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operators in the sense of Baire category. This allows us to establish this property
without restrictive assumptions on the space and on the operators themselves.

In the present paper we generalize the results which were obtained in [2] and
presented in Chapter 4 of [11] in the case where K is a bounded, closed and convex
set in a Banach space. In this case our dynamical system was also studied in [8, 9].
In contrast with our previous results, here we no longer assume that K is bounded.
In addition, for most of our results, K is, as a matter of fact, a general complete
metric space.

Throughout the paper, (K, ρ) is a complete metric space and f : K → R1 is a
lower semicontinuous function, which is bounded from below. Set

inf(f) := inf{f(x) : x ∈ K}

and denote by A the set of all self-mappings A : K → K such that

(1.1) f(A(x)) ≤ f(x) for all x ∈ K.

Denote by Ac the set of all continuous mappings A ∈ A, by Au the set of all A ∈ A
which are uniformly continuous on bounded subsets of K, and by Ab the set of all
A ∈ A which are bounded on bounded subsets of K.

From the point of view of the theory of dynamical systems, each element of A
describes a stationary dynamical system with a Lyapunov function f . Also, some
optimization procedures in Banach spaces can be represented by elements of A
(see examples in Section 4.4 of [11] and in [4, 5]). As we have already mentioned
above, we assume that our function f is lower semicontinuous, which is a standard
assumption in optimization theory. However, in order to obtain our results, we need
to impose on f additional assumptions, which are spelled out in the statements of
the theorems.

For each x ∈ K and each r > 0, set

B(x, r) := {y ∈ K : ρ(x, y) ≤ r}.

Fix a point θ ∈ K. We equip the set A with the uniformity determined by the
following base:

E(N, ϵ) := {(A,B) ∈ A×A :

(1.2) ρ(A(x), B(x)) ≤ ϵ for all x ∈ B(θ,N)},

where N is a natural number and ϵ > 0. Clearly, the uniform space A is metrizable
(by a metric σ) and complete. The uniform space A is equipped with the topology
generated by its uniformity. It is clear that Ab, Ac and Au are closed subsets of
A. The sets Ab, Ac, Au, Ab ∩ Ac ⊂ A are all equipped with the relative topology
(uniformity).

A mapping A ∈ A is called normal if for each ϵ,M > 0, there exists a number
δ > 0 such that for each point x ∈ B(θ,M) satisfying

f(x) ≥ inf(f) + ϵ,

the inequality

f(A(x)) ≤ f(x)− δ

holds.
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Example 1.1. Assume that there exists a point xmin ∈ K such that

f(xmin) = inf(f).

Then the mapping defined by A(x) := xmin, x ∈ K, is normal.

For each self-mapping A : K → K, denote by A0 the identity operator I, that is,
I(x) = x for all x ∈ K.

We begin with a convergence result (Theorem 2.1 below). We then continue with
two stability theorems (Theorems 3.1 and 4.2 in Sections 3 and 4, respectively). We
conclude our paper with a generic result in complete hyperbolic spaces (Theorem
6.1 in Section 6).

2. Convergence result

In this section we use all the notations, definitions and assumptions which were
introduced in Section 1.

Theorem 2.1. Let A ∈ A be normal, let f be bounded on bounded subsets of K
and satisfy

(2.1) lim
ρ(x,θ)→∞

f(x) = ∞,

and let ϵ,M > 0 be given. Then there exists a natural number n0 such that for each
integer n ≥ n0 and each point x ∈ B(θ,M), we have

f(An(x)) ≤ inf(f) + ϵ.

Proof. There exists a number C0 > 0 such that

(2.2) |f(x)| ≤ C0 for all x ∈ B(θ,M).

In view of (2.1), there exists M1 > 0 such that

(2.3) {x ∈ K : f(x) ≤ C0} ⊂ B(θ,M1).

Since the mapping A is normal, there exists a number δ > 0 such that

(2.4) {x ∈ B(θ,M1) : f(x) ≥ inf(f) + ϵ} ⊂ {x ∈ K : f(A(x)) ≤ f(x)− δ}.
Choose a natural number

(2.5) n0 > δ−1(| inf(f)|+ C0)

and assume that

(2.6) x ∈ B(θ,M).

We claim that

f(An(x)) ≤ inf(f) + ϵ

for every integer n ≥ n0. In view of (1.1), it is sufficient to show that there exists
an integer i ∈ [0, n0] such that

f(Ai(x)) ≤ inf(f) + ϵ.

Suppose to the contrary that this does not hold. Then

(2.7) f(Ai(x)) > inf(f) + ϵ for all 0, . . . , n0.
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By (1.1),

(2.8) f(Ai(x)) ≤ f(x) for all i = 0, . . . , n0.

It follows from (2.2), (2.6) and (2.8) that for all i = 0, . . . , n0,

(2.9) f(Ai(x)) ≤ C0.

Relations (2.3) and (2.9) imply that

(2.10) Ai(x) ∈ B(θ,M1), i = 0, . . . , n0.

By (2.4), (2.7) and (2.10), for all i = 0, . . . , n0,

(2.11) f(Ai+1(x)) ≤ f(Ai(x))− δ.

It follows from (2.9) and (2.11) that

| inf(f)|+ C0 ≥ f(x)− f(An0(x))

=

n0−1∑
i=0

(f(Ai(x))− f(Ai+1(x))) ≥ n0δ

and

n0 ≤ δ−1(| inf(f)|+ C0).

This contradicts (2.5). The contradiction we have reached shows that there indeed
exists an integer i0 ∈ {0, . . . , n0} satisfying

f(Ai0(x)) ≤ inf(f) + ϵ,

as required. This completes the proof of Theorem 2.1. �

3. First stability result

We continue to use all the notations, definitions and assumptions introduced in
Section 1.

Theorem 3.1. Let A ∈ A be normal, let f be bounded and uniformly continuous
on bounded subsets of K, and satisfy

(3.1) lim
ρ(x,θ)→∞

f(x) = ∞,

and let ϵ,M > 0 be given. Then there exist a natural number n0 and a neighborhood
U of A in A such that for each mapping B ∈ U , each integer n ≥ n0 and each point
x ∈ B(θ,M), we have

f(Bn(x)) ≤ inf(f) + ϵ.

Proof. There exists C0 > 0 such that

(3.2) |f(x)| ≤ C0 for all x ∈ B(θ,M).

In view of (3.1), there exists M1 > 0 such that

(3.3) {x ∈ K : f(x) ≤ C0} ⊂ B(θ,M1).

Since the mapping A is normal, there exists a number δ > 0 such that

(3.4) {x ∈ B(θ,M1) : f(x) ≥ inf(f) + ϵ} ⊂ {x ∈ K : f(A(x)) ≤ f(x)− δ}.
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Since the function f is uniformly continuous on B(θ,M1+1), there exists a number
γ ∈ (0, 1) such that

|f(z1)− f(z2)| ≤ δ/4

(3.5) for all z1, z2 ∈ B(θ,M1 + 1) satisfying ρ(z1, z2) ≤ γ.

Set

(3.6) U := {B ∈ A : ρ(B(x), A(x)) ≤ γ for all x ∈ B(θ,M1 + 1)}.
Choose a natural number

(3.7) n0 > 2δ−1(| inf(f)|+ C0).

Assume that

(3.8) B ∈ U
and that

(3.9) x ∈ B(θ,M).

We claim that for each integer n ≥ n0, we have

f(Bn(x)) ≤ inf(f) + ϵ.

In view of (1.1), it is suffices to show that there exists an integer i ∈ [0, n0] such
that

f(Bi(x)) ≤ inf(f) + ϵ.

Suppose to the contrary that this does not hold. Then

(3.10) f(Bi(x)) > inf(f) + ϵ for all 0, . . . , n0.

By (1.1) and (3.8), we have

(3.11) f(Bi(x)) ≤ f(x) for all i = 0, . . . , n0.

It now follows from (3.2), (3.9) and (3.11) that for all i = 0, . . . , n0,

(3.12) f(Bi(x)) ≤ f(x) ≤ C0.

Relations (3.3) and (3.12) imply that

(3.13) Bi(x) ∈ B(θ,M1), i = 0, . . . , n0.

Let i ∈ {0, . . . , n0 − 1}. By (3.4), (3.10) and (3.13),

(3.14) f(A(Bi(x))) ≤ f(Bi(x))− δ.

In view of (3.3), (3.12) and (3.14),

(3.15) A(Bi(x)) ∈ B(θ,M1).

By (3.6), (3.8) and (3.13),

(3.16) ρ(A(Bi(x)), Bi+1(x)) ≤ γ.

It follows from (3.5), (3.13), (3.15) and (3.16) that

(3.17) |f(A(Bi(x)))− f(Bi+1(x))| ≤ δ/4.

In view of (3.14) and (3.17),

f(Bi+1(x)) ≤ f(A(Bi(x))) + δ/4 ≤ f(Bi(x))− δ + δ/4
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and

(3.18) f(Bi+1(x)) ≤ f(Bi(x))− δ/2, i = 0, . . . , n0 − 1.

By (3.12) and (3.18),

| inf(f)|+ C0 ≥ f(x)− f(Bn0(x))

=

n0−1∑
i=0

(f(Bi(x))− f(Bi+1(x))) ≥ n0δ/2

and

n0 ≤ 2δ−1(| inf(f)|+ C0).

This contradicts (3.7). The contradiction we have reached shows that Theorem 3.1
is indeed true. �

4. Second stability result

In this section we continue to use all the notations, definitions and assumptions
introduced in Section 1.

Suppose that there exists a point x∗ ∈ K such that

(4.1) f(x∗) = inf(f)

and that the following property holds:
(P1) for each ϵ > 0, there exists δ > 0 such that for each point x ∈ K which

satisfies f(x) ≤ inf(f) + δ, the inequality ρ(x, x∗) ≤ ϵ holds.
In other words, the minimization problem f(x) → min, x ∈ K, is well posed

[12, 13].
Theorem 2.1 and property (P1) imply the following result.

Theorem 4.1. Let A ∈ A be normal, let f be bounded on bounded subsets of K
and satisfy

lim
ρ(x,θ)→∞

f(x) = ∞,

and let ϵ,M > 0 be given. Then there exists a natural number n0 such that for each
integer n ≥ n0 and each point x ∈ B(θ,M), we have

ρ(An(x), x∗) ≤ ϵ.

In this section we establish the following stability result.

Theorem 4.2. Let A ∈ A be normal and uniformly continuous on bounded subsets
of K, let f be bounded on bounded subsets of K, continuous at x∗ and satisfy

(4.2) lim
ρ(x,θ)→∞

f(x) = ∞,

and let ϵ,M > 0 be given. Then there exist a natural number n0 and a neighborhood
U of A in A such that for each B ∈ U , each integer n ≥ n0 and each point x ∈
B(θ,M), we have

ρ(Bn(x), x∗) ≤ ϵ.
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Proof. Property (P1) implies that there exists ϵ0 ∈ (0, ϵ) such that for each x ∈ K
which satisfies f(x) ≤ inf(f) + ϵ0, we have

(4.3) ρ(x, x∗) ≤ ϵ.

Since the function f is continuous at x∗, there exists ϵ1 ∈ (0,min{ϵ0, 1}) such that

(4.4) f(x) ≤ inf(f) + ϵ0 for all x ∈ B(x∗, ϵ1).

Theorem 4.1 implies that there exists a natural number n0 such that for each integer
n ≥ n0 and each point x ∈ B(θ,M),

(4.5) ρ(An(x), x∗) ≤ ϵ1/4.

Since the mapping A is bounded on bounded sets, there exists M0 > M + 1 such
that

(4.6) {Ai(x) : x ∈ B(θ,M), i = 0, . . . , n0} ⊂ B(θ,M0 − 1).

Set

(4.7) δn0 := ϵ1/16.

Using induction, we now define a sequence of positive numbers {δi}n0
i=0 such that

for every i = 0, . . . , n0 − 1,

(4.8) δi−1 < δi/4

and such that for each x, y ∈ B(θ,M0) satisfying ρ(x, y) ≤ δi−1, we have

(4.9) ρ(A(x), A(y)) ≤ δi/4.

Set

(4.10) U := {B ∈ A : ρ(B(x), A(x)) ≤ δ0 for all x ∈ B(θ,M0)}.
Let

(4.11) B ∈ U ,

(4.12) x ∈ B(θ,M)

and let n ≥ n0 be an integer. We claim that

ρ(Bn(x), x∗) ≤ ϵ.

In view of the choice of ϵ0 (see (4.3)), it suffices to show that

f(Bn(x)) ≤ inf(f) + ϵ0.

By (1.1) and (4.11), in order to meet this goal it is sufficient to show that

(4.13) f(Bn0(x)) ≤ inf(f) + ϵ0.

It follows from (4.4) that in order to complete the proof, it is sufficient to show that

(4.14) ρ(Bn0(x), x∗) ≤ ϵ1.

Relations (4.5) and (4.12) imply that

(4.15) ρ(An0(x), x∗) ≤ ϵ1/4.

Next we show by induction that for all i = 0, . . . , n0,

(4.16) ρ(Ai(x), Bi(x)) ≤ δi.
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Clearly, (4.16) holds when i = 0. Assume that k ∈ {0, . . . , n0 − 1} and that (4.16)
holds for all i = 0, . . . , k. In view of (4.6), we have

(4.17) Ak(x) ∈ B(θ,M0 − 1).

It follows from (4.7), (4.8), (4.16) with i = k and (4.17) that

(4.18) Bk(x) ∈ B(θ,M0).

By (4.9), (4.16) with i = k, (4.17) and (4.18),

(4.19) ρ(A(Ak(x)), A(Bk(x))) ≤ δk+1/4.

Relations (4.11) and (4.18) imply that

(4.20) ρ(A(Bk(x)), B(Bk(x))) ≤ δ0 ≤ δk+1/4.

In view of (4.19) and (4.20),

ρ(Bk+1(x), Ak+1(x)) ≤ δk+1

and so (4.16) holds for i = k + 1 too. Therefore we have shown by induction that
(4.16) indeed holds for all i = 0, . . . , n0. In particular, in view of (4.7), we have

ρ(An0(x), Bn0(x)) ≤ δn0 = ϵ1/16.

When combined with (4.15), this inequality implies that

ρ(Bn0(x), x∗) ≤ ϵ1/2,

as requited. This completes the proof of Theorem 4.2. �

5. Hyperbolic spaces

It turns out that our final result, which is proved in the next section, holds in
complete hyperbolic spaces, an important class of metric spaces the definition of
which we now recall.

Let (X, ρ) be a metric space and let R1 denote the real line. We say that a
mapping c : R1 → X is a metric embedding of R1 into X if ρ(c(s), c(t)) = |s− t| for
all real s and t. The image of R1 under a metric embedding is called a metric line.
The image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping is
called a metric segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty. We say that X, or more precisely (X, ρ,M),
is a hyperbolic space if

ρ
(1
2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z
)
≤ 1

2
ρ(y, z)

for all x, y and z in X. An equivalent requirement is that

ρ
(1
2
x⊕ 1

2
y,

1

2
w ⊕ 1

2
z
)
≤ 1

2
(ρ(x,w) + ρ(y, z))
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for all x, y, z and w in X. This inequality, in its turn, implies that

ρ((1− t)x⊕ ty, (1− t)w ⊕ tz) ≤ (1− t)ρ(x,w) + tρ(y, z)

for all points x, y, z and w in X, and all numbers 0 ≤ t ≤ 1.
A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x and y in K.
It is clear that all normed linear spaces are hyperbolic in this sense. A discussion

of more examples of hyperbolic spaces and, in particular, of the Hilbert ball can be
found, for example, in [3, 6, 7].

Let (X, ρ,M) be a complete hyperbolic space and let K be a nonempty, closed
and ρ-convex subset of X. We consider the metric space (K, ρ) and use all the
notations, definitions and assumptions introduced in Section 1.

Assume that

(5.1) lim
ρ(x,θ)→∞

f(x) = ∞,

there exists a point x∗ ∈ K satisfying

(5.2) f(x∗) = inf(f),

and that for each x ∈ K and each λ ∈ [0, 1],

(5.3) f(λx⊕ (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗).

For each A ∈ A and each γ ∈ (0, 1), define

(5.4) Aγ(x) := γx∗ ⊕ (1− γ)A(x), x ∈ K.

Let A ∈ A and γ ∈ (0, 1). By (1.1) and (5.2)–(5.4),

f(Aγ(x)) = f(γx∗ ⊕ (1− γ)A(x)) ≤ γf(x∗) + (1− γ)f(A(x))

≤ γ inf(f) + (1− γ)f(x)

= f(x)− γ(f(x)− inf(f)).(5.5)

It is clear that Aγ ∈ A. In view of (5.5), for all points x ∈ K, we have

(5.6) f(x)− f(Aγ(x)) ≥ γ(f(x)− inf(f)).

It follows from (5.6) that Aγ is normal. Clearly, if A ∈ Ab, then Aγ ∈ Ab, if A ∈ Ac,
then Aγ ∈ Ac, and if A ∈ Au, then Aγ ∈ Au. Note that Au ⊂ Ab.

6. Generic result

In this section we use all the notations, definitions and assumptions introduced
in Sections 1 and 5.

Theorem 6.1. Let the function f be uniformly continuous on bounded subsets of K
and let (B, σ) be one of the following spaces: (Ab, σ), (Ac ∩Ab, σ) or (Au, σ). Then
there exists a set F ⊂ B, which is a countable intersection of open and everywhere
dense subsets of (B, σ), such that each A ∈ F is normal.

Proof. Let A ∈ B and γ ∈ (0, 1). Clearly, Aγ ∈ B. In view of (5.4), we have

(6.1) ρ(Aγ(x), A(x)) = ρ(γx∗ ⊕ (1− γ)A(x), A(x)) ≤ γρ(x∗, A(x)).
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In view of (6.1),

(6.2) lim
γ→0+

Aγ = A.

By (6.2),
{Aγ : A ∈ B, γ ∈ (0, 1)}

is an everywhere dense subset of B. Let A ∈ B, γ ∈ (0, 1) and let k be a natural
number. Since the mapping Aγ is normal, there exists δ(A, γ, k) > 0 such that the
following property holds:

(P2) if x ∈ B(θ, k) satisfies f(x) ≥ inf(f) + 1/k, then

f(Aγ(x)) ≤ f(x)− 2δ(A, γ, k).

Clearly, there exists M1 > 1 such that

(6.3) Aγ(B(θ, k)) ⊂ B(θ,M1 − 1).

Since the function f is uniformly continuous on B(θ,M1), there exists a number
ϵ ∈ (0, 1) such that

(6.4) |f(z1)− f(z2)| ≤ δ(A, γ, k) for all z1, z2 ∈ B(θ,M1)

satisfying ρ(z1, z2) ≤ ϵ.

In view of (1.2), there exists an open neighborhood U(A, γ, k) of Aγ in B such that

(6.5) U(A, γ, k) ⊂ {B ∈ B : ρ(Aγ(z), B(z)) ≤ ϵ for all z ∈ B(θ, k)}.
Let

(6.6) x ∈ B(θ, k),

(6.7) f(x) ≥ inf(f) + 1/k

and

(6.8) B ∈ U(A, γ, k).
Property (P2), (6.6) and (6.7) imply that

(6.9) f(Aγ(x)) ≤ f(x)− 2δ(A, γ, k).

By (6.5), (6.6) and (6.8),

(6.10) ρ(B(x), Aγ(x)) ≤ ϵ.

It follows from (6.3), (6.6) and (6.10) that

(6.11) Aγ(x) ∈ B(θ,M1 − 1)

and

(6.12) B(x) ∈ B(θ,M1).

By (6.4) and (6.10)–(6.12),

(6.13) |f(B(x))− f(Aγ(x))| ≤ δ(A, γ, k).

In view of (6.9) and (6.13),

f(B(x)) ≤ f(Aγ(x)) + δ(A, γ, k) ≤ f(x)− δ(A, γ, k).

Thus we have shown that the following property holds:
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(P3) for each mapping B ∈ U(A, γ, k) and each point x ∈ B(θ, k) which satisfies
f(x) ≥ inf(f) + 1/k, we have

f(B(x)) ≤ f(x)− δ(A, γ, k).

Now Define

(6.14) F := ∩∞
p=1 ∪ {U(A, γ, k) : A ∈ B, γ ∈ (0, 1) and k ≥ p is an integer }.

Evidently, F is a countable intersection of open and everywhere dense sets in B.
Let

(6.15) B ∈ F .

We claim that the mapping B is normal. To see this, let M, ϵ > 0 be given. Choose
a natural number

(6.16) p > M + 1/ϵ.

By (6.14) and (6.15), there exist A ∈ B, γ ∈ (0, 1) and an integer p ≥ k such that

(6.17) B ∈ U(A, γ, k).
Property (P3), (6.16) and (6.17) imply that for each x ∈ B(θ,M) ⊂ B(θ, k) satis-
fying

f(x) ≥ inf(f) + ϵ ≥ inf(f) + p−1 ≥ inf(f) + k−1,

we have
f(B(x)) ≤ f(x)− δ(A, γ, k).

Therefore the mapping B is indeed normal, as claimed. This completes the proof
of Theorem 6.1. �
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