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method for SC function, that is to find the upper bound for the number of damped
Newton’s step required for finding an ε- approximation for the minimizer.

For strictly convex functions, which are not self-concordant, such results, to the
best of our knowledge, are unknown.

Therefore we introduced the regularized Newton’s method (RNM), which guar-
antee convergence to the minimizer of a strictly convex function from any starting
point (see [10]). The most important feature of RNM is the regularization at each
point. By taking Euclidian norm of the gradient as the regularization parameter
we guaranteed non only global convergence of RNM, but also local quadratic con-
vergence rate. It became possible due to the vanishing regularization parameter.

The important issue still is the size of the Newton’s and regularized Newton’s
area, where correspondent methods converges with quadratic rate.

The purpose of the paper is to introduce a new damped Newton’s method (DNM)
and a new DRNM for minimization of twice continuously differentiable and strictly
convex f : Rn → R and establish their complexity bounds.

First, we characterize the Newton’s areas for DNM and DRNM. In other words,
we estimate the minimizer’s neighborhoods, where DNM and DRNM converges with
quadratic rate.

Then we estimate the number of steps needed for DNM’s or DRNM’s to enter
the correspondent Newton’s areas.

The key ingredients of our analysis are the Newton’s and the regularized Newton’s
decrements.

On the one hand, the decrements provide the upper bound for the distance from
the current approximation to the minimizer. Therefore they have been used in the
stopping criteria.

On the other hand, they provide a lower bound for the function reduction at
each step at any point, which does not belong to the Newton’s or to the regularized
Newton’s area.

These bounds were used to estimate the number of DNM or DRNM steps needed
to get into the correspondent Newton’s areas.

2. Newton’s method

We start with the classical Newton’s method for finding a root of a nonlinear
equation

f(t) = 0,

where f : R → R has a smooth derivative f ′.
Let us consider t0 ∈ R and the linear approximation

f̃(t) = f(t0) + f ′(t0)(t− t0) = f(t0) + f ′(t0)∆t

of f at t0, assuming that f ′(t0) ̸= 0.
By replacing f with its linear approximation we obtain the following equation

f(t0) + f ′(t0)∆t = 0

for the Newton’s step ∆t.
The next approximation is given by formula

(2.1) t = t0 +∆t = t0 − (f ′(t0))
−1f(t0).
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By reiterating (2.1) we obtain Newton’s method

(2.2) ts+1 = ts − (f ′(ts))
−1f(ts)

for finding a root of a nonlinear equation f(t) = 0.

Let t∗ be the root, that is f(t∗) = 0. Also we assume f
′
(t∗) ̸= 0 and f ∈ C2. We

consider the expansion of f at ts with the Lagrange remainder

(2.3) 0 = f(t∗) = f(ts) + f
′
(ts)(t

∗ − ts) +
1

2
f

′′
(t̂s)(t

∗ − ts)
2,

where t̂s ∈ [ts, t
∗]. For ts close to t∗ we have f

′
(ts) ̸= 0, therefore from (2.3) follows

t∗ − ts +
f(ts)

f ′(ts)
= −1

2

f
′′
(t̂s)

f ′(ts)
(t∗ − ts)

2.

Using (2.2) we get

(2.4) |t∗ − ts+1| =
1

2

|f ′′
(t̂s)|

|f ′(ts)|
|t∗ − ts|2.

If ∆s = |t∗ − ts| is small, then there exist a > 0 and b > 0 independent on ts that

|f ′′
(t̂s)| ≤ a and |f ′

(ts)| > b. Therefore, from (2.4) follows

(2.5) ∆s+1 ≤ c∆2
s,

where c = 0.5ab−1.
This is the key characteristic of Newton’s method, which makes the method so

important even 350 years after it was originally introduced.
Newton’s method has a natural extension for a nonlinear system of equations

(2.6) g(x) = 0,

where g : Rn → Rn is a vector-function with a smooth Jacobian J(g) = ∇g : Rn →
Rn. The linear approximation of g at x0 is given by

(2.7) g̃(x) = g(x0) +∇g(x0)(x− x0).

We replace g in (2.6) by its linear approximation (2.7). The Newton’s step ∆x one
finds by solving the following linear system :

g(x0) +∇g(x0)∆x = 0.

Assuming det∇g(x0) ̸= 0 we obtain

∆x = −(∇g(x0))
−1g(x0).

The new approximation is given by the following formula:

(2.8) x = x0 − (∇g(x0))
−1g(x0).

By reiterating (2.8) we obtain Newton’s method

(2.9) xs+1 = xs − (∇g(xs))
−1g(xs)

for solving a nonlinear system of equations (2.6).
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Newton’s method for minimization of f : Rn → R follows directly from (2.9) if
instead of unconstrained minimization problem

min f(x)

s.t. x ∈ Rn(2.10)

we consider the nonlinear system

(2.11) ∇f(x) = 0,

which is the necessary and sufficient condition for x∗ to be the minimizer in (2.10)
in case of convex f .

Vector

(2.12) n(x) = −(∇2f(x))−1∇f(x)

defines the Newton’s direction at x ∈ Rn.
Application of Newton’s method (2.9) to the system (2.11) leads to the Newton’s

method

(2.13) xs+1 = xs − (∇2f(xs))
−1∇f(xs) = xs + n(xs)

for solving (2.10).
Method (2.13) has another interpretation. Let f : Rn → R be twice differentiable
with a positive definite Hessian ∇2f .

The quadratic approximation of f at x0 is given by the formula

f̃(x) = f(x0) + (∇f(x0), x− x0) +
1

2
(∇2f(x0)(x− x0), x− x0).

Instead of solving (2.10) let us find

x̄ = argmin{f̃(x) : x ∈ Rn},
which is equivalent to solving the following linear system

∇2f(x0)∆x = −∇f(x0)

for ∆x = x− x0.
We obtain

∆x = n(x0),

so for the next approximation we have

(2.14) x̄ = x0 − (∇2f(x0))
−1∇f(x0) = x0 + n(x0).

By reiterating (2.14) we obtain Newton’s method (2.13) for solving (2.10).
The local quadratic convergence of both (2.9) and (2.13) is well known (see [2],

[4], [7], [8] and references therein).
Away from the neighborhood of x∗, however, both Newton’s methods (2.9) and

(2.13) can either oscillate or diverge.

Example 2.1. Consider

g(t) =


−1, t ∈ (−∞,−1]
(t+ 1)2 − 1, t ∈ [−1, 0]

−(t− 1)2 + 1, t ∈ [0, 1]
1, t ∈ [1,∞).
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The function g together with g′ is continuous on (−∞,∞). Newton’s method
(2.2) converges to the root t∗ = 0 from any starting point t: |t| < 2

3 , oscillates

between ts = −2
3 and ts+1 = 2

3 , s = 1, 2, ... and either diverges or not defined for

any t: |t| > 2
3 .

Example 2.2. For f(t) =
√
1 + t2 we have

f(t∗) = f(0) = min{f(t) : −∞ < t < ∞}.
For the first and second derivative we have

f ′(t) = t(1 + t2)−
1
2 , f ′′(t) = (1 + t2)−

3
2 .

Therefore Newton’s method (2.13) is given by the following formula

(2.15) ts+1 = ts − (1 + t2s)
3
2 ts(1 + t2s)

− 1
2 = −t3s.

It follows from (2.15) that Newton’s method converges from any t0 ∈ (−1, 1) oscil-
lates between ts = −1 and ts+1 = 1, s = 1, 2, ... and diverges from any t0 /∈ [−1, 1].
It also follows from (2.15) that Newton’s method converges from any starting point
t0 ∈ (−1, 1) with the cubic rate, however, in both examples the convergence area is
negligibly smaller than the area where Newton’s method diverges. Note that f is
strictly convex in R and strongly convex in the neighborhood of t∗ = 0.

Therefore there are three important issues associated with the Newton’s method
for unconstrained convex optimization.
First, to characterize the neighborhood of the solution, where Newton’s method
converges with quadratic rate.
Second, to find such modification of Newton’s method that generates convergent
sequence from any starting point and retains quadratic convergence rate in the
neighborhood of the solution.
Third, to estimate the computational complexity of a globally convergent Newton’s
and regularized Newton’s methods in terms of the total number of steps required
for finding an ε-approximation for x∗.

3. Local quadratic convergence of Newton’s method

We consider a class of convex functions f : Rn → R, that are strongly convex at
x∗, that is

(3.1) ∇2f(x∗) ≽ mI,

m > 0 and their Hessian satisfy Lipschitz condition in the neighborhood of x∗. In
other words there is δ > 0, a ball B(x∗, δ) = {x ∈ Rn, ∥x − x∗∥ ≤ δ} and M > 0
such that for any x and y ∈ B(x∗, δ) we have

(3.2) ∥∇2f(x)−∇2f(y)∥ ≤ M∥x− y∥,

where ∥x∥ = (x, x)
1
2 .

The following Theorem characterize the neighborhood of x∗, where Newton’s
method converges with quadratic rate.

There are several ways to proof this fundamental result(see, for example, [2], [4],
[7], [8] and references therein). In the following Theorem, which we provide for
completeness, the Newton’s area is characterized explicitly through the convexity
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constant m > 0 and Lipschitz constant M > 0 (see [7]). We will use these technique
later to characterize the regularized Newton’s area.

Theorem 3.1. If for 0 < m < M conditions (3.1) and (3.2) are satisfied, then
for δ = 2m

3M and any given x0 ∈ B(x∗, δ) the entire sequence {xs}∞s=0 generated by
(2.13) belongs B(x∗, δ) and the following bound holds:

(3.3) ∥xs+1 − x∗∥ ≤ M

2(m−M∥xs − x∗∥)
∥xs − x∗∥2, s ≥ 1.

Proof. From (2.13) and ∇f(x∗) = 0 follows

xs+1 − x∗ = xs − x∗ − [∇2f(xs)]
−1∇f(xs) =

= xs − x∗ − (∇2f(xs))
−1(∇f(xs)−∇f(x∗)) =

= [∇2f(xs)]
−1[∇2f(xs)(xs − x∗)− (∇f(xs)−∇f(x∗))].(3.4)

Then we have

∇f(xs)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + τ(xs − x∗))(xs − x∗)dτ.

From (3.4) we obtain

(3.5) xs+1 − x∗ = [∇2f(xs)]
−1Hs(xs − x∗),

where

Hs =

∫ 1

0
[∇2f(xs)−∇2f(x∗ + τ(xs − x∗))]dτ.

Let ∆s = ∥xs − x∗∥, then using (3.2) we get

∥Hs∥ = ∥
∫ 1

0
[∇2f(xs)−∇2f(x∗ + τ(xs − x∗))]dτ∥

≤
∫ 1

0
∥[∇2f(xs)−∇2f(x∗ + τ(xs − x∗))∥dτ ≤

≤
∫ 1

0
M∥xs − x∗ − τ(xs − x∗)∥dτ ≤

≤
∫ 1

0
M(1− τ)∥xs − x∗∥dτ =

M

2
∆s.

Therefore from (3.5) and the latter bound we have

∆s+1 ≤ ∥(∇2f(xs))
−1∥∥Hs∥∥xs − x∗∥ ≤

M

2
∥(∇2f(xs))

−1∥∆2
s.(3.6)

From (3.2) follows

∥∇2f(xs)−∇2f(x∗)∥ ≤ M∥xs − x∗∥ = M∆s,

therefore

∇2f(x∗) +M∆sI ≽ ∇2f(xs) ≽ ∇2f(x∗)−M∆sI.
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From (3.1) follows

∇2f(xs) ≽ ∇2f(x∗)−M∆sI ≽ (m−M∆s)I.

Hence, for any ∆s < mM−1 the matrix ∇2f(xs) is positive definite, therefore the
inverse (∇2f(xs))−1 exists and the following bound holds

∥(∇2f(xs))−1∥ ≤ 1

m−M∆s
.

From (3.6) and the latter bound follows

(3.7) ∆s+1 ≤
M

2(m−M∆s)
∆2

s.

From (3.7) for ∆s <
2m
3M follows ∆s+1 < ∆s, which means that for δ = 2m

3M and any
x0 ∈ B(x∗, δ) the entire sequence {xs}∞s=0 belongs to B(x∗, δ) and converges to x∗

with the quadratic rate (3.7).
The proof is complete. � �

The neighborhood B(x∗, δ) with δ = 2m
3M is called Newton’s area.

In the following section we consider a new version of the damped Newton’s
method, which converges from any starting point and at the same time retains
quadratic convergence rate in the Newton’s area.

4. Damped Newton’s method

To make Newton’s method practical we have to guarantee convergence from any
starting point. To this end the step length t > 0 is attached to the Newton’s
direction n(x), that is

(4.1) x̂ = x+ tn(x) = x− t(∇2f(x))−1∇f(x).

The step length t > 0 has to be adjusted to guarantee a ”substantial reduction” of
f at each x /∈ B(x∗, δ) and t = 1, when x ∈ B(x∗, δ).
Method (4.1) is called the damped Newton’s Method (DNM)(see, for example, [2],
[7], [9])

The following function λ : Rn → R+:

(4.2) λ(x) = ((∇2f(x))−1∇f(x),∇f(x))0.5 = [−(∇f(x), n(x))]0.5,

which is called the Newton’s decrement of f at x ∈ Rn, will play an important role
later.

At this point we assume that f : Rn → R is strongly convex and its Hessian ∇2f
is Lipschitz continuous, that is, there exist ∞ > M > m > 0 that

(4.3) ∇2f(x) ≽ mI

and

(4.4) ∥∇2f(x)−∇2f(y)∥ ≤ M∥x− y∥

are satisfied for any x and y from Rn.
Let x0 ∈ Rn be a starting point.
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Due to (4.3) the sublevel set L0 = {x ∈ Rn : f(x) ≤ f(x0)} is bounded for any
given x0 ∈ Rn. Therefore from (4.4) follows existence L > 0 that

(4.5) ∥∇2f(x)∥ ≤ L

is taking place.
We also assume that ε > 0 is small enough, in particular,

(4.6) 0 < ε < m2L−1

holds.
We are ready to describe our version of DNM.
Let x0 ∈ Rn be a starting point and 0 < ε < δ be the required accuracy. Set

x := x0
1. find Newton’s direction n(x);
2. if the following inequality

(4.7) f(x+ n(x)) ≤ f(x) + 0.5(∇f(x), n(x))

holds, then set t(x) := 1, otherwise set t(x) = m(2L)−1;
3. set x := x+ t(x)n(x);
4. if λ(x) ≤ ε1.5, then x∗ := x, otherwise go 1.

The following Theorem proves global convergence of the DNM 1.-4. and estab-
lishes the upper bound for the total number of DNM steps require for finding ε-
approximation for x∗.

5. Global convergence of the DNM and its complexity

Theorem 5.1. If f : Rn → R is twice differentiable and conditions (4.3) and (4.4)
are satisfied, then for δ = 2

3
m
M it takes

(5.1) N0 = 9
L2M2

m5
(f(x0)− f(x∗)).

DNM steps to find x ∈ B(x∗, δ) by using DNM.

Proof. From (4.5) follows

(5.2) ∇2f(x) ≼ LI.

On other hand, from (4.3) follows the existence of the inverse (∇2f(x))−1. Therefore
from (5.2) follows

(5.3) (∇2f(x))−1 ≽ L−1I.

From (4.2) and (5.3) we obtain the following lower bound for the Newton’s decre-
ment

(5.4) λ(x) = (∇2f(x)−1∇f(x),∇f(x))0.5 ≥
≥ (L−1∥∇f(x)∥2)0.5 = L−0.5∥∇f(x)∥.

From (4.3) we have

∥∇f(x)∥∥x− x∗∥ ≥ (∇f(x)−∇f(x∗), x− x∗) ≥ m∥x− x∗∥2

or

(5.5) ∥∇f(x)∥ ≥ m∥x− x∗∥.
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From (5.4) and (5.5) we obtain

(5.6) λ(x) ≥ L−0.5m∥x− x∗∥.

From (4.6) and the stopping criteria 4. follows

(m2L−1)0.5ε ≥ ε1.5 ≥ λ(x) ≥ mL−0.5∥x− x∗∥,

or ∥x− x∗∥ ≤ ε, which justifies the stopping criteria 4.
On the other hand, Newton’s decrement defines the lower bound for the function

reduction at each step.
In fact, for Newton’s directional derivative from (2.12), (4.2) and (4.3) follows

φ′(0) =
df(x+ tn(x))

dt
|t=0 = (∇f(x), n(x)) =

(5.7) −(∇2f(x)n(x), n(x)) ≤ −m∥n(x)∥2.

Due to the strong convexity of φ(t) = f(x+tn(x)) the derivative φ
′
(t) = (∇f(x+

tn(x)), n(x)) is monotone increasing in t > 0, so there is t(x) > 0 such that

(5.8) 0 > (∇f(x+ t(x)n(x)), n(x)) ≥ 1

2
(∇f(x), n(x)),

otherwise (∇f(x + tn(x)), n(x)) < 1
2(∇f(x), n(x)) ≤ −1

2m∥n(x)∥2, t > 0 and
inf f(x) = −∞, which is impossible for a strongly convex function f .

It follows from (5.7), (5.8) and monotonicity of φ′(t) that for any t ∈ [0, t(x)] we
have

df(x+ tn(x))

dt
= (∇f(x+ tn(x)), n(x)) ≤ 1

2
(∇f(x), n(x)).

Therefore

f(x+ t(x)n(x)) ≤ f(x) +
1

2
t(x)(∇f(x), n(x)).

Keeping in mind (4.2) we obtain

(5.9) f(x)− f(x+ t(x)n(x)) ≥ 1

2
t(x)λ2(x).

Combining (5.7) and (5.8) we obtain

(∇f(x+ t(x)n(x))−∇f(x), n(x)) ≥ m

2
∥n(x)∥2.

From the mean value Theorem applied to φ(t) = (∇f(x+ t(x)n(x))−∇f(x), n(x))
follows existance 0 < θ(x) < 1 such that

t(x)(∇2f(x+ θ(x)t(x)n(x))n(x), n(x)) = t(x)(∇2f(·)n(x), n(x)) ≥ m

2
∥n(x)∥2,

or

t(x)∥∇2f(·)∥∥n(x)∥2 ≥ m

2
∥n(x)∥2.

From (4.3) follows

(5.10) t(x) ≥ m

2L
,

which justifies the choice of step length t(x) in the DNM 1.-4..
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Hence, from (5.9) and (5.10) we obtain the following lower bound for the function
reduction per step

(5.11) ∆f(x) = f(x)− f(x+ t(x)n(x)) ≥ m

4L
λ2(x),

which together with the lower bound (5.6) for the Newton’s decrement λ(x) leads
to

(5.12) ∆f(x) = f(x)− f(x+ t(x)n(x)) ≥ m3

4L2
∥x− x∗∥2.

It means that for any x /∈ B(x∗, δ) the function reduction at each step is proportional
to the square of the distance between current approximation x and the solution x∗.

In other words, ”far from” the solution Newton’s step produces a ”substantial”
reduction of the function value similar to one of the gradient method.

For x /∈ B(x∗, δ) we have ∥x−x∗∥ ≥ 2m
3M , therefore from (5.12) we obtain ∆f(x) ≥

1
9

m5

L2M2 . So it takes at most

N0 = 9
L2M2

m5
(f(x0)− f(x∗))

Newton’s steps to obtain x ∈ B(x∗, δ) from a given starting point x0 ∈ Rn. The
proof is completed. �

From Theorem 3.1 follows that O(ln ln ε−1) steps needed to find an ε- approxima-
tion to x∗ from any x ∈ B(x∗, δ), where 0 < ε < δ is the required accuracy. There-
fore the total number of Newton’s steps required for finding an ε-approximation to
the optimal solution x∗ from a starting point x0 ∈ Rn is

N = N0 +O(ln ln ε−1).

The bound (5.1) is similar to (9.40) from [2], but the proof is based on our version
of DNM and the explicit characterization of the Newton’s area. It allows to extend
the proof for the regularized Newton’s method [10].

The DNM requires an a priori knowledge of two parameters m and L or their
corresponding lower and upper bounds.

The following version of DNM is free from this requirement. To adjust the step
length t > 0 we use the backtracking line search.

The inequality

(5.13) f(x+ tn(x)) ≤ f(x) + αt(∇f(x), n(x))

with 0 < α ≤ 0.5 is called the Armijo condition.
Let 0 < ρ < 1, the backtracking line search consist of the following steps.

1. For t > 0 check (5.13). If (5.13) holds go to 2. If not set t := tρ and repeat
it until (5.13) holds, then go to 2.

2. set t(x) := t, x := x+ t(x)n(x)

We are ready to describe another version of DNM, which does not requires an a
priori knowledge of the parameters m and L or their lower and upper bounds.

Let x0 ∈ Rn be a starting point and 0 < ε << δ be the required accuracy.

1. Compute Newton’s direction

(5.14) n(x) = −(∇2f(x))−1∇f(x);
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2. set t := 1, use the backtracking line search until

f(x+ tn(x)) ≤ f(x) + 0.5t(∇f(x), n(x));

3. set t(x) := t, x := x+ t(x)n(x);
4. if λ(x) ≤ ε1.5 then x∗ := x otherwise go 1.

The complexity of the DNM with backtracking line search can be established
using arguments similar to those in Theorem 5.1

Unfortunately, in the absence of strong convexity of f : Rn → R Newton’s method
might not converge from any starting point.

In case of Example 2.2 Newton’s method does not converge from any t /∈ (−1, 1)

in spite of f(t) =
√
1 + t2 being strongly convex and smooth enough in the neigh-

borhood of t∗ = 0.
In the following section we consider the Regularized Newton’s Method (RNM)(see

[10]), which eliminates the basic drawback of the Classical Newton’s Method. It
generates a converging sequence from any starting point x0 ∈ Rn and retains qua-
dratic convergence rate in the regularized Newton’s area, which we will characterize
later.

6. Regularized Newton’s methods

Let f ∈ C2 be a convex function in Rn. We assume that the optimal set X∗ =
Argmin{f(x) : x ∈ Rn} is not empty and bounded.

The corresponding regularized at the point x ∈ Rn function Fx : Rn → R is
defined by the following formula

(6.1) Fx(y) = f(y) +
1

2
∥ ∇f(x) ∥∥ y − x ∥2 .

For any x /∈ X∗ we have ||∇f(x)|| > 0, therefore for any convex function f :
Rn → R the regularized function Fx is strongly convex in y for any x /∈ X∗. If f
is strongly convex at x∗, then the regularized function Fx is strongly convex in Rn.
The following properties of Fx are direct consequences of the definition (6.1).
1◦. Fx(y)|y=x = f(x),
2◦. ∇yFx(y)|y=x = ∇f(x),

3◦. ∇2
yyFx(y)|y=x = ∇2f(x) + ||∇f(x)||I = H(x),

where I is the identical matrix in Rn.
For any x /∈ X∗, the inverse H−1(x) exists for any convex f ∈ C2. Therefore the

regularized Newton’s step

(6.2) x̂ = x− (H(x))−1∇f(x)

can be performed for any convex f ∈ C2 from any starting point x /∈ X∗.
We start by showing that the regularization (6.1) improves the ”quality” of the

Newton’s direction as well the condition number of the Hessian ∇2f(x) at any
x ∈ Rn that x /∈ X∗.

Let 0 ≤ m(x) < M(x) < ∞ be the smallest and largest eigenvalue of the matrix
H(x), then

(6.3) m(x)||y||2 ≤ (∇2f(x)y, y) ≤ M(x)||y||2

holds for any y ∈ Rn.
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The condition number of the Hessian ∇2f at x ∈ Rn is

cond ∇2f(x) = m(x)(M(x))−1.

Along with the regularized Newton’s step (6.2), we consider the classical Newton’s
step

(6.4) x̂ = x− (∇2f(x))−1∇f(x).

The regularized Newton’s direction (RND) r(x) is defined by the system

(6.5) H(x)r(x) = −∇f(x).

The ”quality” of any direction d at x ∈ Rn is define by the following number

0 ≤ q(d) = − (∇f(x), d)

∥∇f(x)∥ · ∥d∥
≤ 1.

For the steepest descent direction d(x) = −∇f(x) ∥ ∇f(x) ∥−1 we have the best
local descent direction and q(d(x)) = 1. The “quality” of the classical Newton’s
direction is defined by the following number

q(n(x)) = − (∇f(x), n(x))

||∇f(x)|| · ||n(x)||
.(6.6)

For the RND r(x) we have

q(r(x)) = − (∇f(x), r(x))

||∇f(x)|| · ||r(x)||
.(6.7)

The following theorem establishes the lower bounds for q(r(x)) and q(n(x)). It
shows that the regularization (6.1) improves the condition number of the Hessian
∇2f for all x ∈ Rn, x /∈ X∗ (see [10]).

Theorem 6.1. Let f : Rn → R be a twice continuous differentiable convex function
and the bounds (6.3) hold, then:

1.

1 ≥ q(r(x)) ≥ (m(x) + ||∇f(x)||)(M(x) + ||∇f(x)||)−1

= cond H(x) > 0 for any x ̸∈ X∗.

2.

1 ≥ q(n(x)) ≥ m(x)(M(x))−1 = cond ∇2f(x)

for any x ∈ Rn.

3.

cond H(x)− cond ∇2f(x) =

||∇f(x)||(1− cond ∇2f(x))(M(x) + ||∇f(x)||)−1 > 0(6.8)

for any x ̸∈ X∗, cond ∇2f(x) < 1.
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Proof. 1. From (6.5), we obtain

||∇f(x)|| ≤ ||H(x)|| · ||r(x)||.(6.9)

Using the right inequality (6.3) and 3◦, we have

||H(x)|| ≤ M(x) + ||∇f(x)||,(6.10)

From (6.9) and (6.10) we obtain

||∇f(x)|| ≤ (M(x) + ||∇f(x)||)||r(x)||.

From (6.5) the left inequality (6.3) and 3◦ follows

−(∇f(x), r(x)) = (H(x)r(x), r(x)) ≥ (m(x) + ∥∇f(x)∥)∥r(x)∥2.

Therefore from (6.7) follows

q(r(x)) ≥ (m(x) + ||∇f(x)||)(M(x) + ||∇f(x)||)−1 = cond H(x).

2. Now let us consider the Newton’s direction n(x). From (6.4), we have

∇f(x) = −∇2f(x)n(x),(6.11)

therefore,

−(∇f(x), n(x)) = (∇2f(x)n(x), n(x)).

From (6.11) left inequality of (6.3), we obtain

(6.12) q(n(x)) = − (∇f(x), n(x))

||∇f(x)|| · ||n(x)||
≥ m(x)||n(x)|| · ||∇f(x)||−1.

From (6.11) and the right inequality in (6.3) follows

(6.13) ||∇f(x)|| ≤ ||∇2f(x)|| · ||n(x)|| ≤ M(x)||n(x)||.

Combining (6.12) and (6.13) we have

q(n(x)) ≥ m(x)

M(x)
= cond ∇2f(x).

3. Using the formulas for the condition numbers of ∇2f(x) and H(x) we obtain
(6.3) �

Corollary 6.2. The regularized Newton’s direction r(x) is a decent direction for
any convex f : Rn → R, whereas the classical Newton’s direction n(x) exists and it
is a decent direction only if f is a strongly convex at x ∈ Rn.

Under condition (3.1) and (3.2) the RNM retains the local quadratic convergence
rate, which is typical for the Classical Newton’s method.

On the other hand, the regularization (6.1) allows to establish global convergence
and estimate complexity of the RNM, when the original function is only strongly
convex at x∗.
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7. Local quadratic convergence rate of the RNM

In this section we consider the RNM and determine the neighborhood of the
minimizer, where the RNM converges with quadratic rate.

Along with assumptions (3.1) and (3.2) for the Hessian ∇2f we will use the
Lipschitz condition for the gradient ∇f

(7.1) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

which is equivalent to (4.5).
The RNM generates a sequence {xs}∞s=0:

(7.2) xs+1 = xs −
[
∇2f(xs) + ∥∇f(xs)∥I

]−1∇f(xs).

The following Theorem characterizes the regularized Newton’s area.

Theorem 7.1. If (3.1), (3.2) and (7.1) hold, then for δ = 2m
3M+2L and any x0 ∈

B(x∗, δ) as a starting point, the sequence {xs}∞s=0 generated by RNM (7.2) belongs
to B(x∗, δ) and the following bound holds:

(7.3) ∆s+1 = ∥xs+1 − x∗∥ ≤ M + 2L

2
· 1

m−M∆s
∆2

s, s ≥ 1.

Proof. From (7.2) follows

xs+1 − x∗ = xs − x∗ −
[
∇2f(xs) + ∥∇f(xs)∥I

]−1
(∇f(xs)−∇f(x∗)).

Using

∇f(xs)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + τ(xs − x∗))(xs − x∗)dτ,

we obtain

(7.4) xs+1 − x∗ =
[
∇2f(xs) + ∥∇f(xs)∥I

]−1
Hs(xs − x∗),

where

Hs =

∫ 1

0
(∇2f(xs) + ∥∇f(xs)∥I −∇2f(x∗ + τ(xs − x∗)))dτ.

From (3.2) and (7.1) follows

∥Hs∥ = ∥
∫ 1

0

(
∇2f(xs) + ∥∇f(xs)∥I −∇2f(x∗ + τ(xs − x∗))

)
dτ∥

≤ ∥
∫ 1

0
(∇2f(xs)−∇2f(x∗ + τ(xs − x∗)))dτ∥+

∫ 1

0
∥∇f(xs)∥dτ

≤
∫ 1

0
∥∇2f(xs)−∇2f(x∗ + τ(xs − x∗))∥dτ +

∫ 1

0
∥∇f(xs)−∇f(x∗)∥dτ

≤
∫ 1

0
M∥xs − x∗ − τ(xs − x∗)∥dτ +

∫ 1

0
L∥xs − x∗∥dτ

(7.5) =

∫ 1

0
(M(1− τ) + L)∥xs − x∗∥dτ =

M + 2L

2
∥xs − x∗∥.
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From (7.4) and (7.5) we have

∆s+1 = ∥xs+1 − x∗∥ ≤ ∥
(
∇2f(xs) + ∥∇f(xs)∥I

)−1 ∥ · ∥Hs∥ · ∥xs − x∗∥

≤ M + 2L

2
∥(∇2f(xs) + ∥∇f(xs)∥I)−1∥∆2

s.(7.6)

From (3.2) follows

(7.7) ∥∇2f(xs)−∇2f(x∗)∥ ≤ M∥xs − x∗∥ = M∆s,

therefore we have

(7.8) ∇2f(x∗) +M∆sI ≽ ∇2f(xs) ≽ ∇2f(x∗)−M∆sI.

From (3.1) and (7.8) we obtain

∇2f(xs) + ∥∇f(xs)∥I ≽ (m+ ∥∇f(xs)∥ −M∆s)I.

Therefore for ∆s <
m+∥∆f(xs)∥

M the matrix ∇2f(xs) + ∥∇f(xs)∥I is positive defi-
nite, therefore its inverse exists and we have

∥(∇2f(xs) + ∥∇f(xs)∥I)−1∥ ≤ 1

m+ ∥∇f(xs)∥ −M∆s
≤

1

m−M∆s
.(7.9)

For ∆s ≤ 2m
3M+2L from (7.6) and (7.9) follows

(7.10) ∆s+1 ≤
M + 2L

2

1

m−M∆s
∆2

s.

Therefore from (7.10) for 0 < ∆s ≤ 2m
3M+2L < m+∥∇f(xs)∥

M we obtain

∆s+1 ≤
3M + 2L

2m
∆2

s ≤ ∆s.

Hence, for δ = 2m
3M+2L and any x0 ∈ B(x∗, δ) as a starting point the sequence

{xs}∞s=0 generated by (7.2) belongs to B(x∗, δ) and the bound (7.3) holds.
The proof of Theorem 7.1 is complete. �

Corollary 7.2. Under conditions of Theorem 7.1 for δ = 2m
3M+2L and any x ∈

B(x∗, δ) the Hessian ∇2f(x) is positive definite and

(7.11) ∇2f(x) ≽ m0I,

where m0 = m(M + 2L)(3M + 2L)−1

In fact, from (4.4) follows

∇2f(x∗) +M∆xI ≽ ∇2f(x) ≽ ∇2f(x∗)−M∆xI,

so for any x ∈ B(x∗, δ) we have

∇2f(x) ≽
(
m− 2Mm

3M + 2L

)
I = m(M + 2L)(3M + 2L)−1I = m0I.

From the latter inequality follows

∥∇f(x)∥∥x− x∗∥ ≥ (∇f(x)−∇f(x∗), x− x∗) ≥ m0∥x− x∗∥2,
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that is for any x ∈ B(x∗, δ) we have

(7.12) ∥∇f(x)∥ ≥ m0∥x− x∗∥.

It follows from Theorem 7.1 that B(x∗, δ) with δ = 2m
3M+2L is the Newton’s area

for the RNM.
So it takes O(ln ln ε−1) regularized Newton’s steps to find an ε-approximation for

x∗ from any x ∈ B(x∗, δ) as a starting point.
To make the RNM globally convergent we have to replace the RNM by DRNM

and adjust the step length. It can be done by backtracking line search, using Armijo
condition (5.13) with Newton’s direction n(x) replaced by regularized Newton’s
direction r(x). In the following section we introduce another version of the DRNM
and estimate the number of RNM steps required for finding x ∈ B(x∗, δ) from any
given starting point x0 ∈ Rn.

8. Damped regularized Newton’s method

Let us consider the regularized Newton’s decrement

(8.1) λr(x) = (H−1(x)∇f(x),∇f(x))
1
2 = [−(∇f(x), r(x))]

1
2 .

We assume that ε > 0 is small enough, in particular,

(8.2) 0 < ε0.5 < m0(L+ ∥∇f(x)∥)−0.5,

for ∀x ∈ L0.
From (4.5) follows

(8.3) (∇2f(x) + ∥∇f(x)∥I) ≼ (L+ ∥∇f(x)∥)I.

On the other hand, for any x ∈ B(x∗, δ) from the Corollary 7.2 we have

∇2f(x) + ∥∇f(x)∥I ≽ (m0 + ∥∇f(x)∥)I.

Therefore the inverse (∇2f(x) + ∥∇f(x)∥I)−1 exists and from (8.3) we obtain

H−1(x) = (∇2f(x) + ∥∇f(x)∥I)−1 ≽ (L+ ∥∇f(x)∥)−1I.

Therefore from (8.1) for any x ∈ B(x∗, δ) we have

λ(r)(x) = (H−1(x)∇f(x),∇f(x))0.5 ≥ (L+ ∥∇f(x)∥)−0.5∥∇f(x)∥,

which together with (7.12) leads to

λ(r)(x) ≥ m0(L+ ∥∇f(x)∥)−0.5∥x− x∗∥.

Then from λ(r)(x) ≤ ε1.5 and (8.2) follows

m0(L+ ∥∇f(x)∥)−0.5ε ≥ ε1.5 ≥ λ(r)(x) ≥ m0(L+ ∥∇f(x)∥)−0.5∥x− x∗∥

or

∥x− x∗∥ ≤ ε, ∀x ∈ B(x∗, δ).

Therefore λ(r)(x) ≤ ε1.5 can be used as a stopping criteria.
We are ready to describe the DRNM.
Let x0 ∈ Rn be a starting point and 0 < ε < δ be the required accuracy, set

x := x0.
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1. Compute the regularized Newton’s direction r(x) by solving the system
(6.5);

2. if the following inequality

(8.4) f(x+ tr(x)) ≤ f(x) + 0.5(∇f(x), r(x))

holds, then set t(x) := 1, otherwise set t(x) := (2L)−1∥∇f(x)∥;
3. x := x+ t(x)r(x);
4. if λr(x) ≤ ε1.5, then x∗ := x, otherwise go to 1.

The global convergence and the complexity of the DRNM we consider in the fol-
lowing section.

9. Complexity of the DRNM

We assume that conditions (3.1) and (3.2) are satisfied. Due to (3.1) the solution
x∗ is unique. Hence, from convexity f follows that for any given starting point
x0 ∈ Rn the sublevel set L0 is bounded, therefore there is L > 0 such that (4.5)
holds on L0.

Let B(x∗, r) = {x ∈ Rn : ∥x − x∗∥ ≤ r} be the ball with center x∗ and radius
r > 0 and r0 = min{r : L0 ⊂ B(x∗, r)}.

Theorem 9.1. If (3.1) and (3.2) are satisfied and δ = 2m
3M+2L , then from any given

starting point x0 ∈ L0 it takes

(9.1) N0 =
1

2

(
L2(3M + 2L)3

(m0m)3
(1 + r0)(f(x0)− f(x∗))

)
DRN steps to get x ∈ B(x∗, δ).

Proof. For the regularized Newton’s directional derivative we have

df(x+ tr(x))

dt
|t=0 = (∇f(x), r(x)) =

−
(
(∇2f(x) + ∥∇f(x)∥I)r(x), r(x)

)
≤

(9.2) −(m(x) + ∥∇f(x)∥)∥r(x)∥2,
where m(x) ≥ 0 and ∥∇f(x)∥ > 0 for any x ̸= x∗. It means that RND is a decent
direction at any x ∈ L0 and x ̸= x∗.

It follows from (9.2) that φ(t) = f(x + tr(x)) is monotone decreasing for small
t > 0.

From the convexity of f follows that φ′(t) = (∇f(x+tr(x)), r(x)) is not decreasing
in t > 0, hence at some t = t(x) we have

(9.3) (∇f(x+ t(x)r(x)), r(x)) ≥ −1

2
(m(x) + ∥∇f(x)∥)∥r(x)∥2,

otherwise inf f(x) = −∞, which is impossible due to the boundedness of L0.
From (9.2) and (9.3) we have

(∇f(x+ t(x)r(x))−∇f(x), r(x)) ≥ m(x) + ∥∇f(x)∥
2

∥r(x)∥2.
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Therefore there exist 0 < θ(x) < 1 such that

t(x)(∇2f(x+ θ(x)t(x)r(x)), r(x)) = t(x)(∇2f(·)r(x), r(x))

≥ m(x) + ∥∇f(x)∥
2

∥r(x)∥2

or

t(x)∥∇2f(·)∥∥r(x)∥2 ≥ m(x) + ∥∇f(x)∥
2

∥r(x)∥2.

Keeping in mind that ∥∇2f(·)∥ ≤ L we obtain

(9.4) t(x) ≥ m(x) + ∥∇f(x)∥
2L

≥ ∥∇f(x)∥
2L

.

It means that for t ≤ ∥∇f(x)∥
2L the inequality

df(x+ tr(x))

dt
≤ −1

2
(∇f(x), r(x))

holds, hence

∆f(x) = f(x)− f(x+ t(x)r(x)) ≥

(9.5)
1

2
t(x)(−∇f(x), r(x)) =

1

2
t(x)λ2

r(x).

Therefore finding the lower bound for the reduction of f at any x ∈ L0 such that
x /∈ B(x∗, δ) we have to find the corresponding bound for the regularized Newton’s
decrement.

Now let us consider x ∈ B(x∗, δ) then from (7.11) follows

(9.6) (∇f(x)−∇f(x∗), x− x∗) ≥ m0∥x− x∗∥2.

for any x ∈ B(x∗, δ).
Let x̂ /∈ B(x∗, δ), we consider a segment [x∗, x̂]. There is 0 < t̃ < 1 such that

x̃ = (1− t̃)x∗ + t̃x̂ ∈ ∂B(x∗, δ).
From the convexity f follows

(∇f(x∗ + t(x̂− x∗)), x̂− x∗)|t=0 ≤ (∇f(x∗ + t(x̂− x∗)), x̂− x∗)|t=t̃ ≤
(∇f(x∗ + t(x̂− x∗), x̂− x∗)|t=1,

or

0 = (∇f(x∗), x̂− x∗) ≤ (∇f(x̃), x̂− x∗) ≤ (∇f(x̂), x̂− x∗).

The right inequality can be rewritten as follows:

(∇f(x̃), x̂− x∗) =
∥x̂− x∗∥

δ
(∇f(x̃)−∇f(x∗), x̃− x∗) ≤ (∇f(x̂), x̂− x∗).

In view of (9.6) we obtain

∥∇f(x̂)∥∥x̂− x∗∥ ≥ ∥x̂− x∗∥
δ

(∇f(x̃)−∇f(x∗), x̃− x∗) ≥ ∥x̂− x∗∥
δ

m0∥x̃− x∗∥2.

Keeping in mind that x̃ ∈ ∂B(x∗, δ) we get

(9.7) ∥∇f(x̂)∥ ≥ m0∥x̃− x∗∥ =
2m0m

3M + 2L
.
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On the other hand from (7.1) and x̂ ∈ L0 follows

(9.8) ∥∇f(x̂)∥ = ∥∇f(x̂)−∇f(x∗)∥ ≤ L∥x̂− x∗∥ ≤ Lr0.

From (4.5) follows

(9.9) ∇2f(x) ≼ LI.

For any x̂ /∈ S(x∗, δ) we have ∥∇f(x̂)∥ > 0, therefore H(x̂) = ∇2f(x̂) + ∥∇f(x̂)∥I
is positive definite and system (6.5) has a unique solution

r(x̂) = −H−1(x̂)∇f(x̂).

Moreover from (9.9) follows

(∇2f(x̂) + ∥∇f(x̂)∥I) ≼ (L+ ∥∇f(x̂)∥)I.

Therefore

(9.10) H−1(x̂) ≽ (L+ ∥∇f(x̂)∥I)−1I.

For the regularized Newton’s decrement we obtain

(9.11) λ(r)(x̂) = (H−1(x̂))∇f(x̂),∇f(x̂))0.5 ≥ (L+ ∥∇f(x̂∥)−0.5∥∇f(x̂)∥.

Keeping in mind

∥∇f(x̂)∥ = ∥∇f(x̂)−∇f(x∗)∥ ≤ L∥x̂− x∗∥

from (9.4), (9.8) and (9.11) and definition of r0 we obtain

∆f(x̂) ≥ 1

2
t(x̂)λ2

r(x̂) ≥
∥∇f(x̂)∥3

4L
(L+ ∥∇f(x̂)∥)−1 ≥ ∥∇f(x̂)∥3

4L2(1 + r0)
.

Using (9.7) we get

∆f(x̂) ≥
(

2m0m

3M + 2L

)3 1

4L2(1 + r0)

=
2(m0m)3

(3M + 2L)3L2

1

(1 + r0)
.

Therefore it takes

N0 = (f(x)− f(x∗))(∆f−1(x̂))−1 =
1

2

(3M + 2L)3L2(1 + r0)

(m0m)3
(f(x)− f(x∗))

steps to obtain x ∈ B(x∗, δ) from a given x0 ∈ L0.
The proof of Theorem 9.1 is completed. � �

From (7.3) follows that it takes O(ln ln ε−1) DRN steps to find an ε-approximation
for x∗ from any x ∈ B(x∗, δ).

Therefore the total number of DRN steps required for finding an ε-approximation
for x∗ from a given starting point x0 ∈ Rn is

N = N0 + o(ln ln ε−1).
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10. Newton’s method as affine invariant

The bounds (5.1) and (9.1) depends on the size of Newton’s and regularized
Newton’s areas, which, in turn, are defined by convexity constant m > 0 and
smoothness constants M > 0 and L > 0. The convexity and smoothness constants
dependent on the given system of coordinate.

Let consider an affine transformation of the original system given by x = Ay,
where A ∈ Rn×n is a nondegenerate matrix. We obtain φ(y) = f(Ay).

Let {xs}∞s=0 be the sequence generated by Newton’s method

xs+1 = xs − (∇2f(xs))
−1∇f(xs).

For the correspondent sequence in the transformed space we obtain

ys+1 = ys − (∇2φ(ys))
−1∇φ(ys).

Let ys = A−1xs for some s ≥ 0, then

ys+1 = ys − (∇2φ(ys))
−1∇φ(ys) = ys − [AT∇2f(Ays)A]

−1AT∇f(Ays) =

A−1xs −A−1(∇2f(xs))
−1∇f(xs) = A−1xs+1.

It means that Newton’s method is affine invariant with respect to the transformation
x = Ay. Therefore the areas of quadratic convergence depends only on the local
topology of f(see [7]).

To get the Newton’s sequence in the transformed space one needs to apply A−1

to the elements of the Newton’s original sequence.
Let N is such that xN : ∥xN − x∗∥ ≤ ε, then

∥yN − y∗∥ ≤ ∥A−1∥∥xN − x∗∥.

From (3.3) follows

∥xN+1 − x∗∥ ≤ M

2(m−M∥xs − x∗∥)
∥xN − x∗∥2.

Therefore

∥yN+1 − y∗∥ ≤ ∥A−1∥∥xN+1 − x∗∥ ≤ 1

2
∥A−1∥ M

(m−Mε)
ε2.

Hence, for

ε ≤ m

M
(1 + 0.5∥A−1∥)−1

we have

∥yN+1 − y∗∥ ≤ ε.

We would like to emphasize that the bound (9.1) is global, while the conditions
(3.1) and (3.2) under which the bound holds are local, at the neighborhood of x∗.
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