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Of course, as generalization of convexity, every convex function is quasi-convex,
semi-strictly quasi-convex, explicitly quasi-convex as well as pseudo-convex. Gener-
alized convexity assumptions appear in several branches of applications, e.g., pro-
duction theory, utility theory or location theory (see, e.g., Cambini and Martein [5,
Sec. 2.4]).

Since the area of multi-objective optimization has gained more and more interest,
many authors studied generalized-convexity in a multi-objective optimization set-
ting (see, e.g., Günther and Tammer [12], Mäkelä et al. [19], Malivert and Boissard
[20], Popovici [22, 23, 24, 25], Puerto and Rodŕıguez-Ch́ıa [26]). In multi-objective
optimization (see, e.g., the books by Ehrgott [7], Göpfert et al. [11], Jahn [15]),
one considers optimization problems with several conflicting objective functions.
Depending on the application in practice, these problems often involve certain con-
straints.

The aim of this paper is to study the relationships between multi-objective opti-
mization problems involving not necessarily convex constraints and multi-objective
optimization problems involving convex constraints. In the literature, there ex-
ist techniques for solving different classes of constrained multi-objective optimiza-
tion problems using corresponding unconstrained problems with an objective func-
tion that involves certain penalization terms in the component functions (see, e.g.,
Apetrii et al. [2] and Ye [29]), and, respectively, additional penalization functions
(see, e.g., Durea et al. [6], Günther and Tammer [12], Klamroth and Tind [17]).

In the paper by Günther and Tammer [12], multi-objective optimization prob-
lems with convex constraints in finite dimensional spaces are considered and a cer-
tain gauge distance function is used as an additional penalization function. Now,
we will extend and generalize the results in [12] to problems with nonconvex con-
straints and a real topological linear pre-image space. In our approach, the vector-
valued objective function of the considered multi-objective optimization problem is
assumed to be componentwise generalized-convex (e.g., semi-strictly quasi-convex,
quasi-convex, or explicitly quasi-convex). We show that the set of efficient solu-
tions of a multi-objective optimization problem involving a nonempty closed (not
necessarily convex) feasible set, can be computed completely by using at most two
corresponding multi-objective optimization problems with a new feasible set that is
a convex upper set of the original feasible set. This means, we can apply methods
(see Robinson [27] for the scalar case) that use the special structure of convex feasi-
ble sets for solving at most two multi-objective problems with convex feasible sets in
order to solve the original multi-objective optimization problem with a nonconvex
feasible set. Our approach relies on the fact that the original feasible set can be
described using level sets of a certain real-valued function (a kind of penalization
function).

The paper is organized as follows. After some preliminaries in Section 2 and a
short introduction of generalized-convexity and semi-continuity properties in Sec-
tion 3, we recall solution concepts for the vector-valued minimization in our con-
strained multi-objective optimization problem in Section 4. Moreover, we present
an extended multi-objective optimization problem where we add one additional ob-
jective function (a kind of penalization function) to the objective functions given in
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the original multi-objective optimization problem. We present important examples
of such penalization functions.

In Section 5, we derive the main results of our paper, the relationships between the
original multi-objective optimization problem with a generalized-convex objective
function involving a not necessarily convex feasible set, and two corresponding multi-
objective optimization problems with a new feasible set that is a convex upper set
of the original feasible set.

In Section 6, after introducing local generalized-convexity concepts, we present
sufficient conditions for the validity of certain assumptions that are important in
our new penalization approach.

Furthermore, in Section 7 we apply our approach to problems where the con-
straints are given by a system of inequalities with a finite number of constraint
functions.

Section 8 contains some concluding remarks.

2. Preliminaries

Throughout this article, let V be a real topological linear space. In certain results,
we assume that V is a normed space equipped with the norm || · || : V → R. In
this case the topology of V should be generated by the metric induced by the
norm || · ||. Moreover, let the q-dimensional normed Euclidean space denoted by
Rq, q ∈ N. For a nonempty set Ω ⊆ V, the expressions cl Ω, bdΩ, intΩ stand
for the standard notions of closure, boundary, interior of Ω, respectively. The
cardinality of the set Ω is denoted by card(Ω). For two points a, b ∈ V we define
[a, b] := {(1 − λ)a + λb |λ ∈ [0, 1]}, (a, b) := [a, b] \ {a, b}, [a, b) := [a, b] \ {b} and
(a, b] := [a, b] \ {a}.

Considering a metric d : V × V → R, we define the open ball around x0 ∈ V of
radius ε > 0 by

Bd(x
0, ε) := {x1 ∈ V | d(x0, x1) < ε},

while the closed ball around x0 ∈ V of radius ε > 0 is given by

Bd(x
0, ε) := {x1 ∈ V | d(x0, x1) ≤ ε}.

If d is induced by a norm || · ||, then we write B||·||(x
0, ε) and B||·||(x

0, ε).
The core (algebraic interior) of a nonempty set Ω ⊆ V is given by

corΩ := {x0 ∈ Ω | ∀ v ∈ V ∃ δ > 0 : x0 + [0, δ] · v ⊆ Ω}.

The statements given in the next lemma are well-known (for more details, see
Jahn [15] or Popovici [25]).

Lemma 2.1. Let Ω be a nonempty set in a real topological linear space V.
1◦. It holds that intΩ ⊆ corΩ.
2◦. If intΩ ̸= ∅ and Ω is convex, then intΩ = corΩ.

In the proofs of Lemmata 6.4 and 6.10, we will use the following property for
interior points of a nonempty set Ω in a real normed space V.



432 C. GÜNTHER AND C. TAMMER

Lemma 2.2. Let Ω be a set in a real normed space (V, ||·||) with intΩ ̸= ∅. Consider
x0 ∈ intΩ, i.e., it exists ε > 0 such that B||·||(x

0, ε) ⊆ Ω. Then, for all v ∈ V with
||v|| = 1 and all δ ∈ (0, ε), we have

[x0 − δv, x0 + δv] ⊆ B||·||(x
0, ε) ⊆ Ω.

Remark 2.3. 1◦. Notice that the statements given in Lemma 2.1 and Lemma
2.2 are not true in general metric spaces. Consider the metric space (R2, d),
where d : R2 × R2 → R represents the discrete metric on R2 that is defined
by d(x, y) := 1 for all x, y ∈ R2 with x ̸= y and d(x, y) := 0 for x = y. The
feasible set is given by Ω := [−1, 1] × [−1, 1]. Now, it can easily be seen
that x0 := (1, 1) ∈ intΩ, since we have Bd(x

0, ε) = {x0} ⊆ Ω for ε ∈ (0, 1).

However, for v := x1−x0

||x1−x0|| with x1 := (2, 2) ̸= x0, we have x0 + δv ∈ R2 \ Ω
for all δ > 0.

2◦. It is important to note that the metric space (R2, d) with the discrete metric
d is a topological space (considering the discrete metric topology associated
with d) but not a real topological linear space as well as not a real normed
space (d is not derived from a norm).

3◦. If V is a real linear space and d is a metric on V that is invariant with respect
to translation as well as homogeneous, then d(·, 0) =|| · ||: V → R defines a
norm on V.

In what follows, we define further notions that will be used in the sequel.
Let h : V → R be a real-valued function, X be a nonempty set in V and s ∈ R.

Then, the (strict) lower-level set and the level line of h to the level s are defined in
the usual way by

L∼(X,h, s) := {x ∈ X | h(x) ∼ s} for all ∼∈ {<,≤,=}.

Note, for any set Y with X ⊆ Y ⊆ V, we have

L∼(X,h, s) = L∼(Y, h, s) ∩X for all ∼∈ {<,≤,=}.

Moreover, the (strict) upper-level set of h to the level s are defined by

L≥(X,h, s) := L≤(X,−h,−s) and L>(X,h, s) := L<(X,−h,−s).

For notational convenience, for any m ∈ N, we introduce the index set

Im := {1, . . . ,m}.

Consider a function f = (f1, . . . , fm) with fi : V → R for all i ∈ Im. For any x0 ∈ X
we define the intersections of (strict) lower-level sets / level lines by

S∼(X, f, x0) :=
∩
i∈Im

L∼(X, fi, fi(x
0)) for all ∼∈ {<,≤,=}.

3. Semi-continuity and generalized-convexity properties

In this section, we recall some definitions and facts about generalized-convex and
semi-continuous functions (see, e.g., Cambini and Martein [5], Giorgi et al. [10],
and Popovici [25]).
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In order to operate with certain generalized-convexity and semi-continuity no-
tions, we define, for any (x0, x1) ∈ V × V, the function lx0,x1 : [0, 1] → V,

lx0,x1(λ) := (1− λ)x0 + λx1 for all λ ∈ [0, 1].

Consider a convex set X ⊆ V. Recall that a function h : V → R is

• upper (lower) semi-continuous along line segments on X if the composition
(h ◦ lx0,x1) : [0, 1] → R is upper (lower) semi-continuous on [0, 1] for all

x0, x1 ∈ X.
• convex on X if for all x0, x1 ∈ X and for all λ ∈ [0, 1] we have
h(lx0,x1(λ)) ≤ (1− λ)h(x0) + λh(x1).

• quasi-convex on X if for all x0, x1 ∈ X and for all λ ∈ [0, 1] we have
h(lx0,x1(λ)) ≤ max

(
h(x0), h(x1)

)
.

• semi-strictly quasi-convex on X if for all x0, x1 ∈ X, h(x0) ̸= h(x1), and for
all λ ∈ (0, 1) we have h(lx0,x1(λ)) < max

(
h(x0), h(x1)

)
.

• explicitly quasi-convex onX if h is both quasi-convex and semi-strictly quasi-
convex on X.

A function f : V → Rm is called componentwise upper (lower) semi-continuous
along line segments / convex / (semi-strictly, explicitly) quasi-convex / semi-strictly
quasi-convex or quasi-convex on X if fi is upper (lower) semi-continuous along line
segments / convex / (semi-strictly, explicitly) quasi-convex / semi-strictly quasi-
convex or quasi-convex on X for all i ∈ Im.

Remark 3.1. Notice that each convex function is explicitly quasi-convex and upper
semi-continuous along line segments. Moreover, a semi-strictly quasi-convex func-
tion which is lower semi-continuous along line segments is explicitly quasi-convex.
Counterexamples for the reverse implications are given in Example 3.2.

Cambini and Martein [5] pointed out important applications of generalized-
convexity. For instance, there are certain relationships between the field of
generalized-convexity and fractional programming (see [5, Th. 2.3.8, Ch. 6, Ch.
7]). Moreover, in [5, Sec. 2.4] examples of quasi-concave classes of homogeneous
functions that appear frequently in Economics (e.g., in utility and production the-
ory) are provided. Since maximizing a generalized-concave function is equivalent to
minimizing the negative of this function (a generalized-convex function), such func-
tions from Economics (e.g., the Cobb-Douglas function) are important examples for
our work.

Example 3.2. Consider the set X := R. The function h : R → R defined by
h(x) := x3 for all x ∈ R is explicitly quasi-convex and continuous but not convex
on X. Furthermore, the function h : R → R given by

h(x) :=


(x− 1)3 for all x > 1,

0 for all x ∈ [−1, 1],

(x+ 1)3 for all x < −1

is quasi-convex and continuous but not semi-strictly quasi-convex on X. A semi-
strictly quasi-convex functions which is upper semi-continuous along line segments
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must not be quasi-convex (e.g., consider the function h1 : R → R given in Example
3.8).

It is well-known that quasi-convex functions are characterized by the convexity
of its lower-level sets. Next, we present a useful equivalent characterization of semi-
strictly quasi-convexity using level sets and level lines.

Lemma 3.3. Let h : V → R be a function and X be a convex set in V. Then, the
following statements are equivalent:

1◦. h is semi-strictly quasi-convex on X.
2◦. For all s ∈ R, x0 ∈ L=(X,h, s), x1 ∈ L<(X,h, s), we have lx0,x1(λ) ∈

L<(X,h, s) for all λ ∈ (0, 1].

The next lemma (see Popovici [22, Prop. 2], [25, Prop. 2.1.2]) is important for
the proofs of Lemmata 4.4 and 6.16.

Lemma 3.4. Let h : V → R be a semi-strictly quasi-convex function on a nonempty
convex set X ⊆ V. Then, for every (x0, x1) ∈ X ×X, the set

L>

(
(0, 1), (h ◦ lx0,x1),max(h(x0), h(x1)

)
is either a singleton set or the empty set.

In the following lemma. We recall useful equivalent characterizations of upper
and lower semi-continuity.

Lemma 3.5. Let h : V → R be a function and X be a nonempty closed set in V.
Then, the following statements are equivalent:

1◦. h is upper (lower) semi-continuous on X.
2◦. L≥(X,h, s) (L≤(X,h, s)) is closed for all s ∈ R.

Proof. A proof for the case X = V can be found in Barbu and Precupanu [4, Prop.
2.5].

Let IX be the indicator function concerning the set X, i.e., IX(x) is 0 for x in
X and +∞ otherwise. Since X is closed, we know that IX is lower semi-continuous
on V (see Barbu and Precupanu [4, Cor. 2.7]). Then, the following statements are
equivalent (compare Zeidler [32]):

• h is lower semi-continuous on X.
• h̃ := h+ IX is lower semi-continuous on V.
• L≤(V, h̃, s) is closed for all s ∈ R.
• L≤(X,h, s) is closed for all s ∈ R.

Notice that we have L≤(V, h̃, s) = L≤(X,h, s) for every s ∈ R because of h̃(x) = +∞
for all x /∈ X.

Moreover, we know that h is upper semi-continuous on X if and only if −h is
lower semi-continuous on X. Since L≤(X,−h, s) = L≥(X,h,−s) for all s ∈ R, the
result for upper semi-continuity follows immediately. �
Remark 3.6. It is important to note that the assertion of Lemma 3.5 does not hold
if X is not supposed to be closed, e.g., consider the continuous function f : R → R
defined by f(x) := 1 for every x ∈ R, and X := (0, 1), then the set L≤(X, f, 1) = X
is not closed. The closedness assumption of X is missing in Günther and Tammer
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[12, Lem. 5], and hence must be added. Only one result, namely [12, Th. 4], uses
the characterization given in [12, Lem. 5]. In this result a closed set of the space R
is considered, consequently the result given in [12, Th. 4] still holds.

In Section 7 we are interested in considering the function defined by the maximum
of a finite number of scalar functions hi : V → R, i ∈ Il, l ∈ N. In the next lemma
we recall some important properties of this function.

Lemma 3.7. Let a family of functions hi : V → R, i ∈ Il, be given. Define the
maximum of hi, i ∈ Il, by hmax(x) := maxi∈Il hi(x) for all x ∈ V. Suppose that X
is a nonempty set in V. Then, we have

1◦. Assume that X is closed. If hi, i ∈ Il, are lower semi-continuous on X,
then hmax is lower semi-continuous on X.

2◦. Assume that X is convex. If hi, i ∈ Il, are convex on X, then hmax is convex
on X.

3◦. Assume that X is convex. If hi, i ∈ Il, are quasi-convex on X, then hmax

is quasi-convex on X.

In the next example, we show that an analogous statement to 2◦ and 3◦ of Lemma
3.7 does not hold for the concept of semi-strict quasi-convexity.

Example 3.8. Consider the set X := R and two functions hi : R → R, i ∈ I2,
defined by hi(x) := 0 for all x ∈ X, x ̸= i, and hi(i) := 1. Notice that h1 and h2
are semi-strictly quasi-convex on X. Let hmax be given by

hmax(x) :=

{
0 for all x ∈ R \ {1, 2},
1 for all x ∈ {1, 2}.

Since hmax(0) = 0 < 1 = hmax(1) = hmax(2), we get that hmax is not semi-strictly
quasi-convex on X.

4. A penalization approach in constrained multi-objective
optimization

In this section, we present a new penalization approach for multi-objective opti-
mization problems involving a not necessarily convex feasible set.

In many results, we suppose that the following standard assumption is fulfilled:

(4.1)

 Let V be a real topological linear space;
let X ⊆ V be a nonempty closed set with X ̸= V;
let Y ⊆ V be a convex set with X ⊆ Y.

Remark 4.1. Notice, under the assumptions given in (4.1), we have that bdX ̸= ∅.
This can be seen by the following observations:

• A topological space V is connected if and only if the only closed and open
sets are the empty set and V. Hence, the closedness ofX and the assumption
∅ ̸= X ̸= V imply that X is not open.

• Due to
intX ⊆ X ⊆ clX = intX ∪ bdX

and the closedness of X (i.e., X = clX), it follows that X is not open if and
only if bdX ̸= ∅.
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• Each real topological linear space V is connected.

4.1. The original multi-objective optimization problem (PX).

In this paper, we consider a multi-objective optimization problem involving m
objective functions f1, . . . , fm : V → R and a nonempty (not necessarily convex)
feasible set X ⊆ V in the topological linear space V:

(PX) f(x) :=

 f1(x)
...

fm(x)

 → v-min
x∈X

.

In the next definition, we recall solution concepts for the vector-valued minimiza-
tion considered in problem (PX) (see, e.g., Ehrgott [7], Jahn [15] and Khan et al.
[16] for more details). Notice that f [X] := {f(x) ∈ Rm | x ∈ X} denotes the image
set of f over X, while Rm

+ stands for the natural ordering cone in Rm.

Definition 4.2. Let X ⊆ V be a nonempty set. The set of Pareto efficient solutions
of problem (PX) with respect to Rm

+ is defined by

Eff(X | f) := {x0 ∈ X | f [X] ∩ (f(x0)− (Rm
+ \ {0})) = ∅},

while that of weakly Pareto efficient solutions is given by

WEff(X | f) := {x0 ∈ X | f [X] ∩ (f(x0)− intRm
+ ) = ∅}.

The set of strictly Pareto efficient solutions is defined by

SEff(X | f) := {x0 ∈ Eff(X | f) | card({x ∈ X | f(x) = f(x0)}) = 1}.

It can easily be seen that we have

SEff(X | f) ⊆ Eff(X | f) ⊆ WEff(X | f).
In the next lemma, we recall useful characterizations of (strictly, weakly) efficient

solutions using certain level sets and level lines of the component functions of f
(see, e.g., Ehrgott [7, Th. 2.30]).

Lemma 4.3. Let X ⊆ V be a nonempty set. For any x0 ∈ X, we have

x0 ∈ Eff(X | f) ⇐⇒ S≤(X, f, x0) ⊆ S=(X, f, x0);

x0 ∈ WEff(X | f) ⇐⇒ S<(X, f, x0) = ∅;
x0 ∈ SEff(X | f) ⇐⇒ S≤(X, f, x0) = {x0}.

In addition to the original problem (PX), for a convex set Y with X ⊆ Y ⊆
V, we consider a new multi-objective optimization problem (PY ) that consists of
minimizing the original objective function f of the problem (PX) over the convex
feasible set Y .

4.2. Relationships between the problems (PX) and (PY ).

In this section, we present some useful relationships between the problems (PX) and
(PY ). These relationships generalize the corresponding results derived by Günther
and Tammer [12], where V = Y = Rn and the topological interior instead of the
algebraic interior of X is considered.
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Lemma 4.4. Let X be a nonempty set and Y be a convex set such that X ⊆ Y ⊆ V.
Then, we have

1◦. It holds that

X ∩ Eff(Y | f) ⊆ Eff(X | f);
X ∩WEff(Y | f) ⊆ WEff(X | f);
X ∩ SEff(Y | f) ⊆ SEff(X | f).

2◦. Assume that f : V → Rm is componentwise semi-strictly quasi-convex on Y .
Then, it holds that

(corX) \ Eff(Y | f) ⊆ (corX) \ Eff(X | f);
(corX) \WEff(Y | f) ⊆ (corX) \WEff(X | f).

3◦. If f : V → Rm is componentwise semi-strictly quasi-convex or quasi-convex
on Y , then

(corX) \ SEff(Y | f) ⊆ (corX) \ SEff(X | f).

Proof. 1◦. Follows easily by Lemma 4.3.
2◦. We are going to show the first inclusion. Consider x0 ∈ (corX) \Eff(Y | f).

Since x0 /∈ Eff(Y | f), there exists x1 ∈ L<(Y, fj , fj(x
0)) ∩ S≤(Y, f, x

0) for
some j ∈ Im. We define the following two index sets

I< := {i ∈ Im | x1 ∈ L<(Y, fi, fi(x
0))},

I= := {i ∈ Im | x1 ∈ L=(Y, fi, fi(x
0))}.

Of course, we know that I< ̸= ∅ and I= ∪ I< = Im.
Clearly, for x1 ∈ X, we get immediately x0 ∈ (corX) \ Eff(X | f). Now,

assume x1 ∈ Y \X. Since x0 ∈ corX, by Lemma 2.1, we get x0+[0, δ]·v ⊆ X
for v := x1 − x0 ̸= 0 and some δ > 0. Obviously, since x1 /∈ X, it follows
δ ∈ (0, 1). Hence, for λ∗ := δ ∈ (0, 1), we have xλ := lx0,x1(λ) ∈ X ∩ (x0, x1)
for all λ ∈ (0, λ∗].

Now, consider two cases:
Case 1: Consider i ∈ I<. The semi-strict quasi-convexity of fi on Y

implies xλ ∈ L<(Y, fi, fi(x
0)) for all λ ∈ (0, 1] by Lemma 3.3. Because of

xλ ∈ X for all λ ∈ (0, λ∗], we get xλ ∈ L<(X, fi, fi(x
0)) for all λ ∈ (0, λ∗].

Case 2: Consider i ∈ I=. This means that fi(x
1) = fi(x

0). By Lemma
3.4 (with Y in the role of X), we infer that

card
(
L>((0, 1), (fi ◦ lx0,x1), fi(x

0))
)
≤ 1.

In the case that card
(
L>((0, 1), (fi ◦ lx0,x1), fi(x

0))
)
= 1, we get that there

exists λi ∈ (0, 1) such that fi(lx0,x1(λi)) > fi(x
0). Otherwise we define

λi := 2λ∗.

For λ := min(λ∗, 0.5·min{λi | i ∈ I=}), it follows that xλ ∈ L≤(X, fi, fi(x
0))

for all i ∈ I= as well as xλ ∈ L<(X, fi, fi(x
0)) for all i ∈ I<. So, we get

x0 ∈ (corX) \ Eff(X | f) by Lemma 4.3.
The proof of the second inclusion is analogous to the proof of the first

inclusion in 2◦. Notice that I< = Im and I= = ∅.
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3◦. Consider x0 ∈ (corX) \ SEff(Y | f). Since x0 /∈ SEff(Y | f), it exists
x1 ∈ Y \ {x0} such that x1 ∈ S≤(Y, f, x

0). Of course, since x1 ∈ X, we
get x0 ∈ (corX) \ SEff(X | f). Now, assume x1 ∈ Y \X. Analogously to
the proof of statement 2◦ in this lemma, there exists λ∗ ∈ (0, 1) such that
xλ := lx0,x1(λ) ∈ X ∩ (x0, x1) for all λ ∈ (0, λ∗].

Let i ∈ Im and consider two cases:
Case 1: Let fi be semi-strictly quasi-convex on Y . Analogously to the

proof of statement 2◦ of this lemma, we get that there exists λi ∈ (0, λ∗]
with xλ ∈ L≤(X, fi, fi(x

0)) for all λ ∈ (0, λi].
Case 2: Let fi be quasi-convex on Y . By the convexity of the level sets

of fi, we conclude [x0, x1] ⊆ L≤(Y, fi, fi(x
0)) for x0, x1 ∈ L≤(Y, fi, fi(x

0)).
We put λi := λ∗.

Hence, for λ := min{λi | i ∈ Im}, it follows that xλ ∈ S≤(X, f, x0) \ {x0}.
By Lemma 4.3, we get x0 ∈ (corX) \ SEff(X | f).

�

Notice that the proof of Lemma 4.4 uses ideas given in Günther and Tammer [12].
The semi-strict quasi-convexity assumption with respect to f can not be replaced
by a quasi-convexity assumption in 2◦ of Lemma 4.4 (see [12, Ex. 2]).

The following corollary gives useful bounds for the sets of (strictly, weakly) effi-
cient solutions of the problem (PX) under generalized-convexity assumption on f
but without convexity assumption on the feasible set X.

Corollary 4.5. Let X be a nonempty set and Y be a convex set such that X ⊆
Y ⊆ V. Then, we have

1◦. If f : V → Rm is componentwise semi-strictly quasi-convex on Y , then

X ∩ Eff(Y | f) ⊆ Eff(X | f) ⊆ [X ∩ Eff(Y | f)] ∪ bdX;

X ∩ WEff(Y | f) ⊆ WEff(X | f) ⊆ [X ∩ WEff(Y | f)] ∪ bdX.

2◦. If f : V → Rm is componentwise semi-strictly quasi-convex or quasi-convex
on Y , then

X ∩ SEff(Y | f) ⊆ SEff(X | f) ⊆ [X ∩ SEff(Y | f)] ∪ bdX.

By Corollary 4.5 and under the assumption that the set X is open, we get the
following result.

Corollary 4.6. Let X be a nonempty open set and Y be a convex set such that
X ⊆ Y ⊆ V. Then, we have

1◦. If f : V → Rm is componentwise semi-strictly quasi-convex on Y , then

X ∩ Eff(Y | f) = Eff(X | f);
X ∩ WEff(Y | f) = WEff(X | f).

2◦. If f : V → Rm is componentwise semi-strictly quasi-convex or quasi-convex
on Y , then

X ∩ SEff(Y | f) = SEff(X | f).
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4.3. The penalized multi-objective optimization problem (P⊕
Y ).

In our approach, under assumption (4.1), we add an additional real-valued penaliza-
tion function fm+1 : V → R to the original objective function f of the problem (PY )
as a new component function. So, the new penalized multi-objective optimization
problem can be stated as

(P⊕
Y ) f⊕(x) :=

(
f(x)

fm+1(x)

)
=


f1(x)
...

fm(x)
fm+1(x)

 → v-min
x∈Y

.

In the sequel, we will need in certain results some of the following assumptions
concerning the lower-level sets / level lines of the function fm+1:

∀x0 ∈ bdX : L≤(Y, fm+1, fm+1(x
0)) = X,(A1)

∀x0 ∈ bdX : L=(Y, fm+1, fm+1(x
0)) = bdX,(A2)

∀x0 ∈ X : L=(Y, fm+1, fm+1(x
0)) = L≤(Y, fm+1, fm+1(x

0)) = X,(A3)

∀x0 ∈ X : L≤(Y, fm+1, fm+1(x
0)) ⊆ X,(A4)

L≤(Y, fm+1, 0) = X.(A5)

Remark 4.7. Notice, under both Assumptions (A1) and (A2), we have

∀x0 ∈ bdX : L<(Y, fm+1, fm+1(x
0)) = intX,

while under Assumption (A3) it holds

∀x0 ∈ X : L<(Y, fm+1, fm+1(x
0)) = ∅.

In addition, the following statements hold:

• If intX = ∅, then (A1) ∧ (A2) ⇐⇒ (A3).
• (A3) =⇒ (A1).
• (A1) ∨ (A3) ∨ (A5) =⇒ (A4).

By taking a look on the literature in single- as well as multi-objective optimization
theory, one can see that many authors (see, e.g., Apetrii et al. [2], Durea et al. [6],
Ye [29], and references therein) use a penalization function ϕ : V → R ∪ {+∞}
(penalty term concerning X) which fulfils Assumption (A3) for Y = V (ϕ in the
role of fm+1). This means, for x0 ∈ Y = V, we have

x0 ∈ X ⇐⇒ ϕ(x0) = 0

and

x0 ∈ V \X ⇐⇒ ϕ(x0) > 0.

Such a penalization function ϕ will be given in Example 4.9 with ϕ = fm+1 = dX
(compare with Clarke’s Exact Penalty Principle in optimization; see Ye [29] for
more details).

Next, we present some examples for the penalization function fm+1.
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Example 4.8. Let X ⊆ V be a closed convex set with x̃ ∈ intX ̸= ∅ and X ̸= V.
Let a gauge function µ : V → R be given by

µ(x) := inf{λ > 0 |x ∈ λ · (−x̃+X)} for all x ∈ V .
Then, the function

fm+1( · ) := µ( · − x̃)

fulfils (A1) and (A2) for Y = V (see Günther and Tammer [12]).

Example 4.9. Let X be a nonempty closed set in a normed space (V, || · ||) and let
the distance function dX : V → R be given by

dX(x) := inf{||x− z|| | z ∈ X} for all x ∈ V.
We recall some important properties of dX (see, e.g., Mordukhovich and Nam [21],
and references therein):

• dX is Lipschitz continuous on V with Lipschitz constant 1;
• dX is convex on V if and only if X is convex in V;
• L≤(V, dX , 0) = L=(V, dX , 0) = X.

Hence, the penalization function

fm+1 := dX

fulfils Assumptions (A3) and (A5) for Y = V.

Example 4.10. Let X be a nonempty closed set in a normed space (V, || · ||) with
X ̸= V. Based on the distance function dX : V → R (see Example 4.9) one can
define a function △X : V → R by

△X(x) := dX(x)− dV\X(x) =

{
dX(x) for x ∈ V \X,

−dV\X(x) for x ∈ X.

The function △X was introduced by Hiriart-Urruty [13] and is known in the liter-
ature as signed distance function or Hiriart-Urruty function. Next, we recall some
well-known properties of △X (see Hiriart-Urruty [13], Liu et al. [18], Zaffaroni [30]):

• △X is Lipschitz continuous on V with Lipschitz constant 1;
• △X is convex on V if and only if X is convex in V;
• L≤(V,△X , 0) = X and L=(V,△X , 0) = bdX.

It follows that the penalization function

fm+1 := △X

fulfils Assumptions (A1), (A2) and (A5) for Y = V.

Example 4.11. In this example, we consider a nonlinear function introduced as a
scalarizing tool in multi-objective optimization by Gerth and Weidner [9]. Let V
be a normed space (V, || · ||). Assume that C ⊆ V is a proper closed convex cone,
k ∈ intC \ (−C) and X ⊆ V, X ̸= V, is a nonempty closed set such that

X − (C \ {0}) = intX.

The function ϕX,k : V → R defined, for any x ∈ V, by
ϕX,k(x) := inf{s ∈ R |x ∈ sk +X}
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is finite-valued and fulfils the important properties (compare Khan et al. [16, Sec.
5.2]):

• ϕX,k is Lipschitz continuous on V;
• ϕX,k is convex on V if and only if X is convex in V;
• L≤(V, ϕX,k, 0) = X and L=(V, ϕX,k, 0) = bdX.

This means that the penalization function

fm+1 := ϕX,k

fulfils Assumptions (A1), (A2) and (A5) for Y = V.

Examples 4.9, 4.10 and 4.11 show that a nonconvex set X can be considered
in our approach. Let X be an arbitrarily nonempty closed set with ∅ ≠ X ̸= V.
In a normed space (V, || · ||) we know that the Hiriart-Urruty function △X fulfils
Assumptions (A1) and (A2), and moreover, the function dX fulfils Assumption (A3).
Hence, the results obtained in this paper extend and generalize the results given in
the paper by Günther and Tammer [12], where X is supposed to be a convex set
and a gauge function is used as penalization function (see Example 4.8).

5. Main results: Relationships between the multi-objective
optimization problems (PX), (PY ) and (P⊕

Y )

In this section, under the assumptions given in (4.1), we study the relationships
between the original multi-objective optimization problem (PX) with a nonempty
closed (not necessarily convex) feasible set X ⊆ V, X ̸= V, and two related multi-
objective optimization problems (PY ) and (P⊕

Y ) with a convex feasible set Y ⊆ V
for that X ⊆ Y .

We will generalize several results given by Günther and Tammer [12] that were
derived under the assumptions

(5.1)

 V = Y = Rn;
X is a closed convex set in V with intX ̸= ∅;
fm+1 is a special gauge function (see Example 4.8).

Our new results presented in this section offer a way to solve nonconvex problems
using algorithms for convex problems.

5.1. Sets of efficient solutions of (PX), (PY ) and (P⊕
Y ).

In this section, we present relationships between the sets of efficient solutions of
the problems (PX), (PY ) and (P⊕

Y ).
A first main result of the paper is given in the next theorem where the penal-

ization function fm+1 satisfies Assumptions (A1) and (A2). Notice that a special
case of Theorem 5.1 is considered in Günther and Tammer [12, Th. 1] under the
assumptions given in (5.1). Moreover, in the proof of the following theorem we are
using ideas given in [12, Th. 1].

Theorem 5.1. Let (4.1) be satisfied. Suppose that fm+1 fulfils Assumptions (A1)
and (A2). Then, the following statements are true:

1◦. It holds that

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊆ Eff(X | f).
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2◦. In the case intX ̸= ∅, suppose additionally that f : V → Rm is component-
wise semi-strictly quasi-convex on Y . Then, we have

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊇ Eff(X | f).

Proof. 1◦. The inclusion X ∩ Eff(Y | f) ⊆ Eff(X | f) follows by Lemma 4.4.
Consider x0 ∈ (bdX) ∩ Eff(Y | f⊕). By Lemma 4.3 (applied for (P⊕

Y )
instead of (PX)) and Assumptions (A1) and (A2), it follows

S≤(X, f, x0) = S≤(Y, f, x
0) ∩X

= S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0))

⊆ S=(Y, f, x
0) ∩ L=(Y, fm+1, fm+1(x

0))

= S=(Y, f, x
0) ∩ bdX

⊆ S=(Y, f, x
0) ∩X

= S=(X, f, x0).

Hence, we get x0 ∈ Eff(X | f) by Lemma 4.3 (applied for (PX)).
2◦. Let x0 ∈ Eff(X | f) ⊆ X. In the case x0 ∈ X ∩ Eff(Y | f), the inclusion

holds. So, we consider the case x0 ∈ X \ Eff(Y | f).
If intX = ∅, it holds x0 ∈ bdX.
If intX ̸= ∅, we get x0 ∈ bdX from Corollary 4.5, taking into account the
componentwise semi-strictly quasi-convexity of f on Y .
By Lemma 4.3 (applied for (PX)) and Assumption (A1), we can conclude

S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0)) = S≤(Y, f, x
0) ∩X

= S≤(X, f, x0)

⊆ S=(X, f, x0)

= S=(Y, f, x
0) ∩X.

Now, we will prove the equation

(5.2) S=(Y, f, x
0) ∩X = S=(Y, f, x

0) ∩ bdX.

In the case that intX ̸= ∅, (5.2) is obviously fulfilled. For the case intX ̸= ∅,
it is sufficient to prove S=(Y, f, x

0) ∩ intX = ∅ in order to get the validity
of (5.2). Indeed, if we suppose that there exists x1 ∈ intX with x1 ∈
S=(Y, f, x

0), then we have to discuss following two cases:
Case 1: If x1 ∈ (intX) \Eff(Y | f), then we get x1 ∈ (intX) \Eff(X | f)

by Lemma 4.4 under the assumption that f is componentwise semi-strictly
quasi-convex on Y . This implies x0 ∈ X \ Eff(X | f) because of x1 ∈
S=(X, f, x0), a contradiction to x0 ∈ Eff(X | f).

Case 2: If x1 ∈ Eff(Y | f), then we get x0 ∈ Eff(Y | f) by x1 ∈
S=(Y, f, x

0). This is a contradiction to x0 ∈ X \ Eff(Y | f).
This means that (5.2) holds.
Furthermore, since x0 ∈ bdX and (A2) holds, we have

S=(Y, f, x
0) ∩ bdX = S=(Y, f, x

0) ∩ L=(Y, fm+1, fm+1(x
0)).
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From Lemma 4.3 (applied for (P⊕
Y ) instead of (PX)), we conclude x0 ∈

Eff(Y | f⊕). This means x0 ∈ (bdX) ∩ Eff(Y | f⊕) and 2◦ holds.
�

The semi-strict quasi-convexity assumption with respect to f in 2◦ of Theorem
5.1 can not be replaced by a quasi-convexity assumption (see Günther and Tammer
[12, Ex. 1, Ex. 2, Ex. 3]). Moreover, the following inclusions do not hold under the
assumptions supposed in Theorem 5.1 in general (see [12, Ex. 1, Ex. 5]):

Eff(X | f) ⊆ X ∩ Eff(Y | f⊕);

(bdX) ∩ Eff(Y | f) ⊆ (bdX) ∩ Eff(Y | f⊕);

Eff(X | f) ⊆ [(intX) ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
.

In the next lemma, we present sufficient conditions for the fact that a solution
x0 ∈ Eff(X | f) is belonging to Eff(Y | f⊕).

Lemma 5.2. Let (4.1) be satisfied. Suppose that fm+1 fulfils Assumption (A4). If
x0 ∈ Eff(X | f) and

S=(X, f, x0) ⊆ L=(Y, fm+1, fm+1(x
0)),

then x0 ∈ X ∩ Eff(Y | f⊕).

Proof. The proof is analogous to the proof given by Günther and Tammer [12, Lem.
8] for the case Y = V = Rn. �

In the next theorem, we present a second main result that holds under the as-
sumption that the penalization function fm+1 fulfils (A3).

Theorem 5.3. Let (4.1) be satisfied. Suppose that fm+1 fulfils Assumption (A3).
Then, the following statements are true:

1◦. It holds

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊆ Eff(X | f) = X ∩ Eff(Y | f⊕).

2◦. In the case intX ̸= ∅, suppose additionally that f : V → Rm is component-
wise semi-strictly quasi-convex on Y . Then, we have

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊇ Eff(X | f).

Proof. 1◦. We are going to show Eff(X | f) = X ∩ Eff(Y | f⊕).
Let us prove the inclusion “⊇”. Consider x0 ∈ X ∩ Eff(Y | f⊕). By

Lemma 4.3 (applied for (P⊕
Y ) instead of (PX)) and Assumption (A3), it

follows

S≤(X, f, x0) = S≤(Y, f, x
0) ∩X

= S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0))

⊆ S=(Y, f, x
0) ∩ L=(Y, fm+1, fm+1(x

0))

= S=(Y, f, x
0) ∩X

= S=(X, f, x0).

By Lemma 4.3 (applied for (PX)), we get x0 ∈ Eff(X | f).
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Now, we prove the reverse inclusion “⊆”. Let x0 ∈ Eff(X | f). Due to

S=(X, f, x0) = S=(Y, f, x
0) ∩X

= S=(Y, f, x
0) ∩ L=(Y, fm+1, fm+1(x

0))

⊆ L=(Y, fm+1, fm+1(x
0)),

it follows x0 ∈ X ∩ Eff(Y | f⊕) by Lemma 5.2. Notice that (A3) implies
(A4) by Remark 4.7.

Moreover, the inclusion X ∩ Eff(Y | f) ⊆ Eff(X | f) follows by Lemma
4.4 while (bdX) ∩ Eff(Y | f⊕) ⊆ Eff(X | f) is a direct consequence of the
equality Eff(X | f) = X ∩ Eff(Y | f⊕).

2◦. The proof is analogous to the first part of the proof of 2◦ in Theorem 5.1.
Notice that we have

S=(Y, f, x
0) ∩X = S=(Y, f, x

0) ∩ L=(Y, fm+1, fm+1(x
0)).

�

5.2. Sets of weakly efficient solutions of (PX), (PY ) and (P⊕
Y ).

In the first part of this section, we present some relationships between the sets
of weakly efficient solutions of the problems (PX), (PY ) and (P⊕

Y ). The second
part of this section is devoted to the study of the concept of Pareto reducibility for
multi-objective optimizations problems that was introduced by Popovici [22, Def.
1].

5.2.1. Relationships between the sets of solutions.

Some first relationships between the sets of weakly efficient solutions of the problems
(PX), (PY ) and (P⊕

Y ) are given in the next theorem.

Theorem 5.4. Let (4.1) and Assumption (A4) be satisfied. Then, we have

X ∩WEff(Y | f) ⊆ WEff(X | f) ⊆ X ∩WEff(Y | f⊕).

Proof. In view of Lemma 4.4, it follows X ∩WEff(Y | f) ⊆ WEff(X | f). Now, let
us prove the second inclusion WEff(X | f) ⊆ X ∩WEff(Y | f⊕).

Consider x0 ∈ WEff(X | f) ⊆ X. By Lemma 4.3 (applied for (PX)) and by
Assumption (A4), we get

∅ = S<(X, f, x0)

= S<(Y, f, x
0) ∩X

⊇ S<(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0))

⊇ S<(Y, f, x
0) ∩ L<(Y, fm+1, fm+1(x

0)).

In view of Lemma 4.3 (applied for (P⊕
Y ) instead of (PX)), it follows x0 ∈ X ∩

WEff(Y | f⊕). �

Theorem 5.4 is a generalization of a result (under the assumptions given in (5.1))
by Günther and Tammer [12, Th. 3].
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Remark 5.5. Let (4.1) be satisfied and assume that intX ̸= ∅. Suppose that fm+1

is semi-strictly quasi-convex on Y and fulfils both Assumptions (A1) and (A2).
Then, it follows

∀x1 ∈ bdX ∀ x̃ ∈ intX : [x̃, x1) ⊆ L<(Y, fm+1, fm+1(x
1))

by Lemma 3.3. In particular, the function fm+1 satisifies

∀x1 ∈ bdX ∃ x̃ ∈ intX : [x̃, x1) ⊆ L<(Y, fm+1, fm+1(x
1)).(A6)

Taking into account Remark 4.7, for any x0, x1 ∈ bdX, we have

L<(Y, fm+1, fm+1(x
0)) = L<(Y, fm+1, fm+1(x

1)) = intX.

The result given in Theorem 5.6 presents important relationships between the
sets of weakly efficient solutions of the problems (PX), (PY ) and (P⊕

Y ). In Günther
and Tammer [12, Th. 4], a special case (see the assumptions given in (5.1)) of
Theorem 5.6 is considered.

Theorem 5.6. Let (4.1) be satisfied. The following statements are true:

1◦. Assume that intX ̸= ∅. Let f : V → Rm be componentwise upper semi-
continuous along line segments on Y . Furthermore, we suppose that fm+1

fulfils Assumptions (A1), (A2) and (A6). Then, we have

[X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
⊆ WEff(X | f).

2◦. Let Assumption (A4) be fulfilled. In the case intX ̸= ∅, suppose additionally
that f : V → Rm is componentwise semi-strictly quasi-convex on Y . Then,
we have

[X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
⊇ WEff(X | f).

Proof. Consider i ∈ Im. Notice that the following statements are equivalent (see
Section 3):

• fi is upper semi-continuous on line segments in Y .
• L≥ ([0, 1], (fi ◦ la,b), s) is closed for all s ∈ R and all a, b ∈ Y .
• L< ([0, 1], (fi ◦ la,b), s) ∪ (R \ [0, 1]) is open for all s ∈ R and all a, b ∈ Y .

Now, we are going to prove both statements 1◦ and 2◦:

1◦. In view of Lemma 4.4, it follows X ∩WEff(Y | f) ⊆ WEff(X | f). Now, let
us consider x0 ∈ (bdX) ∩WEff(Y | f⊕). By Lemma 4.3 (applied for (P⊕

Y )
instead of (PX)), it follows

(5.3) ∅ = S<(Y, f, x
0) ∩ L<(Y, fm+1, fm+1(x

0)).

Now, we will prove that

(5.4) S<(Y, f, x
0) ∩ L<(Y, fm+1, fm+1(x

0)) = S<(Y, f, x
0) ∩X.

Then, by (5.3) and (5.4), we get S<(X, f, x0) = ∅, hence x0 ∈ WEff(X | f)
by Lemma 4.3 (applied for (PX)).

By Assumption (A1), the inclusion “⊆” in (5.4) follows directly.
Let us prove the reverse inclusion “⊇” in (5.4). Assume the contrary

holds, i.e., it exists x1 ∈ S<(Y, f, x
0)∩X such that x1 /∈ L<(Y, fm+1, fm+1(x

0)).
So, we have x1 ∈ L=(Y, fm+1, fm+1(x

0)) = bdX by Assumptions (A1)
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and (A2). By Assumption (A6) (see Remark 5.5), for the given points
x0, x1 ∈ bdX, there exists x̃ ∈ intX such that

lx1,x̃(λ) ∈ L<(Y, fm+1, fm+1(x
1)) = L<(Y, fm+1, fm+1(x

0))

for all λ ∈ (0, 1].
Consider i ∈ Im. Since x1 ∈ L<(Y, fi, fi(x

0)), we get

0 ∈ L<([0, 1], (fi ◦ lx1,x̃), fi(x
0)) ∪ (R \ [0, 1]).

The openness of the set L<([0, 1], (fi ◦ lx1,x̃), fi(x
0))∪ (R\ [0, 1]) implies that

there exists a λi ∈ R with 0 < λi < 1 such that fi(lx1,x̃(λ)) < fi(x
0) for all

λ ∈ (0, λi].
Now, the point x2 := lx1,x̃(min{λi | i ∈ Im}) fulfils

x2 ∈ S<(Y, f, x
0) ∩ L<(Y, fm+1, fm+1(x

0))

in contradiction to (5.3).
Consequently, we infer that (5.4) holds.

2◦. Consider x0 ∈ WEff(X | f) ⊆ X. Of course, If x0 ∈ WEff(Y | f),then
x0 ∈ X ∩WEff(Y | f). Let us assume that x0 ∈ X \WEff(Y | f). In view
of Theorem 5.4, we know that x0 ∈ WEff(X | f) implies x0 ∈ X ∩WEff(Y |
f⊕).

Now, consider two cases:
Case 1: Let intX ̸= ∅. By Corollary 4.5, we get x0 ∈ bdX by the

componentwise semi-strictly quasi-convexity of f on Y .
Case 2: Let intX = ∅. Obviously, we have x0 ∈ X = bdX.
Finally, we get x0 ∈ (bdX) ∩WEff(Y | f⊕).

�
The semi-strict quasi-convexity assumption with respect to f in 2◦ of Theorem

5.6 can not be replaced by a quasi-convexity assumption (see Günther and Tammer
[12, Ex. 2, Ex. 3]). Due to Theorem 5.4, the set X ∩WEff(Y | f) can be replaced
by (intX) ∩WEff(Y | f) in Theorem 5.6.

Theorem 5.7. Let (4.1) be satisfied. Suppose that fm+1 fulfils Assumption (A3).
Then, we have

X ∩WEff(Y | f⊕) = X.

Proof. The inclusion “⊆” is obvious. Let us prove the reverse inclusion “⊇”.
Let x0 ∈ X. By Assumption (A3), it follows L<(Y, fm+1, fm+1(x

0)) = ∅. So, we
get

S<(Y, f, x
0) ∩ L<(Y, fm+1, fm+1(x

0)) = ∅,
hence we infer x0 ∈ X ∩WEff(Y | f⊕) by Lemma 4.3 (applied for (P⊕

Y ) instead of
(PX)). �
Remark 5.8. Assume that fm+1 fulfils Assumption (A3). By 2◦ of Theorem 5.6
and by Theorem 5.7, we get

WEff(X | f) ⊆ [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
= [(intX) ∩WEff(Y | f)] ∪ bdX.
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However, the reverse inclusion

WEff(X | f) ⊇ [(intX) ∩WEff(Y | f)] ∪ bdX.

does not hold in general, since bdX ⊆ WEff(X | f) is not true in general (see, e.g.,
Günther and Tammer [12, Ex. 5]). Hence, it seems to be more appropriate to work
with a penalization function fm+1 that fulfils Assumptions (A1) and (A2) instead
of Assumption (A3) in order to compute the set WEff(X | f).

5.2.2. Pareto reducibility for multi-objective optimizations problems.

According to Popovici [22], the multi-objective optimization problem (PX) is called
Pareto reducible if the set of weakly efficient solutions of (PX) can be represented
as the union of the sets of efficient solutions of its subproblems.

Considering the objective function

fI = (fi1 , · · · , fik) : V → Rk,

for a selection of indices I = {i1, . . . , ik} ⊆ Im+1, i1 < · · · < ik, with cardinality
cardI = k ≥ 1, we define the problem

(PI
X) fI(x) → v-min

x∈X
.

The problem (PI
X) is a single-objective optimization problem when I is a singleton

set, otherwise being a multi-objective optimization problem. Notice that fIm = f
and fIm+1 = f⊕. If ∅ ̸= I ⊆ Im, then the problem (PI

X) can be seen as a subproblem
of the original problem (PX).

For any index set I with ∅ ̸= I ⊆ Im, we define the following subproblem of the
penalized problem (P⊕

Y ):

f⊕
I (x) :=

(
fI(x)

fm+1(x)

)
→ v-min

x∈Y
.

Next, we recall sufficient conditions for Pareto reducibility (see the papers by
Popovici [22, Prop. 4] and [24, Cor. 4.5]):

Proposition 5.9 ([22, 24]). Consider the space V given in (4.1) and assume that
X is a nonempty convex set in V. If f is componentwise semi-strictly quasi-convex
and upper semi-continuous along line segments on X, then

WEff(X | f) =
∪

∅̸=I⊆Im

Eff(X | fI).

In addition, if V is the n-dimensional Euclidean space Rn and f is componentwise
lower semi-continuous along line segments on X, then

WEff(X | f) =
∪

∅̸=I⊆Im;

card I≤n+1

Eff(X | fI).

In the next theorem, we present a Pareto reducibility type result for multi-
objective optimization problems.
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Theorem 5.10. Let (4.1) be satisfied and let intX ̸= ∅. Suppose that fm+1 fulfils
Assumptions (A1) and (A2). Moreover, assume that f⊕ is componentwise semi-
strictly quasi-convex as well as upper semi-continuous along line segments on Y .
Then, we have

WEff(X | f) =

X ∩
∪

∅̸=I⊆Im

Eff(Y | fI)

 ∪

(bdX) ∩
∪

∅̸=I⊆Im+1

Eff(Y | fI)

 .

In addition, if V is the n-dimensional Euclidean space Rn and f⊕ is componentwise
lower semi-continuous along line segments on Y , then

WEff(X | f) =

X ∩
∪

∅̸=I⊆Im;

card I≤n+1

Eff(Y | fI)

 ∪

(bdX) ∩
∪

∅̸=I⊆Im+1;

card I≤n+1

Eff(Y | fI)

 .

Proof. By Theorem 5.6 and Remark 5.5, we have

WEff(X | f) = [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
.

Applying Proposition 5.9 for both problems (PY ) and (P⊕
Y ), we get the desired

equalities given in this theorem. �
Under the assumption Y = V, Theorem 5.10 provides a representation for the

set of weakly efficient solutions of the constrained problem (PX) using the sets
of efficient solutions of families of unconstrained (free) optimization problems. In
Lemma 6.16, we will see that the set X given in Theorem 5.10 is a convex set if
fm+1 is semi-strictly quasi-convex on X and satisfies the Assumption (A5) (i.e.,
X = L≤(Y, fm+1, 0)).

Theorem 5.11. Let (4.1) be satisfied and let X be convex. Suppose that fm+1

fulfils Assumption (A3). Moreover, assume that f is componentwise semi-strictly
quasi-convex as well as upper semi-continuous along line segments on Y . Then, we
have

WEff(X | f) = X ∩
∪

{m+1}⊆I⊆Im+1;

card I≥2

Eff(Y | fI).

Proof. Due to Theorem 5.3, we have

(5.5) X ∩ Eff(Y | f⊕
I ) = Eff(X | fI) for all ∅ ̸= I ⊆ Im.

By Proposition 5.9, it follows

WEff(X | f) =
∪

∅̸=I⊆Im

Eff(X | fI)

(5.5)
= X ∩

∪
∅≠I⊆Im

Eff(Y | f⊕
I )

= X ∩
∪

{m+1}⊆I⊆Im+1;

card I≥2

Eff(Y | fI).

�
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Notice that the condition card I ≥ 2 for the index set I considered in Theorem
5.11 is essential, since, for any x0 ∈ X, we have

Eff(Y | fm+1) = L=(Y, fm+1, fm+1(x
0)) = X

under the Assumption (A3). This means that

X ∩
∪

{m+1}⊆I⊆Im+1

Eff(Y | fI) = X.

5.3. Sets of strictly efficient solutions of (PX), (PY ) and (P⊕
Y ).

We present some first relationships between the sets of strictly efficient solutions
of the problems (PX), (PY ) and (P⊕

Y ).

Theorem 5.12. Let (4.1) and Assumption (A4) be satisfied. Then, we have

X ∩ SEff(Y | f) ⊆ SEff(X | f) ⊆ X ∩ SEff(Y | f⊕).

Proof. By Lemma 4.4, we get X ∩ SEff(Y | f) ⊆ SEff(X | f). We now show the
second inclusion.

Consider x0 ∈ SEff(X | f) ⊆ X. In view of Lemma 4.3 (applied for (PX)) and
the assumption (A4), we get

S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0)) ⊆ S≤(Y, f, x
0) ∩X

= S≤(X, f, x0) = {x0}.

Therefore, it follows x0 ∈ X∩SEff(Y | f⊕) by Lemma 4.3 (applied for (P⊕
Y ) instead

of (PX)). �
Notice that a result by Günther and Tammer [12, Th. 3] (under the assumptions

given in (5.1)) is a special case of Theorem 5.12.
The following Theorem 5.13 presents important relationships between the sets of

strictly efficient solutions of the problems (PX), (PY ) and (P⊕
Y ). It should be noted

that Günther and Tammer [12, Th. 4] consider a special case of Theorem 5.13 (see
the assumptions given in (5.1)).

Theorem 5.13. Let (4.1) be satisfied. The following statements are true:

1◦. If Assumption (A1) holds, then we have

[X ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
⊆ SEff(X | f).

2◦. Assume that Assumption (A4) holds. In the case intX ̸= ∅, suppose ad-
ditionally that f : V → Rm is componentwise semi-strictly quasi-convex or
quasi-convex on Y . Then, we have

[X ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
⊇ SEff(X | f).

Proof. 1◦. By Lemma 4.4, we have X ∩ SEff(Y | f) ⊆ SEff(X | f). Consider
x0 ∈ (bdX) ∩ SEff(Y | f⊕). In view of Lemma 4.3 (applied for (P⊕

Y )
instead of (PX)) and Assumption (A1), we have

S≤(X, f, x0) = S≤(Y, f, x
0) ∩X

= S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0)) = {x0}.
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From Lemma 4.3 (applied for (PX)), we get x0 ∈ SEff(X | f).
2◦. Consider x0 ∈ SEff(X | f) ⊆ X. If we have x0 ∈ SEff(Y | f), then

x0 ∈ X ∩ SEff(Y | f). We now suppose that x0 ∈ X \ SEff(Y | f). By
Theorem 5.12, we immediately get x0 ∈ X ∩ SEff(Y | f⊕).

Let us consider two cases:
Case 1: If intX ̸= ∅, then we conclude x0 ∈ bdX because of Corollary

4.5.
Case 2: If intX = ∅, then clearly it follows x0 ∈ bdX.
So, we infer that x0 ∈ (bdX) ∩ SEff(Y | f⊕).

�
The proof of Theorem 5.13 uses ideas given in the paper by Günther and Tammer

[12, Th. 8]. In contrast to 1◦ in Theorem 5.1 (Theorem 5.3) as well as 1◦ in Theorem
5.6, we only need the Assumption (A1) concerning the level sets of the function fm+1

in 1◦ of Theorem 5.13. In accordance to 2◦ in Theorem 5.6, only Assumption (A4)
concerning the level sets of fm+1 must be fulfilled in 2◦ of Theorem 5.13. In 2◦ of
Theorem 5.1 (Theorem 5.3), Assumptions (A1) and (A2) (Assumption (A3)) must
be fulfilled. In view of Theorem 5.12, the set X ∩ SEff(Y | f) can be replaced by
the set (intX) ∩ SEff(Y | f) in Theorem 5.13.

Next, we present a corresponding result to the equality given in 1◦ of Theorem
5.3 for the concept of strict efficiency that holds under the assumption that the
penalization function fm+1 fulfils (A3).

Theorem 5.14. Let (4.1) be satisfied. Suppose that fm+1 fulfils Assumption (A3).
Then, we have

SEff(X | f) = X ∩ SEff(Y | f⊕).

Proof. First, we show the inclusion “⊇”, therefore consider x0 ∈ X ∩ SEff(Y | f⊕).
Because of Lemma 4.3 (applied for (P⊕

Y ) instead of (PX)) and Assumption (A3) it
follows

S≤(X, f, x0) = S≤(Y, f, x
0) ∩X

= S≤(Y, f, x
0) ∩ L≤(Y, fm+1, fm+1(x

0)) = {x0}.

By Lemma 4.3 (applied for (PX)), we have x0 ∈ SEff(X | f).
In view of Theorem ??, we get immediately the reverse inclusion “⊆”. Notice

that (A3) implies (A4) by Remark 4.7. �
Under the assumption that f is componentwise semi-strictly quasi-convex or

quasi-convex on Y and that fm+1 fulfils Assumption (A3), we get

(intX) ∩ SEff(Y | f) = (intX) ∩ SEff(Y | f⊕)

by Theorems 5.13 and 5.14

6. Sufficient conditions for the validity of the Assumptions (A1) and
(A2) based on (local) generalized-convexity concepts

As we have seen in Section 5, we need some additional assumptions concerning
the level sets / level lines of the penalization function fm+1 in order to obtain the
main results of the paper. In particular, the Assumptions (A1) and (A2) play an
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important role in our penalization approach. We already know that under certain
assumptions the gauge function given in Example 4.8, the Hiriart-Urruty function
given in Example 4.10 and the nonlinear scalarizing function given in Example 4.11
fulfil these Assumptions (A1) and (A2). In this section, our aim is to identify further
classes of functions that satisfy both Assumptions (A1) and (A2).

In the first part of the section, we introduce local concepts of generalized-convexity
while in the second part we will use these concepts in order to derive sufficient con-
ditions for the validity of (A1) and (A2).

6.1. Local versions of generalized-convexity.

In the next definition, for any normed space V equipped with the norm || · || (we
write (V, || · ||)), we introduce local versions of semi-strict quasi-convexity and quasi-
convexity for a real-valued function h : V → R.
Definition 6.1. Let (V, || · ||) be a normed space and let X ⊆ V be open. A
real-valued function h : V → R is called

• locally semi-strictly quasi-convex (locally quasi-convex ) at a point x0 ∈ X if
there exists ε > 0 such that h is semi-strictly quasi-convex (quasi-convex)
on B||·||(x

0, ε).

• locally explicitly quasi-convex at x0 ∈ X if it is both locally semi-strictly
quasi-convex and locally quasi-convex at x0 ∈ X.

Notice that the open ball B||·||(x
0, ε) is an open and convex set in a normed space

(V, || · ||). We defined local semi-strict quasi-convexity and local quasi-convexity
on open but not necessarily convex sets. Clearly, if h is locally semi-strictly quasi-
convex at x0 ∈ X and lower semi-continuous on B||·||(x

0, ε), then h is locally quasi-

convex at x0 ∈ X.
The local concepts of generalized-convexity given in Definition 6.1 will be used

in Lemma 6.10, Lemma 6.11 and Theorem 6.12
In the following lemma, we present relationships between global and correspond-

ing local versions of generalized-convexity.

Lemma 6.2. Let (V, || · ||) be a normed space and let X ⊆ V be an open convex
set. A function h : V → R, which is semi-strictly quasi-convex (quasi-convex) on
the set X, is locally semi-strictly quasi-convex (locally quasi-convex) at every point
x0 ∈ X.

The reverse implications are not true, as shown in the next example.

Example 6.3. For the function h = hmax : R → R considered in Example 3.8.
we know that h is not semi-strictly quasi-convex on X := R. However, h is semi-
strictly quasi-convex on B||·||(x, ε) = (x−ε, x+ε) for every x ∈ X and for ε ∈ (0, 1).
Moreover, the function h : R → R defined by

h(x) :=


x+ 1 for all x < −1,

0 for all x ∈ [−1, 1],

1− x for all x > 1

is not quasi-convex on X := R, but quasi-convex on B||·||(x, ε) = (x − ε, x + ε) for
every x ∈ X and for ε ∈ (0, 1).



452 C. GÜNTHER AND C. TAMMER

A further relationship between global and corresponding local versions of generalized-
convexity is given in the next lemma.

Lemma 6.4. Let (V, || · ||) be a normed space, let X ⊆ V be an open convex set, and
let h : V → R be upper semi-continuous along line segments on X. The function h
is semi-strictly quasi-convex on the set X if the following statements are fulfilled:

1◦. h is locally explicitly quasi-convex at each point x0 ∈ X.
2◦. Every local minimum of h is also global for each restriction on a line segment

in X.

Proof. Assume that h is not semi-strictly quasi-convex on X. By Lemma 3.3, there
exist s ∈ R, x0 ∈ L=(X,h, s) and x1 ∈ L<(X,h, s) such that xλ := lx0,x1(λ) ∈
L≥(X,h, s) for some λ ∈ (0, 1). Since h(xλ) ≥ h(x0) > h(x1) and h◦ lx0,x1 : [0, 1] →
R is upper semi-continuous on [0, 1], we can choose

λmax ∈
{
λ ∈ (0, 1) |h(lx0,x1(λ)) = max

λ∈[0,1]
h(lx0,x1(λ))

}
by a well-known Weierstrass type existence theorem (see, e.g., Aliprantis and Border
[1, Th. 2.43]). Now, put x2 := xλmax . Consider ε > 0 such that h is explicitly quasi-
convex on Bε := B||·||(x

2, ε). Now, by Lemma 2.2, we get that Bδ := [x2 − δv, x2 +

δv] ⊆ Bε holds for v := x1−x0

||x1−x0|| (note that x1 ̸= x0) and δ ∈ (0, ε). Define

δ := min(δ, ||x2 − x0||, ||x2 − x1||) ∈ (0, δ]

and

Bδ := [x2 − δv, x2 + δv].

Consider δ′, δ′′ > 0. We know that x2 + δ′v = x1 implies δ′ = ||x2 − x1|| as well as
x2−δ′′v = x0 implies δ′′ = ||x2−x0||. Hence, we get Bδ ⊆ [x0, x1] and Bδ ⊆ Bδ ⊆ Bε.

Since h(x1) < s ≤ h(x2), we know by our assumptions that x2 can not be a local
minimum point of h on the line segment [x0, x1]. Hence, there exists x3 ∈ Bδ \ {x

2}
with h(x3) < h(x2). For the point x4 := x2+(x2−x3) ∈ Bδ we have h(x

4) ≤ h(x2).
Now, we consider three cases:

Case 1: If h(x3) = h(x4), then x2 ∈ (x3, x4) ⊆ L≤(Bε, h, h(x
3)) by the quasi-

convexity of h on Bε, a contradiction to h(x3) < h(x2).
Case 2: If h(x3) < h(x4), then x2 ∈ (x3, x4) ⊆ L<(Bε, h, h(x

4)) by the semi-strict
quasi-convexity of h on Bε, a contradiction to h(x4) ≤ h(x2).

Case 3: If h(x4) < h(x3), then x2 ∈ (x3, x4) ⊆ L<(Bε, h, h(x
3)) by the semi-strict

quasi-convexity of h on Bε, a contradiction to h(x3) < h(x2).
We get that h is semi-strictly quasi-convex on the set X. �

In the next theorem, we present a new characterization of semi-strictly quasi-
convex functions.

Theorem 6.5. Let (V, || · ||) be a normed space, let X ⊆ V be open and convex,
and let h : V → R be continuous along line segments on X. Then, h is semi-strictly
quasi-convex on X if and only if both of the following statements hold:

1◦. h is locally semi-strictly quasi-convex at each point x0 ∈ X.
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2◦. Every local minimum of h is also global for each restriction on a line segment
in X.

Proof. Statement 1◦ together with the lower semi-continuity along line segments of
h on X imply the local explicit quasi-convexity of h at every point x0 ∈ X. In
view of Lemma 6.4, we infer that both statements 1◦ and 2◦ imply the semi-strict
quasi-convexity of h on X, taking into account the upper semi-continuity along line
segments of h on X.

Now, we prove the reverse implication. The validity of statement 1◦ follows by
Lemma 6.2 and the semi-strict quasi-convexity of h on X ensures that 2◦ holds. �

An analogous statement as given in Theorem 6.5 holds for the concept of (local)
explicit quasi-convexity.

6.2. Sufficient conditions for the validity of the Assumptions (A1) and
(A2).

Now, we are going to identify further classes of functions that satisfy both Assump-
tions (A1) and (A2).

At the beginning of this section, we present two preliminary lemmata.

Lemma 6.6. Let (4.1) be satisfied. Then, we have

1◦. fm+1 fulfils (A1) and (A2) for Y = V if and only if fm+1 fulfils (A1) and
(A2) for each set Y with X ⊆ Y ⊆ V.

2◦. fm+1 fulfils (A1) and (A2) if and only if f̃m+1 := h ◦ fm+1 : Y → R fulfils

(A1) and (A2) (with f̃m+1 in the role of fm+1), where h : R → R is a strictly
increasing function on the image set fm+1[Y ].

3◦. fm+1 fulfils (A1) and (A2) if and only if f̃m+1 := fm+1 − fm+1(x
0), x0 ∈

bdX, fulfils (A1), (A2) and (A5) (with f̃m+1 in the role of fm+1).

Lemma 6.7. Let (4.1) be satisfied and let Y be open. Suppose that fm+1 is upper
semi-continuous on V and fulfils Assumption (A5). Assume that L<(Y, fm+1, 0) ̸=
∅. Then, X has a nonempty interior, since

(6.1) ∅ ̸= L<(Y, fm+1, 0) ⊆ intX.

Proof. In view of (A5), we have

∅ ̸= L<(Y, fm+1, 0) = L<(V, fm+1, 0) ∩ Y ⊆ L≤(V, fm+1, 0) ∩ Y = X.

By the upper semi-continuity of fm+1 on V and by Lemma 3.5, the set L<(V, fm+1, 0)
is open. Hence, the intersection of L<(V, fm+1, 0) with the open set Y is open too.
Clearly, we conclude (6.1). �

In the formulation of Lemma 6.7, the openness assumption concerning the set Y
is essential, as to see in the next example.

Example 6.8. We consider the function fm+1 := || · ||∞ − 1, where the maximum
norm ||·||∞ : R2 → R is defined by ||x||∞ := max(|x1|, |x2|) for all x = (x1, x2) ∈ R2.
Notice that fm+1 is convex on R2, hence explicitly quasi-convex as well as continuous
on R2. Moreover, put x1 := (0, 0), x2 := (1, 0) and Y := B||·||∞(x2, 1).
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First, we have

L≤(Y, fm+1, 0) = L≤(R2, || · ||∞, 1) ∩ Y

= B||·||∞(x1, 1) ∩B||·||∞(x2, 1)

= [0, 1]× [−1, 1]

=: X.

Moreover, it can easily be seen that

L<(Y, fm+1, 0) = L<(R2, || · ||∞, 1) ∩ Y

= B||·||∞(x1, 1) ∩B||·||∞(x2, 1)

= [(0, 1)× (−1, 1)] ∪ [{0} × (−1, 1)]

) (0, 1)× (−1, 1)

= intX,

which shows that the inclusion given in (6.1) of Lemma 6.7 does not hold. Hence,
the openness assumption of Y in Lemma 6.7 can not be removed.

In the following, we are looking for conditions such that Assumptions (A1) and
(A2) are fulfilled for the penalization function fm+1.

Lemma 6.9. Let (4.1) be satisfied and let Y be open. Suppose that fm+1 is upper
semi-continuous on V and fulfils Assumption (A5). Assume that L<(Y, fm+1, 0) ̸=
∅. Then, Assumption (A1) is fulfilled, and moreover, for every x0 ∈ bdX, we have
fm+1(x

0) = 0.

Proof. Let x0 ∈ bdX. We are going to show that fm+1(x
0) = 0, hence Assumption

(A1) follows by the fact that X = L≤(Y, fm+1, 0).
Assume the contrary, i.e., fm+1(x

0) < 0. By Lemma 6.7 we get

x0 ∈ L<(Y, fm+1, 0) ⊆ intX,

in contradiction to x0 ∈ bdX. �

The next lemma uses the definitions of local explicit quasi-convexity of the func-
tion fm+1 (see Definition 6.1) and presents sufficient condition for the validity of
the Assumptions (A1) and (A2).

Lemma 6.10. Let (4.1) be satisfied and let Y be open. Suppose that (V, || · ||)
is a normed space. Assume that fm+1 is upper semi-continuous on V and fulfils
Assumption (A5). For every x0 ∈ (intX) ∩ L=(Y, fm+1, 0), we suppose that there
exists ε > 0 such that fm+1 is explicitly quasi-convex on B||·||(x

0, ε), and there is

(6.2) x1 ∈ B||·||(x
0, ε) ∩ L<(Y, fm+1, 0)

Then, Assumptions (A1) and (A2) are fulfilled.

Proof. The validity of Assumption (A1) follows by Lemma 6.9. We are going to
prove that Assumption (A2) holds.

For x0 ∈ bdX, we know that fm+1(x
0) = 0 by Lemma 6.9, hence x0 ∈ L=(Y, fm+1, 0)

is fulfilled. This shows bdX ⊆ L=(Y, fm+1, 0).
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Let us prove the inclusion bdX ⊇ L=(Y, fm+1, 0). Consider some x0 ∈
L=(Y, fm+1, 0) ⊆ X. Assume the contrary, i.e., x0 ∈ intX. Since x0 ∈ intX, there
exists ε > 0 such that B||·||(x

0, ε) ⊆ X. Obviously, we have Bε̃ := B||·||(x
0, ε̃) ⊆ X

for ε̃ := min(ε, ε). By Lemma 2.2, we know that

Bδ := [x0 − δv, x0 + δv] ⊆ Bε̃

for δ ∈ (0, ε̃) and v := x1−x0

||x1−x0|| (note that x1 ̸= x0). Due to the semi-strict quasi-

convexity of fm+1 on Bε := B||·||(x
0, ε) and the fact that x0 ∈ L=(Y, fm+1, 0) and

x1 ∈ L<(Y, fm+1, 0), we can choose x2 ∈ Bδ∩ (x0, x1] with x2 ∈ L<(Y, fm+1, 0). For
x3 := x0 + (x0 − x2), we have x3 ∈ Bδ ⊆ Bε̃ ⊆ X and x0 ∈ (x2, x3).

Now, since we have x3 ∈ X = L≤(Y, fm+1, 0), we can consider two cases:
Case 1: Let x3 ∈ L=(Y, fm+1, 0). Under the semi-strict quasi-convexity of fm+1

on Bε, we get x0 ∈ (x2, x3) ⊆ L<(Bε, fm+1, 0). Since (x2, x3) ⊆ Bδ, it follows
x0 ∈ L<(Bδ, fm+1, 0) ⊆ L<(Y, fm+1, 0), a contradiction to x0 ∈ L=(Y, fm+1, 0).

Case 2: Let x3 ∈ L<(Y, fm+1, 0). Since x2, x3 ∈ L<(Bε, fm+1, 0), it follows
x0 ∈ (x2, x3) ⊆ L<(Bε, fm+1, 0) by the quasi-convexity of fm+1 on Bε. Because of
(x2, x3) ⊆ Bδ, we have x0 ∈ L<(Bδ, fm+1, 0) ⊆ L<(Y, fm+1, 0), again a contradic-
tion to x0 ∈ L=(Y, fm+1, 0).

Consequently, we get that x0 ∈ bdX. �

The next lemma gives sufficient conditions for the validity of (6.2).

Lemma 6.11. Let (4.1) be satisfied and let Y be open. Suppose that (V, || · ||) is a
normed space. Assume that fm+1 is upper semi-continuous on V and fulfils Assump-
tion (A5). Consider two points x̃ ∈ L<(Y, fm+1, 0) x

0 ∈ intX ∩L=(Y, fm+1, 0). Let
fm+1 be explicitly quasi-convex on B||·||(x

0, ε) for some ε > 0. Then, there exists

x1 ∈ intX such that condition (6.2) holds if one of the following statements is true:

1◦. Every local minimum point of fm+1 on intX is also global.
2◦. Assume that X is convex. Every local minimum of fm+1 is also global for

each restriction on a line segment in intX.

Proof. Let 1◦ be fulfilled. Assume that there is no x1 ∈ intX such that (6.2) holds.
Then, x0 is a local minimum of fm+1 on intX, hence under 1◦ also global on intX.
This is a contradiction because we have x̃ ∈ L<(Y, fm+1, 0) ⊆ intX (see Lemma
6.7) and fm+1(x̃) < 0 = fm+1(x

0).
Now, let 2◦ be fulfilled. By Lemma 2.1, we have x0 ∈ corX. For v := x0 − x̃ ̸= 0

there exists δ > 0 such that x0 + [0, δ] · v ⊆ X. Define x2 := x0 + δv. By x̃ ∈
L<(Y, fm+1, 0) ⊆ intX (see Lemma 6.7) and the convexity of X, we know that
x0 ∈ (x̃, x2) ⊆ intX (see, e.g., Zălinescu [31, Th. 1.1.2]). Choose x3 ∈ (x0, x2).
Assume that there is no x1 ∈ intX such that (6.2) holds, hence x0 is a local
minimum of fm+1 on intX. Then, x0 ∈ (x̃, x3) is also a local minimum of fm+1 on
the line segment [x̃, x3] ⊆ intX. By 2◦ of this lemma, we infer that x0 is also global
minimum of fm+1 on the line segment [x̃, x3], in contradiction to fm+1(x̃) < 0 =
fm+1(x

0). �

In the following theorem, we identify a further class of functions that fulfils the
Assumptions (A1) and (A2).
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Theorem 6.12. Let (4.1) be satisfied and let Y be open. Suppose that (V, || · ||)
is a normed space. Assume that fm+1 is upper semi-continuous on V and fulfils
Assumption (A5). Let L<(Y, fm+1, 0) ̸= ∅ (i.e., intX ̸= ∅). The function fm+1

fulfils the Assumptions (A1) and (A2) if both of the following statements hold:

1◦. Every local minimum point of fm+1 on intX is also global.
2◦. fm+1 is locally explicitly quasi-convex on intX.

Proof. Directly follows by Lemmata 6.10 and 6.11. �

Notice that every local minimum point of a semi-strictly quasi-convex function
on a convex set is also global (see, e.g., Bagdasar and Popovici [3]).

Theorem 6.13. Let (4.1) be satisfied and let Y be open. Assume that fm+1 is
upper semi-continuous on V and fulfils Assumption (A5). Let L<(Y, fm+1, 0) ̸= ∅.
If fm+1 is explicitly quasi-convex on Y , then Assumptions (A1) and (A2) hold.

Proof. If, in addition, V is normed, then we get the statement of this corollary by
Theorem 6.12. Now, let us assume that V is not necessarily normed.

By Lemma 6.9, we know that Assumption (A1) is fulfilled. We are going to
prove that Assumption (A2) holds. In view of the proof of Lemma 6.10 we know
bdX ⊆ L=(Y, fm+1, 0). Now, we show L=(Y, fm+1, 0) ∩ intX = ∅.

Assume the contrary, i.e., we have x0 ∈ L=(Y, fm+1, 0) ∩ intX. Consider x̃ ∈
L<(Y, fm+1, 0). By Lemma 2.1, it follows x0 ∈ corX. Hence, there exists δ > 0 such
that x1 := x0+δ(x0−x̃) ∈ X. Notice that x0 ∈ (x̃, x1) and x1 ∈ X = L=(Y, fm+1, 0).

Now, we look at two cases:
Case 1: Let fm+1(x

1) < 0. Then, the quasi-convexity of fm+1 on Y implies
x0 ∈ (x̃, x1) ⊆ L<(Y, fm+1, 0), a contradiction to fm+1(x

0) = 0.
Case 2: Let fm+1(x

1) = 0. By the semi-strict quasi-convexity of fm+1 on Y , we
get x0 ∈ (x̃, x1) ⊆ L<(Y, fm+1, 0), again a contradiction to fm+1(x

0) = 0. �

The openness assumption concerning the set Y can not be removed in Lemma
6.9 and Theorems 6.12 and 6.13, as shown in the next example.

Example 6.14. If we assume that Assumption (A1) holds for the problem consid-
ered in Example 6.8, then we have x2 /∈ L≤(Y, fm+1, fm+1(x

1)) = X for the point
x2 ∈ bdX since fm+1(x

1) = −1 < 0 = fm+1(x
2), a contradiction.

Suppose that Assumption (A2) is fulfilled for the convex problem considered
in Example 6.8. Then, we have L=(Y, fm+1, fm+1(x

2)) = bdX for the point
x2 ∈ bdX. So, due to fm+1(x

2) = 0, we must have fm+1(x) = 0 for all x ∈ bdX.
However, it is easily seen that fm+1(x

1) = −1 for the point x1 ∈ bdX, a contradic-
tion.

Consequently, the Assumptions (A1) and (A2) do not hold for the problem given
in Example 6.8. This means that the openness assumption concerning the set Y
can not be removed in Lemma 6.9 and Theorems 6.12 and 6.13.

Corollary 6.15. Let (4.1) be satisfied and let Y = V. Assume that fm+1 is semi-
strictly quasi-convex as well as continuous on V and fulfils Assumption (A5). Let
L<(V, fm+1, 0) ̸= ∅. Then, Assumptions (A1) and (A2) hold.
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The next lemma shows that under the Assumption (A5) a (semi-strictly) quasi-
convex function fm+1 on Y ensures that the set X is convex. Hence, in order to
describe a nonconvex feasible set X using the level set L≤(Y, fm+1, 0), it is necessary
that fm+1 is not a (semi-strictly) quasi-convex function on Y .

Lemma 6.16. Let (4.1) be satisfied. Assume that fm+1 is quasi-convex or semi-
strictly quasi-convex on the convex set Y and fulfils Assumption (A5). Then, X is
a convex set in V.

Proof. Since X = L≤(Y, fm+1, 0) by Assumption (A5), we know that the quasi-
convexity of fm+1 on Y implies convexity of X.

Let fm+1 be semi-strictly quasi-convex on Y . Assume the contrary, i.e., there
exist x1, x2 ∈ X, λ ∈ (0, 1) such that x3 := lx1,x2(λ) /∈ X. Consider the complement
of X = L≤(Y, fm+1, 0), i.e, the set

(6.3) Xc := V \X = L>(Y, fm+1, 0) ∪ (V \ Y ).

The convexity of Y ensures x3 ∈ (x1, x2) ⊆ Y , and therefore,

(6.4) x3 ∈ L>(Y, fm+1, 0).

Since X is closed, the set Xc is open, hence by (6.3), (6.4) and Lemma 2.1 we
get x3 ∈ corXc. Therefore, for v := x1 − x3 ̸= 0, it exists δ > 0 such that
x3+[0, δ] · v ⊆ Xc. Moreover, we have x3+[0, 1] · v = [x3, x1] ⊆ Y . Hence, by (6.3),
it follows

(6.5) x3 + [0, δ] · v ⊆ L>(Y, fm+1, 0) ∩ (x1, x2)

for δ := min(δ, 0.5) > 0. By Assumption (A5) and by x1, x2 ∈ X, we have

(6.6) max(fm+1(x
1), fm+1(x

2)) ≤ 0.

In view of (6.5) and (6.6), we get

x3 + [0, δ] · v ⊆ L>

(
(0, 1), (fm+1 ◦ lx1,x2), 0

)
⊆ L>

(
(0, 1), (fm+1 ◦ lx1,x2),max(fm+1(x

1), fm+1(x
2))

)
.

Notice that card
(
x3 + [0, δ] · v

)
> 1. However, in view of Lemma 3.4, under the

semi-strict quasi-convexity of fm+1 on the convex set Y , it follows

card
(
L>((0, 1), (fm+1 ◦ lx1,x2),max(fm+1(x

1), fm+1(x
2))

)
≤ 1,

a contradiction. This completes the proof. �

7. Problems involving constraints given by a system of inequalities

In the previous sections, the feasible set X ⊆ V was always represented by certain
level sets of a penalization function fm+1 : V → R (see the Assumptions (A1), (A3)
and (A5)). However, in many cases the feasible set X is given by a system of
inequalities, i.e., we have

X := {x ∈ Y | g1(x) ≤ 0, . . . , gq(x) ≤ 0} =
∩
i∈Iq

L≤(Y, gi, 0)
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for some constraint functions g1, . . . , gq : V → R, q ∈ N, and a convex set Y ⊆ V .
For notational convenience, let us consider g := (g1, . . . , gq) : V → Rq as the vector-
valued constraint function.

In order to apply results from Sections 5 and 6, for the penalization function
fm+1 considered in (P⊕

Y ), we put

fm+1 := max(g1, . . . , gq).

Then, Assumption (A5) is satisfied, i.e., we have

(7.1) X =
∩
i∈Iq

L≤(Y, gi, 0) = L≤(Y, fm+1, 0).

For the special approach considered in this section, the standard assumption (4.1)
reads as

(7.2)

 Let V be a real topological linear space;
let X = L≤(Y, fm+1, 0) be nonempty and closed;
let Y ⊆ V be convex.

Notice that under the assumptions that Y is closed and fm+1 is lower semi-
continuous on Y , the set X is closed too. In addition, due to Lemmata 3.5, 3.7 and
6.16, under the assumptions in (7.2) we get the following implications:

• If g is componentwise convex (quasi-convex) on Y , then fm+1 is convex
(quasi-convex) on Y .

• If fm+1 is quasi-convex or semi-strictly quasi-convex on Y , then the set X
is convex.

• Assume that Y is closed. If g is componentwise lower semi-continuous on
Y , then fm+1 is lower semi-continuous on Y .

In some results, we need the well-known Slater condition that is given by

(7.3)
∩
i∈Iq

L<(Y, gi, 0) = L<(Y, fm+1, 0) ̸= ∅.

In order to force the validity of the Assumptions (A1) and (A2), we can use
Lemmata 6.9 and 6.10, Theorems 6.12 and 6.13, and Corollary 6.15.

Next, we present relationships between the original problem (PX) with constraint
set X given by a system of inequalities and the objective function

f = (f1, . . . , fm),

and two related problems (PY ) and (P⊕
Y ) with a convex feasible set Y and the

objective functions

f = (f1, . . . , fm),

and

f⊕ = (f1, . . . , fm, fm+1) = (f1, . . . , fm,max(g1, . . . , gq)),

respectively.

Theorem 7.1. Let (7.2) be satisfied and let Y be open. Suppose that fm+1 is upper
semi-continuous on V. Assume that Slater’s condition (7.3) holds.
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1◦. Let the Assumption (A2) be fulfilled. If f is componentwise semi-strictly
quasi-convex on Y , then

Eff(X | f) = [X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
.(7.4)

2◦. Assume that Assumptions (A2) and (A6) hold. If f is componentwise semi-
strictly quasi-convex as well as upper semi-continuous along line segments
on Y , then

WEff(X | f) = [(intX) ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
.(7.5)

3◦. If f is componentwise semi-strictly quasi-convex or quasi-convex on Y , then

SEff(X | f) = [(intX) ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
.(7.6)

Proof. The validity of Assumption (A1) follows by Slater’s condition (7.3) and
Lemma 6.9. Moreover, we have intX ̸= ∅ by Lemma 6.7. Hence, this theorem
follows directly by Theorems 5.1, 5.6 and 5.13. Notice that (7.1) (i.e., (A5) holds)
implies (A4) by Remark 4.7. �

Under the assumption that fm+1 is explicitly quasi-convex on Y , we directly get
the following result by Theorem 7.1.

Corollary 7.2. Let (7.2) be satisfied and let Y be open. Suppose that fm+1 is
upper semi-continuous on V and explicitly quasi-convex on Y . Assume that Slater’s
condition (7.3) holds.

1◦. If f is componentwise semi-strictly quasi-convex on Y , then (7.4) holds.
2◦. If f is componentwise semi-strictly quasi-convex as well as upper semi-

continuous along line segments on Y , then (7.5) holds.
3◦. If f is componentwise semi-strictly quasi-convex or quasi-convex on Y , then

(7.6) holds.

Proof. Follows directly by Theorem 7.1. Notice that Assumptions (A1) and (A2)
are fulfilled by Theorem 6.13. Moreover, due to the semi-strict quasi-convexity of
fm+1 on Y , the Assumption (A6) is satisfied. �

For the case Y = V we conclude the following result by Corollary 7.2.

Corollary 7.3. Let (7.2) be satisfied and let Y = V. Suppose that fm+1 is semi-
strictly quasi-convex and continuous on V. Assume that Slater’s condition (7.3)
holds. Then, assertions 1◦, 2◦ and 3◦ of Corollary 7.2 are fulfilled.

8. Concluding remarks

In this paper, we derived a new approach for solving generalized-convex multi-
objective optimization problems involving not necessarily convex constraints. These
results extend and generalize the results given by Günther and Tammer [12]. We
showed that the set of (strictly, weakly) efficient solutions (in an arbitrarily real
topological linear space) of a multi-objective optimization problem involving a
nonempty closed (not necessarily convex) feasible set, can be computed completely
using at most two corresponding multi-objective optimization problems with a new
feasible set that is a convex upper set of the original feasible set. Our approach
relies on the fact that the original feasible set can be described using level sets of
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a certain scalar function (see Assumptions (A1), (A2) and (A3)). We applied our
approach to problems where the feasible set is given by a system of inequalities with
a finite number of constraint functions. For deriving our new results, we assumed
that the well-known Slater constraint condition is fulfilled.

In a forthcoming paper, we apply our results to special types of nonconvex multi-
objective optimization problems. It is interesting to study problems where the
nonconvex feasible set is given by a union of convex sets, as well as problems involv-
ing multiple forbidden regions. Such problems can be motivated by several models
in location theory.
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[14] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I,
Springer, Berlin Heidelberg, 1993.

[15] J. Jahn, Vector Optimization - Theory, Applications, and Extensions, 2nd edn. Springer, Berlin
Heidelberg, 2011.
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