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F (T ) ∩A−1F (U). Thus the split common fixed point problem generalizes the split
feasibility problem and the split common null point problem. There are many papers
for the split feasibility problem, the split common null point problem and the split
common fixed point problem; see, for instance, [6, 7, 20, 23, 35].

Recently, Takahashi [31] introduced a new nonlinear mapping as follows: Let E
be a smooth Banach space, let C be a nonempty, closed and convex subset of E and
let η be a real number with η ∈ (−∞, 1). A mapping U : C → E with F (U) ̸= ∅ is
called η-demimetric if, for any x ∈ C and q ∈ F (U),

2⟨x− q, J(x− Ux)⟩ ≥ (1− η)∥x− Ux∥2,

where F (U) is the set of fixed points of U and J is the duality mapping on E. Let
H be a real Hilbert space and let C be a nonempty, closed and convex subset of H.
Let s be a real number with 0 ≤ s < 1. A mapping U : C → H is called an s-strict
pseudo-contraction [5] if

(1.1) ∥Ux− Uy∥2 ≤ ∥x− y∥2 + s∥x− Ux− (y − Uy)∥2

for all x, y ∈ C. If s = 0 in (1.1), U is nonexpansive. A mapping T : C → H is
called generalized hybrid [14] if there exist α, β ∈ R such that

(1.2) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
Notice that the class of generalized hybrid mappings covers several well-known map-
pings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is non-
spreading [15, 16] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [29] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [12]. The
class of demimetric mappings in a Hilbert space covers strict pseudo-contractions
and generalized hybrid mappings. We also know that the metric resolvent of a
maximal monotone operator in a Banach space is a demimetric mapping.

In this paper, using the class of demimetric mappings, we prove a strong conver-
gence theorem for finding a solution of the general split common fixed point problem
with zero points of two monotone operators in Hilbert spaces. This solution is the
unique solution of the hierarchical variational inequality problem. Using this result,
we obtain new and well-known strong convergence theorems in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥, respec-
tively. When {xn} is a sequence in H, we denote the strong convergence of {xn} to
x ∈ H by xn → x and the weak convergence by xn ⇀ x. We have from [28] that
for any x, y ∈ H and λ ∈ R,

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
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Furthermore we have that for x, y, u, v ∈ H,

(2.2) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
If x = y + z, then

(2.3) ∥x∥2 ≤ ∥y∥2 + 2⟨z, x⟩.
Let C be a nonempty, closed and convex subset of H and let T : C → H be a
mapping. We denote by F (T ) be the set of fixed points for T . A mapping T : C → H
is called quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C and
y ∈ F (T ). If T : C → H is quasi-nonexpansive, then F (T ) is closed and convex; see
[13]. For a nonempty, closed and convex subset C of H, the nearest point projection
of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for all x ∈ H and
y ∈ C. Such PC is called the metric projection of H onto C. We know that the
metric projection PC is firmly nonexpansive;

∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
for all x, y ∈ H. Furthermore ⟨x− PCx, y − PCx⟩ ≤ 0 holds for all x ∈ H and
y ∈ C; see [10, 26]. Let C be a nonempty, closed and convex subset of H. A
mapping U : C → H is called inverse strongly monotone if there exists α > 0 such
that

⟨x− y, Ux− Uy⟩ ≥ α∥Ux− Uy∥2, ∀x, y ∈ C.

Such a mapping U is called α-inverse strongly monotone. If a mapping U : C → H is
α-inverse strongly monotone and 0 < λ ≤ 2α, then I−λU : C → H is nonexpansive.
In fact, we have that for all x, y ∈ C,

∥(I − λU)x− (I − λU)y∥2 = ∥x− y − λ(Ux− Uy)∥2

= ∥x− y∥2 − 2λ⟨x− y, Ux− Uy⟩+ λ2∥Ux− Uy∥2

≤ ∥x− y∥2 − 2λα∥Ux− Uy∥2 + λ2∥Ux− Uy∥2(2.4)

= ∥x− y∥2 + λ(λ− 2α)∥Ux− Uy∥2

≤ ∥x− y∥2.

Thus I − λU is nonexpansive; see [1, 22, 28] for more results of inverse strongly
monotone mappings.

Let B be a mapping of H into 2H . The effective domain of B is denoted by
D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. A multi-valued mapping B is said to
be a monotone operator on H if ⟨x− y, u− v⟩ ≥ 0 for all x, y ∈ D(B), u ∈ Bx,
and v ∈ By. A monotone operator B on H is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on H. For
a maximal monotone operator B on H and r > 0, we may define a single-valued
operator Jr = (I + rB)−1 : H → D(B), which is called the resolvent of B for r. We
denote by Ar =

1
r (I − Jr) the Yosida approximation of B for r > 0. We know from

[27] that

(2.5) Arx ∈ BJrx, ∀x ∈ H, r > 0.

Let B be a maximal monotone operator on H and let

B−10 = {x ∈ H : 0 ∈ Bx}.
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Then B−10 = F (Jr) for all r > 0 and the resolvent Jr is firmly nonexpansive, i.e.,

(2.6) ∥Jrx− Jry∥2 ≤ ⟨x− y, Jrx− Jry⟩, ∀x, y ∈ H.

We also know the following lemma from [25].

Lemma 2.1 ([25]). Let H be a Hilbert space and let B be a maximal monotone
operator on H. For r > 0 and x ∈ H, define the resolvent Jrx. Then the following
holds:

s− t

s
⟨Jsx− Jtx, Jsx− x⟩ ≥ ∥Jsx− Jtx∥2

for all s, t > 0 and x ∈ H.

From Lemma 2.1, we have that

(2.7) ∥Jλx− Jµx∥ ≤ (|λ− µ| /λ) ∥x− Jλx∥
for all λ, µ > 0 and x ∈ H; see also [9, 26].

In case when a Banach space E is a Hilbert space, the definition of a demimetric
mapping is as follows: Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let η ∈ (−∞, 1). A mapping S : C → H with F (S) ̸= ∅
is called η-demimetric if, for any x ∈ C and q ∈ F (S),

⟨x− q, x− Sx⟩ ≥ 1− η

2
∥x− Sx∥2.

We give the following examples of demimetric mappings in Hilbert spaces and
Banach spaces.

(1) Let H be a Hilbert space, let C be a nonempty, closed and convex subset of
H and let k be a real number with 0 ≤ k < 1. If U is a k-strict pseudo-contraction
and F (U) ̸= ∅, then U is k-demimetric; see [31].

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. If T is generalized hybrid and F (T ) ̸= ∅, then T is 0-demimetric. In fact,
setting x = u ∈ F (T ) and y = x ∈ C in (1.2), we have that

α∥u− Tx∥2 + (1− α)∥u− Tx∥2 ≤ β∥u− x∥2 + (1− β)∥u− x∥2

and hence

∥Tx− u∥2 ≤ ∥x− u∥2.
From ∥Tx− x+ x− u∥2 = ∥Tx− x∥2 + 2⟨Tx− x, x− u⟩+ ∥x− u∥2, we have that

2⟨x− u, x− Tx⟩ ≥ ∥x− Tx∥2

for all x ∈ C and u ∈ F (T ). This means that T is 0-demimetric.
(3) Let H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Let α > 0 and let U : C → H be an α-inverse strongly monotone mapping
with U−10 ̸= ∅. Then 1−2α ∈ (−∞, 1) and I−U : C → H is a (1−2α)-demimetric
mapping. In fact, since U : C → H is α-inverse strongly monotone, we have that

(2.8) ⟨x− y, Ux− Uy⟩ ≥ α∥Ux− Uy∥2, ∀x, y ∈ C.

Setting T = I − U and taking y = z ∈ F (T ) = U−10 in (2.8), we have that

⟨x− z, x− Tx⟩ ≥ α∥x− Tx∥2, ∀x ∈ C, z ∈ F (T ).
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This implies that

2⟨x− z, x− Tx⟩ ≥ (1− (1− 2α))∥x− Tx∥2, ∀x ∈ C, z ∈ F (T )

and hence T = I − U is (1− 2α)-demimetric.
(4) Let E be a strictly convex, reflexive and smooth Banach space and let C be

a nonempty, closed and convex subset of E. Let PC be the metric projection of E
onto C. Then PC is (−1)-demimetric; see [31].

(5) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric resolvent
Jλ is (−1)-demimetric; see [31].

If S : C → H is η-demimetric and 0 < λ ≤ 1 − η, then Sλ = (1 − λ)I + λS is
quasi-nonexpansive. In fact, it is obvious that F (S) = F (Sλ). We also have that
for any x ∈ C and z ∈ F (Sλ),

2⟨x− z, x− Sλx⟩ = 2⟨x− z, x− (1− λ)x− λSx⟩ = 2λ⟨x− z, x− Sx⟩

≥ λ(1− η)∥x− Sx∥2 = λ2 1− η

λ
∥x− Sx∥2(2.9)

=
1− η

λ
∥λx− λSx∥2 = 1− η

λ
∥x− Sλx∥2

≥ λ

λ
∥x− Sλx∥2 = ∥x− Sλx∥2.

Then Sλ is a 0-demimetric mapping. Furthermore, we have from (2.2) that for any
x ∈ C and z ∈ F (Sλ),

∥x−Sλx∥2 ≤ 2⟨x− z, x− Sλx⟩
⇐⇒ ∥x− Sλx∥2 ≤ ∥x− Sλx∥2 + ∥x− z∥2 − ∥Sλx− z∥2(2.10)

⇐⇒ ∥Sλx− z∥2 ≤ ∥x− z∥2

⇐⇒ ∥Sλx− z∥ ≤ ∥x− z∥.

Therefore, Sλ is quasi-nonexpansive.
The following lemma which was proved in [31] is important and crucial

Lemma 2.2 ([31]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k be a real number with k ∈ (−∞, 1) and let U be a
k-demimetric mapping of C into H. Then F (U) is closed and convex.

To prove our main result, we need the following lemmas.

Lemma 2.3 ([3]; see also [37]). Let {sn} be a sequence of nonnegative real numbers,
let {αn} be a sequence in [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of

nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real
numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.
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Lemma 2.4 ([18]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where n0 ∈ N satisfies {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Strong convergence theorem

Let H be a Hilbert space. A mapping g : H → H is a contraction if there exists
k ∈ (0, 1) such that ∥g(x)−g(y)∥ ≤ k∥x−y∥ for all x, y ∈ H. We call such a mapping
g a k-contraction. A nonlinear operator V : H → H is called strongly monotone if
there exists γ > 0 such that ⟨x − y, V x − V y⟩ ≥ γ∥x − y∥2 for all x, y ∈ H. Such
V is also called γ-strongly monotone. A nonlinear operator V : H → H is called
Lipschitzian continuous if there exists L > 0 such that ∥V x− V y∥ ≤ L∥x− y∥ for
all x, y ∈ H. Such V is called L-Lipschitzian continuous.

Let g : H → H be a k-contraction with 0 < k < 1. Let V be a γ-strongly
monotone and L-Lipschitzian continuous operator on H with γ > 0 and L > 0. Let
γ be a real number with 0 < γ < γ

k . According to Lin and Takahashi [17], V − γg :
H → H is a (γ − γk)-strongly monotone and (L + γk)-Lipschitzian continuous
mapping. Furthermore, take t > 0 satisfying

2(γ − γk) > t(L+ γk)2 and 1 > 2t(γ − γk).

Then 0 < 1 − t
(
2(γ − γk) − t(L + γk)2

)
< 1 and I − t(V − γg) : H → H is a

contraction. In fact, it is obvious that 0 < 1 − t
(
2(γ − γk) − t(L + γk)2

)
< 1. We

also have that for any x, y ∈ H,

∥
(
I − t(V − γg)

)
x−

(
I − t(V − γg)

)
y∥2

= ∥x− y∥2 − 2t⟨x− y, (V − γg)x− (V − γg)y⟩+ t2∥(V − γg)x− (V − γg)y∥2

≤ ∥x− y∥2 − 2t(γ − γk)∥x− y∥2 + t2(L+ γk)2∥x− y∥2

=
(
1− 2t(γ − γk) + t2(L+ γk)2

)
∥x− y∥2

=
(
1− t(2(γ − γk)− t(L+ γk)2)

)
∥x− y∥2.

Therefore I − t(V − γg) is a contraction. Let C be a nonempty, closed and convex
subset of H. Then a mapping PC(I − t(V − γg)) : C → C is a contraction and
hence PC(I − t(V − γg)) has a unique fixed point z0 in C. This point z0 ∈ C is also
a unique solution of the variational inequality

⟨(V − γg)z0, q − z0⟩ ≥ 0, ∀q ∈ C.

Furthermore, this point z0 ∈ C is a unique fixed point of PC(I − (V − γg)) in C. In
fact, we have that

z0 = PC(I − t(V − γg))z0

⇐⇒ ⟨z0 − t(V − γg)z0 − z0, z0 − y⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨−t(V − γg)z0, z0 − y⟩ ≥ 0, ∀y ∈ C(3.1)
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⇐⇒ ⟨(V − γg)z0, y − z0⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨z0 − (V − γg)z0 − z0, z0 − y⟩ ≥ 0, ∀y ∈ C

⇐⇒ z0 = PC(I − (V − γg))z0.

Now we prove a strong convergence theorem of Halpern’s type [11] for finding
a solution of the general split common fixed point problem with zero points of
two monotone operators in Hilbert spaces. For the proof, we follow the ideas of
[17, 30, 34]. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. A mapping U : C → H is called demiclosed if, for a sequence {xn}
in C such that xn ⇀ w and xn − Uxn → 0, w = Uw holds. For example, if C is a
nonempty, closed and convex subset of H and T is a nonexpansive mapping of C
into H, then T is demiclosed; see [4] and [28, p. 114].

Theorem 3.1. Let H1 and H2 be Hilbert spaces. Let B and G be maximal monotone
operators on H1. Let Jλn = (I + λnB)−1 and Trn = (I + rnG)−1 be the resolvents
of B and G for λn > 0 and rn > 0, respectively. Let η, τ ∈ (−∞, 1). Let S be an
η-demimetric and demiclosed mapping of H1 into H1 and let T be a τ -demimetric
and demiclosed mapping of H2 into H2. Define Sλ = (1−λ)I+λS for some λ with
0 < λ ≤ 1− η. Let k ∈ (0, 1) and let g be a k-contraction of H1 into itself. Let V be
a γ-strongly monotone and L-Lipschitzian continuous operator of H1 into H1 with
γ > 0 and L > 0. Take µ, γ ∈ R as follows:

0 < µ <
2γ

L2
, 0 < γ <

γ − L2µ
2

k
.

Let A : H1 → H2 be a bounded linear operator such that ∥A∥ ̸= 0. Suppose F (S) ∩
B−10 ∩ A−1F (T ) ∩ G−10 ̸= ∅. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence
generated by

xn+1 = αnγg(xn) + (I − αnV ){βnxn + (1− βn)SλJλn(I − λnA
∗(I − T )A)Trnxn}

for all n ∈ N, where {αn}, {βn} ⊂ (0, 1), {λn}, {rn} ⊂ (0,∞) and a, b, c ∈ R satisfy

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

0 < a ≤ λn ≤ b <
1− τ

∥A∥2
and 0 < c ≤ rn, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (S) ∩ B−10 ∩ A−1F (T ) ∩ G−10,
where z0 is a unique fixed point of PF (S)∩B−10∩A−1F (T )∩G−10(I − V + γg) in the set

F (S) ∩B−10 ∩A−1F (T ) ∩G−10.

Proof. Since S is η-demimetric and 0 < λ ≤ 1−η, we have from (2.9) and (2.10) that
Sλ is 0-demimetric and quasi-nonexpansive. Let z ∈ F (S)∩B−10∩A−1F (T )∩G−10.
We have that z ∈ F (S) = F (Sλ), z = Jλnz, z = Trnz and (I − T )Az = 0.
Put zn = Jλn(I − λnA

∗(I − T )A)Trnxn and un = Trnxn. Since Jλn and Trn are
nonexpansive and T is τ -demimetric, we obtain that

∥zn − z∥2 = ∥Jλn(un − λnA
∗(I − T )Aun)− Jλnz∥

2

≤ ∥un − λnA
∗(I − T )Aun − z∥2
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= ∥un − z − λnA
∗(I − T )Aun∥2

= ∥un − z∥2 − 2λn ⟨un − z,A∗(I − T )Aun⟩+ λ2
n ∥A∗(I − T )Aun∥2

= ∥un − z∥2 − 2λn ⟨Aun −Az, (I − T )Aun⟩+ λ2
n ∥A∗(I − T )Aun∥2(3.2)

≤ ∥un − z∥2 − λn(1− τ) ∥(I − T )Aun∥2 + λ2
n∥A∥2 ∥(I − T )Aun∥2

= ∥un − z∥2 + λn(λn∥A∥2 − (1− τ)) ∥(I − T )Aun∥2

≤ ∥xn − z∥2 + λn(λn∥A∥2 − (1− τ)) ∥(I − T )Aun∥2

≤ ∥xn − z∥2 .

Put yn = βnxn + (I − βn)Sλzn. Since Sλ is quasi-nonexpansive, we have that

∥yn − z∥ = ∥βn(xn − z) + (1− βn)(Sλzn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥Sλzn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥zn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
= ∥xn − z∥ .

Furthermore, put s = γ − L2µ
2 . We have s > 0. Since limn→∞ αn = 0, there exists

n0 ∈ N such that 1 − αns > 0 and αn < µ for all n ≥ n0. Then we have that for
any x, y ∈ H1 and n ≥ n0,

∥(I−αnV )x− (I − αnV )y∥2 = ∥x− y − αn(V x− V y)∥2

= ∥x− y∥2 − 2αn⟨x− y, V x− V y⟩+ α2
n∥V x− V y∥2

≤ ∥x− y∥2 − 2αnγ∥x− y∥2 + α2
nL

2∥x− y∥2

= (1− 2αnγ + α2
nL

2)∥x− y∥2(3.3)

= (1− 2αns− αnL
2µ+ α2

nL
2)∥x− y∥2

≤
(
1− 2αns− αn(L

2µ− αnL
2) + α2

ns
2)∥x− y∥2

≤ (1− 2αns+ α2
ns

2)∥x− y∥2

= (1− αns)
2∥x− y∥2.

Since 1− αns > 0, we obtain that for any x, y ∈ H1 and n ≥ n0,

(3.4) ∥(I − αnV )x− (I − αnV )y∥ ≤ (1− αns)∥x− y∥.

Since xn+1 = αnγg(xn) + (I − αnV )yn and z = αnV z + z − αnV z, we have from
(3.4) and s− γ k > 0 that

∥xn+1 − z∥ = ∥αn(γg(xn)− V z) + (I − αnV )yn − (I − αnV )z∥
≤ αnγ k ∥xn − z∥+ αn∥γg(z)− V z∥+ (1− αns)∥yn − z∥
≤ αnγ k ∥xn − z∥+ αn∥γg(z)− V z∥+ (1− αns) ∥xn − z∥(3.5)

= {1− αn(s− γ k)} ∥xn − z∥+ αn∥γg(z)− V z∥
= {1− αn(s− γ k)} ∥xn − z∥
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+ αn(s− γ k)
∥γg(z)− V z∥

s− γ k
.

Putting K = max{∥x1 − z∥, ∥γg(z)−V z∥
s−γ k }, we have from (3.5) that ∥xn − z∥ ≤ K for

all n ∈ N. Then {xn} is bounded. Furthermore, {un}, {zn} and {yn} are bounded.
We know from Lemma 2.2 that F (S) and F (T ) are closed and convex. Then we
have that F (S) ∩ B−10 ∩ A−1F (T ) ∩ G−10 is closed and convex. Using (3.1), we
can take a unique z0 ∈ F (S) ∩B−10 ∩A−1F (T ) ∩G−10 such that

z0 = PF (S)∩B−10∩A−1F (T )∩G−10(I − V + γg)z0.

From the definition of {xn}, we have that

xn+1 − xn = αnγg(xn) + (I − αnV )yn − xn.

Thus we have that

⟨xn+1 − xn − αnγg(xn), xn − z0⟩
= ⟨yn − xn − αnV yn, xn − z0⟩(3.6)

= ⟨yn − xn, xn − z0⟩ − αn⟨V yn, xn − z0⟩.
Using (2.1), we have that

∥yn − z0∥2 = ∥βnxn + (1− βn)Sλzn − z0∥2

= βn∥xn − z0∥2 + (1− βn)∥Sλzn − z0∥2 − βn(1− βn)∥Sλzn − xn∥2(3.7)

≤ βn∥xn − z0∥2 + (1− βn)∥xn − z0∥2 − βn(1− βn)∥Sλzn − xn∥2

= ∥xn − z0∥2 − βn(1− βn)∥Sλzn − xn∥2.
From (2.2) and (3.7), we have that

2⟨yn − xn,xn − z0⟩
= ∥yn − z0∥2 − ∥yn − xn∥2 − ∥xn − z0∥2

≤ ∥xn − z0∥2 − βn(1− βn)∥Sλzn − xn∥2

− (1− βn)
2∥Sλzn − xn∥2 − ∥xn − z0∥2(3.8)

= −βn(1− βn)∥Sλzn − xn∥2 − (1− βn)
2∥Sλzn − xn∥2

= −(1− βn)∥Sλzn − xn∥2.
From (3.6) and (3.8), we also have that

2⟨xn+1−xn, xn − z0⟩
= 2αn⟨γg(xn), xn − z0⟩

+ 2⟨yn − xn, xn − z0⟩ − 2αn⟨V yn, xn − z0⟩(3.9)

≤ 2αn⟨γg(xn), xn − z0⟩
− (1− βn)∥Sλzn − xn∥2 − 2αn⟨V yn, xn − z0⟩.

Furthermore, using (2.2) and (3.9), we have that

∥xn+1 − z0∥2−∥xn − xn+1∥2 − ∥xn − z0∥2

≤ 2αn⟨γg(xn), xn − z0⟩
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− (1− βn)∥Sλzn − xn∥2 − 2αn⟨V yn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn − ∥xn − xn+1∥2

≤ 2αn⟨γg(xn), xn − z0⟩(3.10)

− (1− βn)∥Sλzn − xn∥2 − 2αn⟨V yn, xn − z0⟩.
We also have

∥xn+1 − xn∥ = ∥αnγg(xn) + (I − αnV )yn − xn∥
= ∥αn(γg(xn)− V yn) + yn − xn∥(3.11)

≤ ∥yn − xn∥+ αn∥γg(xn)− V yn∥
and hence

∥xn+1 − xn∥2 ≤
(
∥yn − xn∥+ αn∥γg(xn)− V yn∥

)2
= ∥yn − xn∥2 + 2αn∥yn − xn∥∥γg(xn)− V yn∥

+ α2
n∥γg(xn)− V yn∥2(3.12)

= (1− βn)
2∥Sλzn − xn∥2 + 2(1− βn)αn∥Sλzn − xn∥∥γg(xn)− V yn∥

+ α2
n∥γg(xn)− V yn∥2.

We have from (3.10) and (3.12) that

Γn+1−Γn ≤ ∥xn − xn+1∥2 + 2αn⟨γg(xn), xn − z0⟩
− (1− βn)∥Sλzn − xn∥2 − 2αn⟨V yn, xn − z0⟩

≤ (1− βn)
2∥Sλzn − xn∥2 + 2(1− βn)αn∥Sλzn − xn∥∥γg(xn)− V yn∥

+ α2
n∥γg(xn)− V yn∥2 + 2αn⟨γg(xn), xn − z0⟩

− (1− βn)∥Sλzn − xn∥2 − 2αn⟨V yn, xn − z0⟩
and hence

Γn+1−Γn + βn(1− βn)∥Sλzn − xn∥2

≤ 2(1− βn)αn∥Sλzn − xn∥∥γg(xn)− V yn∥(3.13)

+ α2
n∥γg(xn)− V yn∥2 + 2αn⟨γg(xn), xn − z0⟩

− 2αn⟨V yn, xn − z0⟩.
We divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for
all n ≥ N . In this case, limn→∞ Γn exists and then limn→∞(Γn+1 − Γn) = 0. Since
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, limn→∞ αn = 0 and {Sλzn}, {g(xn)} and
{V yn} are bounded, we have from (3.13) that

(3.14) lim
n→∞

∥Sλzn − xn∥ = 0.

Using (3.12), we also have that

(3.15) lim
n→∞

∥xn+1 − xn∥ = 0.



A GENERAL ITERATIVE METHOD FOR SPLIT COMMON FIXED POINT PROBLEMS 359

Since yn − xn = βnxn + (1 − βn)Sλzn − xn = (1 − βn)(Sλzn − xn), we have from
(3.14) that

(3.16) lim
n→∞

∥yn − xn∥ = 0.

We show limn→∞ ∥Sλzn − zn∥ = 0. Since z0 = αnV z0 + z0 − αnV z0, we also have
from (2.3), (3.2), (3.4) and (3.7) that

∥xn+1−z0∥2 = ∥αn(γg(xn)− V z0) + (I − αnV )yn − (I − αnV )z0∥2

≤ (1− αns)
2∥yn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩

≤ ∥yn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩
≤ βn∥xn − z0∥2 + (1− βn)∥Sλzn − z0∥2

+ 2αn⟨γg(xn)− V z0, xn+1 − z0⟩
≤ βn∥xn − z0∥2 + (1− βn)∥zn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩(3.17)

≤ βn∥xn − z0∥2 + (1− βn)∥xn − z0∥2

+ (1− βn)λn(λn∥A∥2 − (1− τ)) ∥(I − T )Aun∥2

+ 2αn⟨γg(xn)− V z0, xn+1 − z0⟩.

≤ ∥xn − z0∥2 + (1− βn)λn(λn∥A∥2 − (1− τ)) ∥(I − T )Aun∥2

+ 2αn⟨γg(xn)− V z0, xn+1 − z0⟩.
Thus we have that

(1− βn)λn(1− τ − λn∥A∥2) ∥(I − T )Aun∥2

≤ ∥xn − z0∥2 − ∥xn+1 − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩.(3.18)

Using the conditions of {Γn}, {λn}, {βn} and {αn}, we have that

(3.19) lim
n→∞

∥(I − T )Aun∥ = 0.

Since Jλn is firmly nonexpansive, we have from (3.2) that

2∥zn−z0∥2 = 2 ∥Jλn(un − λnA
∗(I − T )Aun)− Jλnz0∥

2

≤ 2 ⟨un − λnA
∗(I − T )Aun − z0, zn − z0⟩

= ∥un − λnA
∗(I − T )Aun − z0∥2 + ∥zn − z0∥2

− ∥un − λnA
∗(I − T )Aun − zn∥2

≤ ∥xn − z0∥2 + ∥zn − z0∥2

− ∥un − zn − λnA
∗(I − T )Aun∥2

≤ ∥xn − z0∥2 + ∥zn − z0∥2 − ∥un − zn∥2

+ 2λn ⟨un − zn, A
∗(I − T )Aun⟩ − λ2

n ∥A∗(I − T )Aun∥2 .
Thus we get

∥zn − z0∥2 ≤ ∥xn − z0∥2 − ∥un − zn∥2(3.20)

+ 2λn ⟨un − zn, A
∗(I − T )Aun⟩ − λ2

n ∥A∗(I − T )Aun∥2 .
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Using (3.17) and (3.20), we obtain

∥xn+1 − z0∥2 ≤ ∥yn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩

≤ βn ∥xn − z0∥2 + (1− βn)∥zn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩)

≤ βn ∥xn − z0∥2 + (1− βn) ∥xn − z0∥2

− (1− βn) ∥un − zn∥2 + 2(1− βn)λn ⟨un − zn, A
∗(I − T )Aun⟩

− (1− βn)λ
2
n ∥A∗(I − T )Aun∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩

= ∥xn − z0∥2 − (1− βn) ∥un − zn∥2

+ 2(1− βn)λn ⟨un − zn, A
∗(I − T )Aun⟩ − (1− βn)λ

2
n ∥A∗(I − T )Aun∥2

+ 2αn⟨γg(xn)− V z0, xn+1 − z0⟩,

from which it follows that

(1− βn)∥un−zn∥2 ≤ ∥xn − z0∥2 − ∥xn+1 − z0∥2

+ 2(1− βn)λn ⟨un − zn, A
∗(I − T )Aun⟩

− (1− βn)λ
2
n ∥A∗(I − T )Aun∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩.

Using (3.19) and the conditions of {Γn}, {βn} and {αn}, we have that

(3.21) lim
n→∞

∥un − zn∥ = 0.

We also have from (2.6) that

2∥un − z0∥2 = 2∥Trnxn − Trnz0∥2

≤ 2⟨xn − z0, un − z0⟩
= ∥xn − z0∥2 + ∥un − z0∥2 − ∥un − xn∥2

and hence

(3.22) ∥un − z0∥2 ≤ ∥xn − z0∥2 − ∥un − xn∥2.

From (3.2) and (3.22) we have that

∥Sλzn − z0∥2 ≤ ∥un − z0∥2 ≤ ∥xn − z0∥2 − ∥un − xn∥2

and hence

∥un − xn∥2 ≤ ∥xn − z0∥2 − ∥Sλzn − z0∥2

= ∥xn − Sλzn∥2 + 2⟨xn − Sλzn, Sλzn − z0⟩+ ∥Sλzn − z0∥2 − ∥Sλzn − z0∥2

= ∥xn − Sλzn∥2 + 2⟨xn − Sλzn, Sλzn − z0⟩.

Thus from (3.14) we have that

(3.23) lim
n→∞

∥un − xn∥ = 0.

Since ∥Sλzn − zn∥ ≤ ∥Sλzn − xn∥ + ∥xn − un∥ + ∥un − zn∥, we have from (3.14),
(3.21) and (3.23) that

(3.24) lim
n→∞

∥Sλzn − zn∥ = 0.
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Take λ0 ∈ R with 0 < a ≤ λ0 ≤ b < 1−τ
∥A∥2 . Put sn = (I − λnA

∗(I − T )A)un. Using

zn = Jλn(I − λnA
∗(I − T )A)un, we have from Lemma 2.1 that

∥Jλ0sn − zn∥
= ∥Jλ0(I − λnA

∗(I − T )A)un − Jλn(I − λnA
∗(I − T )A)un∥(3.25)

= ∥Jλ0sn − Jλnsn∥

≤ |λ0 − λn|
λ0

∥Jλ0sn − sn∥.

We also have that

∥sn − Jλ0sn∥ ≤ ∥sn − un∥+ ∥un − zn∥+ ∥zn − Jλ0sn∥(3.26)

= ∥λnA
∗(I − T )Aun∥+ ∥un − zn∥+ ∥zn − Jλ0sn∥.

We will use (3.25) and (3.26) later.
Let us show that lim supn→∞ ⟨(V − γg)z0, xn − z0⟩ ≥ 0. Put

A = lim sup
n→∞

⟨(V − γg)z0, xn − z0⟩ .

Without loss of generality, we may assume that there exists a subsequence {xni} of
{xn} such that A = limi→∞ ⟨(V − γg)z0, xni − z0⟩ and {xni} converges weakly to
some point w ∈ H1. Since ∥xn− zn∥ → 0, we also have that {zni} converges weakly
to w ∈ H1. On the other hand, from {λni} ⊂ [a, b] there exists a subsequence
{λnij

} of {λni} such that λnij
→ λ0 for some λ0 ∈ [a, b]. Without loss of generality,

we assume that zni → w, xni → w and λni → λ0. We know from (3.24) that
limn→∞ ∥Sλzn − zn∥ = 0. Since

∥Sλzn − zn∥ = ∥(1− λ)zn + λSzn − zn∥ = λ∥Szn − zn∥ → 0,

we have Szn − zn → 0. Thus, we have w ∈ F (S) = F (Sλ) because S is demiclosed.
Since λni → λ0, we have from (3.25) that

∥Jλ0sni − zni∥ → 0.

Furthermore, we have from (3.26) that

∥sni − Jλ0sni∥ → 0.

Since sni ⇀ w and Jλ0 is nonexpansive, we have that w = Jλ0w. Furthermore, since
uni ⇀ w and A is bounded and linear, we have that Auni ⇀ Aw. We also know from
(3.19) that limn→∞ ∥(I − T )Aun∥ = 0. Since T is demiclosed, we have Aw = TAw,

i.e., w ∈ A−1F (T ). Finally, since G is a monotone operator and
xni−uni

rni
∈ Guni ,

we have that for any (u, v) ∈ G,⟨
u− uni , v −

xni − uni

rni

⟩
≥ 0.

Since lim infn→∞ rn > 0, uni ⇀ w and xni − uni → 0, we have

⟨u− w, v⟩ ≥ 0.

Since G is a maximal monotone operator, we have 0 ∈ Gw and hence w ∈ G−10.
Thus we have

w ∈ F (S) ∩B−10 ∩A−1F (T ) ∩G−10.
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Since z0 = PF (S)∩B−10∩A−1F (T )∩G−10(I − V + γg)z0, we have from (3.1) that

(3.27) A = lim
i→∞

⟨(V − γg)z0, xni − z0⟩ = ⟨(V − γg)z0, w − z0⟩ ≥ 0.

Since xn+1 − z0 = αn(γg(xn) − V z0) + (I − αnV )yn − (I − αnV )z0, we have from
(2.3) that

∥xn+1 − z0∥2 ≤ (1− αns)
2 ∥yn − z0∥2 + 2⟨αn(γg(xn)− V z0), xn+1 − z0⟩

≤ (1− αns)
2 ∥xn − z0∥2 + 2αn⟨γg(xn)− V z0, xn+1 − z0⟩

≤ (1− αns)
2 ∥xn − z0∥2 + 2αnγ k∥xn − z0∥∥xn+1 − z0∥

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

≤ (1− αns)
2 ∥xn − z0∥2 + αnγ k(∥xn − z0∥2 + ∥xn+1 − z0∥2)

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

≤ (1− αns)
2 ∥xn − z0∥2 + 2αnγ k∥xn − z0∥2

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

= {(1− αns)
2 + 2αnγ k} ∥xn − z0∥2

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

= (1− 2αns+ (αns)
2 + 2αnγ k) ∥xn − z0∥2

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

= (1− 2(s− γ k)αn) ∥xn − z0∥2 + (αns)
2 ∥xn − z0∥2

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

= (1− 2(s− γ k)αn) ∥xn − z0∥2 + αn · αns
2 ∥xn − z0∥2

+ 2αn⟨γg(z0)− V z0, xn+1 − z0⟩

= (1− βn) ∥xn − z0∥2

+ βn

(
αns

2 ∥xn − z0∥2

2(s− γ k)
+

⟨γg(z0)− V z0, xn+1 − z0⟩
s− γ k

)
,

where βn = 2(s − γ k)αn. Since
∑∞

n=1 βn = ∞, we have from Lemma 2.3 that
xn → z0, where z0 = PF (S)∩B−10∩A−1F (T )∩G−10(I − V + γg)z0.

Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such
that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.
According to Lemma 2.4, the function τ is defined on {n0, n0 + 1, . . . } for some
n0 ∈ N. Then we have from Lemma 2.4 that Γτ(n) < Γτ(n)+1. Thus we have from
(3.13) that for all n ∈ N,

βτ(n)(1−βτ(n))∥Sλzτ(n) − xτ(n)∥2

≤ (1− βτ(n))2ατ(n)∥Sλzτ(n) − xτ(n)∥∥γg(xτ(n))− V yτ(n)∥
+ α2

τ(n)∥γg(xτ(n))− V yτ(n)∥2(3.28)

+ 2ατ(n)⟨γg(xτ(n)), xτ(n) − z0⟩
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− 2ατ(n)⟨V yτ(n), xτ(n) − z0⟩.
Using limn→∞ αn = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, we have from
(3.28) that

(3.29) lim
n→∞

∥Sλzτ(n) − xτ(n)∥ = 0.

As in the proof of Case 1 we also have that

(3.30) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0

and limn→∞ ∥yτ(n)−xτ(n)∥ = 0. Furthermore, we have limn→∞ ∥(I−T )Auτ(n)∥ = 0,

limn→∞
∥∥uτ(n) − zτ(n)

∥∥ = 0 and limn→∞
∥∥uτ(n) − xτ(n)

∥∥ = 0. From these we have
that

lim
n→∞

∥Sλzτ(n) − zτ(n)∥ = 0.

As in the proof of Case 1, we can show that

lim sup
n→∞

⟨
(V − γg)z0, xτ(n) − z0

⟩
≥ 0.

From xn+1 − z0 = αn(γg(xn) − V z0) + (I − αnV )yn − (I − αnV )z0 and (2.3), we
also have that∥∥xτ(n)+1 − z0

∥∥2 ≤ (1− ατ(n)s)
2
∥∥yτ(n) − z0

∥∥2
+ 2ατ(n)⟨γg(xτ(n))− V z0, xτ(n)+1 − z0⟩

≤ (1− ατ(n)s)
2
∥∥xτ(n) − z0

∥∥2
+ 2ατ(n)⟨γg(xτ(n))− V z0, xτ(n)+1 − z0⟩

≤ (1− ατ(n)s)
2
∥∥xτ(n) − z0

∥∥2
+ 2ατ(n)γ k∥xτ(n) − z0∥∥xτ(n)+1 − z0∥
+ 2ατ(n)⟨γg(z0)− V z0, xτ(n)+1 − z0⟩

≤ (1− ατ(n)s)
2
∥∥xτ(n) − z0

∥∥2
+ ατ(n)γ k(∥xτ(n) − z0∥2 + ∥xτ(n)+1 − z0∥2)
+ 2ατ(n)⟨γg(z0)− V z0, xτ(n)+1 − z0⟩

and hence

(1− ατ(n)γ k)
∥∥xτ(n)+1 − z0

∥∥2 ≤ (1− ατ(n)γ k)
∥∥xτ(n) − z0

∥∥2
+ {−2ατ(n)s+ 2ατ(n)γ k + (ατ(n)s)

2}∥xτ(n) − z0∥2

+ 2ατ(n)⟨γg(z0)− V z0, xτ(n)+1 − z0⟩.
From Γτ(n) < Γτ(n)+1, we have that

2ατ(n)(s− γ k)∥xτ(n) − z0∥2

≤ (ατ(n)s)
2∥xτ(n) − z0∥2 + 2ατ(n)⟨γg(z0)− V z0, xτ(n)+1 − z0⟩.

Since ατ(n) > 0, we have that

2(s− γ k)∥xτ(n) − z0∥2

≤ ατ(n)s
2∥xτ(n) − z0∥2 + 2⟨γg(z0)− V z0, xτ(n)+1 − z0⟩.
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Then we have that

lim sup
n→∞

2(τ − γ k)
∥∥xτ(n) − z0

∥∥2 ≤ 0,

We have from s − γ k > 0 that ∥xτ(n) − z0∥ → 0. Since xτ(n) − xτ(n)+1 → 0, we
have ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.4 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. �

4. Applications

In this section, using Theorem 3.1, we can obtain well-known and new strong
convergence theorems in Hilbert spaces. Let H be a Hilbert space and let C be a
nonempty, closed and convex subset of H. Let α > 0 and let U : C → H be an
α-inverse strongly monotone mapping, that is,

(4.1) α∥Ux− Uy∥2 ≤ ⟨x− y, Ux− Uy⟩, ∀x, y ∈ C.

Putting T = I − U in (4.1), we have from (3) in Examples that T is (1 − 2α)-
demimetric. Furthermore, since

I − 2αU = I − 2α(I − T ) = (1− 2α)I + 2αT,

we have from (2.4) that (1− 2α)I + 2αT is nonexpansive; see [33]. Using this, T is
demiclosed. In fact, let {xn} be a sequence in C such that xn ⇀ z and xn−Txn → 0.
Then

xn − ((1− 2α)I + 2αT )xn = 2α(I − T )xn → 0.

Since (1−2α)I+2αT is nonexpansive, we have z ∈ F ((1−2α)I+2αT ) = F (T ). This
implies that T is demiclosed. If T is a k-strict pseudo-contraction, then U = I − T
is 1−k

2 -inverse strongly monotone. So, we have the following lemma obtained by
Marino and Xu [19]; see also [32].

Lemma 4.1 ([19, 32]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let k be a real number with 0 ≤ k < 1 and T : C → H be
a k-strict pseudo-contraction. If xn ⇀ z and xn − Txn → 0, then z ∈ F (T ).

We also know the following lemma from Kocourek, Takahashi and Yao [14]; see
also [36].

Lemma 4.2 ([14, 36]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let S : C → H be generalized hybrid. If xn ⇀ z and
xn − Sxn → 0, then z ∈ F (S).

Theorem 4.3. Let H1 and H2 be Hilbert spaces and let α > 0. Let U be an α-
inverse strongly monoton mapping of H2 into H2. Let B be a maximal monotone
operator on H1. Let Jλn = (I +λnB)−1 be the resolvents of B for λn > 0. Let S be
a nonexpansive mapping of H1 into H1. Let k ∈ (0, 1) and let g be a k-contraction
of H1 into itself. Let V be a γ-strongly monotone and L-Lipschitzian continuous
operator of H1 into H1 with γ > 0 and L > 0. Take µ, γ ∈ R as follows:

0 < µ <
2γ

L2
, 0 < γ <

γ − L2µ
2

k
.
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Let A : H1 → H2 be a bounded linear operator such that ∥A∥ ̸= 0. Suppose F (S) ∩
B−10∩A−1(U−10) ̸= ∅. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated
by

xn+1 = αnγg(xn) + (I − αnV ){βnxn + (1− βn)SJλn(I − λnA
∗UA)xn}

for all n ∈ N, where a, b ∈ R, {αn}, {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and 0 < a ≤ λn ≤ b <
2α

∥A∥2
.

Then {xn} converges strongly to z0 ∈ F (S)∩B−10∩A−1(U−10), where z0 is a unique
fixed point of PF (S)∩B−10∩A−1(U−10)(I − V + γg) in F (S) ∩B−10 ∩A−1(U−10).

Proof. Put I − T = U in Theorem 3.1, where U is an α-inverse strongly monoton
mapping. Then, T is (1− 2α)-demimetric. In Theorem 3.1, we also have

1− τ = 1− (1− 2α) = 2α.

Since S is nonexpansive, it is 0-demimetric. Furthermore, since S and T are demi-
closed, we obtain the desired result by Theorem 3.1. �

Theorem 4.4. Let H1 and H2 be Hilbert spaces. Let T be a generalized hybrid
mapping of H2 into H2. Let s ∈ [0, 1) and let S be an s-strict pseudo-contraction of
H1 into H1. Define Sλ = (1−λ)I+λS for some λ with 0 < λ ≤ 1−s. Let k ∈ (0, 1)
and let g be a k-contraction of H1 into itself. Let V be a γ-strongly monotone and
L-Lipschitzian continuous operator of H1 into H1 with γ > 0 and L > 0. Take
µ, γ ∈ R as follows:

0 < µ <
2γ

L2
, 0 < γ <

γ − L2µ
2

k
.

Let A : H1 → H2 be a bounded linear operator such that ∥A∥ ̸= 0. Suppose F (S) ∩
A−1F (T ) ̸= ∅. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated by

xn+1 = αnγg(xn) + (I − αnV ){βnxn + (1− βn)Sλ(I − λnA
∗(I − T )A)xn}

for all n ∈ N, where a, b ∈ R, {αn}, {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

and 0 < a ≤ λn ≤ b <
1

∥A∥2
.

Then {xn} converges strongly to z0 ∈ F (S) ∩ A−1F (T ), where z0 is a unique fixed
point of PF (S)∩A−1F (T )(I − V + γg) in F (S) ∩A−1F (T ).

Proof. Since T is generalized hybrid, it is 0-demimetric. Furthermore, since S is
an s-strict pseudo-contraction, it is s-demimetric and Sλ = (1− λ)I + λS for some
λ with 0 < λ ≤ 1 − s. Since S and T are demiclosed from Lemma 4.1 and 4.2,
respectively, we obtain the desired result by Theorem 3.1. �
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Let f : C × C → R be a bifunction. The equilibrium problem (with respect to
C) is to find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C.(4.2)

The set of such solutions x̂ is denoted by EP (f), i.e.,

EP (f) = {x̂ ∈ C : f(x̂, y) ≥ 0, ∀y ∈ C}.
For solving the equilibrium problem, let us assume that the bifunction f : C×C → R
satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

The following lemmas were given in Combettes and Hirstoaga [8] and Takahashi,
Takahashi and Toyoda [25]; see also [2].

Lemma 4.5 ([8]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Assume that f : C × C → R satisfies (A1) − (A4). For r > 0
and x ∈ H, define a mapping Tr : H → C as follows:

Trx =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

We call such Tr the resolvent of f for r > 0.

Lemma 4.6 ([25]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let f : C ×C → R satisfy (A1)− (A4). Let Af be a set-valued
mapping of H into itself defined by

Afx =

{
{z ∈ H : f(x, y) ≥ ⟨y − x, z⟩, ∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then, EP (f) = A−1
f 0 and Af is a maximal monotone operator with D(Af ) ⊂ C.

Furthermore, for any x ∈ H and r > 0, the resolvent Tr of f coincides with the
resolvent of Af , i.e.,

Trx = (I + rAf )
−1x.

Using Lemmas 4.5, 4.6 and Theorem 3.1, we also obtain the following result with
equilibrium problem in Hilbert spaces; see also [21, 24].
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Theorem 4.7. Let H1 and H2 be Hilbert spaces. Let T be a nonexpansive mapping
of H2 into H2. Let C be a nonempty, closed and convex subset of H1. Let f :
C × C → R satisfy the conditions (A1)-(A4) and let Tλn be the resolvent of Af

for λn > 0 in Lemma 3.12. Let η ∈ (−∞, 1) and let S be an η-demimetric and
demiclosed mapping of H1 into H1. Define Sλ = (1 − λ)I + λS for some λ with
0 < λ ≤ 1− η. Let k ∈ (0, 1) and let g be a k-contraction of H1 into itself. Let V be
a γ-strongly monotone and L-Lipschitzian continuous operator of H1 into H1 with
γ > 0 and L > 0. Take µ, γ ∈ R as follows:

0 < µ <
2γ

L2
, 0 < γ <

γ − L2µ
2

k
.

Let A : H1 → H2 be a bounded linear operator such that ∥A∥ ̸= 0. Suppose F (S) ∩
A−1F (T ) ∩ E(f) ̸= ∅. Let x1 = x ∈ H1 and let {xn} ⊂ H1 be a sequence generated
by

xn+1 = αnγg(xn) + (I − αnV ){βnxn + (1− βn)Sλ(I − λnA
∗(I − T )A)Trnxn}

for all n ∈ N, where a, b, c ∈ R, {αn}, {βn} ⊂ (0, 1) and {λn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1

0 < a ≤ λn ≤ b <
1

∥A∥2
and 0 < c ≤ rn, ∀n ∈ N.

Then {xn} converges strongly to z0 ∈ F (S)∩A−1F (T )∩E(f), where z0 is a unique
fixed point of PF (S)∩A−1F (T )∩E(f)(I − V + γg) in F (S) ∩A−1F (T ) ∩ E(f).

Proof. For the bifunction f : C × C → R, define Af as in Lemma 4.6. Let Trn

be the resolvent of Af for rn > 0. Thus, we obtain the desired result by Theorem
3.1. �
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