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ABSTRACT. In this paper, using new nonlinear operators called demimetric, we
prove a strong convergence theorem for finding a solution of the general split
common fixed point problem with zero points of two monotone operators in
Hilbert spaces. This solution is the unique solution of the hierarchical variational
inequality problem. Using this result, we obtain new and well-known strong
convergence theorems in Hilbert spaces.

1. INTRODUCTION

Throughout this paper, let N and R be the sets of positive integers and real
numbers, respectively. Let H; and Hs be two real Hilbert spaces. Given two
mappings 7' : Hy — Hy and U : Hy — H5 and a bounded linear operator A : Hy —
H>, the split common fixed point problem is to find a point z € Hy such that z €
F(T)NATYF(U), where F(T) and F(U) are fixed point sets of T' and U, respectively.
Such a problem includes the split feasibility problem and the split common null point
problem. In fact, let D and @ be nonempty, closed and convex subsets of H; and
Ho, respectively. Let A : Hi — Hy be a bounded linear operator. Then the split
feasibility problem [7] is to find z € Hj such that z € D N A~1Q. Defining T = Pp
and U = Pg, where Pp and P are the metric projections of H; onto D and Hs onto
Q, respectively, we have that z € DN A~1Q is equivalent to z € F(T) N A~ F(U).
Furthermore, given maximal monotone operators G : H; — 2H1 and B : Hy — 22,
respectively, and a bounded linear operator A : Hy — Hs, the split common null
point problem [6] is to find a point z € H; such that z € G0N A~1(B~10), where
G710 and B~'0 are null point sets of G and B, respectively. Defining T = J)
and U = @, where Jy and @, are the resolvents of G for A > 0 and B for
p > 0, respectively, we have that z € G0 N A~Y(B~10) is equivalent to z €
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F(T)N A7YF(U). Thus the split common fixed point problem generalizes the split
feasibility problem and the split common null point problem. There are many papers
for the split feasibility problem, the split common null point problem and the split
common fixed point problem; see, for instance, [6, 7, 20, 23, 35].

Recently, Takahashi [31] introduced a new nonlinear mapping as follows: Let FE
be a smooth Banach space, let C' be a nonempty, closed and convex subset of E and
let n be a real number with 1 € (—o00,1). A mapping U : C — E with F(U) # () is
called n-demimetric if, for any = € C' and q € F(U),

2(x — ¢, J(x — Uz)) > (1 = n)llz - Uz|f?,

where F(U) is the set of fixed points of U and J is the duality mapping on E. Let
H be a real Hilbert space and let C be a nonempty, closed and convex subset of H.
Let s be a real number with 0 < s < 1. A mapping U : C' — H is called an s-strict
pseudo-contraction [5] if

(1.1) Uz — Uyl? < [lz —yl* + slla — Uz — (y = Uy)|I?

for all z,y € C. If s = 0 in (1.1), U is nonexpansive. A mapping 7' : C' — H is
called generalized hybrid [14] if there exist «, 8 € R such that

(1.2) al Tz = Tyl* + (1 = a)llz = Ty||* < BTz — y|* + (1 = Bz — y|?

for all z,y € C. We call such a mapping an («, ()-generalized hybrid mapping.
Notice that the class of generalized hybrid mappings covers several well-known map-
pings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is non-
spreading [15, 16] for « = 2 and 8 =1, i.e.,

2Tz — Ty|® < || Tz — y|* + | Ty — «|®, Va,yeC.
It is also hybrid [29] for a = % and g = %, ie.,
3Tz — Tyl < v — gl + | T — yl> + | Ty — 2ll?, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [12]. The
class of demimetric mappings in a Hilbert space covers strict pseudo-contractions
and generalized hybrid mappings. We also know that the metric resolvent of a
maximal monotone operator in a Banach space is a demimetric mapping.

In this paper, using the class of demimetric mappings, we prove a strong conver-
gence theorem for finding a solution of the general split common fixed point problem
with zero points of two monotone operators in Hilbert spaces. This solution is the
unique solution of the hierarchical variational inequality problem. Using this result,
we obtain new and well-known strong convergence theorems in Hilbert spaces.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respec-
tively. When {z,} is a sequence in H, we denote the strong convergence of {z,} to
x € H by x, — x and the weak convergence by x,, — x. We have from [28] that
for any z,y € H and A € R,

(2.1) 1Az + (1= Nyl* = Ml + (1 = Nyl = A1 = N)lz = y]*.
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Furthermore we have that for x,y,u,v € H,

(2.2) 2(z —y,u—v) = llz =0l + [ly —ul® — [l —ul* — [ly - v]*.

If £ =y + 2z, then

(2.3) l2[* < [yl +2(2, z).

Let C be a nonempty, closed and convex subset of H and let T: C' — H be a
mapping. We denote by F(T') be the set of fixed points for 7. A mapping T : C' — H
is called quasi-nonexpansive if F(T) # () and |Tz — y|| < ||z — y|| for all z € C and
ye F(T). f T: C — H is quasi-nonexpansive, then F(T) is closed and convex; see
[13]. For a nonempty, closed and convex subset C of H, the nearest point projection
of H onto C is denoted by Pg, that is, ||z — Pox| < ||z — y|| for all x € H and

y € C. Such Pg is called the metric projection of H onto C. We know that the
metric projection P is firmly nonexpansive;

|Pox — Poy||? < (Pex — Poy,x — y)

for all x,y € H. Furthermore (x — Pox,y — Pcx) < 0 holds for all z € H and
y € C; see [10, 26]. Let C' be a nonempty, closed and convex subset of H. A
mapping U : C' — H is called inverse strongly monotone if there exists o > 0 such
that
(x —y, Uz — Uy) > o|Uz — Uy|?, Vaz,ycC.

Such a mapping U is called a-inverse strongly monotone. If a mappingU : C' — H is
a-inverse strongly monotone and 0 < A < 2q, then I —AU : C' — H is nonexpansive.
In fact, we have that for all z,y € C,

(I = AU)z — (I = AD)y|* = ||z —y— AUz — Uy)|]?
= ||z —yl> = 2X\z — y, Uz — Uy) + \?||Uz — Uyl*

(2.4) < |lz = ylI* = 22| Uz — Uy|* + X*||Uz — Uy||?
= lz = ylI* + AA - 20)|Uz — Uy||?
< llz - yl*.

Thus I — AU is nonexpansive; see [1, 22, 28] for more results of inverse strongly
monotone mappings.

Let B be a mapping of H into 2¥. The effective domain of B is denoted by
D(B), that is, D(B) = {& € H : Bz # (0}. A multi-valued mapping B is said to
be a monotone operator on H if (z —y,u—v) > 0 for all z,y € D(B), u € Bz,
and v € By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator J, = (I +rB)~': H — D(B), which is called the resolvent of B for r. We
denote by A, = %(I — Jy) the Yosida approximation of B for r > 0. We know from
[27] that

(2.5) A,x € BJ,x, VYxe H, r>0.
Let B be a maximal monotone operator on H and let

B '0={re€ H:0¢c Bx}.
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Then B~'0 = F(J,) for all r > 0 and the resolvent .J, is firmly nonexpansive, i.e.,
(2.6) ISy — Joyll* < (2 —y, Jrx — Jry), Va,y € H.
We also know the following lemma from [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a maximal monotone
operator on H. Forr >0 and x € H, define the resolvent J.x. Then the following

holds:
s—t

(Jox — Jyx, Jx — ) > || Jsx — Joz||?
for all s,t >0 and x € H.

From Lemma 2.1, we have that
(2.7) [z = Juz| < (|A = pl /A) [|o = Tz

for all A, u > 0 and = € H; see also [9, 26].

In case when a Banach space E is a Hilbert space, the definition of a demimetric
mapping is as follows: Let H be a Hilbert space and let C' be a nonempty, closed
and convex subset of H. Let n € (—oo,1). A mapping S : C — H with F(S) # ()
is called n-demimetric if, for any x € C' and q € F(S5),

1—
(x —q,x — Sx) > 5 on—Stz.

We give the following examples of demimetric mappings in Hilbert spaces and
Banach spaces.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let k£ be a real number with 0 < k < 1. If U is a k-strict pseudo-contraction
and F(U) # 0, then U is k-demimetric; see [31].

(2) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. If T is generalized hybrid and F(T) # (), then T is 0-demimetric. In fact,
setting x = u € F(T) and y =« € C in (1.2), we have that

allu = Ta|? + (1 = a)llu = Tz|* < Bllu —z|* + (1 = B)|Ju — z|?
and hence
1T —ul* < ||z —ul®.
From ||Tz —x +2 —ul|?> = [Tz — 2||? + 2(Tx — z,x — u) + ||z — u||?, we have that
e —u,x — Tx) > ||z — Tz|?
for all x € C and v € F(T'). This means that T is 0-demimetric.

(3) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. Let @« > 0 and let U : C' — H be an a-inverse strongly monotone mapping
with U710 # (. Then 1—2a € (—o00,1) and I -U : C — H is a (1 —2a)-demimetric
mapping. In fact, since U : C — H is a-inverse strongly monotone, we have that
(2.8) (x —y, Uz — Uy) > a||Uz — Uy|]?, Vz,yecC.

Setting T = I — U and taking y = z € F(T) = U710 in (2.8), we have that

(x —z,x — Tz) > allz — Tz||?, VzeC, ze F(T).
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This implies that
2r —z,x —Ta) > (1 — (1 —2a))||lz —Tx|>, VxeC, zc F(T)

and hence T'=1 — U is (1 — 2a)-demimetric.

(4) Let E be a strictly convex, reflexive and smooth Banach space and let C' be
a nonempty, closed and convex subset of E. Let Po be the metric projection of E
onto C. Then Pg is (—1)-demimetric; see [31].

(5) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B=10 # ). Let A > 0. Then the metric resolvent
Jy is (—1)-demimetric; see [31].

If S:C — H is n-demimetric and 0 < A < 1 —mn, then Sy = (1 = \)I + \S is
quasi-nonexpansive. In fact, it is obvious that F/(S) = F(S)). We also have that
for any z € C and z € F(95)),

2x —z,x — Sha)=2(x — z,x — (1 — N)x — ASz) = 2\(z — z,z — Sx)
1—
(2.9) > AL = n)lle = Sa|* = X*—la — Sa

1-— 1-—
- Tn”” —ASz|2 = — 1

lz — Sxal|?

A
> 2z - Syall® = |z — Syall,

Then S) is a 0-demimetric mapping. Furthermore, we have from (2.2) that for any
x € C and z € F(S)),

lz—Saz||* < 2(z — 2,2 — S)z)
(2.10) = |lz = Sa|? < llz = Sna|? + [lz — 2)1* — ||Saz — 2|
= S = 2|* < o - 2|?
= S — 2| < flz — =]

Therefore, Sy is quasi-nonexpansive.
The following lemma which was proved in [31] is important and crucial

Lemma 2.2 ([31]). Let H be a Hilbert space and let C' be a nonempty, closed and
convezr subset of H. Let k be a real number with k € (—oo,1) and let U be a
k-demimetric mapping of C' into H. Then F(U) is closed and convet.

To prove our main result, we need the following lemmas.

Lemma 2.3 ([3]; see also [37]). Let {s,} be a sequence of nonnegative real numbers,
let {an} be a sequence in [0,1] with > o2 o = 00, let {B,} be a sequence of
nonnegative real numbers with Y >, Bn < 00, and let {y,} be a sequence of real

numbers with lim sup,, ... vn < 0. Suppose that

Sn+1 < (1 - an)sn + apyn + ﬂn

foralln=1,2,.... Then limy, , s, = 0.
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Lemma 2.4 ([18]). Let {I'y} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I'y,} of {I'y,} which satisfies
Iy, <Tp,41 for alli € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) =max{k <n:Ty <Dk},
where ng € N satisfies {k < ng: Ty <Txy1} # 0. Then, the following hold:

(i) 7(no) < 7(ng+1) < ... and 7(n) — oo;
(i) Tr(n) < Trny1 and Ty < Trinypr, V> ng.

3. STRONG CONVERGENCE THEOREM

Let H be a Hilbert space. A mapping g : H — H is a contraction if there exists
k € (0,1) such that ||g(x)—g(y)|| < k||lx—y]|| for all z,y € H. We call such a mapping
g a k-contraction. A nonlinear operator V : H — H is called strongly monotone if
there exists ¥ > 0 such that (x —y,Va — Vy) > 7||z — y||? for all z,y € H. Such
V' is also called #-strongly monotone. A nonlinear operator V : H — H is called
Lipschitzian continuous if there exists L > 0 such that |Va — Vy|| < L|jz — y|| for
all z,y € H. Such V is called L-Lipschitzian continuous.

Let ¢ : H — H be a k-contraction with 0 < k < 1. Let V be a 7-strongly
monotone and L-Lipschitzian continuous operator on H with 5 > 0 and L > 0. Let
~ be a real number with 0 < v < % According to Lin and Takahashi [17], V —~g :
H — H is a (§ — «k)-strongly monotone and (L + ~k)-Lipschitzian continuous
mapping. Furthermore, take ¢ > 0 satisfying

20y —vk) > t(L +~vk)? and 1> 2t(§ — vk).
Then 0 < 1 — ¢(2(y —vk) —t(L +~k)?) < land I —¢(V —~vg) : H — H is a
contraction. In fact, it is obvious that 0 < 1 —¢(2(5 — vk) — t(L + vk)?) < 1. We
also have that for any x,y € H,

I(I = t(V —=g))x — (I —t(V —~9))yl”
= |z =yl =2t —y, (V= y9)z = (V = 19)y) + ||V = vg9)z — (V = v9)yl®
< lz = yl* = 2t(7 = vk) & — y||* + (L + k)|l — yl®
= (1= 2t(F — k) + (L +~vk)?) [l — ||
= (1= t2(7 — k) = t(L +7k)%)) |z — y[|*.
Therefore I —t(V — ~vg) is a contraction. Let C' be a nonempty, closed and convex
subset of H. Then a mapping Po(I —t(V —~g)) : C — C is a contraction and

hence Po(I —t(V —+g)) has a unique fixed point z in C. This point zy € C is also
a unique solution of the variational inequality

(V =~9)z0,q9 — z0) >0, VgeC.

Furthermore, this point 2y € C'is a unique fixed point of Po(I — (V' —~g)) in C. In
fact, we have that

20 = Po(I =tV —v9))z0
< (20 —t(V —79)z0 — 20,20 —y) >0, VyeC
(3.1) = (—t(V —79)20,20 —y) 20, VyeC



A GENERAL ITERATIVE METHOD FOR SPLIT COMMON FIXED POINT PROBLEMS 355

— ((V—=79)z0,y —20) >0, VyeC
<:><ZO—(V_')’9)20—ZO,Z()—:U>ZO, vyec
> 20 = Pc(I — (V —v9)).

Now we prove a strong convergence theorem of Halpern’s type [11] for finding
a solution of the general split common fixed point problem with zero points of
two monotone operators in Hilbert spaces. For the proof, we follow the ideas of
[17, 30, 34]. Let H be a Hilbert space and let C' be a nonempty, closed and convex
subset of H. A mapping U : C — H is called demiclosed if, for a sequence {x,}
in C' such that z,, = w and z,, — Uz,, = 0, w = Uw holds. For example, if C is a
nonempty, closed and convex subset of H and T is a nonexpansive mapping of C
into H, then T is demiclosed; see [4] and [28, p. 114].

Theorem 3.1. Let Hi and Hy be Hilbert spaces. Let B and G be maximal monotone
operators on Hy. Let Jy, = (I +  \,B)™' and T,, = (I +r,G)~! be the resolvents
of B and G for A\, > 0 and r, > 0, respectively. Let n,7 € (—o0,1). Let S be an
n-demimetric and demiclosed mapping of Hi into Hy and let T be a T-demimetric
and demiclosed mapping of Hy into Ha. Define Sy = (1 —A\)I+ AS for some A with
0<A<1—mn. Letk € (0,1) and let g be a k-contraction of Hy into itself. Let V be
a ¥-strongly monotone and L-Lipschitzian continuous operator of Hy into Hy with
>0 and L > 0. Take p,y € R as follows:

L%

s
O<pu<=—", 0<~< .
p< T y k:

Let A: Hy — Hy be a bounded linear operator such that ||A|| # 0. Suppose F(S) N
B71ONA-IF(T)NG™0 # 0. Let vy = x € Hy and let {x,} C Hy be a sequence
generated by

Tnt1 = anYg(xn) + (I — anV){Bnzn + (1 — Bn)Sadx, (I — MyA* (I —T)A)T,, 0}
for alln € N, where {an}, {Bn} C (0,1), {\n},{rn} C (0,00) and a,b,c € R satisfy

27y

(o)
lim «, =0, Zan =00, O0<liminfg, <limsupp, <1,
1 n—o0

n—oo n—o00

1—17
1A]]?
Then {x,} converges strongly to a point zy € F(S)N B0 N AF(T) n G0,
where zq is a unique fived point of Pp(synp-10na-1r(rync—10(I =V +7g) in the set
F(S)YNB7'oNnA~*F(T)nG~1o.

Proof. Since S is n-demimetric and 0 < A < 1—n, we have from (2.9) and (2.10) that
S is O-demimetric and quasi-nonexpansive. Let z € F(S)NB~0NA~LF(T)nG~10.
We have that z € F(S) = F(S)), 2z = Jx,2, 2 = T,z and (I — T)Az = 0.
Put z, = Jy,(I — \,A*(I — T)A)T,, zy, and u,, = T}, x,. Since Jy, and T,, are
nonexpansive and T is 7-demimetric, we obtain that

120 = 2II* =[x, (un = AnA*(I = T) Auy) = Jy,, 2|

< m — A A*(I — T) Au, — 2|

O<a< A\, <b< and 0<c<r, VneN.
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= ||un — 2 — Mg A*(I — T) Auy||?
= [Jtn — 2||* = 2An (Un — 2, A*(I — T) Auy) + X2 | A*(I = T) Auy|?
(3.2) = |lun — 2||* = 2Xn (Auy, — Az, (I — T)Auy,) + N2 ||A*(I — T) Auy, ||?
< lun = 27 = AL = 1) [|(1 = T) Aug|* + N2|JA? [|(1 = T) Auy||?
= Jlun — 21> + XMl A]> = (1= 7)) |(T = T) Auy ||?
<||zn — ZH2 + )‘n(/\nHA”2 — (=7~ T)AunHz
< lzn — 2%
Put y, = Bnrn + (I — Br)Sxzn. Since S) is quasi-nonexpansive, we have that
lyn — 2| = 1Bn(®n — 2) + (1 = Bn)(Sxzn — 2)||
< Bnllzn — 2l + (1 = Bn) |0 — 2|

= [Jen — 2|

1= ) [[Sxzn — 2|
1= Bn) ll2n — =]

Furthermore, put s =75 — % We have s > 0. Since lim,,_,~ as, = 0, there exists
ng € N such that 1 — aps > 0 and o, < p for all n > ng. Then we have that for
any z,y € H; and n > ny,

[(I~anV)a = (I —anV)y|* = |z —y — an(Vz = Vy)|?
= |l —yl? = 20n(z —y,Va = Vy) + aj |[Vz - Vy|?
<l —yl* = 2007z — yII” + af Ll — y|®

(3.3) = (1 20,7 + oy L?) ||z — y||?
= (1 —2ans — anL?pu+ a2 L) ||z — y||?
< (1 — 2005 — an(LPp — o L?) + a2s%) ||z — y|?
< (11— 205+ a2sH) ||z —y|?
(1 = ans)?[le —y*
Since 1 — aps > 0, we obtain that for any z,y € H; and n > ny,
(3.4) I~ V) — (I = V)l < (1~ s =yl

Since Tp41 = apyg(xn) + (L — a,V)y, and z = a,Vz + 2z — a,, V2, we have from
(3.4) and s — v k > 0 that
[Zn+1 — 2l = lan(vg(zn) = V2) + (I = anV)yn — (I — anV)z||
< any kllzn = 2| + anllvg(z) = Vall + (1 — ans)|lyn — 2||
(3.5) < ey Kllon — 2ll + anl19() — Vll + (1 = ans) [z — 2|
={l—an(s =7 k)} lzn — 2| + anllve(z) = V||
— {1 an(s — 7 B)} lan — |
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lvg(z) = V2]
—vk .
+an(s—v k) P
Putting K = max{||z1 — ||, 7”75}(5)7_,‘;2” }, we have from (3.5) that ||z, — z|| < K for

all n € N. Then {z,} is bounded. Furthermore, {u,}, {z,} and {y,} are bounded.
We know from Lemma 2.2 that F'(S) and F(T') are closed and convex. Then we
have that F(S) N B0 N A~'F(T) N G710 is closed and convex. Using (3.1), we
can take a unique zy € F(S)N B~10N A~LF(T) N G0 such that

20 = Pp(s)np-10na-1r(rync-10( =V +79)z0.

From the definition of {x, }, we have that

Tnt1 — Tn = anYg(xn) + (I — anV)yn — op.
Thus we have that

(Tn41 = Tn — anYg(@n), Tn — 20)
(3.6) = (Yn — Tn — W VYn, Tn — 20)
= (Yn — Tn, Tn — 20) — an{(Vyn, Tn — 20).
Using (2.1), we have that
lyn = 201> = l|Bnwn + (1 = Ba)Sxza — 20>
(3.7 =Bullzn — 20/” + (1= Bu)1Sazn — 20l1* = Bu(1 = Ba)llSrzn — 2
< Bulln — ZOH2 + (1= Bp)llzn — ZOHQ = Bn(1 = Bn)l[Sxzn — an2
= 20 — 20/1* = Bu(1 = Bu)[[Srzn — 4.
From (2.2) and (3.7), we have that
2(Yn — Tn,Tn — 20)

= llyn = 20l1* = lyn — @al® = ll2n — 20l
< Jlzn = 20l = Ba(L = Ba) 1Sx20 — @nl|?
(3.8) — (L= Ba)?l18x2n — zall® — [l — 20/

= —Bn(1 = Bu)l|Srzn — flanz -(1- Bn)2”5>\zn - xn”Q

= —(1 = Ba)[Sxzn — x|
From (3.6) and (3.8), we also have that

2Ty 1— T, Ty — 20)
= 200 (79(Tn), Tn — 20)
(3.9) + 2(yn — Tny Ty — 20) — 200, (VYn, Tp — 20)
< 2an{(v9(2n), Tn — 20)
— (1= B)ISrzn — > = 200 (Vyn, 1 — 20).

Furthermore, using (2.2) and (3.9), we have that

A

| Zn+1 — ZOHQ_Hxn - xn-&-l”Q — [|zp — ZOH2

< 20 (v9(2n), Tn — 20)



358 WATARU TAKAHASHI

— (1= Ba)llSxzn = zall? = 200 {Vyn, 25 — 20)-
Setting ', = ||, — 20||%, we have that
R e | xn—i—lHQ
(3.10) < 20 (v9(zn), Tn — 20)
— (1 = Bn)||Sazn — 33nH2 — 20, (Viyn, Tn, — 20).
We also have
[Znt1 — @nll = llanvg(zn) + (I — anV)yn — 24|
(3.11) = llam(vg(xn) = Viyn) + yn — xnl|
< Nyn — zall + anllvg(zn) — Vyall
and hence
l#ns1 = zall® < (lyn = @all +anlvg(@n) = Vyal)®
= llyn — 2ol + 200 llyn — zallllvg(n) — Vil
(3.12) +apvg(an) = Vyal®
= (1= B0)21520 — 2a + 2(1 = Bu)anl[Sxzn — zalllvg(2n) — Val
+aplvg(an) = Vyal®.
We have from (3.10) and (3.12) that
T B xn-&-lHQ + 200 (v9(2n), Tn — 20)
— (1= B)l1Srzn — 2nl|? = 2000 (VY T — 20)
< (1= B0)*[1Sx2n — @all® + 2(1 = Bo)anl|Sxzn — zall[v9(xn) — Viynl|
+ a%H’yg(a;n) - Vyn”2 + 2000 (v9(2n), T — 20)
— (1= B)1Sxzn — Tal|* = 2000 (Vi 2n — 20)
and hence
Lpy1=Tn + Ba(1 = Bn)[[Sazn — an2
(3.13) < 2(1 = Bn)an||Srzn — zullvg(zn) — Vil

+ apllvg(zn) — Viynll® + 20 (vg(2n), 0 — 20)
- 2an<vyn7 Tn — ZO>-

We divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that I',41 < T, for
all n > N. In this case, lim,_,~ I';, exists and then lim, o (I'y+1 —I';) = 0. Since
0 < liminf, o0 Bn < limsup,,_, Bn < 1, limy, o0 ay = 0 and {Sxz,,}, {g9(z,)} and
{Vyn} are bounded, we have from (3.13) that

(3.14) li_}rn |Sxzn — zn|| = 0.
Using (3.12), we also have that

(3.15) lim ||@p41 — zn|| = 0.
n—oo
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Since yn — Ty = Bpon + (1 — Bn)Sxzn — n = (1 — Bn)(Srzn — @), we have from
(3.14) that

(3.16) lim |y, — zn| = 0.
n—oo
We show limy, ;o0 || Sazn — 2zn|| = 0. Since zp = a,Vzg + 20 — @,V 20, we also have

from (2.3), (3.2), (3.4) and (3.7) that
||xn+1_20||2 = [lan(vg(zn) = Vzo) + (I — anV)yn — (I — anV)ZO||2
< (1- ans)zuyn - ZOHQ + 200 (v9(n) — V20, Tny1 — 20)
< lyn = 20% + 2an(vg(2n) = V20, Tns1 — 20)
< Bullan — 20]* + (1 = Bn)l|Sxzn — 20>
+ 20 (vg(zn) — V20, Tnt1 — 20)
(3.17) < Bullzn — ZOH2 + (1= Bn)llzn — ZOH2 + 200, (v9(20) — V20, Tnt1 — 20)
< Bullwn — ZOH2 + (1= Bn)l|zn — ZOH2
+ (1= Bl A2 = (1= 1) (I = T) Auy |
+ 20 (vg(xpn) — V20, Tnt1 — 20)-
< lzn = 20l* + (1 = Ba) Al AN = (1= 7)) (I = T) Auy|?
+ 20 (vg(n) — V20, Tnt1 — 20)-
Thus we have that
(1= Bu)da(1 =7 = X AIP) (T = T) Auy |

(3.18) < lzn = 20l* = l@nt1 = 200> + 200 (v9(2n) = V20, nt1 — 20)-
Using the conditions of {I',}, {\n}, {fn} and {ay,}, we have that
(3.19) lim_|[(1 — T) Aun|| = 0.

Since Jy, is firmly nonexpansive, we have from (3.2) that
2l zn—20> = 2 ||Jx, (un — M A*(I — T) Auy,) — J,\nonz
< 2(up — MA (I — T)Auy, — 20, 2n — 20)
= [lun — A A*(I — T) Auy, — 20||* + |20 — 20]*
— Nlun — M A (I — T) Aun — 2|
< |z = 20l + |20 — 20|?
— ltn = 20 — A A*(I — T) Aup|)?
< lzn = 200> + 20 = 20[I* = llun = zal|?
+ 20 (Un — 20y A*(I = T) Aup) — A2 | A*(I — T) Auy |
Thus we get
(3.20) lzn = 20l|* < llan — ZOH2 = [lun — Zn||2

+ 2 (U, — 2, A¥(I — T) Auy) — N2 ||A*(I — T) Auy|? .
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Using (3.17) and (3.20), we obtain
|21 = 20l* < llyn = 20/l + 2an(yg(@n) = Vzo, 241 — 20)
< B llzn — 20l* + (1 = Ba) |20 — 20lI* + 20 (v9(xn) = V20, Tn 41 — 20))
< Bn llzn — ZO||2 + (1= Bn) lzn — ZO||2
— (1= Bn) lun — zal* + 2(1 = Ba) X (un — 20, A*(I = T) Auy)
— (1= B)AL A (I = T) Aun || + 200 (yg(x0) = V20, 201 — 20)
= [l2n = 201> = (1 = Bn) lun — zal|?
+2(1 = Bo)An (tn — 2n, A*(I — T) Auy) — (1 — Bp) A2 |A*(I — T) Auy||?
+ 200 (79(xn) — V20, Tnt1 — 20),
from which it follows that
(1= B)llun—znl2 < 1 — 20]12 2041 — 2o
+2(1 = Bp)An (up — 2n, A*(I — T) Auy,)
— (1= B A (I = T) Aun* + 205 (vg(x0) = Vz0, Tpt1 — 20)-
Using (3.19) and the conditions of {I',,}, {3,} and {a,}, we have that
(3.21) nlg]go |lun, — 2|l = 0.
We also have from (2.6) that
2wy — 20||? = 2|1, 20 — T}, 20|
< 2(xp, — 20, Un — 20)
= [l = 20/1* + llun — 20l* = [lun — @all?
and hence
(3.22) lun = 20l|* < |z — 201 — llun — zal*.
From (3.2) and (3.22) we have that
1S3z = 20/* < [Jun = 20l|* < l|zn — 20/1* = lun — @
and hence
[un = al® < ll2n — 20l* = 11Sxzn — 20l
= |20 — Sxzall® + 2(zn — Sazn, Srzn — 20) + |Sxzn — 20/1* — 1Sx20 — 20]1°
= llan = Sxznll” + 2{wn — Sxzn, Sazn — 20).
Thus from (3.14) we have that
(3.23) lim |ju, — 2| = 0.

n—oo

Since ||Sxzn — znll < ISazn — Znll + |2 — unl| + ||un — 2n||, we have from (3.14),
(3.21) and (3.23) that

(3.24) lim ||Sxzn — zn|| = 0.
n—oo
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Take \g € R with 0 < a < \g < b < 5. Put s, = (I — M\ A*(I — T)A)uy,. Using

[[A[1*
zn = Jn, (I — MA*(I — T)A)uy,, we have from Lemma 2.1 that
[ Tx08n = 2zl

(3.25) = |[Jag(I = MA (I = T)A)up, — Iy, (I — MyA (I — T)A)uy||

= [|Txg5n = Ix, 50l

[ Ao — An

= THJAOSn — snll-
We also have that
(3.26) [sn = Drgsnll < llsn = unll + llun = 2ull + |20 — Jrgsnll

= M AL = T)Aup || + [[un — 2a|l + 120 — J)\oan-

We will use (3.25) and (3.26) later.
Let us show that limsup,,_,.. (V —v9)z0,xn — 20) > 0. Put
A =limsup ((V — v9)z0, Zn — 20) -

n—oo
Without loss of generality, we may assume that there exists a subsequence {x,,} of
{zp} such that A = lim; o (V —7v9)20,zn, — 20) and {x,,} converges weakly to
some point w € Hj. Since ||z, — 2| — 0, we also have that {z,,} converges weakly
to w € Hi. On the other hand, from {\,,} C [a,b] there exists a subsequence
{)‘nij} of { A, } such that An;; = Ao for some Ao € [a, b]. Without loss of generality,
we assume that z,, — w, x,, — w and \,, — Ao. We know from (3.24) that
limy, 00 || Sa2zn — 2n|| = 0. Since

S22 — 2znll = |(1 = N zn + XSz, — zn|| = A|Szn — 20| — 0,
we have Sz, — z, — 0. Thus, we have w € F(S) = F(S)) because S is demiclosed.
Since A,, — Ao, we have from (3.25) that
| IxgSn; — 2n, |l — 0.
Furthermore, we have from (3.26) that
|Sn; — JagSn;l| = 0.

Since s,, — w and J), is nonexpansive, we have that w = Jy,w. Furthermore, since
up; — w and A is bounded and linear, we have that Au,, — Aw. We also know from
(3.19) that limy, o || (I — T)Auy,|| = 0. Since T is demiclosed, we have Aw = T Aw,

i.e., w € AT'F(T). Finally, since G is a monotone operator and w € Guy,,

g

we have that for any (u,v) € G,
T, — Up,
<u—uni,v—u> > 0.
Tn,

Since liminf,, o 7y, > 0, up, = w and zp, — up, — 0, we have
(u—w,v) > 0.
Since G is a maximal monotone operator, we have 0 € Gw and hence w € G~10.

Thus we have
we F(S)NB 0N ALF(T)nG™o.
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Since 20 = Pp(s)np-10na-1r(r)ng-10(L —V +79)20, we have from (3.1) that
(3.27) A= Tim ((V =79)20,2n; = 20) = ((V = 79)20,w = 20) > 0.

Since xp41 — 20 = an(v9(zn) — Vz20) + (I — anV)yn — (I — V)2, we have from
(2.3) that

2nt1 — 20l* < (1= ans)® lyn — 20/ + 2(en(vg(2n) — V20), 2011 — 20)
< (1= n8)? [lzn — 20/° + 2 (v9(2n) — V20, 2ns1 — 20)
< (1 — ans)?|

+ 20 (7v9(20) — V20, Tpt1 — 20)

|n = 20l| + 20y Kllzn — zolll|zn41 — 20l

< (1= ans)’ llzn = 20l” + any k(llzn — 20l® + lens1 — 20l|*)

+ 20 (v9(20) — VZ07xn+1 — 20)

+ 20m(7v9(20) — V20, Tn1 — 20)
= {(1 = ans)® + 20,7 k} & — 20
+ 200, (v9(20) — V20, Tnt1 — 20)
= (1 = 2ans + (ans)? + 207y k) ||z — 20|
+ 20, (vg(20) — V20, Tnt1 — 20)
=1-2(s—7 k),
)

+ 20 (79(20

) |20 — 20l + (n8)? [|l2n — 20/

— V2o, Zn+1 — 20)

= (1—2(s = k)an) |20 — 20]|> + n - ans? ||z — 20>
+ 2an(79(20) — V20, Tnt1 — 20)

= (1= B) &n — 20|

ans? ||zn — 20| z0) — Vzo,x -z
%(n o —20ll* , {10(z0) = Vo, 7is = 20) |

2(s —v k) s—vk

where 3, = 2(s — v k)ay. Since > o2 3, = oo, we have from Lemma 2.3 that
Tn = 20, Where 2o = Pp(s)np-tona-1r(r)nc-10( =V +79)z0.

Case 2: Suppose that there exists a subsequence {I',, } of the sequence {I'),} such
that I'),, < Ty, 41 for all ¢ € N. In this case, we define 7 : N — N by

7(n) = max{k <n:Tp <Tpi1}.

According to Lemma 2.4, the function 7 is defined on {ng,nyo + 1,...} for some
no € N. Then we have from Lemma 2.4 that I,y < I'()41. Thus we have from
(3.13) that for all n € N,

/87'(71)(1_/87'(71)) HSAZT(n) — L7(n) ||2
< (1 - BT(n))2aT(n)||S>\ZT(n) - xT(n)” ||’7.g($7'(n)) - VyT(n) H
(328) + ai(n) ||79(x’r(n)) - Vyr(n) ||2
+ 2aT(n) <79(‘T7(n))7 Tr(n) — ZO)
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- 2O"r(n) (Vy’r(n)a Lr(n) — ZO>'
Using limy, 00 &, = 0 and 0 < liminf, o 8, < limsup,,_,, Bn < 1, we have from
(3.28) that

(3.29) Bim [[Sxzr(n) — )| = 0.
As in the proof of Case 1 we also have that
(3.30) Jim {27 ()41 = 27| = 0
and limy, .0 [|Y7(n) = Tr(n) | = 0. Furthermore, we have lim,, oo ||(1 =T") Au ()|l = 0,
lim,, 00 HuT(n) — zT(n)H = 0 and lim,,_, o HuT(n) — mT(n)H = 0. From these we have
that

lim HS)\Z (n) — (n)H = 0.

n—oo
As in the proof of Case 1, we can show that

lim sup ((V — 49)20, 2+(n) — 20) > 0.

n—oo
From 2,41 — 20 = an(v9(xn) — Vzo) + (I — a,V)yn — (I — a,V')zp and (2.3), we
also have that

[ty 1 = 20[* < (1= iy )* [y — 20|
+ 20 () (v9(2 T(n) V20, Zr(n)+1 — 20)
< (1= arm)8)? |2rgm) — 20|

+ 20[ <f)/g( Lr(n) ) Vzo, Lr(n)+1 — 20)
2
< (1= () 8)? [lr () — 20|
+ 2007 ()Y kll@r(n) = 20127 (n)+1 — 2ol
+ 2a7‘(n) <fyg(z0) - VZO; Lr(n)+1 — Z()>
‘2
+ Ar(n)Y k(”xT( ZOH + H-’IJ n)+1 — Z()H )
+ 2aT(n) <7.g(z0) Vz()a Lr(n)+1 — ZO>

<(1- aT(n)s)Q er(n) — 20

and hence
(1= aruyy B) |enmyn = 20l” < (1= arguyy &) [ = 20|
+ {207 ()5 + 200y Y b+ () s) Hwr () — 20l
+ 207(n) (79(20) — V20, Tr(n) 41 — 20)-
From I';(,;) < I'z(n)41, we have that
20 () (5 — 7 K) |2 () — 20l
< () 8) 2| () — 20[|% + 2007y (Y9 (20) = V20, T ()41 — 20)-
Since a(,) > 0, we have that
2(s — 7 k)2 r(n) — 20l
< () [T (n) — 20l° + 2(v9(20) — V20, T7 ()11 — 20)-
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Then we have that
limsup 2(7 — v k) er(n) - ZOH2 <0,
n—oo
We have from s —~ k > 0 that ||z, — 20| — 0. Since z,(,) — Tr(n)41 — 0, we
have ||2,(z)4+1 — 20| = 0 as n — oo. Using Lemma 2.4 again, we obtain that
Hxn - ZOH < ||x7(n)+1 - ZOH — 0

as n — 0o. This completes the proof. O

4. APPLICATIONS

In this section, using Theorem 3.1, we can obtain well-known and new strong
convergence theorems in Hilbert spaces. Let H be a Hilbert space and let C' be a
nonempty, closed and convex subset of H. Let o > 0 and let U : C' — H be an
a-inverse strongly monotone mapping, that is,

(4.1) a|Uz - Uy|? < (& —y, Uz —Uy), Va,yeC.
Putting 7' = I — U in (4.1), we have from (3) in Examples that T is (1 — 2«)-
demimetric. Furthermore, since

I-2aU=1-20(I—-T)=(1-2a)I+2aT,

we have from (2.4) that (1 — 2a)I 4 2aT is nonexpansive; see [33]. Using this, T is
demiclosed. In fact, let {x,,} be a sequence in C such that z,, — z and z,—Tx,, — 0.
Then
zn — (1 = 2a)I +2aT)zy, = 2a(f — T)xy, — 0.

Since (1—2a)I+2aT is nonexpansive, we have z € F((1—2«)I+2aT) = F(T). This
implies that T is demiclosed. If T is a k-strict pseudo-contraction, then U =1 — T
is =k inverse strongly monotone. So, we have the following lemma obtained by
Marino and Xu [19]; see also [32].

Lemma 4.1 ([19, 32]). Let H be a Hilbert space and let C' be a nonempty, closed
and convex subset of H. Let k be a real number with 0 <k <1 andT :C — H be
a k-strict pseudo-contraction. If x, — z and x, — Tz, — 0, then z € F(T).

We also know the following lemma from Kocourek, Takahashi and Yao [14]; see
also [36].

Lemma 4.2 ([14, 36]). Let H be a Hilbert space, let C' be a nonempty, closed and
conver subset of H and let S : C — H be generalized hybrid. If x, — z and
Ty, — Sxy — 0, then z € F(S).

Theorem 4.3. Let Hy and Ho be Hilbert spaces and let o > 0. Let U be an a-
inverse strongly monoton mapping of Ho into Ho. Let B be a maximal monotone
operator on Hy. Let Jy, = (I + X, B)~! be the resolvents of B for A\, > 0. Let S be
a nonexpansive mapping of Hy into Hy. Let k € (0,1) and let g be a k-contraction
of Hi into itself. Let V be a 7-strongly monotone and L-Lipschitzian continuous
operator of Hy into Hy with ¥ > 0 and L > 0. Take u,v € R as follows:
27 5 L
0<“<L%’ 0<y< k;Q'
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Let A: Hy — Hs be a bounded linear operator such that ||A|| # 0. Suppose F(S)N
B710NAY(U10) # 0. Letxy = x € Hy and let {x,} C Hy be a sequence generated

by
Tn1 = anYg(Tn) + (I — anV){Bnn + (1 — Bn) Sy, (I — MyA UA) 2}
for all n € N, where a,b € R, {an}, {Bn} C (0,1) and {\,} C (0,00) satisfy

o0
lim a,, =0, Zan =00, 0<liminfg, <limsupf, <1
n—0o0 ot n—o0o

n—oo

2a
A1

Then {x,} converges strongly to 2o € F(S)NB~T0NA~YUL0), where 2 is a unique
fized point of Pp(s)np-1ona-1w-10){ =V +7g) in F(S)N B lonA~Y(U10).

and 0<a<)\,<b<

Proof. Put I —T = U in Theorem 3.1, where U is an a-inverse strongly monoton
mapping. Then, T is (1 — 2a)-demimetric. In Theorem 3.1, we also have

l—-7=1—-(1-2a)="2a.

Since S is nonexpansive, it is 0-demimetric. Furthermore, since S and T are demi-
closed, we obtain the desired result by Theorem 3.1. U

Theorem 4.4. Let Hy and Hy be Hilbert spaces. Let T be a generalized hybrid
mapping of Hy into Hy. Let s € [0,1) and let S be an s-strict pseudo-contraction of
Hi into Hy. Define Sy = (L—=A)I+\S for some A with0 < A <1—s. Letk € (0,1)
and let g be a k-contraction of Hy into itself. Let V be a 7y-strongly monotone and
L-Lipschitzian continuous operator of Hy into Hy with 7% > 0 and L > 0. Take
w7y € R as follows:
7 - L
O<u< T2 0<y< 3

Let A: Hy — Hy be a bounded linear operator such that || A|| # 0. Suppose F(S) N
ATYF(T) #0. Let x1 = x € Hy and let {x,} C Hy be a sequence generated by

Tnt1 = an¥g(xn) + (I — ay, V){Bnzn + (1 — Br)Sx(I — \yA* (I = T)A)x,}

for all n € N, where a,b € R, {an}, {Bn} C (0,1) and {\,} C (0,00) satisfy

27y

o0
lim o, =0, » ap=o00, 0<liminfs, <limsupp, <1
n—oo — n—oo

n—oo

1
and 0<a<)\,<b< .
IIA[J?
Then {x,} converges strongly to zy € F(S) N A~LF(T), where zy is a unique fived
point of Ppsyna-1pr)(I —V +7g) in F(S)N ALE(T).

Proof. Since T is generalized hybrid, it is 0-demimetric. Furthermore, since S is
an s-strict pseudo-contraction, it is s-demimetric and Sy = (1 — A)I + \S for some
A with 0 < A <1 —s. Since S and T are demiclosed from Lemma 4.1 and 4.2,
respectively, we obtain the desired result by Theorem 3.1. O
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Let f: C x C — R be a bifunction. The equilibrium problem (with respect to
C) is to find & € C such that
(4.2) f(@,y) >0, VyecC.
The set of such solutions & is denoted by EP(f), i.e.,
EP(f)={t€C: f(z,y) >0, Yy € C}.
For solving the equilibrium problem, let us assume that the bifunction f : CxC — R

satisfies the following conditions:

(Al) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,x) <0 for all z,y € C;
(A3) for all z,y,z € C,

limsup f(tz + (1 — t)z,y) < f(x,y);
tl0

(A4) for all z € C, f(x,-) is convex and lower semicontinuous.
The following lemmas were given in Combettes and Hirstoaga [8] and Takahashi,
Takahashi and Toyoda [25]; see also [2].

Lemma 4.5 ([8]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Assume that f : C' x C — R satisfies (Al) — (A4). Forr >0
and x € H, define a mapping T, : H — C' as follows:

1
Trq;:{zEC:f(z,y)+T<y—z,z—x>20, VyGC}.

Then, the following hold:
(1) T, is single-valued;
(2) T, is a firmly nonexpansive mapping, i.e., for all v,y € H,
|Trx — TryH2 <(Trz —Try,z — y);
(3) F(T,) = EP(f);
(4) EP(f) is closed and conver.
We call such T, the resolvent of f for r > 0.

Lemma 4.6 ([25]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f : C' x C' — R satisfy (A1) — (A4). Let As be a set-valued
mapping of H into itself defined by

{{zeH:f(x,y) >(y—uwm,z), Vye C}, Vrxel,
Arx =
0, Vx¢C.

Then, EP(f) = A;lo and Ay is a mazimal monotone operator with D(Ay) C C.
Furthermore, for any x € H and r > 0, the resolvent T, of f coincides with the
resolvent of Ay, i.e.,

Tox=(I+rAp) o

Using Lemmas 4.5, 4.6 and Theorem 3.1, we also obtain the following result with
equilibrium problem in Hilbert spaces; see also [21, 24].
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Theorem 4.7. Let Hi and Hs be Hilbert spaces. Let T be a monexpansive mapping
of Hy into Hy. Let C' be a nonempty, closed and convex subset of Hi. Let f :
C x C — R satisfy the conditions (A1)-(A4) and let Ty, be the resolvent of Ay
for A, > 0 in Lemma 3.12. Let n € (—o0,1) and let S be an n-demimetric and
demiclosed mapping of Hy into Hy. Define Sy = (1 — A\)I + AS for some \ with
0<A<1—mn. Letk € (0,1) and let g be a k-contraction of Hy into itself. Let V be
a v-strongly monotone and L-Lipschitzian continuous operator of Hy into Hy with
¥ >0 and L > 0. Take p,y € R as follows:
o= ~_ L

0<“<L%’ 0<7<7T2.
Let A : Hy — Hy be a bounded linear operator such that || A|| # 0. Suppose F(S) N
ATYF(TYNE(f) # 0. Let x1 = x € Hy and let {x,} C Hy be a sequence generated
by

Tpt1 = anYg(xn) + (I — apy V) {Bnzn + (1 — Bn)Sx(I — \yA*(I — T)A) T, xn}

for alln € N, where a,b,c € R, {a,},{fn} C (0,1) and {\,} C (0,00) satisfy

n—oo n—oo

o
lim a, =0, Zan:oo, 0 < liminf 5, < limsupfB, <1
— n— o0

1
O<a§)\n§b<w and 0<c<r, VnéeN.

Then {x,} converges strongly to zg € F(S)NATLF(T)NE(f), where 2y is a unique
fized point of Pp(syna-1rryney (I —V +g) in F(S)N AT F(T) N E(f).

Proof. For the bifunction f : C' x C — R, define Ay as in Lemma 4.6. Let T,
be the resolvent of A; for r, > 0. Thus, we obtain the desired result by Theorem
3.1. O
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