.
The functions f+, f− : [0, 2π] −→ R are nondecreasing, the function f− is non-

negative and f = f+ − f−. Moreover, they are the smallest of such functions.
Notice that f+(0) = (0) and f−(0) = 0.

The point b ∈ R2 is defined by Stieltjes integral as

b :=

∫ 2π

0
ieisdf+(s) =

(
−

∫ 2π

0
sin sdf+(s),

∫ 2π

0
cos sdf+(s)

)
.

Since ∫ t

0
ieisdf(s) =

∫ t

0
ieisd(

∫ s

0
φ(u)) +

∫ t

0
ieisdφ′(s)

=

∫ t

0
ieisφ(s)ds+

∫ t

0
ieisdφ′(s)

=

[∫ t

0
ieisφ(s)ds+

∫ t

0
eisφ′(s)ds

]
+

[
−
∫ t

0
eisφ′(s)ds+

∫ t

0
ieisdφ′(s)

]
=

∫ t

0
(ieisφ(s) + eisφ′(s))ds

+

∫ t

0
(φ′(s)d(ieis) + ieisdφ′(s))

= eisφ(s)|ts=0 + ieisφ′(s)|ts=0

= eitφ(t) + ieitφ′(t)− φ(0)− iφ′(0),

we obtain ∫ 2π

0
ieisdf(s) = e2πiφ(2π) + ie2πiφ′(2π)− φ(0)− iφ′(0) = 0.

Hence the point b ∈ R2 also satisfies the equality b =
∫ 2π
0 ieisdf−(s).

The functions g : [0, 2π] −→ R, F+, F− : [0, 2π] −→ R are well defined. Let

us notice, that if b ̸= 0 then F+(2π) =
∫ 2π
0 ieisd(f+ + g)(s) =

∫ 2π
0 ieisdf+(s) +∫ 2π

0 ieisdg(s) = b+ ieiArg(ib)(g(2π)− g(0)) = b+ i∥b∥ ib
∥ib∥ = b− b = 0. If b = 0 then
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g = 0, and F+(2π) =
∫ 2π
0 ieisd(f+ + g)(s) =

∫ 2π
0 ieisdf+(s) = b = 0. In a similar

way F−(2π) = 0.
Now, we calculate the value of the support function hA at points from the unit

circle {eit|t ∈ [0, 2π]}. For a fixed t ∈ [0, 2π] denote I(t1, t2) :=
∫ t2
t1

sin(t− s)d(f+ +

g)(s), where 0 6 t1 6 t2 6 2π. In fact I(0, t1) = ⟨eit, F+(t1)⟩. Notice that
I(0, 2π) = 0. First, we prove that I(0, t1) 6 I(0, t).

(i) If 0 6 t1 6 t − π then I(0, t1) = I(0, t1) + I(0, 2π) = I(0, t) + (I(0, t1) +
I(t, 2π)). Since sin(t−s) < 0 for s ∈ (0, t1)∪(t, 2π), we have I(0, t1) 6 I(0, t).

(ii) If t− π 6 t1 6 t then I(0, t1) = I(0, t)− I(t1, t), where I(t1, t) > 0.
(iii) If t 6 t1 6 t+ π then I(0, t1) = I(0, t) + I(t, t1), where I(t, t1) 6 0.
(iv) If t+ π 6 t1 6 2π then I(0, t1) = I(0, 2π)− I(t1, 2π) 6 0 6 I(0, t).

Hence we obtain

sup
t1∈[0,2π]

⟨eit, F+(t1)⟩ = sup
t1∈[0,2π]

I(0, t1) = I(0, t) = ⟨eit, F+(t)⟩.

Therefore,

hA(e
it) = max

a∈A
⟨eit, a⟩ = ⟨eit, φ(0) + iφ′(0)⟩+ sup

t1∈[0,2π]
⟨eit, F+(t1)⟩

= ⟨eit, φ(0) + iφ′(0)⟩+ ⟨eit, F+(t)⟩.

In a similar way, hB(e
it) = ⟨eit, F−(t)⟩.

Then

hA(e
it)− hB(e

it) = ⟨eit, φ(0) + iφ′(0) + F+(t)⟩ − ⟨eit, F−(t)⟩

=
⟨
eit, φ(0) + iφ′(0) +

∫ t

0
ieisd(f+ + g)(s)−

∫ t

0
ieisd(f− + g)(s)

⟩
=

⟨
eit, φ(0) + iφ′(0) +

∫ t

0
ieisdf(s)

⟩
.

Since ∫ t

0
ieisdf(s) = eitφ(t) + ieitφ′(t)− φ(0)− iφ′(0),

we obtain

hA(e
it)− hB(e

it) = ⟨eit, eitφ(t) + ieitφ′(t)⟩ = ⟨ei0, ei0(φ(t) + iφ′(t))⟩
= ⟨(1, 0), (φ(t), φ′(t))⟩ = φ(t) = h(eit).

The last assertion of the theorem follows from the fact that the pair of compact
convex sets (A,B) is uniquely-up-to-translation minimal with respect to inclusion
in the class of pairs (C,D) of compact convex sets such that A +D = B + C (see
Section 3 in [5]). �

In section 4 we show how to use the construction from Theorem 2.1 of the pair
of sets in finding a minimal sub- and superdifferential of specific ph-functions.
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3. Necessary and sufficient conditions for a difference of two
sublinear functions

The purpose of this section is to give sufficient and necessary conditions for a ph-
function to be a ds-function. The idea is based on the notion of bounded convexity
of functions of one variable [12].

Let f : [a, b] −→ R. The quantity

Kb
a(f) := sup

P={a=t0<t1<...<tn=b}

n−1∑
k=1

∣∣∣∣f(tk+1)− f(tk)

tk+1 − tk
− f(tk)− f(tk−1)

tk − tk−1

∣∣∣∣
is called the total convexity of the function f on [a, b]. A function f with finite
Kb

a(f) is called a function of finite total convexity on [a, b].

Theorem 3.1. Let h : R2 −→ R be a positively homogenous (ph-) function. Let
φ : [0, 2π] −→ R, φ(t) := h(eit). The following statements are equivalent:
(a) The function h is a ds-function.
(b) The function h is continuous and the right derivative φ′ of φ exists and

is a function of bounded variation.
(c) The function φ is a function of finite total convexity

on [0, 2π].

(d) lim
n→∞

n
n−1∑
k=1

∣∣∣φ(
2π(k+1)

n

)
− 2φ

(
2πk
n

)
+ φ

(
2π(k−1)

n

)∣∣∣ < ∞.

Proof. (a)⇔(b). The implication (b)⇒(a) follows from Theorem 2.1. Let the func-
tion h be a difference of sublinear functions h1 − h2. In order to prove that h is
continuous and φ′ exists and is of bounded variation it is enough to prove that h1, h2
are continuous and that corresponding derivatives φ′

1, φ
′
2 exist and are of bounded

variation. Hence proving the condition (b) for sublinear function h is all we need
to do.

Since the sublinear function h is convex, it is continuous. First, we are going
to prove that φ′ exists and is of bounded variation on any interval [a, b] for 0 6
a < b 6 2π, b − a < π. Denote exp(i[a, b]) := {eit|a 6 t 6 b}. The set exp(i[a, b])
is a compact arc of the unit circle S1 of the length less then π. Since the origin
does not belong to the convex hull of exp(i[a, b]), the arc can be separated by a
streight line from the origin. In consequence, there exists a linear functional l in R2

such that max
exp(i[a,b])

l < − max
exp(i[a,b])

h. Hence the sublinear function h + l takes only

negative values on the open neighbourhood of the set exp(i[a − ε, b + ε]) for some
0 < ε < π − b+ a. Denote φl(t) := l(eit). Since for any s, t ∈ [a− ε, b+ ε] we have

ei
s+t
2 = 2

∥eis+eit∥
eis+eit

2 , we obtain

(φ+ φl)
(s+ t

2

)
= (h+ l)(ei

s+t
2 ) = (h+ l)

( 2

∥eis + eit∥
eis + eit

2

)
=

2

∥eis + eit∥
(h+ l)

(eis + eit

2

)
6 (h+ l)

(eis + eit

2

)
6 (h+ l)(eis) + (h+ l)(eit)

2
=

(φ+ φl)(s) + (φ+ φl)(t)

2
.
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These inequalities and the continuity of the function φ + φl imply convexity of
φ+φl on the interval [a− ε, b+ ε]. Then the convex function φ+φl is directionaly
differentiable and the right derivative (φ + φl)

′ is bounded on the interval [a, b]
and nondecreasing, hence it is a function of bounded variation. Since φl is a linear
combination of sine and cosine functions, φ′

l exists and it is of bounded variation.
Therefore, φ′ exists and is of bounded variation on the interval [a, b]. We have just
proved that φ′ exists and is of bounded variation on any interval shorter than π.
This obviously implies the existence and bounded variation of φ′ on all domain of
φ.

(b)⇔(c). By Theorems 1 and 3 in [12], the condition (b) follows from K2π
0 (φ) <

∞. Moreover, K2π
0 (φ) is equal to the total variation V 2π

0 (φ′) of φ′ on [0, 2π]. The
implication (b)⇒(c) is obvious.

(c)⇔(d). It is easy to see that

K2π
0 (φ) =

1

2π
lim
n→∞

n

n−1∑
k=1

∣∣∣∣φ(
2π(k + 1)

n

)
− 2φ

(
2πk

n

)
+ φ

(
2π(k − 1)

n

)∣∣∣∣ .
�

In the next section we give examples where Theorem 3.1 helps us to decide
whether or not a given ph-function is a ds-function.

4. Examples of application

Max-min functions were first ds-functions studied in quasidifferential calculus
[1, 2]. Our examples are not of this type. Several examples are rational functions
which are ds-functions by the fact that a product and a quotient of dc-functions are
dc-functions [6] and since a ph-function which is a dc-function is also a ds-function
(Section 8.1, p. 413 in [9]).

Example 4.1. Let

h(x, y) :=

{
xy√
x2+y2

(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

Using notations from Theorem 2.1 we obtain φ(t) = 1
2 sin 2t, φ′(t) = cos 2t,∫ t

0 φ(s)ds = −1
4 cos 2t+

1
4 and f(t) = 3

4 cos 2t−
3
4 . Since the function f(t) is increas-

ing in the intervals [π2 , π], [
3π
2 , 2π] and decreasing in the intervals [0, π2 ], [π,

3π
2 ], we

obtain

f+(t) =


0 t ∈ [0, π2 ]
3
4 cos 2t+

3
4 t ∈ (π2 , π]

3/2 t ∈ (π, 3π2 ]
3
4 cos 2t+

9
4 t ∈ (3π2 , 2π]

, f−(t) =


3
4 − 3

4 cos 2t t ∈ [0, π2 ]
3/2 t ∈ (π2 , π]
9
4 − 3

4 cos 2t t ∈ (π, 3π2 ]
3 t ∈ (3π2 , 2π]

. We

define and calculate the function F (t) :=
∫ t
0 ie

isdf(s) =
∫ t
0 ie

isd(34 cos 2s − 3
4) =

(34 sin t −
1
4 sin 3t,

3
4 cos t +

1
4 cos 3t − 1) = 3

4 ie
−it + 1

4 ie
3it − i. Then we can calcu-

late b =
∫ 2π
0 ieitdf+(t) = F (2π) − F (3π2 ) + F (π) − F (π2 ) = 0. Hence F+(t) =
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∫ t
0 ie

isdf+(s). Then F+(t) =


0 t ∈ [0, π2 ]
F (t)− F (π2 ) t ∈ (π2 , π]
F (π)− F (π2 ) t ∈ (π, 3π2 ]
F (t)− F (3π2 ) + F (π)− F (π2 ) t ∈ (3π2 , 2π]

. Thus

F+(t) =


(0, 0) t ∈ [0, π2 ]
(34 sin t−

1
4 sin 3t− 1, 34 cos t+

1
4 cos 3t) t ∈ (π2 , π]

(−1,−1) t ∈ (π, 3π2 ]
(34 sin t−

1
4 sin 3t,

3
4 cos t+

1
4 cos 3t− 1) t ∈ (3π2 , 2π]

.

In a similar way, F−(t) =
∫ t
0 ie

isdf−(s). Since f− = f+ − f , we obtain

F−(t) =


−F (t) t ∈ [0, π2 ]
−F (π2 ) t ∈ (π2 , π]
−F (π2 ) + F (π)− F (t) t ∈ (π, 3π2 ]
−F (π2 ) + F (π)− F (3π2 ) t ∈ (3π2 , 2π]

, and

F−(t) =


(−3

4 sin t+
1
4 sin 3t,−

3
4 cos t−

1
4 cos 3t+ 1) t ∈ [0, π2 ]

(−1, 1) t ∈ (π2 , π]
(−3

4 sin t+
1
4 sin 3t− 1,−3

4 cos t−
1
4 cos 3t) t ∈ (π, 3π2 ]

(0, 0) t ∈ (3π2 , 2π]

.

The image the function F (t) is an astroid (see Figure 4.1). The image of the func-
tion F+(t) translated by vector (φ(0), φ′(0)) = (0, 1) and of the function F−(t)
produce boundaries, respectively, of the sets A and B (see Figure 4.1).

Figure 4.1: Image of the function F (astroid) from Example 4.1. Inclusion minimal
pair of sets such that hA − hB = h from Example 4.1.

Example 4.2. Let

h(x, y) :=

{
x2y

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

Then φ(t) = 1
4(sin t + sin 3t), φ′(t) = 1

4 cos t +
3
4 cos 3t,

∫ t
0 φ(s)ds = −1

4 cos t −
1
12 cos 3t +

1
3 and f(t) = 2

3 cos 3t −
2
3 . Since the function f(t) is increasing in the

intervals [π3 ,
2π
3 ], [π, 4π3 ] [5π3 , 2π] and decreasing in the intervals [0, π3 ], [

2π
3 , π], [4π3 , 5π3 ],

we obtain
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f+(t) =



0 t ∈ [0, π3 ]
f(t)− f(π3 ) t ∈ (π3 ,

2π
3 ]

f(2π3 )− f(π3 ) t ∈ (2π3 , π]
f(t)− f(π) + f(2π3 )− f(π3 ) t ∈ (π, 4π3 ]
f(4π3 )− f(π) + f(2π3 )− f(π3 ) t ∈ (4π3 , 5π3 ]
f(t)− f(5π3 ) + f(4π3 )− f(π) + f(2π3 )− f(π3 ) t ∈ (5π3 , 2π]

,

f−(t) =



−f(t) t ∈ [0, π3 ]
−f(π3 ) t ∈ (π3 ,

2π
3 ]

−f(t) + f(2π3 )− f(π3 ) t ∈ (2π3 , π]
−f(π) + f(2π3 )− f(π3 ) t ∈ (π, 4π3 ]
−f(t) + f(4π3 )− f(π) + f(2π3 )− f(π3 ) t ∈ (4π3 , 5π3 ]
−f(5π3 ) + f(4π3 )− f(π) + f(2π3 )− f(π3 ) t ∈ (5π3 , 2π]

.

Similarly like in Example 4.1, we have b = (0, 0) and

F+(t) =



(0, 0) t ∈ [0, π3 ]
F (t)− F (π3 ) t ∈ (π3 ,

2π
3 ]

F (2π3 )− F (π3 ) t ∈ (2π3 , π]
F (t)− F (π) + F (2π3 )− F (π3 ) t ∈ (π, 4π3 ]
F (4π3 )− F (π) + F (2π3 )− F (π3 ) t ∈ (4π3 , 5π3 ]
F (t)− F (5π3 ) + F (4π3 )− F (π) + F (2π3 )− F (π3 ) t ∈ (5π3 , 2π]

,

F−(t) =



−F (t) t ∈ [0, π3 ]
−F (π3 ) t ∈ (π3 ,

2π
3 ]

−F (t) + F (2π3 )− F (π3 ) t ∈ (2π3 , π]
−F (π) + F (2π3 )− F (π3 ) t ∈ (π, 4π3 ]
−F (t) + F (4π3 )− F (π) + F (2π3 )− F (π3 ) t ∈ (4π3 , 5π3 ]
−F (5π3 ) + F (4π3 )− F (π) + F (2π3 )− F (π3 ) t ∈ (5π3 , 2π]

,

where F (t) :=
∫ t
0 ie

isdf(s) =
∫ t
0 ie

isd(23 cos 3s −
2
3) = (12 sin 2t −

1
4 sin 4t,

1
2 cos 2t +

1
4 cos 4t −

3
4) = 1

2 ie
−2it + 1

4 ie
4it − 3

4 i. The image of the function F (t) is a Steiner
curve (see Figure 4.2). The image of the functions F+(t) translated by the vector
(0, 1) and of the function F−(t) produce boundaries, respectively, of the sets A and
B (see Figure 4.2).

Figure 4.2: Trajectory of the function F (deltoid curve or Steiner curve). Minimal
pair of sets such that hA − hB = h from Example 4.2.

In [10], Example 10.2.8, the function h was represented as a difference (h(x, y) +

2
√

x2 + y2)−2
√

x2 + y2, where the number α = 2 is the smallest number such that
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the function h(x, y)+α
√

x2 + y2 is convex. Figure 4.3 shows a pair of subdifferential

A := ∂h|0 = ∂(h+2∥·∥2)|0 and superdifferential B := ∂h|0 = ∂(2∥·∥2)|0. Obviously,
h = hA − hB, however, the pair (A,B) is not inclusion-minimal.

Figure 4.3: Sub- and superdifferential of the function h from Example 10.2.8 in [10].

Example 4.3. Let

h(x, y) :=

{ √
2|y| −

√
x2 + y2 |x| 6 |y|√

x2 + y2 −
√
2|x| |x| > |y|

.

Then

φ(t) =

{ √
2| sin t| − 1 | cos t| 6 | sin t|

1−
√
2| cos t| | cos t| > | sin t| ,

∫ t

0
φ(s)ds =


t−

√
2 sin t 0 6 t < π

4
π
2 − t−

√
2 cos t π

4 6 t < 3π
4

−π + t+
√
2 sin t 3π

4 6 t < 5π
4

3π
2 − t+

√
2 cos t 5π

4 6 t < 7π
4

−2π + t−
√
2 sin t 7π

4 6 t 6 2π

,

φ′(t) =



√
2 sin t 0 6 t < π

4√
2 cos t π

4 6 t < 3π
4

−
√
2 sin t 3π

4 6 t < 5π
4

−
√
2 cos t 5π

4 6 t < 7π
4√

2 sin t 7π
4 6 t 6 2π

,

f(t) =


t 0 6 t < π

4
π
2 − t π

4 6 t < 3π
4

−π + t 3π
4 6 t < 5π

4
3π
2 − t 5π

4 6 t < 7π
4

−2π + t 7π
4 6 t 6 2π

,
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f+(t) =


t 0 6 t < π

4
π
4

π
4 6 t < 3π

4
−π

2 + t 3π
4 6 t < 5π

4
3π
4

5π
4 6 t < 7π

4
−π + t 7π

4 6 t 6 2π

, f−(t) =


0 0 6 t < π

4
−π

4 + t π
4 6 t < 3π

4
π
2

3π
4 6 t < 5π

4
−3π

4 + t 5π
4 6 t < 7π

4
π 7π

4 6 t 6 2π

.

The image of the function F+(t) translated by the vector (1 −
√
2
2 , 0) and of the

function F−(t) translated by vector (
√
2
2 , 0) produce boundaries, respectively, of the

sets A′ and B′ (see Figure 4.4), which are lenses. The Minkowski sum A′ +B′ is a
unit disc. We have h = hA − hB = hA′ − hB′ , while hA′ + hB′ = ∥ · ∥2.

Figure 4.4: The lenses A′ and B′ from Example 4.3.

The following examples show usefulness of the criterion from Theorem 3.1.

Example 4.4. Let h(x, y) := infn∈N |y cos π
n − x sin π

n |. Notice that the func-
tion h is positively homogenous, piecewise linear and nonnegative. Then φ(t) =
infn∈N | sin(t− π

n)|. For t ∈ [πn ,
π

n−1 ], n > 3 we have

φ(t) 6 sin(t− π

n
) 6 π

n− 1
− π

n
=

π

(n− 1)n
.

Since n > π
t and t 6 π − 1, we obtain

φ(t) 6 π

(πt − 1)πt
=

t2

π − t
6 t2.

Then for t ∈ [0, π2 ] we have 0 6 φ(t) 6 t2, and the right derivative φ′(0) exists
and φ′(0) = 0. Since φ(t) = φ(t − π) for t ∈ [π, 2π], we obtain φ′(π) = 0. For
all t ∈ [0, 2π], t ̸= 0, π, 2π the right derivative φ′(t) obviously exists and belongs
to [−1, 1]. Therefore, the function φ is continous and Lipschitzian with a constant
1. Also the function h is continous and Lipschitzian with a constant 1. Let us
notice that for all n > 2, we have φ′(πn) = 1. Moreover for each n the function φ′

is negative in some left neighborhood of π
n . Hence the variation of φ′ is infinite.

By Theorem 3.1 the function h is not a difference of sublinear functions. In [3]
Gorokhovik and Trafimovich gave another similar function with more complicated
definition.
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Example 4.5. For t ∈ [πn ,
π

n−1 ], n > 2 let us define

φ(t) := min(
1

n2
sin(t− π

n
),

1

(n− 1)2
sin(

π

n− 1
− t)).

Let us put φ(t) := φ(t− π) for t > π and φ(0) := 0. We define

h(x, y) :=

{ √
x2 + y2φ(Arg(x+ iy)) (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)
.

Again the function h is positively homogenous, piecewise linear and nonnegative.
Moreover, the right derivative φ′(t) exists and belongs to the interval [−1, 1]. There-
fore, also the functions φ and h are continous and Lipschitzian with a constant 1.
Notice that right derivative φ′ is decreasing in each interval [πn ,

π
n−1), n > 2. More-

over, φ′(πn) =
1
n2 and

lim
t↗ π

n−1

φ′(t) = − 1

(n− 1)2
.

We can calculate that the variation of φ′ is finite and equal to

8

∞∑
n=1

1

n2
− 4 = 8

π2

6
− 4 ≈ 9, 1594725.

By Theorem 3.1 the function h is a difference of sublinear functions.

Figure 4.5: The sets A and B are determined by the images of the functions F+(t)
and F−(t) from Example 4.6.
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[7] L. Hörmander, Sur la fonction d’appui des ensembles convexes dans un espace localement
convexe, Arkiv för Mathematik 3 (1954), 181–186.

[8] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I & 2, Grundlehren
der Mathematischen Wissenschaften Vol. 330 & 331, Springer-Verlag, Berlin, 2006.

[9] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex analysis
without Linearity, Math. Appl. 388, Kluwer, Dordrecht–Boston–London, 1997.

[10] D. Pallaschke and R. Urbański, Pairs of Compact Convex Sets. Fractional Arithmetic with
Convex Sets, Math. Appl. 548, Kluwer, Dortrecht–Boston–London, 2002.

[11] H. R̊adström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3
(1952), 165–169.

[12] A. W/ Roberts and D. E. Varberg, Functions of bounded convexity, Bull. Amer. Math. Soc.
75 (1969), 568–572.

[13] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43– 62.
[14] A. Shapiro, Quasidifferential calculus and first order optimality conditions in nonsmooth opti-

mization, Math. Program. Study 29 (1986), 56–68.
[15] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematica 39 (1992), 267–

273.
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Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709–715.
[17] V. A. Zalgaller, Representation of functions of several variables by differences of convex func-

tions, J. Math. Sci. 100 (2000), 2209–2227.
[18] A. J. Zaslavski, Exact penalty in constrained optimization and critical points of Lipschitz func-

tions, J. Nonlinear Convex Anal. 10 (2009), 149–156.

Manuscript received February 23 2017

revised June 5 2017

J. Grzybowski
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-
614 Poznań, Poland
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