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A NEW BREGMAN PROJECTION METHOD FOR SOLVING
VARIATIONAL INEQUALITIES IN HILBERT SPACES

AVIV GIBALI

ABSTRACT. In this paper we are concern with solving variational inequalities
for monotone and Lipschitz mappings in real Hilbert spaces. Motivated by the
works of Popov [23], Malitsky and Semenov [22] and Semenov [24], we propose
an extension of the subgradient extragradient method (Censor et al [6-8]) with
Bregman projections which calls for only one evaluation of the variational in-
equalities associated mapping F per each iteration. Two numerical experiments
are given which demonstrate the algorithm performances. Our result generalize
and extend several existing results in the literature.

1. INTRODUCTION

In this paper we focus on the classical Variational Inequality (VI) of Fichera
[12,13] and Stampacchia [25] (see also Kinderlehrer and Stampacchia [18]) which
consists of finding a point * € C such that

(1.1) (Flz*),x —z*) >0 forall x € C,

where C' is non-empty, closed convex subset of the Hilbert space H and F: H — H
is a given mapping. we denote the solution set of (1.1) as Sol(F,C).

This problem plays an important role as a modelling tool in various fields such
as Optimization Theory, Nonlinear Analysis, differential equations and more. For
an extensive and excellent books on theory, algorithms and applications to VIs see
Facchinei and Pang book [11], Kinderlehrer and Stampacchia [18].

One fundamental example which can be reformulated as a variational inequality
is the following constrained minimization.

Example 1.1. Let C C H be a nonempty, closed and convex subset of real Hilbert
space H and let f : H — R be a continuously differentiable function which is convex
on C'. Then z* is a minimizer of f over C iff * solves the VI

(1.2) (Vf(x"),z —2*) >0 for all x € C,
where V f is the gradient of f.
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One of the simplest iterative scheme for solving constrained minimization prob-
lems is the well-known Projected Gradient Method ( [15,20]), given the current
iterate z*, the next iterate z*1 is calculated as follows.

(1.3) 2" = Po(a® =V f (")),

where Po denoted the orthogonal projections onto C' (explained further) and ~
is some positive number. This of course led to introduce an iterative method for
solving VIs. The convergence of such algorithm has been studied by a number of
authors, for example, Dafermos [10] shows that, if Vf is strongly monotone on
C then the sequence {xk}zozo, generated by (1.3), is a globally converges to the
unique solution of (1.1). It appears that if the strong monotonicity assumption is
dropped, then the situation becomes more complicated, and quite different from the
case of convex optimization. In order to deal with this situation, Korpelevich [19]
(also Antipin [1]) proposed the Eztragradient Method which converges for monotone
mappings. In this method, per each iteration, in order to get the next iterate z*+1,
two orthogonal projections onto C' are calculated, according to the following iterative
step. Given the current iterate ¥, calculate the next iterate 2*T! via

{ y*¥ = Po(ah — 4 F(2F))

(1.4) 2F 1 = Po(ak — v F ()

where Po denoted the orthogonal projections onto C' (explained further), v €
(0,1/L), and L is the Lipschitz constant of F (or = is replaced by a sequence
of {y1}72, which is updated by some adaptive procedure, see for example [17]).

Although convergence of the extragradient method is guaranteed under the as-
sumptions of Lipschitz continuity and monotonicity (even pseudo-monotonicity),
there is still the need to calculate two evaluations of F and two projections onto the
VI feasibility set C'. Regarding the projection, if the set C' is a general closed and
convex subset, then there is the need to compute two projections per each iteration,
which translated to a minimum norm problem

(1.5) min{||z — (2% — yF(zF))| | for all z € C},

and this might effect the computationally of the method. So, one step in the di-
rection of simplifying the extragradient method is Censor et. al. [6-8] Subgradient
Extragradient Method. In this method, the second orthogonal projection onto the
feasible set is replaced by an easy computed projection onto some constructible set.
Given the current iterate =¥, calculate the next iterate ! via

o { J* = Polat =1 F (b))

2t = P (% — 9 F(y"h)

where Pr, is the orthogonal projection onto the set 7}, defined as
(1.7)
{weH | (& —1F (@) — v, w—yF) <0}, if o — 1 F(ah) # o,
Ty =
H, if F — yF(2k) = .
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Observe that both the extragradient and the subgradient extragradient methods,
require two evaluations of F per each iteration. Popov [23] proposed a modification
of the extragradient method that uses only one evaluation of F per each iteration.
Following Popov’s work, Malitsky and Semenov [22] proposed a modification of the
subgradient extragradient method which requires only one evaluation of F per each
iteration. Recently, Semenov [24] used Popov’s idea and extended the extragra-
dient method using Bregman projections, which generalize the orthogonal metric
projection. Following these developments, we propose an extension of the subgra-
dient extragradient method in the spirit of Popov with Bregamn projections in real
Hilbert spaces. In the next subsection we provide more details and descriptions of
the above methods.

The paper is organized as follows. In Section 2 we present definitions and notions
that will be need for the rest of the paper. In Section 3 our two new extensions are
presented and analysed. In section 4 a numerical example is given which demon-
strate our algorithm performances. Final remarks are given in Section 5.

1.1. Relation to previous work. Let f : R” x R” — R be a bi-function and
C C R"™and @ C R™. The saddle-point problem consists of finding a point (z*, y*) €
C x @ such that

(1.8) fl@y) < f(2",y%) < [z, y")

for all z € C'and y € Q.

One of the simplest gradient methods for solving (1.8) is presented by Arrow,
Hurwicz and Uzawa (AHU) in 1958 [2]. Under the assumption that f is differen-
tiable, convex-concave, and its gradient is Lipschitz gradient and the set of saddle
point is non-empty, the iterative method of AHU converges in Euclidean spaces. As
the assumptions for saddle points problem is quite rigid, Korpelevich in 1976 [19]
proposed the extragradient method (1.4) which converges under weaker assumption
than the AHU method and it is actually a modification of the gradient method by
using extrapolation and hence two evaluations per each iteration.

As mentioned before, the extragradient method for solving VlIs, requires two
evaluations of the associated mapping F as well as two orthogonal projections per
each iteration. So, Popov in 1980 [23] proposed a modification of the extragradient
method in Euclidean spaces that uses only one evaluation of F per each iteration.
Given the current iterates z*,y* € C, calculate the next iterate z**1, y*+1 via
(1 9) zhtl = P(j(xk _ ,y}-(yk))

| Y = Polat - 4 F ()
where v € (0,1/3L), and L is the Lipschitz constant of F .

Gradient methods and in particular extragradient methods have been studied,
modified and extended intensively in the last decades, and among all the many
developments which are introduced, there is the subgradient extragradient method
1.6 of Censor et al. [6-8]. The subgradient extragradient method requires one or-
thogonal projection onto the feasible set C' and one easily computable projection
onto a constructible set. The drawback of the method is the need to evaluate F at
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two different points per each iteration. So, in the spirit of Popov, Malitsky and Se-
menov [22] proposed the following method. Given the current iterates %, y* y*~1,
calculate the next iterate z**1 y*+1 via
(1.10) C e )

Yt = Po(a*t —yF(yh)
where Pr, is the orthogonal projection onto the set T}, (slightly different from (1.11))
defined as
(1.11)

{weH | {(a" —vF@" 1) —y* w—y") <0}, if 2% —yF (Y1) # yF,

H, if % — yF(yF=1) = yF.

Under the assumption of monotonicity and L-Lipschitz continuity of F, with
v € (0,1/3L) weak convergence in real Hilbert spaces is proved in [22, Theorem 1].
Very recently, Semenov [24] introduced a new modification of extragradient method
(a mirror descent variant) for solving VIs in Euclidean spaces with pseudo-monotone
mapping F. Semenov proposed method is actually the extragradient method (1.4)
when the Euclidean distances are replaced with the generalized Bregman distances.

Following the above developments, we wish to present a subgradient extragradient
method with Bregman projections in real Hilbert spaces, which generalizes the above
methods.

Tk =

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and the induced norm |- ||,
and let C' be a nonempty, closed and convex subset of H. We write z*¥ — z to
indicate that the sequence {:):k}zozo converges weakly to z and 2*¥ — z to indicate

that the sequence {xk}:o:() converges strongly to x.
We now recall some definitions and properties of mappings and operators.

Definition 2.1. Let F : H — H be some mapping.

e The mapping F is called Lipschitz-continuous on H with constant L > 0,
iff there exists L > 0 such that

(2.1) | F(z) — F(y)|| < L|jz —yl for all z,y € H.
e The mapping F is called monotone on H iff
(2.2) (F(x) — F(y),x —y) >0 forall z,y € H.

e The mapping F is called hemi-continuous iff for any z,y, z € H, the func-
tion t — (z, F(tx + (1 — t)y)) of [0,1] into R is continuous.

Definition 2.2. Let f: H — R be a convex differentiable function.
e The domain of the function f, denoted by domf an defined as
(2.3) domf :={z e H| f(z) < +oo}
When domf # (), we say that f is proper.
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e The subdifferential set of f at a point z, denote by 0f(z) is defined as
(2.4) Of (@) :={{eH| fly) = f(z) = ({,y—a) forall y € H}

an element £ € 0f(x) is called subgradient. In case that the function f is
continuously differentiable then 0f(z) = {V f(z)}, this is the gradient of

f.
e The Fenchel conjugate function of f is the convex function f* : H — R
defined by
(2.5) (€)= sup{(&, ) — f(x) | € H}.

e The function f is called Legendre iff it satisfies the following two conditions.
(1) int dom f # () and the subdifferential f is single-valued on its domain.
(2) int domf* # () and Of* is single-valued on its domain.

e The function f is called strongly convex with constant o > 0, iff

o
(2.6) F(@) = f@) = (Vf(),y =) + Sy — =l
e The function f is called weakly-weakly continuous iff

(2.7) b~ = f(aF) = fa).

Let C be a closed convex subset of H. For every element x € H, there exists a
unique nearest point in C', denoted by Po(z) such that

(2.8) |z = Po(x)|| = min{flz — y| | y € C}.

The operator Pp is called the metric projection of x onto C' and some of its
properties are summarized in the next lemma, see e.g., [14].

Lemma 2.3. Let C' C H be a closed convex set, Pg fulfils the following;:

(1) (z — Pe(z),y — Po(x)) <0 forallz € H and y € C;

(2) [Pe(@) —yl? <z =yl = ||z — Po(x)||?* for all z € H, y € C;
Definition 2.4. Given some function f : H — R, the bi-function D : domf x
intdomf — [0, +00), which is defined by

(2.9) Dy(z,y) = f(z) = f(y) = (VI(y), = —y),
is called the Bregman distance (see for example [3,9]).

For different choices of the function f, the Bregman distance generates some
known distances, for example, for f(x) = ||x||?>, we obtain the squared Euclidean
distance, that is D¢(z,y) = ||z — y||*>. Another useful generalization is when f(z) =
— > xilog(z;) is the Shannon’s entropy for x € R} | = {w € R™ | w; > 0}, then
we obtain the Kullback—Leibler cross entropy from statistics, that is

n

(2.10) Dy(z,y) =" (mz log (%) - 1) + gyz

i=1
The Bregman distance fulfils the following important property, which is called
the three point identity.

Corollary 2.5. For any x € domf and y, z € intdomf ,
(2.11) Dy(z,y) + Dy(y,2) — Dy(x,2) = (Vf(2) = Vf(y),z —y).
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The Bregman projection (see e.g., [3]) with respect to f of = € int domf onto
a nonempty, closed and convex set C' C intdomf is defined as the unique vector
II¢(z) € C, which satisfies

(2.12) le(z) == inf{Ds(y,z) |y € C}.

The Bregman projection has a variational characterization (see for example [4,
Corollary 4.4]), similarly to the metric projection in Hilbert spaces.

Corollary 2.6.
(2.13) z=Ic(z) & (Vf(x)-Vf(z),y—2) <0 foralyeC
Note that by the definition of the Bregman distance and (2.6) we get that
1
(2.14) Dy(a,) > 5o =yl
Next lemma is an analogue for Bregman distance of the celebrated Opial’s lemma.

Lemma 2.7. Let {z¥}%° be a sequence in H such that z¥ — z. Assume that
f:H — Ris astrongly convex, differential function with weakly-weakly continuous
V£, (see (2.7)). Then for all y # x

(2.15) liminf D (x, %) < liminf D (y, z%).
k—o0 k—o00
Proof. Using Corollary 2.5, we have
(2.16) Dy(y,2") = Dy(y, ) + Dy(x,2*) + <Vf(3«“) — Vi(ah),y - x> -
Since for all y # = Dy(y,z) > 0 and Vf(z¥) — Vf(z) as k — oo, we obtain the
desired. 0

Lemma 2.8. Let M be a closed convex set in H, {z¥}2° be a sequence in H.
Suppose that the following two conditions hold.

(1) All weak cluster points of {z*}2°  lie in M;

(2) For all z € M there exist limy_,oo Dy (2, 2%).

Then {x¥}2° | weakly converges to some element of M.

Proof. On the contrary assume that the sequence {xk}z‘;o has at least two weak
cluster points Z € Sol(F,C) and & €Sol(F,C) such that  # 7. Let {zF}°°  be a
sequence such that z*» — Z as n — co. Then by Lemma 2.7 we have

. — ko . R N T — kn
kILI{:ODf(w,m ) = nh_)n;ODf(:z:,x )= hggngf(:E,z )
. = Ekny L 1: ~  kn
< hnningf(x,x )= T}ergon(x,x )
(2.17) = lim D(&,2").
k—roo

We can now proceed analogously to the proof that
2.18 lim Dy(#,2%) < lim Ds(z,2"
(2.18) Jim Dy(z,2%) < lim Dy(z,27),

which is impossible, and hence we conclude that the sequence {x* }22, converges to
some x* € M, and the desired result is obtained. Il



BREGMAN PROJECTION METHOD FOR SOLVING VIS 409

A useful result showing the relation between a primal and a dual variational
inequality for continuous, monotone operators is given next. One direction can be
found in [26, Lemma 7.1.7] and the other can easily obtained from the monotonicity.

Corollary 2.9. Let C' C H be a nonempty and convex subset and F be a hemi-
continuous mapping of C into H. Let { be an element of C' such that

(2.19) (F(x),z =) >0, forallxeC.
Then,
(2.20) (F(Q),z—¢) >0, forallxeC.

An elementary useful result for our analysis is given next.
Corollary 2.10. Let {ar}2 . {br}72, be two nonnegative real sequences such that
(2.21) ag+1 < ag — b.
Then {ar}72, is bounded and Y ;2 by < oo.

3. THE ALGORITHM

In this section we present our iterative extension of the subgradient extragradient
method using Popov [23], Malitsky and Semenov [22] and Semenov [24] techniques
with Bregman projections. The convergence analysis uses similar arguments as in
Semenov [24].

Algorithm 3.1. Choose 2%,y € H and X > 0. Given the current iterates ¥ and
y* and also y*~1, if Vf(2F) — AF(y*~1) # Vf(y¥), construct the set

(3.1) Tp = {w e H [ (VI(") = AF V), w—y*) <0}
and if V(%) — AF(y*~1) = Vf(y¥), take T, = H.
Now, compute the next iterates via
{x’f“ =TIy, (V)" (T F (%) = AF(54))
Y =He((VH) VM) = AF ().
3.1. Convergence. For the convergence of Algorithm 3.1, we assume that the fol-

lowing conditions hold.

Condition 3.2. The solution set of (1.1), denoted by Sol(F,C), is nonempty.

(3.2)

Condition 3.3. The mapping F is monotone and Lipschitz-continuous with con-
stant L > 0.

Condition 3.4. The function f: H — R is differential and strongly convex (that
is (2.6)), and its gradient V f is weakly-weakly continuous (that is (2.7)).

Lemma 3.5. Assume that Conditions 3.2-3.4 hold. Let {z*}°, and {y*}2°, be

two sequences generated by Algorithm 3.1, A € (0, ‘/%1), and let z €Sol(F,C).
Then

(3.3) Dy(z,2"1) < Dy(z,2%) — aDp(z"™,y*) — BDs(y*, %) + yDy (2%, ),
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where a = 1 — AL(1 +v/2), B=1—+2AL, and v = AL.

Proof. By Corollary 2.6 we have

(3.4) <Vf(a:k) AF(YF) = V() 2 — xk+1> <0,

or equivalently

(3.5) <Vf(:vk) VR, . - xk+1> “A <]—'(yk), - xk+1> <.
Using Corollary 2.5, (3.5) can written as

(3.6)  Dy(za*) < Dy(z,aF) — Dyp(aF1 2%) + A <.7-'(yk), - xk+1> .

Following Corollary 2.9, we can add (F(y*),y* —z) > 0 to (3.6) and obtain the
following.

Dy(z,a"1) < Dy(z,2") — Dp(a"*,2%) + X <f(yk), yh - x’“+1>
< Dy(z,a") = Dp(a®*1 2") + A <F(y’“) —Fy* ), - x’““>
(3.7) +A <]—"(yk_1), - xk+1> .
Since y* = o ((Vf)"HV f(z*) — AF(y*71))), by Corollary 2.6 we get
A <]_-(yk71)’yk _ xk+1> < <Vf(xk) Vi), — xk+1>
(3.8) = Dy(a"*,a") = Dy(a", %) — Dy(y", 2

Now wish to estimate <]—"(yk) — Fy* 1), y* — xk+1>. Using the Cauchy-Schwarz
inequality and the L-Lipschitz continuity of F, we get that.

Nttt 20

1 2 1 2
(gl v+l =)
= 92 Y Y NG Y

atgl(@rvapt-o ] vl )

+)\LH
— ||z
V2

1 2 2 AL 2
A o ]

2
k+1 _ka

n % ka-&-l N ka2
< AL(L+V2)Ds(y*, a%) + ALDy(a*,yF)
(3.9) + V2ALD (2" yh).
In (3.9) we used two basic inequalities: ab < %aQ + 28%(72 and (a + b)? < v2a? +
(2 4 v/2b%) (see also [24]). Moreover, in the last inequality we used (2.14).
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Now, applying (3.8) and (3.9) to (3.7) and taking into account that \L < 1 —
V2AL, we get that
Dy(z,a"1) < Dy(z,2%) = AL(1 + V2) Dy (4", )
— (1= V2AL)Dy(a**!, yF) + ALD(2F, %)
(3.10) = Dy(z,a") —aDs(y*, 2") — BDp(«" ", y*) + yDy(a*, y* ).
And the proof is complete. O

Remark 3.6. It is worth mentioning that in Popov’s method [23], the step-size is

chosen such that A < 1/3L. Here we use estimations for A\ which appeared first in

Malitsky [21] and is an improvement to the interval (0, ‘/EL*I).

We are now ready to prove the weak convergence theorem of Algorithm 3.1.

Theorem 3.7. Assume that Conditions 3.2-3.4 hold, and let \ € (0, ‘/%1). Then
any two sequences {z*}3°, and {y*}5, generated by Algorithm 3.1 converge weakly
to a solution of the variational inequality (1.1).

Proof. We start by showing that the sequence {xk}zozo is bounded. Fix any z €
Sol(F,C) and for k > 2 let

(3.11) ag = Dy(z, zk) + va(:ck,yk_l)

(3.12) b = aDg(y*,a") + (8 — ) Dy, y¥)

where a, 3,7y are defined as in Lemma 3.5. Hence, inequality (3.3) can be rewritten
as ag+1 < ay — by. By Corollary 2.10, we conclude that {ax}72, is bounded and
limg 00 Dy (y*, %) = 0.

Due to (2.14), we get that the sequence {2*}7°, is bounded and ||z* — ka — 0,
M1 — yk|| — 0 as k — co. Consequently, we also have ||z" — 2%|| — 0.

Since {z¥}2°  is bounded, there exist a subsequence {1} of {z¥}2  such that
{a*i}2 ) converges weakly to some x* € H. It is clear that {y*1}22, also converges
to x* € H. It is now left to show that z* € Sol(F, C).

|=

From Corollary 2.6 it follows that
(3.13) <Vf(xki+1) C V(@R £ AF (R, y — x’fi+1> >0 foralyeC.
From this we conclude that for all y € C'
0 < (Vi) = Vi), y — a1+ A (Fh)y - o)
P Fyh), of - xki+1>
< (V@) = V@b y — 2" + A (Fly)y - o)
("), 9"

(3.14) A <]: - xki+1> .
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Taking the limit as ¢ — oo in (3.14), using the weakly-weakly continuity of V f and

(3.15) lim kaﬁ'l — 2% = lim Hykﬁ'l — kil =0,
1—00 1— 00

we obtain

(3.16) (Fly),y—xz*) >0 forallyeC.

Following Lemma 2.9, we get that =* €Sol(F, C).

Finally, we prove that the sequence {mk}iozo converges weakly to z* €Sol(F, ).
Since the sequence {ay, } 32, is monotone and bounded, we conclude that it converges.
Since the sequence Dy(z", y*~1) — 0, we get that the sequence {Dy(z,z"*)}22, also
converges. By Corollary 2.8, we deduce that {xk}zozo converges weakly to some
point x* €Sol(F, ), and the proof is complete. O

4. NUMERICAL EXPERIMENTS

In this section we present two numerical experiments which demonstrate our
algorithm (Algorithm 3.1) performances.

Consider the Hilbert space H = L?([0,1]) with norm ||z|| := (fo | (¢ |2dt> and

inner product (z,y) fo t)dt, x,y € H. Let C be the unit ball in #, that
is C:={x e H| ||:U|| < 1}. We deﬁne the 2-Lipschitz continuous and monotone
mapping F : C — H as (Fzx)(t) = max(0,z(t)), see [16]. It can be easily verified
that the VI with the above F and C has a unique solution which is 0 € L([0, 1]).

For the algorithm implementation, we used the Euclidean distances, and hence
recall the orthogonal projections onto C' and the half-space H := {z € H | (a,z) <
b} with 0 # a € H and b € R, see e.g., [5].

it e > 1,

(4.1) Polz) = { [l

z, if 2] <1,

b—(a,x)
(4.2) PH(x):{ TF Tz @
x

if (a,z) > b;
if (a,z) < b,

The parameters used in our experiments are: A = 0.1 and the stopping criterion
|[* — y¥|| < 107°. We present numerical illustrations for Algorithm 3.1 for two

different starting points z!(t). The results are presented in Table 1 and in Figures
1-2.

Case I: 2'(t) = g5 [sin(—3t) + cos(—10t)].

Case II: z!(t) = 5—55 [t2 —e7t].



BREGMAN PROJECTION METHOD FOR SOLVING VIS 413

No. of Iterations CPU Time
Case | 51 1.1793 x 1073

Case 11 51 1.2381 x 1073

TABLE 1. Algorithm 3.1 with different starting points 2! (¢)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of iterations Number of iterations

FIGURE 1. Case I FIGURE 2. Case II

5. CONCLUSIONS

In this work we present an extension of the subgradient extragradient method for
solving variational inequalities with monotone and Lipschitz continuous mappings in
real Hilbert spaces using Bregman projections. The motivation of this generalization
is the works of Popov [23]|, Malitsky and Semenov [22] and Semenov [24] and its
main advantage these and other existing results is the need to evaluate the VI
associated mapping F only once per each iteration. The usage of the Bregman
distance allows flexibility in choosing the projection type (orthogonal projection,
subgradient projection and more) to be computed in the new method.

Our result open new directions for future investigations, for example extensions
to Banach spaces, line-search approaches as well as replacing the first projection
onto C by an easily computable projection.

6. ACKNOWLEDGEMENTS

This work is based on discussions between Dr. Aviv Gibali and Dr. Yura Malitsky
started already in 2014. Hence wish to express our deep gratitude to Dr. Yura
Malitsky for his time and efforts which helped improving this manuscript and make
it suitable for publication.

REFERENCES

[1] A. S. Antipin, On a method for convex programs using a symmetrical modification of the
Lagrange function, Ekon. Mat. Metody 12 (1976), 1164-1173.

[2] K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming,
Stanford University Press, Stanford 1958.



414

3]

(4]
[5]
(6]
(7]
(8]
(9]

[10]
(1]

[12]

[13]

[14]
[15]
[16]
(17]
18]
(19]
20]
21]
22]
23]
24]
[25]

[26]

AVIV GIBALI

L. M. Bregman, The relazation method of finding the common point of convexr sets and its
application to the solution of problems in convex programming, USSR Comput. Math. and
Math. Phys. 7 (1967), 200-217.

D. Butnariu and E. Resmerita, Bregman distances, totally convezr functions and a method for
solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), 1-39.

A. Cegielski, Iterative Methods for Fired Point Problems in Hilbert Spaces, Lecture Notes in
Mathematics, vol. 2057, Springer, Berlin 2012.

Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational
inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011), 318-335.

Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods
for the variational inequality problem in Hilbert space, Optim. method Soft. 6 (2011), 827-845.
Y. Censor, A. Gibali and S. Reich, Ezrtensions of Korpelevich’s extragradient method for solving
the variational inequality problem in Euclidean space, Optimization 61 (2012), 1119-1132.

Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J.
Optim. Theory Appl. 34 (1981), 321-353.

S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci. 14 (1980), 42-54.
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, Volume I and Volume II, Springer-Verlag, New York, NY, USA, 2003.

G. Fichera,Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti
Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34 (1963), 138-142.

G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue
condizioni al contorno, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., Sez. I, VIIL
Ser. 7 (1964), 91-140.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Map-
pings, Marcel Dekker, New York and Basel, 1984.

A. A. Goldstein, Convex programming in Hilbert space, Bull. Am. Math. Soc. 70 (1964), 709—
710.

D. V. Hieu, P. K. Anh and D. Muu, Modified hybrid projection methods for finding common
solutions to variational inequality problems, Comput. Optim. Appl. 66 (2017), 75-96.

E. N. Khobotov, Modification of the extragradient method for solving variational inequalities
and certain optimization problems. USSR Comput. Math. Math. Phys. 27 (1987) 120-127.
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications, Academic Press, New York-London, 1980.

G. M. Korpelevich, The extragradient method for finding saddle points and other problems.
Ekon. Mate. Metody 12 (1976) 747-756.

E. S. Levitin and B. T. Polyak, Constrained minimization problems, USSR Comp. Math. Math.
Phy. 6 (1966), 1-50.

Yu. V. Malitsky, Projected reflected gradient methods for monotone variational inequalities,
SIAM J. Optim. 25 (2015), 502-520.

Yu.V. Malitsky and V. V. Semenov, An eztragradient algorithm for monotone variational
inequalities, Cybernet. Systems Anal. 50 (2014), 271-277.

L. C. Popov, A modification of the Arrow-Hurwicz method for finding saddle points, Math.
Notes 28 (1980), 845-848.

V. V. Semenov, A version of the mirror descent method to solve variational inequalities, Cy-
bern. Syst. Anal. 53 (2017), 234-243.

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convezxes, C. R. Acad. Sci.,
Paris 258 (1964), 4413-4416.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Manuscript received February 8 2018
revised February 15 2018



BREGMAN PROJECTION METHOD FOR SOLVING VIS 415

Aviv GIBALI
Department of Mathematics, ORT Braude College, Karmiel 2161002, Israel

The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, Haifa
3498838, Israel
E-mail address: avivg@braude.ac.il



