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resulting optimization problems, was that equations were replaced by more general
relations called generalized equations, where set-valued mappings played a funda-
mental role. In order to devise extensions of the Lagrangian approach suitable to
the new context, implicit function theorems had to be adequated. Such a direction
of research was soon clearly understood, among the others, by S.M. Robinson, who
introduced the term “generalized equation” and provided seminal contributions to
the theory coming up around this issue (see [8, 19, 20]). In the large variety of
forms taken by the new generation of implicit function theorems that arose with
the help of techniques from variational analysis, some common elements can be
still recognized: instead of classical functions, they speak of multifunctions, which
emerge as a solution mapping of a parameterized generalized equation; instead of
differentiability, they establish some kind of Lipschitzian behaviour of the implicitly
defined multifunctions, along with related quantitative estimates. Both these fea-
tures seem to be rather natural within the new context. In particular, notice that
differentiability of a mapping can be viewed as a local calmness property of the error
resulting from affine approximation of it. Moreover, what is important, they allow
to treat effectively a broad spectrum of constraint systems. In the impossibility of
providing a comprehensive updated account of all relevant achievements about this
theme, the reader is referred to [2, 8, 18, 21, 22] and the bibliographies therein.

The investigations exposed in the present paper proceed along the aforementioned
direction of research. In particular, they focus on a property of uniform metric
hemiregularity for the solution mapping associated with a parameterized general-
ized equation, whose interest is motivated by applications to penalty methods in
constrained optimization. This property for set-valued mappings can be obtained
as a weak variant of the more studied and widely employed property known as
metric regularity, which describes a local Lipschitzian behaviour of multifunctions.
Even though it made its first appearance in its inverse formulation as Lipschitz
lower semicontinuity already in [13], only recently was explicitly formulated and
investigated under different names 1 (see [1, 8, 15, 16]).

The contents of the paper are arranged as follows. In Section 2, the basic defi-
nitions are introduced, several equivalent reformulations of uniform hemiregularity
are provided, along with some examples of uniform hemiregular mappings. This
multiple description should help to catch connections with similar properties and
then to better understand the main phenomenon under consideration. In Section
3 a motivation for introducing uniform hemiregularity, coming from constrained
optimization, is discussed in detail. Section 4 contains the main result of the pa-
per, that is an implicit multifunction theorem. It provides a sufficient condition
for the solution mapping, associated with a parameterized inclusion problem, to be
uniformly hemiregular at a given point of its graph, along with an estimate of the
uniform hemiregularity modulus of it. Such a result is established in a purely metric
setting, by means of a variational technique largely employed in this field (see, for
instance, [2]). Its impact on constrained optimization in terms of conditions for the
exactness of penalty functions and relationships with the existent literature on the

1To avoid confusion with another property having the same name (see [22, Definition 10.6.1 (b)]),
instead of “semiregularity”, which was used in [15, 16], in the present paper the term “hemiregu-
larity”, borrowed from [1], is adopted.
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subject is then discussed. A specialization of the main result to the Asplund space
setting, involving Fréchet coderivatives, is also presented.

Throughout the paper the use of the basic notations is standard. Whenever (P, d)
denotes a metric space, given p̄ ∈ P and r ≥ 0, B(p̄, r) = {p ∈ P : d(p, p̄) ≤ r}
indicates the closed ball centred at p̄ with radius r. In the same setting, if S ⊆ P ,
dist (p̄, S) = infp∈S d(p̄, p) stands for the distance of p̄ from S, with the convention
that dist (p̄,∅) = +∞. By B(S, r) = {p ∈ P : dist (p, S) ≤ r} the r-enlargement of
S is denoted. By intS the topological interior of S is denoted. Whenever Θ : P ⇒ X
is a set-valued mapping, grphΘ and domΘ denote the graph and the domain of Θ,
respectively. Throughout the text, the acronyms l.s.c. and u.s.c. stand for lower
semicontinuous and upper semicontinuous, respectively. Further special notations
will be introduced contextually to their use.

2. Uniform hemiregularity and related notions

In what follows, unless otherwise indicated, all set-valued mappings will be as-
sumed to take closed values. The main property under study is introduced in the
following definition.

Definition 2.1. Let Θ : P ⇒ X be a set-valued mapping between metric spaces
and let (p̄, x̄) ∈ grphΘ. Θ is called:

(i) (metrically) hemiregular at (p̄, x̄) if there exist positive constants κ and r
such that

dist
(
p̄,Θ−1(x)

)
≤ κd(x, x̄), ∀x ∈ B(x̄, r);

(ii) uniformly (metrically) hemiregular at (p̄, x̄) if there exist positive constants
κ and r such that

dist
(
p̄,Θ−1(x)

)
≤ κd(x, z), ∀x ∈ B(z, r), ∀z ∈ Θ(p̄) ∩ B(x̄, r).(2.1)

The value

u.hreg(Θ, (p̄, x̄)) = inf{κ > 0 : ∃r > 0 for which (2.1) holds }
is called the modulus of uniform (metric) hemiregularity of Θ at (p̄, x̄).

Roughly speaking, the above introduced properties refer to a kind of “quantitative
solvability” of the systems

x ∈ Θ(p),

where x is a parameter varying near the reference value x̄ and p̄ is a solution of the
system x̄ ∈ Θ(p). Notice that, according to the convention made about the value of
dist (p̄,∅), if Θ is hemiregular at (p̄, x̄), then each of the perturbed systems must be
solvable. Moreover, the distance of the given solution p̄ from the varying solution
sets must be linearly controlled by the distance of x from x̄.

Remark 2.2. The property in Definition 2.1(ii) is clearly a stronger variant than
mere hemiregularity, even if the latter holds at each pair (p̄, z), with z ∈ Θ(p̄) ∩
B(x̄, r). Indeed, the constants κ and r in Definition 2.1(ii) are postulated to be the
same for every z ∈ Θ(p̄) ∩ B(x̄, r), whence the term of the resulting property. This
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uniformity requirement enables one to reformulate such a property in a slightly
different way, that will be useful for the purposes of the present analysis: Θ is
uniformly hemiregular at (p̄, x̄) iff there exist positive κ and δ such that

dist
(
p̄,Θ−1(x)

)
≤ κdist (x,Θ(p̄)) , ∀x ∈ B(x̄, δ).(2.2)

Indeed, if inequality (2.1) holds true, then for every x ∈ B(x̄, r/2)\Θ(p̄) and ϵ ∈
(0, 1) it is possible to claim the existence of a proper zϵ ∈ Θ(p̄), such that d(x, zϵ) <
(1 + ϵ)dist (x,Θ(p̄)) < r, where r is as in (2.1). Thus, one obtains

dist
(
p̄,Θ−1(x)

)
≤ κd(x, zϵ) < κ(1 + ϵ)dist (x,Θ(p̄)) ,

and hence, by arbitrariness of ϵ, (2.2) is satisfied with δ = r/2. Conversely, since
for every z ∈ Θ(p̄) it is dist (x,Θ(p̄)) ≤ d(x, z), then from condition (2.2) one gets
immediately the validity of (2.1), with r = δ.

Of course, whenever Θ is single-valued at p̄, uniform hemiregularity reduces to
basic hemiregularity.

The property of hemiregularity of Θ at (p̄, x̄) is clearly obtained by weakening the
well-known notion of metric regularity of Θ at (p̄, x̄), which postulates the existence
of positive reals κ and r such that

(2.3) dist
(
p,Θ−1(x)

)
≤ κdist (x,Θ(p)) , ∀p ∈ B(p̄, r), ∀x ∈ B(x̄, r)

(see [8, 13, 18, 21]). This is readily done by fixing p = p̄ in inequality (2.3). The
following example shows that the resulting property is actually weaker than metric
regularity.

Example 2.3. (A mapping which is hemiregular, whereas not metrically regular)
Let P = R2 and X = R be endowed with their usual Euclidean metric structure.
Consider the function Θ : R2 −→ R defined by

Θ(p1, p2) =

{
p1 + p22, if p1 ≥ 0,
p1 − p22, if p1 < 0,

with reference point p̄ = (0, 0) and x̄ = 0. Θ is not metrically regular around
((0, 0), 0), inasmuch as, for any fixed κ > 0 and r > 0, by taking p = (0, ξ), with
0 < ξ < min{r, κ−1}, and x = 0, the inequality

dist
(
p,Θ−1(x)

)
= ξ ≤ κξ2 = κdist (x,Θ(p))

is evidently false. Nevertheless Θ turns out to be hemiregular at the same reference
pair. Indeed, for any κ ≥ 1 and r > 0, as for every x ∈ [−r, r] one has (x, 0) ∈
Θ−1(x), one obtains

dist
(
(0, 0),Θ−1(x)

)
≤ |x| ≤ κ|x| = κd(x, 0),

so that u.hreg(Θ, (0, 0)) ≤ 1.

Analogously, uniform hemiregularity of Θ at (p̄, x̄) can be obtained by weakening
a uniform variant of metric regularity considered in [25], which requires the existence
of positive reals κ and δ such that

(2.4) dist
(
p,Θ−1(x)

)
≤ κdist (x,Θ(p)) , ∀p ∈ B(p̄, r), ∀x ∈ B(Θ(p̄), δ)

(see Definition 2.2 [25]). To see this, it suffices to fix p = p̄ and to notice that, if
(p̄, x̄) ∈ grphΘ, then B(x̄, δ) = B(Θ(p̄), δ)∩B(x̄, δ). It follows that any criterion for
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(2.4) to hold becomes a sufficient condition for uniform hemiregularity. Some result
of this kind can be found in [25]. In particular, as a consequence of Proposition 2.2
in [25], whenever Θ : P ⇒ X is a convex process with closed graph between Banach
spaces, i.e. grphΘ is a closed convex cone in P × X, and the following condition
holds

(2.5) ∥Θ−1∥− = sup
x∈B

inf
p∈Θ−1(x)

∥p∥ = sup
x∈B

dist
(
0,Θ−1(x)

)
< +∞,

where ∥·∥ denotes the norm on P , 0 stands for the null vector of P and B = B(0, 1),
then Θ is also uniformly hemiregular at any point (p̄, x̄) ∈ grphΘ, with the following
estimate

u.hreg(Θ, (p̄, x̄)) ≤ ∥Θ−1∥−.

Remark 2.4. Since any linear bounded operator Λ : P −→ X between Banach
spaces, which is onto, is a convex process with closed graph satisfying condition
(2.5), then Λ is also uniformly hemiregular at each pair (p̄,Λp̄), with

u.hreg(Λ, (p̄,Λp̄)) ≤ ∥Λ−1∥−.

As uniform hemiregularity implies hemiregularity, notice that from the above fact
it is possible to derive the sufficient part of Proposition 5.2 in [1].

Convex processes satisfying condition (2.5) and, as a special case, surjective linear
bounded operators, provide examples of mappings which are uniformly hemiregular.
Below, an example is proposed of a uniformly hemiregular mapping, which fails to
be metrically regular in the sense of Definition 2.2 in [25].

Example 2.5. (A mapping failing to be “uniformly metrically regular”, yet uni-
formly hemiregular) Let P = R and X = R2 be endowed with their usual Euclidean
metric structure. Consider the set-valued mapping Θ : R ⇒ R2 defined by

Θ(p) = {x = (x1, x2) ∈ R2 : x1x2 = p},

and p̄ = 0 and x̄ = (0, 0). In Example 2.2 in [25] Θ has been shown to do not
satisfy condition (2.4). Nonetheless Θ is uniformly hemiregular at (0, (0, 0)), with
u.hreg(Θ, (0, (0, 0))) ≤ 1. Indeed, take δ = 1, so that for every x = (x1, x2) ∈
B((0, 0), 1) one has |x1| ≤ 1 and |x2| ≤ 1. Since it is Θ−1(x) = {x1x2}, one obtains

dist
(
0,Θ−1(x)

)
= |x1x2| ≤ min{|x1|, |x2|} = dist (x,Θ(0)) , ∀x ∈ B((0, 0), 1).

Therefore, inequality (2.2), and hence Definition 2.1 (ii), are fulfilled with δ = κ = 1.

In Section 1 it has been mentioned that the hemiregularity of a set-valued map-
ping Θ : P ⇒ X at (p̄, x̄) can be characterized as Lipschitz lower semicontinuity
property of its inverse Θ−1 : X ⇒ P at (x̄, p̄) (see, for instance, [1, 15, 16]). Recall
that a set-valued mapping Φ : X ⇒ P is said to be Lipschitz l.s.c. at (x̄, p̄) ∈ grphΦ
if there exist positive δ and l such that

Φ(x) ∩ B(p̄, ld(x, x̄)) ̸= ∅, ∀x ∈ B(x̄, δ).

An analogous characterization can be established in the case of uniform hemireg-
ularity, provided that the Lipschitz lower semicontinuity of the inverse is enhanced
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as follows: a set-valued mapping Φ : X ⇒ P is said to be uniformly Lipschitz l.s.c.
at (x̄, p̄) if there exist positive δ and l such that

Φ(x) ∩ B(p̄, ldist
(
x,Φ−1(p̄)

)
) ̸= ∅, ∀x ∈ B(x̄, δ).(2.6)

The value

u.liplsc(Φ, (x̄, p̄)) = inf{l > 0 : ∃r > 0 for which (2.6) holds }

is called the modulus of uniform Lipschitz lower semicontinuity of Φ at (x̄, p̄).

Proposition 2.6. Let Θ : P ⇒ X be a set-valued mapping between metric spaces.
Θ is uniformly hemiregular at (p̄, x̄) ∈ grphΘ iff Θ−1 is uniformly Lipschitz l.s.c.
at (x̄, p̄). Moreover, it holds

u.hreg(Θ, (p̄, x̄)) = u.liplsc(Θ−1, (x̄, p̄)).

Proof. The thesis is a straightforward consequence of the above definitions and of
inequality (2.2). �

The above characterization will be conveniently employed in the proof of the
implicit multifunction theorem presented in Section 4.

Remark 2.7. It is useful to observe that the Lipschitz lower semicontinuity of a
mapping Φ : X ⇒ P , which is single-valued in a neighbourhood of a point x̄ ∈ X,
reduces to calmness at that point, i.e. there exist positive δ and l such that

Φ(x) ∈ B(Φ(x̄), ld(x, x̄)), ∀x ∈ B(x̄, δ).

Therefore, whenever a hemiregular set-valued mapping admits an inverse which is
locally single-valued, the latter turns out to be calm.

Metric regularity as well as many of its variants are known to admit also char-
acterization in terms of local surjection (openness) properties. This is true also for
uniform hemiregularity, whose surjective behaviour is described in the next propo-
sition.

Proposition 2.8. Let Θ : P ⇒ X be a set-valued mapping between metric spaces
and let (p̄, x̄) ∈ grphΘ.

(i) If Θ is uniformly hemiregular at (p̄, x̄) with modulus u.hreg(Θ, (p̄, x̄)) < +∞,

then for any 0 < a < 1
u.hreg(Θ,(p̄,x̄)) , there exists δ̃ > 0 such that

Θ(B(p̄, r)) ⊇ B(Θ(p̄) ∩ B(x̄, δ̃), ar), ∀r ∈ [0, δ̃).(2.7)

(ii) If there exist positive reals a and δ̃ such that inclusion (2.7) is satisfied, then
Θ is uniformly hemiregular at (p̄, x̄) with modulus u.hreg(Θ, (p̄, x̄)) ≤ 1/a.

Proof. (i) According to the equivalent reformulation of uniform hemiregularity given
in Remark 2.2, for any fixed κ such that u.hreg(Θ, (p̄, x̄)) < κ < 1/a, there exists

δ > 0 such that inequality (2.2) holds. Then, set δ̃ = δκ
1+κ and take arbitrary

r ∈ [0, δ̃) and x ∈ B(Θ(p̄) ∩ B(x̄, δ̃), ar). Notice that, with that choice of constants,
one has

dist
(
x,B(x̄, δ̃)

)
≤ dist

(
x,Θ(p̄) ∩ B(x̄, δ̃)

)
≤ ar,
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whence

d(x, x̄) ≤ ar + δ̃ ≤ δ̃(a+ 1) < δ̃

(
1

κ
+ 1

)
= δ.

Thus, inequality (2.2) applies, that is

dist
(
p̄,Θ−1(x)

)
≤ κdist (x,Θ(p̄)) ≤ κar < r.

This entails that there exists p ∈ P such that x ∈ Θ(p) and p ∈ B(p̄, r), what gives
that x ∈ Θ(B(p̄, r)). This shows the first assertion in the thesis.

(ii) Let us consider an arbitrary ã < a and fix a positive δ such that δ <

min{ãδ̃, ãδ̃
a+ã}. In order to prove that inequality (2.2) holds, take an arbitrary

x ∈ B(x̄, δ)\Θ(p̄) (if x ∈ Θ(p̄) the inequality to be proved becomes trivial) and
define r = dist (x,Θ(p̄)). Notice that r > 0 because Θ(p̄) is a closed set. Moreover,

as r ≤ d(x, x̄) ≤ δ, it is
r

ã
≤ δ

ã
< δ̃. Therefore, by hypothesis, one has

B
(
Θ(p̄) ∩ B(x̄, δ̃), a

r

ã

)
⊆ Θ

(
B
(
p̄,

r

ã

))
.(2.8)

Now, let zx ∈ Θ(p̄) such that d(x, zx) <
a

ã
r. Then, by recalling the choice of δ, one

obtains

d(zx, x̄) ≤ d(zx, x) + d(x, x̄) <
a

ã
r + δ ≤

(a
ã
+ 1

)
δ < δ̃,

so that zx ∈ B(x̄, δ̃) ∩Θ(p̄). This implies

dist
(
x,Θ(p̄) ∩ B(x̄, δ̃)

)
≤ d(x, zx) <

a

ã
r.

Thus, by virtue of inclusion (2.8), one obtains that x ∈ Θ
(
B
(
p̄, rã

))
. This means

that there exists p ∈ B(p̄, r/ã) such that x ∈ Θ(p), that is p ∈ Θ−1(x). It follows

dist
(
p̄,Θ−1(x)

)
≤ d(p̄, p) ≤ r

ã
=

1

ã
dist (x,Θ(p̄)) ,

namely Θ satisfies (2.2), with δ as above and κ = 1/ã. By arbitrariness of ã ∈ (0, a),
the last inequality leads to the estimate of u.hreg(Θ, (p̄, x̄)) to be proved, thereby
completing the proof. �

3. Uniform hemiregularity and exact penalization

Let us consider a constrained optimization problem of the general form

(P) minφ(x) subject to x ∈ R,

where φ : X −→ R ∪ {±∞} is the objective function and R denotes the feasible
region, that throughout the paper is assumed to be a nonempty closed set. The basic
idea of penalty methods consists in seeking solutions to (P) by solving unconstrained
optimization problems, whose objective function is formed by adding to φ a term
measuring the constraint violation (see [10, 26, 27]). Since R is closed, one possible
representation of the geometric constraint set R is as R = {x ∈ X : dist (x,R) ≤
0}. Consequently, one way of implementing penalty methods is to consider the
unconstrained problems

(Pl) min
x∈X

[φ(x) + ldist (x,R)],



378 A. UDERZO

with l > 0. Letting φl = φ + ldist (·, R), function φl is said to be exact at a
local solution x̄ ∈ R to (P) provided that x̄ is also a local solution to problem
(Pl). Thus, one is interested in establishing conditions under which φl is exact,
for some l. It is well know that, whenever φ is locally Lipschitz with constant κ
at x̄, then φl is exact at the same point, for every l > κ (see, for instance [5]).
This fact can be taken as a starting point for developing applicable optimality
conditions for (P), especially with the aid of nonsmooth analysis tools. When, as it
often happens in concrete applications, R is defined by specific constraints (such as
inequality/equality constraints, variational/equilibrium conditions, and so on) some
further conditions are employed to replace the geometric penalty term dist (x,R)
by verifiable measures of the constraint violation, called error bounds, which are
expressed in terms of problem data.

The aforementioned exactness condition comes quite expected, inasmuch as it
links the behaviour of φ with that of the function x 7→ dist (x,R), which is Lipschitz
continuous, indeed. If φ fails to be locally Lipschitz the above approach must be
modified, but its spirit can be somehow maintained by introducing an additional
assumption called problem calmness (see [3, 4, 23]). This notion requires to embed
the given problem (P) in a class of parametric optimization problems, whose feasible
region comes to depend on a parameter p varying in a metric space (P, d), and then
to postulate a controlled behaviour for the variations of φ near x̄, with respect to
parameter (and hence feasible region) variations. Here, fixed a reference element
p̄ ∈ P , a set-valued mapping R : P ⇒ X is meant to be a parameterization of R
near (p̄, x̄) provided that it fulfills the following two requirements

(i) R(p̄) = R;
(ii) there exist r > 0 and τ0 > 0 such that

∀τ ∈ (0, τ0) ∃pτ ∈ B(p̄, τ)\{p̄} such that R(pτ ) ∩ B(x̄, r) ̸= ∅.

A given parameterization R : P ⇒ X of R near (p̄, x̄) enables one to define the
related family of parametric optimization problems

(Pp) minφ(x) subject to x ∈ R(p)

embedding (P), in the sense that for p = p̄ one obtains (P) as a special case.

Definition 3.1. Given a problem (P), let R : P ⇒ X be a parameterization of
R = R(p̄) near (p̄, x̄), where x̄ is a local minimizer of (P). Problem (P) is called
calm at x̄ with respect to R if there exist positive r and ζ such that

φ(x) ≥ φ(x̄)− ζd(p, p̄), ∀x ∈ B(x̄, r) ∩R(p), ∀p ∈ B(p̄, r).(3.1)

The value

clm(P,R, x̄) = inf{ζ > 0 : ∃r > 0 for which (3.1) holds }

is called modulus of problem calmness of (P) at x̄, with respect to R.

Roughly speaking, the concept of problem calmness captures a suitable interplay
that intertwines the “not optimal behaviour” of φ out from the feasible region of (P)
and the perturbation behaviour of a parameterization of R near x̄, as p approaches
p̄. This fact is illustrated in a very simple case through the next example.
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Example 3.2. Consider a problem (P) defined by X = R, R = (−∞, 0], and
φ : R −→ R, given by

φ(x) =

{ √
−x, if x ≤ 0,

−
√
x, if x > 0.

It is evident that x̄ = 0 is a (global) solution to (P). Letting P = R equipped with
its usual Euclidean metric and let p̄ = 0, consider the parameterization Rβ : R ⇒ R
defined by

Rβ(p) = (−∞, |p|β], β > 0.

Taking xp = |p|β, with |p| < r, one easily finds

infx∈Rβ(p) φ(x)− φ(x̄)

|p|
=

φ(xp)− φ(x̄)

|p|
= −|p|

β
2
−1, ∀p ∈ R\{0}.

Therefore, according to Definition 3.1, (P) turns out to be calm at x̄ with respect
to Rβ iff β ≥ 2. Notice that φ is not locally Lipschitz at 0.

Once a parameterization of R has been defined, the related notion of problem
calmness allows one to establish an exact penalization result by introducing the
following penalty functions φl : P ×X −→ R ∪ {±∞}

φl(p, x) = φ(x) + ldist (x,R(p)) .

In this concern, the property of uniform hemiregularity of R at p̄ plays an essential
role, as it appears from the below result.

Theorem 3.3. Let x̄ ∈ R be a local solution to (P) and let R : P ⇒ X be a
parameterization of R at (p̄, x̄), with p̄ ∈ P being a reference value. If

(i) R : P ⇒ X is uniformly hemiregular at (p̄, x̄);
(ii) (P) is calm at x̄ with respect to R;

then, function φl(p̄, ·) is exact at x̄ for every l > u.hreg(R, p̄) · clm(P,R, x̄).

Proof. Fix an abitrary l, with l > u.hreg(R, p̄) · clm(P,R, x̄). Then, according
to Remark 2.2 and Definition 3.1, it is possible to pick κ > u.hreg(R, p̄), ζ >
clm(P,R, x̄) and ϵ > 0 such that:

• for some r1 > 0 it holds

dist
(
p̄,R−1(x)

)
≤ κdist (x,R(p̄)) , ∀x ∈ B(x̄, r1);(3.2)

• for some r2 > 0 it holds

φ(x) ≥ φ(x̄)− ζd(p, p̄), ∀x ∈ B(x̄, r2) ∩R(p), ∀p ∈ B(p̄, r2);(3.3)

• it is

l > κ(1 + ϵ)ζ.(3.4)

Ab absurdo, let us suppose that φl(p̄, ·) fails to be exact. This means that for every
n ∈ N there exists xn ∈ B(x̄, 1/n) such that

φ(xn) + ldist (xn,R(p̄)) < φ(x̄).(3.5)
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Since x̄ is a local solution to (P) and xn → x̄ as n → ∞, there must exist n̄ ∈ N
such that xn ̸∈ R(p̄) = R for every n ∈ N, with n ≥ n̄. Consequently, as R(p̄) is a
closed set, one has

dist (xn,R(p̄)) > 0, ∀n ∈ N, n ≥ n̄.

On the other hand, as x̄ ∈ R(p̄), one has

dist (xn,R(p̄)) ≤ d(xn, x̄) ≤
1

n
,

whence

lim
n→∞

dist (xn,R(p̄)) = 0.

Thus, by increasing the value of n̄ if needed, one obtains xn ∈ B(x̄, r1)\R(p̄) and
hence, according to (3.2), it must be

dist
(
p̄,R−1(xn)

)
≤ κdist (xn,R(p̄)) , ∀n ∈ N, n ≥ n̄.

This means that for every n ∈ N, with n ≥ n̄, there exists pn ∈ R−1(xn) such that

d(pn, p̄) < κ(1 + ϵ)dist (xn,R(p̄)) ,(3.6)

where ϵ is as in inequality (3.4). Notice that, as xn ∈ R(pn) and xn ̸∈ R(p̄), it has
to be pn ̸= p̄. From inequalities (3.5) and (3.6), it follows

κ(1 + ϵ)

d(pn, p̄)
[φ(xn)− φ(x̄)] <

φ(xn)− φ(x̄)

dist (xn,R(p̄))
< −l,

whence, on account of inequality (3.4), one obtains

φ(xn) < φ(x̄)− l

κ(1 + ϵ)
d(pn, p̄) < φ(x̄)− ζd(pn, p̄).

Since pn → p̄ as n → ∞ because of (3.6), by increasing further the value of n̄ ∈ N,
if needed, one finds that xn ∈ B(x̄, r2) ∩ R(pn) and pn ∈ B(p̄, r2). Therefore, the
last inequality contradicts inequality (3.3). This completes the proof. �
Remark 3.4. It is to be noted that the above theorem can be also derived as a
special case from a more general theorem, which was recently established within a
unifying approach to the theory of exactness in penalization methods (see [7, Theo-
rem 2.12]). Nevertheless, in formulating that theorem, the uniform hemicontinuity
is not mentioned and its role remains hidden, because the mere topological space
setting, where optimization problems are considered, does not allow to do so. More-
over, some extra assumptions enter the statement of that result. Theorem 3.3 is
therefore a refinement of a special case of Theorem 2.12, whose self-contained proof
here proposed emphasizes the role of the main property under study.

It is worth mentioning that in the original definition of problem calmness the
parameter p was supposed to perturb linearly the constraining mappings (see [3, 4]).
In that special case, it was possible to fully characterize the exactness of penalty
functions by means of the resulting notion of problem calmness, what does not
remain true for perturbations of more general type (see [23]). Thus, the above
result is complemented here with a result providing a sufficient condition, upon
which problem (Pp̄) turns out to be calm with respect to a given parameterization.
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Proposition 3.5. With reference to a problem parameterization (Pp), let x̄ ∈ R(p̄)
be a local minimizer of (Pp̄), with p̄ ∈ P . Suppose that

(i) R is calm at (p̄, x̄), i.e. there exist positive reals ζ and r such that

(3.7) R(p) ∩ B(x̄, r) ⊆ B(R(p̄), ζdist (p, p̄)), ∀p ∈ B(p̄, r).

(ii) there exists l > 0 such that φl(p̄, ·) is exact at x̄.

Then, problem (Pp̄) is calm at p̄ with respect to R.

Proof. Assume, ab absurdo, that for every n ∈ N there exist pn ∈ B(p̄, 1/n)\{p̄}
and xn ∈ R(pn) ∩ B(x̄, 1/n) such that

φ(xn) < φ(x̄)− ndist (pn, p̄) .(3.8)

Since R is supposed to be calm at (p̄, x̄), there exist positive reals ζ and r such that
inclusion (3.7) holds true. By virtue of this inclusion, the fact that pn converges
to p̄ and xn converges to x̄ as n → +∞ implies that xn ∈ B(R(p̄), ζdist (pn, p̄)), so
that one obtains

dist (xn,R(p̄)) ≤ ζdist (pn, p̄) .

Consequently, from inequality (3.8) it follows

φ(xn) < φ(x̄)− n

ζ
dist (xn,R(p̄)) ,

which evidently contradicts hypothesis (ii). �

4. An implicit function theorem for uniform hemiregularity

In the main result of the previous section, the exact penalization of a constrained
optimization problem is obtained upon a uniform hemiregularity assumption on a
parameterization of its feasible region. In order to make viable such an approach,
conditions are needed, which can guarantee a given parameterization to be uniformly
hemiregular. This issue is considered in the present section in the case of feasible
regions defined by an abstract equilibrium constraint, namely by constraints of the
form

(E) ω ∈ Φ(x),

where Φ : X ⇒ Y is a given set-valued mapping between metric spaces and ω is
a given element of Y . The format of problem (E) is general enough to cover the
constraint systems mostly occurring in the mainly investigated optimization prob-
lems, such as equality/inequality systems, cone constraints, equilibrium conditions,
generalized equations, lower level optimality in hierarchic optimization problems,
and so on. In order to define a parameterization of the solution set of problem
(E), one may consider the following problem perturbation, which is defined via any
set-valued mapping F : P ×X ⇒ Y , such that F (p̄, x) = Φ(x) for every x ∈ X:

(Ep) ω ∈ F (p, x).

The solution mapping associated with (Ep) is therefore given by

R(p) = F−1(p, ·)(ω) = {x ∈ X : ω ∈ F (p, x)}.
It is clear that an analytical expression of the (generally) set-valued mapping R can
be hardly derived from (Ep) by direct computations, because of the severe difficulties
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in solving explicitly each problem (Ep). Therefore, it is convenient to investigate the
hemiregularity property of R via an implicit multifunction theorem. Such a task is
carried out in what follows by a variational technique. To this aim, let us denote by
|[F ]| : P ×X −→ [0,+∞] the following functional quantifying the the displacement
of F from ω:

|[F ]|(p, x) = dist (ω, F (p, x)) .

In view of a subsequent employment, a first semicontinuity property of |[F ]|(·, x) is
stated in the next technical lemma, that can be easily obtained as a special case of
[24, Lemma 3.2].

Lemma 4.1. Let F : P ⇒ Y be a set-valued mapping between metric spaces and
let ω ∈ Y . If F is Hausdorff u.s.c. at p̄ ∈ domF , i.e. for every ϵ > 0 there exists
δϵ > 0 such that

F (p) ⊆ B(F (p̄), ϵ), ∀p ∈ B(p̄, δϵ),

then the function p 7→ dist (ω, F (p)) is l.s.c. at p̄.

Remark 4.2. In the sequel, it will be exploited the fact that the thesis of Lemma
4.1 is true a fortiori if F is u.s.c.. Indeed, the (merely topological) notion of upper
semicontinuity at a point implies Hausdorff upper semicontinuity at the same point.

For the purposes of the present analysis, the continuity properties of the function
|[F ]| are not enough. Derivative-like tools, that enable one to formulate conditions
generalizing the nonsingularity requirement in the classical implicit function theo-
rem, are actually needed. In a purely metric space setting, such tools are mainly
based on the notion of strong slope (see [6]). More precisely, a more robust vari-
ant of it, called strict outer slope, will be employed here in connection with the
displacement function, which is defined as follows:

|∇p|[F ]||>(p̄) = lim
ϵ→0+

inf {|∇p|[F ]||(p, x) : p ∈ B(p̄, ϵ), x ∈ B(x̄, ϵ),

|[F ]|(p̄, x̄) < |[F ]|(p, x) < |[F ]|(p̄, x̄) + ϵ},
where

|∇p|[F ]||(p, x) =


0, if p is a local minimizer

to |[F ]|(·, x),

lim sup
q→p

|[F ]|(p, x)− |[F ]|(q, x)
d(q, p)

, otherwise,

is the partial strong slope of function |[F ]| with respect to the variable p, calculated
at (p, x) ∈ P ×X. For more details on this slope as well as on other variations on
this theme, the reader is refereed, for instance, to [11].

Now, all the needed elements having been introduced, the main result of the
paper can be formulated.

Theorem 4.3. Let F : P × X ⇒ Y be a set-valued mapping defining a problem
perturbation (Ep), with solution mapping R : P ⇒ X. Given p̄ ∈ P , let x̄ ∈ R(p̄).
Suppose that:

(i) (P, d) is metrically complete;
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(ii) there exists δ0 > 0 such that F (·, x) : P ⇒ Y is Hausdorff u.s.c. on B(p̄, δ0),
for every x ∈ B(x̄, δ0);

(iii) F (p̄, ·) : X ⇒ Y is uniformly Lipschitz l.s.c. at (x̄, ω);

(iv) |∇p|[F ]||>(p̄) > 0.

Then, R is uniformly hemiregular at (p̄, x̄) and the following estimate holds

(4.1) u.hreg(R, (p̄, x̄)) ≤ u.liplsc(F, (x̄, ω))

|∇p|[F ]||>(p̄)
.

Proof. According to hypothesis (iv), it is possible to pick a constant α such that

0 < α < |∇p|[F ]||>(p̄).(4.2)

As established in Proposition 2.6, hypothesis (iii) is equivalent to suppose the map-
ping F−1(p̄, ·) : Y ⇒ X to be uniformly hemiregular at (ω, x̄). Since the related
moduli coincide, this means that, corresponding to any κ > u.liplsc(F, (x̄, ω)), there
exists rκ > 0 such that

dist (ω, F (p̄, x)) ≤ κdist
(
x, F−1(p̄, ·)(ω)

)
, ∀x ∈ B(x̄, rκ),(4.3)

where it is to be recalled that F−1(p̄, ·)(ω) = R(p̄). Define δ̃ = min{δ0, rκ}. Observe

that inequality (4.2) means that, corresponding to α, it is possible to find δ∗ ∈ (0, δ̃)
such that

|∇p|[F ]||(p, x) > α,(4.4)

∀p ∈ B(p̄, δ∗), ∀x ∈ B(x̄, δ∗), with 0 = |[F ]|(p̄, x̄) < |[F ]|(p, x) < δ∗.

In turn, the inequality (4.4) implies that, whenever (p, x) ∈ B(p̄, δ∗)×B(x̄, δ∗), with
0 < |[F ]|(p, x) < δ∗, then for every η > 0 there exists pη ∈ B(p, η) such that

|[F ]|(p, x) > |[F ]|(pη, x) + αd(pη, p).(4.5)

Now, choose a positive real r∗ satisfying the following condition

r∗ < min

{
δ∗
2
,
δ∗
κ

}
,

and fix an arbitrary x ∈ B(x̄, r)\R(p̄), with

0 < r < min
{
r∗,

αr∗
3κ

}
.(4.6)

Let us consider the function |[F ]|(·, x) : B(p̄, r∗) −→ [0,+∞]. It is obviously

bounded from below and, since r < r∗ < δ∗ < δ̃ ≤ δ0, then, by virtue of hypothesis
(ii) and Lemma 4.1, function |[F ]|(·, x) is l.s.c. on B(p̄, r∗). Owing to hypothesis (i),
B(p̄, r∗) turns out to be a complete metric space. Furthermore, notice that, since

r < r∗ < δ∗ < δ̃ ≤ rκ and hence x ∈ B(x̄, rκ), then according to (4.3) it holds

|[F ]|(p̄, x) ≤ κdist (x,R(p̄)) ≤ inf
p∈B(p̄,r∗)

|[F ]|(p, x) + κdist (x,R(p̄)) .

By applying the Ekeland’s variational principle (see [9]), one obtains the existence
of an element p0 ∈ B(p̄, r∗) such that

|[F ]|(p0, x) ≤ |[F ]|(p̄, x);(4.7)
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d(p0, p̄) ≤
κdist (x,R(p̄))

α
;(4.8)

|[F ]|(p0, x) < |[F ]|(p, x) + αd(p, p0), ∀p ∈ B(p̄, r∗)\{p0}.(4.9)

Let us show that the last inequalities entail that

|[F ]|(p0, x) = 0,

so that, as F takes closed values, x ∈ R(p0). Assume, ab absurdo, that |[F ]|(p0, x) >
0. Since it is x ∈ B(x̄, r∗) and

|[F ]|(p0, x) ≤ |[F ]|(p̄, x) ≤ κdist (x,R(p̄)) ≤ κr∗ < δ∗,

one has

p0 ∈ B(p̄, δ∗) and x ∈ B(x̄, δ∗), with 0 < |[F ]|(p0, x) < δ∗.

Thus, if taking η = r∗/2, according to inequality (4.5), an element pη must exist in
B(p0, r∗/2), with pη ̸= p0, such that

|[F ]|(p0, x) > |[F ]|(pη, x) + αd(pη, p0).(4.10)

Observe that, by virtue of inequalities (4.8) and (4.6), it results in

d(p0, p̄) ≤
κ

α
· αr∗
3κ

<
r∗
2
.

As a consequence, pη must belong to B(p̄, r∗)\{p0}, because it holds

d(pη, p̄) ≤ d(pη, p0) + d(p0, p̄) <
r∗
2

+
r∗
2
.

Therefore, inequality (4.9) is found to be evidently contradicted by inequality (4.10).
From the fact that x ∈ R(p0), by recalling once again inequality (4.8), one obtains
that

dist
(
p̄,R−1(x)

)
≤ d(p̄, p0) ≤

κ

α
dist (x,R(p̄)) .

Since by arbitrariness of x the last inequality remains true all over B(x̄, r), the set-
valued mapping R is shown to be uniformly hemiregular at p̄, with u.hreg(R, p̄) ≤
κ/α. Since α and κ can be taken arbitrarily closed to the value of |∇p|[F ]||>(p̄)
and u.hreg(F−1(p̄, ·), ω), respectively, then from the last inequality it is possible to
derive the estimate appearing in the thesis. This completes the proof. �

As a comment to Theorem 4.3, it is to be noted that its thesis combines solvability
and sensitivity information, according to the spirit of implicit function theorems.
Indeed, problems (Ep) turn out to be solvable for every p in a neighbourhood of p̄,
as a direct consequence of the hemiregularity of R at (p̄, x̄). The sensitivity part
comes from the estimation of u.hreg(R, (p̄, x̄)), which is fully expressed in terms of
problem data.

To the best of the author’s knowledge, the only existing implicit multifunction
theorem involving hemiregularity is [1, Theorem 5.4]. A direct comparison of The-
orem 4.3 with this result can not be accomplished for several reasons. First, even
if restated in a common setting ([1, Theorem 5.4] is valid in Banach spaces), they
consider solution mappings associated with different problems (an inclusion prob-
lem involving a set-valued mapping versus an equation with a perturbing term).
Besides, assuming to consider a single-valued mapping F in Theorem 4.3 and a null
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perturbation term g ≡ 0 in Theorem 5.4, the former considers uniform hemiregular-
ity, whereas the latter deals with a mere hemiregularity with respect to one variable,
which is uniform with respect to the other variable. Nevertheless, with all that, a
common pattern can be traced: Theorem 4.3 assumes the uniform Lipschitz lower
semicontinuity with respect to x of the problem data to gain the uniform hemiregu-
larity of the solution mapping, while Theorem 5.4 assumes the hemiregularity with
respect to x of the problem data to achieve the Lipschitz lower semicontinuity 2 of
the solution mapping. The condition enabling this phenomenon is the nondegener-
acy of the strict outer slope with respect to p of the displacement functional in the
first case, which is replaced by a calmness condition with respect to p in Theorem
5.4.

To assess the impact of the above result on constrained optimization, let us
consider problems of the form

(PE) minφ(x) subject to x ∈ R = Φ−1(ω),

that is with constraints in the abstract form (E). The reader should notice that, even
though inequality (2.2) involves the set R(p̄), which seems to require the knowledge
of the feasible region of (PE), nonetheless Theorem 4.3 can be effectively exploited
for achieving the exactness of penalty functions, if combined with problem calmness,
as stated next. Below, by penalty function φl : P × X −→ R ∪ {±∞} associated
with problem (PE), the following functional is meant:

φl(p, x) = φ(x) + l|[F (p, x)]|.

Observe that in order to evaluate φl one needs only the problem data.

Corollary 4.4. Let F : P ×X ⇒ Y be a perturbation of Φ defining a parameteri-
zation of the feasible reagion of problem (PE), let p̄ ∈ P such that F (p̄, ·) = Φ, and
let x̄ be a local solution of (PE). Suppose that

(i) (P, d) is metrically complete;
(ii) there exists δ0 > 0 such that F (·, x) : P ⇒ Y is Hausdorff u.s.c. on B(p̄, δ0),

for every x ∈ B(x̄, δ0);
(iii) F (p̄, ·) : X ⇒ Y is uniformly Lipschitz l.s.c. at (x̄, ω);

(iv) |∇p|[F ]||>(p̄) > 0;
(v) (PE) is calm at x̄ with respect to the parameterization R defined by F .

Then, for every

(4.11) l >
u.liplsc(F, (x̄, ω)) · clm(PE ,R, x̄)

|∇p|[F ]||>(p̄)

function φl(p̄, ·) is exact at x̄.

Proof. It suffices to apply Theorem 4.3 and Theorem 3.3. The estimate (4.11) can
be immediately obtained by inequality (4.1) and the condition on the penalty term
appearing in the thesis of Theorem 3.3. �

2Actually, in the statement of Theorem 5.4 this property is not mentioned, but is expressed as
hemiregularity of the inverse multifunction.
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To guide a comparison of Theorem 4.3 with other similar implicit multifunction
theorems of new generation, it must be pointed out that, often, along with the local
solvability of the parameterized system (Ep), a local error bound of the form

dist (x,R(p)) ≤ κdist (ω, F (p, x)) ,

is also established, with κ > 0 and with p varying around p̄, or p = p̄ (let us men-
tion here [2, Theorem 5.5.5], which served as a paradigm for many epigones in the
subsequent literature). Such distance estimates, stemming from the Lyusternik’s
theorem, are useful for deriving optimality conditions for problems with Lipschitz
objective functions. Of course, they can be generalized obtaining Hölder type esti-
mates in order to treat problems with corresponding Hölder objective functions. In
contrast to this, in Corollary 4.4 no assumption is made on the objective function
of problem (PE), apart problem calmness (hypothesis (v)), which relates to both
φ and R. Thus, the present approach to implicit multifunction theorem reveals
that Lipschitz/Hölder assumptions on the objective function can be dropped out
at the price of introducing a suitable interplay between the parameterization of the
feasible region and the objective function.

The rest of the current section is devoted to establish a version of Theorem 4.3
working in Banach spaces. Such a setting, which is more structured than purely met-
ric spaces, enables one to reformulate the condition on the strict outer slope of the
displacement functional in terms of derivative-like objects. Since the displacement
functional is rarely expected to be differentiable, this will be done by employing
tools of nonsmooth analysis. More precisely, the partial Fréchet coderivative of the
set-valued mapping F will be used. In order to recall this generalized derivative
construction, some basic elements of the Fréchet subdifferential calculus and the
related geometry are needed. In what follows, whenever (X, ∥ · ∥) denotes a Banach
space, its continuous dual and the related unit ball are indicated by X∗ and B∗,
respectively. Given a function φ : X −→ R∪ {±∞} defined on a Banach space and
x̄ ∈ domφ = {x ∈ X : |φ(x)| < +∞}, the Fréchet (alias, regular) subdifferential of
φ at x̄ is defined by

∂̂φ(x̄) =

{
x∗ ∈ X∗ : lim inf

x→x̄

φ(x)− φ(x̄)− ⟨x∗, x− x̄⟩
∥x− x̄∥

≥ 0

}
.

Given a subset S ⊆ X and x̄ ∈ S, the Fréchet (alias, regular) normal cone of S at
x̄ is defined by

N̂(x̄, S) =

x∗ ∈ X∗ : lim sup
S

x → x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ 0

 .

Notice that the two aforementioned notions are linked through the set indicator
function ιS : X −→ {0,+∞}, in the sense that

N̂(x̄, S) = ∂̂ιS(x̄), x̄ ∈ X.

Given a set-valued mapping Φ : X ⇒ Y between Banach spaces and (x̄, ȳ) ∈ grphΦ,

the Fréchet coderivative of Φ at (x̄, ȳ) is the set-valued mapping D̂∗Φ(x̄, ȳ) : Y ∗ ⇒
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X∗ defined through the Fréchet normal cone to its graph as follows

D̂∗Φ(x̄, ȳ)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂((x̄, ȳ), grphΦ)}, y∗ ∈ Y ∗.

The Fréchet subdifferential, the Fréchet normal cone and the Fréchet coderivative
are the basic pillars of the nonsmooth calculus here employed (see, for more details,
[2, 14, 18, 22]). It is well known that the natural environment where to handle the
aforementioned Fréchet constructions are Asplund spaces. Recall that a Banach
space (X, ∥ · ∥) is said to be Asplund if every continuous convex function defined
on a nonempty open convex subset C of X is Fréchet differentiable on a dense Gδ

subset of C. It has been proved that the Asplund property for a Banach space can be
characterized by the fact that each of its separable subspaces admits a separable dual
(see [2, 18]). The class of Asplund spaces, including all weakly compactly generated
spaces and, hence, all reflexive Banach spaces, is wide enough for many applications.
Moreover, every Banach space having Fréchet smooth bump functions (in particular,
every space admitting a Fréchet smooth renorm) is Asplund. One of reasons why
Asplund spaces are the natural environment for the Fréchet nonsmooth calculus
deals with the fact that the Asplund property can be also characterized in terms of
the validity of the following Lipschitz local approximate Fréchet subdifferential (for
short, fuzzy) sum rule. Such a rule plays a key role in many circumstances arising
in optimization and variational analysis.

Definition 4.5. Let (X, ∥ · ∥) be a Banach space. X is said to satisfy the Fréchet
fuzzy sum rule if for any l.s.c. function φ1 : X −→ R∪{+∞}, any Lipschitz function
φ2 : X −→ R, and any ϵ > 0, whenever x̄ ∈ X is a local minimizer of φ1+φ2, there

exist xi ∈ X and x∗i ∈ ∂̂φi(xi), i = 1, 2, such that

(xi, φi(xi)) ∈ B((x̄, φi(x̄)), ϵ), i = 1, 2,

and
∥x∗1 + x∗2∥ < ϵ.

Among the notable achievements of nonlinear functional analysis, there is the
understanding that a Banach space is Asplund iff it satisfies the Fréchet fuzzy sum

rule (see [2, 18]). In other words, any Asplund space is ∂̂-trustworthy in the sense
of [12]. The next lemma adapts [12, Proposition 1, Ch. 3] to the specific need of
the present analysis.

Lemma 4.6. Let F : W ⇒ Y be a set-valued mapping between Banach spaces and
let W ⊆ P ×X be an open set. Suppose that:

(i) (P, ∥ · ∥) is Asplund;
(ii) the set-valued mapping F (·, x) is Hausdorff u.s.c. on ΠP (W ) = {p ∈ P :

∃x ∈ X : (p, x) ∈ W}, for each x ∈ ΠX(W ) = {x ∈ X : ∃p ∈ P : (p, x) ∈
W}.

Then, it holds

inf
(p,x)∈W

|∇p|[F ]||(p, x) ≥ inf{∥p∗∥ : p∗ ∈ ∂̂p|[F ]|(p, x), (p, x) ∈ W}.

Proof. Observe that, by virtue of Lemma 4.1, each function p 7→ |[F ]|(p, x), with x ∈
ΠX(W ), is l.s.c. on ΠP (W ). Set µ = inf(p,x)∈W |∇p|[F ]||(p, x) and take an arbitrary
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ϵ > 0. Corresponding to ϵ/2, there exists (pϵ, xϵ) ∈ W such that |∇p|[F ]||(pϵ, xϵ) <
µ+ ϵ

2 . According to the definition of partial strong slope, the last inequality implies
the existence of δ > 0 such that

|[F ]|(p, xϵ) +
(
µ+

ϵ

2

)
∥p− pϵ∥ ≥ |[F ]|(pϵ, xϵ), ∀p ∈ B(pϵ, δ).

Notice that the function p 7→
(
µ+ ϵ

2

)
∥p − pϵ∥ is convex and Lipschitz continuous,

so by well-known properties of the Fréchet subdifferential (see, for instance, [14,
Proposition 1.2]) and well-known formulas of convex analysis, one has

∂̂
(
µ+

ϵ

2

)
∥ · −pϵ∥(p) ⊆

(
µ+

ϵ

2

)
B∗, ∀p ∈ P.

Since the function |[F ]|(·, xϵ) +
(
µ+ ϵ

2

)
∥ · −pϵ∥, which is the sum of a l.s.c. and a

Lipschitz function, attains a local minimum at pϵ, it is possible to apply the Fréchet
fuzzy sum rule in Definition 4.5, in force of hypothesis (i). Accordingly, taken
η ∈ (0, ϵ/2) in such a way that B(pϵ, η) × {xϵ} ∈ W , one gets consequent (pi, xϵ)
and p∗i ∈ P ∗, i = 1, 2, such that

∥pi − pϵ∥ < η, i = 1, 2,

p∗1 ∈ ∂̂p|[F ]|(p1, xϵ), p∗2 ∈ ∂̂
(
µ+

ϵ

2

)
∥ · −pϵ∥(p2),

and
∥p∗1 + p∗2∥ < η.

As it is η < ϵ/2, one can deduce that p∗1 ∈ (µ + ϵ)B∗, and hence, since it is
(p1, xϵ) ∈ B(pϵ, η)× {xϵ} ⊆ W , one obtains

inf{∥p∗∥ : p∗ ∈ ∂̂p|[F ]|(p, x), (p, x) ∈ W} ≤ µ+ ϵ.

The thesis follows by arbitrariness of ϵ. �
Now, for formulating the next technical lemma, some further notations are needed.

Given a set-valued mapping F : P ×X ⇒ Y and (p, x) ∈ P ×X, let us set

σ(p, x) = lim
ϵ→0+

inf{∥p∗∥ : p∗ ∈ D̂∗F (·, x)(p′, y′)(y∗), ∥y∗∥ = 1,

p′ ∈ B(p, ϵ), y′ ∈ Y : ∥y′∥ ≤ |[F ]|(p′, x) + ϵ},

where D̂∗F (·, x)(p′, y′) : Y ∗ ⇒ P ∗ denotes the Fréchet coderivative of the set-valued
mapping F (·, x) : P ⇒ Y (hence, the partial coderivative of F with respect to p),
calculated at (p′, y′) ∈ grphF (·, x). Furthermore, set

Vη = int [B(p̄, η)× B(x̄, η)]\F−1(0).

Remark 4.7. Notice that, since F : P ×X ⇒ Y is closed valued, one has

(P ×X)\F−1(0) = {(p, x) ∈ P ×X : |[F ]|(p, x) > 0}.
Therefore, whenever F is u.s.c. on a set int [B(p̄, δ0)×B(x̄, δ0)], so that the function
|[F ]| : P ×X −→ [0,+∞] is l.s.c. on the same set (remember Remark 4.2), each set
Vη, with η < δ0, turns out to be open.

Lemma 4.8. Let F : W ⇒ Y be a set-valued mapping between Banach spaces and
let W ⊆ P ×X be an open set. Suppose that:

(i) (P, ∥ · ∥) and (Y, ∥ · ∥) are Asplund;
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(ii) there exists δ0 > 0 such that F (·, x) is u.s.c. on B(p̄, δ0), for each x ∈
B(x̄, δ0);

(iii) it is W ⊆ [B(p̄, δ0) × B(x̄, δ0)]\F−1(0) and there exists a constant σ > 0
such that

inf
(p,x)∈W

σ(p, x) ≥ σ.

Then, it holds

inf{∥p∗∥ : p∗ ∈ ∂̂p|[F ]|(p, x), (p, x) ∈ W} ≥ σ.

Proof. The thesis follows at once from [2, Lemma 5.5.4]. Indeed, it suffices to replace
the Fréchet subdifferential and coderivative with their partial counterparts and to
observe that, in order to apply the Fréchet fuzzy sum rule, the hypothesis about the
Fréchet smoothness assumed in [2, Lemma 5.5.4] can be replaced with the Asplund
property of P and Y . Recall that the Cartesian product of Asplund spaces is still
Asplund (see [18]). �

By means of the above constructions, it is possible to establish the following
coderivative condition for the uniform hemiregularity of the multifunction implicitly
defined by a problem (E), in a Banach space setting.

Theorem 4.9. Let F : P ×X ⇒ Y be a set-valued mapping between Banach spaces
defining a parameterization R : P ⇒ X for the solution set R of a problem (E).
Given p̄ ∈ P , let x̄ ∈ R(p̄). Suppose that:

(i) (P, ∥ · ∥) and (Y, ∥ · ∥) are Asplund;
(ii) there exists δ0 > 0 such that F is u.s.c. on B(p̄, δ0)× B(x̄, δ0);
(iii) F (p̄, ·) : X ⇒ Y is uniformly Lipschitz l.s.c. at (x̄,0);
(iv) it is

σ = lim
η→0+

inf
(p,x)∈Vη

σ(p, x) > 0.(4.12)

Then, R is uniformly hemiregular at (p̄, x̄) and the following estimate holds

u.hreg(R, (p̄, x̄)) ≤ u.liplsc(F, (x̄,0))

σ
.

Proof. The proof clearly relies on the application of Theorem 4.3. Let us check that
all hypotheses of that theorem are actually fulfilled under the current assumptions.

Hypothesis (i) takes trivially place in a Banach space setting. As to hypothesis
(ii), it suffices to recall Remark 4.2. It remains to show that condition (4.12)
guarantees the validity of hypothesis (iv). To this aim, let us start by observing
that, fixed an arbitrary ζ > 0, inequality (4.12) implies that it is possible to find
η ∈ (0, δ0/2) such that

inf
(p,x)∈Vη

σ(p, x) ≥ σ − ζ.

Thus, by applying Lemma 4.8 with W = Vη (note that, under the current hypothe-
ses, it is an open set according to Remark 4.7), one finds

inf{∥p∗∥ : p∗ ∈ ∂̂p|[F ]|(p, x), (p, x) ∈ Vη} ≥ σ − ζ.
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In turn, on account of Lemma 4.6, the last inequality gives

inf
(p,x)∈Vη

|∇p|[F ]||(p, x) ≥ σ − ζ.

By recalling the definition of |∇p|[F ]||>(p̄), since for a proper ϵ > 0 it happens that
{(p, x) ∈ B(p̄, ϵ)× B(x̄, ϵ) : 0 < |[F ]|(p, x) < ϵ} ⊆ Vη, one obtains

|∇p|[F ]||>(p̄) ≥ inf
(p,x)∈Vη

|∇p|[F ]||(p, x) ≥ σ − ζ.

As ζ has been arbitrarily taken, the above inequality completes the proof. �
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