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train Support Vector Machines with tens of thousands data points. While the AL-
FPGM demonstrated promising numerical results, theoretical convergence analysis
of the AL-FPGM has been missing.

The main contribution of this paper is to provide a mathematical convergence
justification for the AL-FPGM applied to convex quadratic optimization problems
with linear constraints and simple bounds.

The remainder of this paper is organized as follows: Section 2 describes the
convex quadratic optimization problem with linear constraints and simple bounds,
Section 3 describes the augmented Lagrangian method, Section 4 describes the fast
projected gradient method, Section 5 presents the convergence analysis for the AL-
FPGM, and Section 6 presents the concluding remarks.

2. Quadratic convex optimization problem with linear constraints
and simple bounds

Let us introduce the following functions

f(x) =
1

2
xTQx+ qTx,

g(x) = Ax− b,

where Q is an n × n positive semidefinite matrix, A is an m × n matrix, q ∈ IRn,
b ∈ IRm, m < n. We assume that the system Ax− b = 0 is consistent.

Note that g : IRn → IRm is an m dimensional vector function. We emphasize the
fact that Q does not have to be nonsingular, but it needs to be positive semidefinite
so the resulting problem would be convex. We also introduce the bounded set

B = {x ∈ IRn : li ≤ xi ≤ ui, i = 1, . . . n} .

Then the optimization problem that needs to be solved is as follows:

minimize
x∈B

f(x)

subject to g(x) = 0.
(2.1)

We can define the Lagrangian

L(x, λ) = f(x)− λT g(x),

and the augmented Lagrangian as follows

Lk(x, λ) = f(x)− λT g(x) +
k

2
g(x)T g(x),

where λ ∈ IRm is a vector of Lagrange multipliers that corresponds to the equality
constraints and k > 0 is the scaling parameter.

The necessary and sufficient first-order optimality conditions x∗ to be the solution
for problem (2.1) is the existence of the dual vector λ∗ ∈ IRm such that the pair
(x∗, λ∗) such as g(x∗) = 0 satisfies the following variational inequality

(2.2) ⟨∇xL(x
∗, λ∗), x− x∗⟩ ≥ 0, ∀x ∈ B,
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or, equivalently the following system for each i = 1, . . . , n

(2.3)
∇xL(x

∗, λ∗)i ≥ 0 if x∗i = li
∇xL(x

∗, λ∗)i = 0 if li < x∗i < bi
∇xL(x

∗, λ∗)i ≤ 0 if x∗i = ui.

3. Augmented Lagrangian method

The augmented Lagrangian method consists of a sequence of inexact minimiza-
tions of Lk(x, λ) in x on the B set

(3.1) x̂ ≈ x̂(λ) = argmin
x∈B

Lk(x, λ).

followed by updating the Lagrange multiplier:

λ̂ = λ− kg(x̂).

We add the quadratic proximal term 1
2k (x− a)T (x− a) to Lk :

Lk(x, a, λ) = f(x)− λT g(x) +
k

2
g(x)T g(x) +

1

2k
(x− a)T (x− a).

Adding the proximal term helps in two ways. First, it makes the augmented La-
grangian strongly convex with the modulus of at least 1/k. As a result, the min-
imization on B (3.1) can be performed more efficiently. Second, for an iterative
method used for solving (3.1), we can define an explicit stopping criteria for the
unconstrained minimization based on the gradient of Lk. On the other hand, if Q
is nonsingular then adding the proximal term 1

2k (x− a)T (x− a) does not spoil con-
vergence and gives a way to estimate the strong convexity modulus, which will be
larger than 1/k.

For the stopping criteria, we use the following function that measures the violation
of the first order optimality conditions for problem (3.1):

(3.2) µ(x, a, λ) = max
1≤i≤m

µi(x, a, λ),

where

(3.3) µi(x, a, λ) =

 |(∇xLk(x, a, λ))i|, if li < xi < ui,
max{0,−(∇xLk(x, a, λ))i}, if xi = li,
max{0, (∇xLk(x, a, λ))i}, if xi = ui,

Note that the function accur(x, a, λ) =: max{µ(x, x, λ), ∥g(x)∥} measures the vio-
lation of the optimality conditions for the problem (2.1), and accur(x, x, λ) = 0 is
equivalent to satisfying the first order optimality conditions.

Figure 1 describes the augmented Lagrangian method for solving problem (2.1).

The inexact minimization on the B set performed in Step 2 of Figure 1 is the most
computationally expensive part of the augmented Lagrangian algorithm. Therefore,
the efficiency of the AL methods depends on that of Step 2. We believe that
an efficient minimization can be performed using a variant of the Fast Projected
Gradient algorithm, which we describe in the next section.
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1. Set x ∈ B, λ = 0, rec = accur(x, x, λ).
Select k > 0, ϵ > 0, 0 < θ < 1, δ ≥ 1.

2. Find x̂ ≈ argmin
v∈B

Lk(v, x, λ) with FPGM such that µ(x̂, x, λ) ≤ ϵ/k

3. Set rec := accur(x̂, x, λ)

4. Find λ̂ = λ− kg(x̂).

5. Set x := x̂, λ := λ̂, ϵ := θϵ, k := δk.
6. If rec > RequiredAccuracy then Goto 2.
7. Stop.

Figure 1. Boxed Augmented Lagrangian FPG Method

4. Fast projected gradient method

The fast projected gradient method (FPGM) requires estimation of the Lipschitz
constant L > 0 of the gradient of Lk so that the inequality

(4.1) ∥∇xLk(x1, a, λ)−∇xLk(x2, a, λ)∥ ≤ L∥x1 − x2∥.

holds for any x1, x2 ∈ IRm.
The gradient and the Hessian of Lk(x, a, λ) are as follows

∇xLk(x, a, λ) = Qx− q −AT (λ− k(Ax− b)) +
1

k
(x− a),(4.2)

∇2
xxLk(x, a, λ) = Q+ kATA+

1

k
In,(4.3)

where In is n× n identity matrix.
Since Lk is a quadratic form with respect to x, L = ∥∇2

xxLk(x, a, λ)∥ = ∥Q +
kATA + 1

kIn∥ where the matrix spectral norm is the largest singular value of a
matrix, i.e. the constant that depends only on Q, A and the parameter k.

Note that the matrix-vector products Qx and ATλ are the most computationally
expensive parts for the ∇xLk(x, a, λ) calculation, which takes O(n2 + nm) basic
arithmetic operations in case of dense matrices (Steps 3 and 7 in Figure 3). The
projection operator PB : IRm → B (Step 3) is computationally inexpensive (see
Figure 2) and requires only O(n) basic arithmetic operations. The other steps
combined have less than a dozen arithmetic operations. Keeping in mind that
m < n, one iteration of FPGM requires O(n2) operations. Figure 3 describes the
fast projected gradient method (FPGM) used in Step 2 of the augmented Lagrangian
algorithm.

1. Loop over all i = 1, . . . , n.
2. If xi < li then Set xi = li
3. If xi > ui then Set xi = ui
4. Return x.

Figure 2. Operator PB : Projection of x ∈ IRm onto the set B



AUGMENTED LAGRANGIAN - FAST PROJECTED GRADIENT METHOD 421

1. Input (x, λ), v := x.
2. Set v̄ = v, t = 1. Select L > 0.
3. Set v̂ = PB(v − 1

L∇vLk(v, x, λ))

4. Set t̄ = 0.5(1 +
√
1 + 4t2)

5. Set v = v̂ + (v̂ − v̄)(t− 1)/t̄
6. Set v̄ = v̂, t = t̄
7. If µ(v̂, x, λ) > RequiredAccuracy, Goto 3.
8. Output v̂.

Figure 3. Fast Projected Gradient Method

5. Convergence analysis of AL-FPGM

Convergence analysis of AL-FPGM relies on convergence properties of the fast
projected gradient method and the augmented Lagrangian method. The AL method
falls into the category of the proximal-point algorithms that have been extensively
investigated (see [12]). The FPGM is analyzed in more recent time (see [9, 10]).
This paper shows how the parts of the theory on proximal-point and fast projected
gradient methods work together.

Convergence of the general proximal-point algorithm is analyzed in [12]. We
will show how the AL-FPGM described in Figures 1-3 can be viewed as a general
proximal-point method.

Consider an elementary barrier function

IB(x) =

{
0, if x ∈ B,
+∞, if x /∈ B.

Then the objective function f̂ in the extended form is

f̂(x) = f(x) + IB(x) =

{
f(x), if x ∈ B,
+∞, if x /∈ B.

The original problem (2.1) is equivalent to the following problem:

minimize
x∈IRn

f̂(x)

subject to g(x) = 0.
(5.1)

We define the corresponding Lagragian for problem (5.1) as

L̂(x, λ) = f̂(x)− λT g(x) = L(x, λ) + IB(x),

and the corresponding augmented Lagrangian as

L̂k(x, a, λ) = f̂(x)− λT g(x) + 0.5kg(x)T g(x) +
1

2k
(x− a)T (x− a) =

Lk(x, a, λ) + IB(x),

where λ ∈ IRm is a vector of Lagrange multipliers that corresponds to the equality
constraints and k > 0 is the scaling parameter.
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Note that f̂(x), L̂(x, λ) and L̂(x, a, λ) are convex lower semicontinous proper
functions of x. As functions of x they are differentiable only in the interior of the B
set, however subdifferentials exist for any x ∈ IRn. For example,

∂xL̂(x, λ) = ∂xL̂(x, λ)1 × ∂xL̂(x, λ)2 × · · · × ∂xL̂(x, λ)n,

where

∂xL̂(x, λ)i =

 ∇xL(x, λ)i, if li < xi < ui
(−∞,∇xL(x, λ)i], if xi ≤ li,
[∇xL(x, λ)i,+∞), if xi ≥ ui.

For the primal-dual pair z∗ = (x∗, λ∗) to be the solution to problem (5.1), it is
necessary and sufficient that (x∗, λ∗) satisfies the following conditions

(5.2) 0 ∈ ∂xL̂(x
∗, λ∗), g(x∗) = 0.

Consider a primal-dual pair z = (x, λ), and the maximal monotone operator T (z) =

(∂xL̂(x, λ),−∂λL̂(x, λ)) = (∂xL̂(x, λ), g(x)). Therefore problems (2.1) and (5.1) are
equivalent to finding z∗ such that

0 ∈ T (z∗).

We will show that the primal-dual sequence zs = (xs, λs) generated by the AL
algorithm in Figure 1 converges to z∗.

Note that the condition 0 ∈ ∂xL(x
∗, λ∗) is equivalent to (2.3), while the condi-

tion 0 ∈ ∂λL(x
∗, λ∗) is equivalent to g(x∗) = 0 (see [14] for the discussion of the

subdifferential and subgradients)
The augmented Lagrangian method for problem (5.1) consists of a sequence of

inexact minimizations of L̂k(v, x, λ) in v on IRn

(5.3) x̂ ≈ x̂(x, λ) = argmin
v∈IRn

L̂k(v, x, λ).

followed by updating the Lagrange multiplier

λ̂ = λ− kg(x̂).

To represent the stopping criteria for the unconstrained minimization µ(v, x, λ) ≤
ϵ/k in terms of L̂k we need to consider the subdifferential of L̂k in detail:

∂vL̂k(v, x, λ) = ∂vL̂k(v, x, λ)1 × ∂vL̂k(v, x, λ)2 × · · · × ∂vL̂k(v, x, λ)n,

where

∂vL̂k(v, x, λ)i =

 ∇vLk(v, x, λ)i, if li < vi < ui
(−∞,∇vLk(v, x, λ)i], if vi ≤ li,
[∇vLk(v, x, λ)i,+∞), if vi ≥ ui.

Therefore
µi(v, x, λ) = dist(0, ∂vL̂k(v, x, λ)i), ∀i = 1, ..., n,

and

(5.4) µ(v, x, λ) = dist(0, ∂vL̂k(v, x, λ)),

where the distance between 0 and a set Y is defined as

dist(0, Y ) = min
y∈Y

max
1≤i≤m

|yi|

based on L∞ norm.
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Therefore the AL algorithms described in Figures 1- 2 can be reformulated in
the equivalent form described in Figure 4. The main difference of the AL algo-
rithm described here is the unconstrained minimization of L̂k(v, x, λ) in v in Step 2
performed instead of the minimization of Lk(v, x, λ) in v on the set B in Figure 1.

1. Set x ∈ B, λ = 0, rec = accur(x, x, λ).
Select k > 0, ϵ > 0, 0 < θ < 1, δ ≥ 1.

2. Find x̂ ≈ argmin
v∈IRn

L̂k(v, x, λ) such that dist(0, ∂vL̂k(x̂, x, λ)) ≤ ϵ/k with

FPGM
3. Set rec := accur(x̂, x, λ)

4. Find λ̂ = λ− kg(x̂).

5. Set x := x̂, λ := λ̂, ϵ := θϵ, k := δk.
6. If rec > RequiredAccuracy then Goto 2.
7. Stop.

Figure 4. UnBoxed Augmented Lagrangian FPG Method

To establish convergence of the AL-FPGM algorithm described in Figure 4 we
need the following lemmas.

Lemma 5.1. The augmented Lagrangian method in Figure 4 is equivalent to the
following proximal point method

(5.5) Find zp+1 : dist(0, Sp(zp+1)) ≤
ϵp
k
∥zp+1 − zp∥

where zp = (xp, λp),
∑

ϵp < ∞,

Sp(z) = T (z) + k−1(z − zp),

T (z) = ∂zL̂(z) = (∂xL̂(x, λ),−∂λL̂(x, λ)),

L̂(x, λ) = f̂(x)− λT g(x).

Clearly, L̂(x, λ) is the Lagrangian of problem (5.1) and T (z) is its pseudo subdiffer-
ential.

Proof. Let x∗p+1 denote an exact minimizer of L̂k(v, xp, λp) = L̂k(v, zp) in v:

x∗p+1 = argmin
v∈IRn

L̂k(v, zp).

Then we have µ(x∗p+1, xp, λp) = 0 and

0 ∈ ∂xL̂k(x
∗
p+1, zp) =

∂xf̂(x
∗
p+1)− λT

p∇g(x∗p+1) + kg(x∗p+1)
T∇g(x∗p+1) +

1

k
(x∗p+1 − xp).

Using λ∗
p+1 = λp − kg(x∗p+1), the above expression can be rewritten as

0 ∈ ∂xL̂k(x
∗
p+1, zp) = ∂xf̂(x

∗
p+1)− λ∗

p+1
T∇g(x∗p+1) +

1

k
(x∗p+1 − xp)

= ∂xL̂(x
∗
p+1, λ

∗
p+1) +

1

k
(x∗p+1 − xp)
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Therefore x∗p+1 is also the minimizer of L̂(x, λ∗
p+1) +

1
2k (x− xp)

T (x− xp) +C in x,
where C is some constant.

Now consider the maximization of a smooth and strongly concave function

max
λ∈IRm

d(λ),

where

d(λ) = L̂(x∗p+1, λ) + 0.5k(x∗p+1 − xp)
T (x∗p+1 − xp)−

1

2k
(λ− λp)

T (λ− λp)

is smooth and strongly concave in λ. Therefore the maximizer λmax satisfies the
following equation

∇d(λmax) = −g(xp+1)
∗ − 1

k
(λmax − λp) = 0.

Rewriting the above equation yields

λmax = λp − kg(x∗p+1).

Therefore λ∗
p+1 = λmax and thus λ∗

p+1 maximizes d(λ) in λ.
To summarize, what we obtained so far is that for the function

Yp(x, λ) = L̂(x, λ) +
1

2k
(x− xp)

T (x− xp)−
1

2k
(λ− λp)

T (λ− λp),

which is strongly convex in x and strongly concave in λ we have

Yp(x
∗
p+1, λ

∗
p+1) = min

x∈IRn
Yp(x, λ

∗
p+1) = max

λ∈IRm
Yp(x

∗
p+1, λ) = min

x∈IRn
max
λ∈IRm

Yp(x, λ).

In other words, the pair (x∗p+1, λ
∗
p+1) is the solution of the minmax problem with

the convex-concave objective function Yp(x, λ) and therefore

0 ∈ ∂xL̂(x
∗
p+1, λ

∗
p+1) +

1

k
(x∗p+1 − xp),

and

0 ∈ −∂λL̂(x
∗
p+1, λ

∗
p+1) +

1

k
(λp+1 − λp),

or, to combine the last two inclusions

0 ∈ (∂xL̂(z
∗
p+1),−∂λL̂(z

∗
p+1)) +

1

k
(z∗p+1 − zp) = T (z∗p+1) +

1

k
(z∗p+1 − zp)

= Sp(z
∗
p+1).

The above condition corresponds to µ(x∗p+1, xp, λp) = 0.
Now we will show that the stopping condition for an inexact minimizer

µ(xp+1, xp, λp) ≤ ϵp/k

equivalent to

dist(0, Sp(zp+1)) ≤ ϵp/k,

where ϵp = ϵθp.
We have already established (5.4). Since the smooth and strongly concave max-

imization of Yp(xp+1, λ) in λ is solved precisely by

λp+1 = λp − kg(xp+1),
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then dist(0, Sp(zp+1)) = dist(0, ∂vLk(xp+1, xp, λp). Therefore an iteration of the aug-
mented Lagrangian algorithm is equivalent to (5.5). Lemma 5.1 is proven. �

The following lemma establishes convergence of the FPGM to a minimizer on the
B set and is proven in [9].

Lemma 5.2. For the sequence {xs} generated by the FPGM in Figure 3 for a
convex quadratic problem the following bound takes place

Lk(xs, x, λ)− Lk(xmin(x, λ), x, λ) ≤
2L∥x0 − xmin(x, λ)∥2

(s+ 1)2
(5.6)

where L > 0 is the Lipschitz constant mentioned earlier in the text and

xmin(x, λ) = argmin
v∈B

Lk(v, x, λ).

Remark 5.3. Lemma 5.2 does not require for L(v, x, λ) to be strongly convex in
v. Since the proposed algorithm has the proximal term added, the strong convexity
of L(v, x, λ) in v allows us to establish a stronger result described in the following
lemma.

Lemma 5.4. For the sequence {xs} generated by the FPGM in Figure 3 the fol-
lowing bound takes place

(5.7) ∥xs+1 − xmin(x, λ)∥ ≤ C∥xs − xmin(x, λ)∥ ≤ Cs∥x0 − xmin(x, λ)∥

where C =
√

kL−1
kL+1 < 1.

Proof. Let l be the strong convexity modulus constant. According to (4.3),

l ≥ 1/k.

Keeping in mind that L ≥ l, the steps size t = 1/L satisfies the following inequalities

t =
1

L
=

2

2L
≤ 2

l + L
,

kL ≥ L

l
≥ 1,

and

0 ≤ 1− t
2lL

l + L
≤ kL− 1

kL+ 1
< 1.

Therefore the bound (5.7) follows from Theorem 3 (see [10]). Lemma 5.4 is proven.
�

Remark 5.5. Since the function Lk(v, x, λ) is strongly convex in v then for any
v ∈ B the following inequality holds:

l

2
∥v − xmin(x, λ)∥2 ≤ Lk(v, x, λ)− Lk(xmin(x, λ), x, λ),

where l is the convexity modulus. Therefore keeping in mind (5.6) and the above
inequality we have

(5.8) ∥xs+1 − xmin(x, λ)∥ ≤ 2

√
L

l

∥x0 − xmin(x, λ)∥
s+ 1

≤ 2
√
kL

∥x0 − xmin(x, λ)∥
s+ 1



426 IGOR GRIVA

Remark 5.6. Both (5.7) and (5.8) guarantee the strong convergence of the sequence
generated by the FPGM to the minimizer on the B set:

lim
s→∞

xs = xmin(x, λ).

Therefore we have
lim
s→∞

µ(xs, x, λ) = 0,

and there exists a finite index s̄ such that

µ(xs̄, x, λ) ≤ ϵ/k

for any ϵ > 0. Therefore Line 2 in the augmented Lagrangian method described in
Figures 1 and 4 is well defined.

Equivalently, an iteration of the proximal-point method (5.5) described in Lemma
5.1 is also well defined and we are ready to formulate the main convergence result.

Theorem 5.7. The sequence {(xp, λp)} generated by the AL-FPGM in Figure 1
has a unique cluster primal-dual pair (x∗, λ∗) that satisfies the first order optimality
conditions

⟨∇xL(x
∗, λ∗), x− x∗⟩ ≥ 0 ∀x ∈ B

and
g(x∗) = 0.

i.e. {(xp, λp)} converges to the optimal solution of problem (2.1) in the weak sense.

Proof. Consider the following claims.
1) The sequence {zp} = {(xp, λp)} generated by the AL-FPGM is well defined

in Lines 2 and 4. The primal sequence {xp} is well defined by Remark 5.6. Once
xp is available then λp is calculated by the explicit formulas in Line 4, so the dual
sequence {λp} is also well defined. Therefore by Lemma 5.1 the sequence {zp}
generated in (5.5) is also well defined.

2) Since δ ≥ 1, the sequence of the scaling parameters kp = k0δ
p is strictly

positive and increasing if k0 > 0.
3) Since 0 < θ < 1, the sequence {ϵp = ϵ0θ

p} satisfies
∑∞

p=0 ϵp < ∞.

4) The solution x∗ to (2.1) exists since f is a continuous convex quadratic function.
The interior of the B set is not empty, so the Slater’s condition is satisfied. Therefore
for the solution x∗ there exists a vector of dual variables λ∗ such that the first-order
optimality conditions hold.

5) The above optimality condition is equivalent to the following optimality con-
ditions for the problem (2.1)

0 ∈ (∂xL̂(x
∗, λ∗),−∂λL̂(x

∗, λ∗))

or
0 ∈ T (z∗)

in the notations of Lemma 5.1.
6) The existence of the solution to the equivalent problem

Find z∗ : 0 ∈ T (z∗)

guarantees the boundedness of the sequence {zp} generated in (5.5) (see [12]).
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7) All the conditions of Theorem 1 in [12] are satisfied. Therefore the sequence
{zp} generated in (5.5) converges to some z∗ in a weak sense, i.e. there exists a
unique cluster point z∗ the satisfies

0 ∈ T (z∗).

The above inclusion also means that the primal-dual sequence generated by the
AL-FPGM in Figures 1-3 converges to the prial-dual solution (x∗, λ∗) in a weak
sense. Theorem 5.7 is proven. �

6. Concluding remarks

This paper demonstrates theoretical convergence of the Augmented Lagrangian -
Fast Projected Gradient Method for solving convex quadratic optimization problems
with linear constraints and simple bounds.

Such an algorithm is well suited for solving large scale optimization problems
as was demonstrated with numerical experiments (see [4]). According to the nu-
merical results, for large problems (tens of thousands of variables) AL-FPGM has
the potential to outperform methods that solve linear systems of equations such as
interior- or exterior-point methods as the latter require a dense system of a linear
equations to be solved at each step.

As the size of optimization problems grows further, we expect that the first-order
methods such as AL-FPGM will demonstrate an increasing practical importance.
In the future, we are planning to generalize the algorithm for parallel computations
in order to solve problems with hundreds of thousands of variables.
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