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The remainder of the paper is organized as follows. In Section2, we introduce
some preliminaries and define convex set functions in a simple way. In Section 3,
we study Fenchel conjugate and Fenchel duality for convex set functions in terms
of convex analysis of the embedding space. In Section 4, we compare our convex
set functions with previous ones. We study applications of our results to uncertain
problems. Additionally, we introduce definitions and results for C2/ ≡ in appendix.

2. Preliminaries and convex set functions

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given nonempty sets A, B ⊂ Rn, and Γ ⊂ R, we define A+B
and ΓA as follows:

A+B = {x+ y ∈ Rn | x ∈ A, y ∈ B},
ΓA = {γx ∈ Rn | γ ∈ Γ, x ∈ A}.

In addition, we define A + ∅ = Γ∅ = ∅A = ∅. A set A is said to be convex if for
each x, y ∈ A, and α ∈ [0, 1], (1− α)x+ αy ∈ A. Let A0 be the following family of
nonempty convex sets:

A0 = {A ⊂ Rn | A : nonempty convex}.
It is clear that A0 is closed under addition and multiplication by positive scalars.
Let C ⊂ A0 be the family of all nonempty compact convex subsets of Rn, that is,

C = {A ⊂ Rn | A : nonempty compact convex}.
Let A, B ∈ C. We define their Hausdorff distance dH(A,B) by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
.

Next, we study convexity for families of convex sets. A subfamily A ⊂ A0 is said
to be convex if for each A, B ∈ A, and α ∈ [0, 1], (1−α)A+αB ∈ A. We introduce
the following elementary results without proofs.

Theorem 2.1. The following statements hold:

(i) A0 is convex.
(ii) C is convex.
(iii) If A, B are convex, then A+ B = {A+B ⊂ Rn | A ∈ A, B ∈ B} is convex.
(iv) If A is convex and α ∈ R, then αA = {αA | A ∈ A} is convex.
(v) Let I be an index set, and Ai a convex subfamily for each i ∈ I. Then,∩

i∈I Ai is convex.

Next, we study convex set functions. Let F be a set function from A0 to R =
[−∞,∞]. A set function F is said to be proper if for all A ∈ A0, F (A) > −∞
and there exists A0 ∈ A0 such that F (A0) ∈ R. We denote the domain of F by
domF , that is, domF = {A ∈ A0 | F (A) < +∞}. A proper set function F on A0

is said to be convex if for each A, B ∈ domF , and α ∈ [0, 1], F ((1− α)A+ αB) ≤
(1− α)F (A) + αF (B). F is said to be concave if −F is a convex set function. The
epigraph of F is defined as epiF = {(A,α) ∈ A0 × R | F (A) ≤ α}. We show the
following characterization of convex set functions.
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Theorem 2.2. Let F be a proper set function from A0 to R ∪ {+∞}. Then, F is
a convex set function if and only if epiF is convex.

Proof. Assume that F is a convex set function and let (A1, α1), (A2, α2) ∈ epiF
and β ∈ (0, 1). Then,

F ((1− β)A1 + βA2) ≤ (1− β)F (A1) + βF (A2)

≤ (1− β)α1 + βα2.

This shows that ((1− β)A1 + βA2, (1− β)α1 + βα2) ∈ epiF .
Conversely, let A1, A2 ∈ domF , and β ∈ (0, 1). Then

(A1, F (A1)), (A2, F (A2)) ∈ epiF.

By the assumption,

F ((1− β)A1 + βA2) ≤ (1− β)F (A1) + βF (A2).

This shows that F is a convex set function. �
We introduce the following elementary results for convex set functions. We leave

the proof to the reader.

Theorem 2.3. The following statements hold:

(i) Let F and G be proper convex set functions from A0 to R ∪ {+∞}. Then,
F +G is convex.

(ii) Let F be a proper convex set function from A0 to R ∪ {+∞}, and α > 0.
Then, αF is convex.

(iii) Let I be an index set, and Fi a proper convex set function from A0 to
R ∪ {+∞} for each i ∈ I. Then, supi∈I Fi is convex.

We introduce some important examples. Let F (A) be the value obtained by
integrating the real-valued convex function f on the compact convex set A ⊂ Rn,
then F is a convex set function. Additionally, let F0 be the following function on
A0: for each A ∈ A0,

F0(A) = sup
x∈A

f(x),

then F0 is a convex set function.
In the rest of this section, we study affine and linear set functions precisely.

Especially, we point out a difference between affine functions on A0 and Rn.
A set function F is said to be affine if F is a convex and concave set function.

Additionally, F is said to be linear if F is an affine set function and F ({0}) = 0.
We show the following relation between affine and linear set functions.

Theorem 2.4. Let F be a proper set function on A0, and assume that {0} ∈ domF .
Then the following statements are equivalent:

(i) F is an affine set function,
(ii) there exist a proper linear set function V on A0 and β ∈ R such that F =

V + β.

Proof. It is easy to prove by putting β = F ({0}). �
We show the following characterizations of linear set functions.
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Theorem 2.5. Let F be a proper set function on A0, and assume that {0} ∈ domF .
Then the following statements are equivalent:

(i) F is linear,
(ii) for each A, B ∈ domF , and α ∈ [0, 1],

F ((1− α)A+ αB) = (1− α)F (A) + αF (B),

(iii) for each A, B ∈ domF , and λ ≥ 0,

F (A+B) = F (A) + F (B), F (λA) = λF (A).

Proof. By the definition, the statements (i) and (ii) are equivalent.
We show that (ii) implies (iii). Let A, B ∈ domF , and λ ≥ 0. If λ ≥ 1, then

1
λ ∈ (0, 1]. Hence

F (A) = F

(
1

λ
λA+

(
1− 1

λ

)
{0}

)
=

1

λ
F (λA) +

(
1− 1

λ

)
F ({0})

=
1

λ
F (λA).

This shows that F (λA) = λF (A). If λ ∈ [0, 1), then

F (λA) = F (λA+ (1− λ){0}) = λF (A) + (1− λ)F ({0}) = λF (A).

Additionally,

F (A+B) = F

(
1

2
2A+

1

2
2B

)
=

1

2
F (2A) +

1

2
F (2B)

=
1

2
2F (A) +

1

2
2F (B)

= F (A) + F (B).

This shows that the statement (iii) holds.
Finally, we show that (iii) implies (ii). Let A, B ∈ domF , and α ∈ [0, 1]. Then,

F ((1− α)A+ αB) = F ((1− α)A) + F (αB)

= (1− α)F (A) + αF (B).

This completes the proof. �
Let f be a real-valued function on Rn. Then, the following statements are equiv-

alent:

(i) f is convex and concave,
(ii) for each x, y ∈ Rn, and t ∈ R,

f((1− t)x+ ty) = (1− t)f(x) + tf(y),

(iii) for each x, y ∈ Rn, and t ∈ R,
f(x+ y) = f(x) + f(y), f(tx) = tf(x).
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We can show the above equivalence relations by ‘x + (−x) = 0’ on Rn. However,
A + (−A) ̸= {0} in general. Hence, the statement (ii) in Theorem 2.5 is slightly
different to the above statement (ii), see the following example.

Example 2.6. Let F be the following set function on R: for each A ⊂ R,

F (A) = supA.

We can easily show that F is a proper, convex and concave set function on A0. By
the statement (ii) of Theorem 2.5, for each A, B ∈ domF , and α ∈ [0, 1],

F ((1− α)A+ αB) = (1− α)F (A) + αF (B).

However, there exist A0, B0 ∈ domF , and α0 ∈ R \ [0, 1] such that

F ((1− α0)A0 + α0B0) ̸= (1− α0)F (A0) + α0F (B0).

Actually, let A0 = [0, 1], B0 = [2, 3], and α0 = −1, then,

F ((1− α0)A0 + α0B0) = F (−2[0, 1]− [2, 3])

= F ([−5,−2])

= −2

̸= −1

= 2F ([0, 1]) + (−1)F ([2, 3])

= (1− α0)F (A0) + α0F (B0).

Hence, the statement (ii) in Theorem 2.5 is slightly different to the above statement
(ii) for f .

Remark 2.7. Let v ∈ Rn, then the following set function V is linear: for each
A ∈ A0,

V (A) = sup
x∈A

⟨v, x⟩ .

Hence,

{V : A0 → R | v ∈ Rn, V (A) = sup
x∈A

⟨v, x⟩} ( {V : A0 → R | V : linear }.

The converse inclusion does not hold. Actually, the area of A is a linear set function,
and there does not exist v ∈ Rn such that the function is defined by v.

3. Fenchel duality for convex set functions

We study Fenchel duality for convex set functions in terms of convex analysis on
the embedding normed space C2/ ≡. By embedding method, C2/ ≡ is a normed
space, in detail, see appendix.

We define the following set FL as follows:

FL = {V : A0 → R ∪ {+∞}, linear}.
Let F be a proper set function on A0. Then, we define the Fenchel conjugate of F
as follows: F ∗ : FL → R,

F ∗(V ) = sup
A∈domF

{V (A)− F (A)}.
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Since F is a proper set function, F ∗(FL) ⊂ (−∞,∞]. We define the Fenchel bicon-
jugate as follows: F ∗∗ : A0 → R,

F ∗∗(A) = sup
V ∈domF ∗

{V (A)− F ∗(V )}.

For each A ∈ domF and V ∈ domF ∗,

∞ > F ∗(V ) = sup
B∈domF

{V (B)− F (B)} ≥ V (A)− F (A).

This shows that A ∈ domV . Hence,

V (A)− F ∗(V ) = V (A)− sup
B∈domF

{V (B)− F (B)}

≤ V (A)− V (A) + F (A)

= F (A).

This shows that for each A ∈ A0,

F (A) ≥ F ∗∗(A).

A set function F is said to be lower semicontinuous (lsc) on C in terms of Hausdorff
distance if for each {Bk} ⊂ C and B ∈ C with H(Bk, B) converges to 0,

lim inf
k→∞

F (Bk) ≥ F (B).

In addition, F is said to be continuous on C in terms of Hausdorff distance if F
and −F are lsc in terms of Hausdorff distance. These definitions are equivalent to
the usual continuity and lower semicontinuity of real-valued functions in a metric
space. Hence, the level set and the epigraph of a lsc function F are closed.

We need the following lemma.

Lemma 3.1. Let {Bk} ⊂ C, C, D ∈ C, assume that H(Bk +D,C) converges to 0.
Then there exists B ∈ C such that C = B +D and H(Bk, B) converges to 0.

Proof. Let {Bk} ⊂ C, C, D ∈ C satisfying H(Bk + D,C) converges to 0. Let
B = {b ∈ Rn | b + D ⊂ C}. Clearly, B is compact convex and B + D ⊂ C.
Now we show that B + D ⊃ C. Let x ∈ C. Since H(Bk + D,C) converges to
0, for each k ∈ N, there exists nk ∈ N such that Bnk

+ D ⊂ C + 1
kB(0, 1) and

C ⊂ Bnk
+D + 1

kB(0, 1), where B(0, 1) = {x ∈ Rn | ∥x∥ ≤ 1}. Hence there exists

bk ∈ Bnk
such that x ∈ bk + D + 1

kB(0, 1) and bk + D ⊂ C + 1
kB(0, 1) for each

k ∈ N. Since {bk} is bounded, there exists a subsequence {bki} ⊂ {bk} such that
{bki} converges to some b0 ∈ B. Then, we can prove that x ∈ b0+D and b0+D ⊂ C.
Therefore, x ∈ B + D. This shows that C = B + D and H(Bk, B) converges to
0. �

Next, we show the following theorem concerned with Fenchel conjugate.

Theorem 3.2. Let F be a proper, lsc and convex set function from A0 to R∪{+∞}.
Assume that domF ⊂ C. Then

F = F ∗∗.
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Proof. As stated above, we already show that F ≥ F ∗∗. Hence we assume that
there exist A ∈ A0 and α ∈ R such that

F (A) > α > F ∗∗(A).

We define the following function F̄ on (C2/ ≡) as follows: for each [B, {0}] ∈
{[S, {0}] ∈ (C2/ ≡) | S ∈ domF},

F̄ ([B, {0}]) = F (B),

and for each [B,C] /∈ {[S, {0}] ∈ (C2/ ≡) | S ∈ domF}, F̄ ([B,C]) = ∞. Clearly, F̄
is a proper convex function on (C2/ ≡), domF̄ = {[S, {0}] ∈ (C2/ ≡) | S ∈ domF},
and F̄ ([A, {0}]) > α.

We show that epiF̄ is closed. Let {([Bk, {0}], βk)} ⊂ epiF̄ and assume that
{([Bk, {0}], βk)} converges to ([C,D], β) ∈ (C2/ ≡)×R. By Lemma 3.1, there exists
B ∈ C such that [C,D] = [B, {0}] and H(Bk, B) converges to 0. Since F is lsc,

F̄ ([C,D]) = F̄ ([B, {0}])
= F (B)

≤ lim inf
k→∞

F (Bk)

= lim inf
k→∞

F̄ ([Bk, {0}])

≤ lim inf
k→∞

βk

= β.

This shows that ([C,D], β) ∈ epiF̄ . Hence F̄ is lsc in C2/ ≡.
Since F̄ is proper, lsc and convex, there exist a continuous, real-valued linear

function v on C2/ ≡ and β ∈ R such that

F̄ ≥ v + β and v([A, {0}]) + β > α.

Let V be the following proper function on A0: for each B ∈ C,

V (B) = v([B, {0}]),

and for each B /∈ C, V (B) = ∞. We can check that V is a linear set function. In
addition, for each B ∈ domF ,

F (B) ≥ V (B) + β and V (A) + β > α.

Since F (B) ≥ V (B) + β for each B ∈ domF , −β ≥ F ∗(V ) > −∞, that is, V ∈
domF ∗. Hence,

F ∗∗(A) ≥ V (A)− F ∗(V )

≥ V (A) + β

> α.

This is a contradiction. Hence F = F ∗∗. �

Finally, we show Fenchel duality for convex set functions. In convex analysis, the
following Fenchel duality for real-valued convex functions plays an important role.
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Theorem 3.3 ([3]). Let X be a normed space, f and g proper convex functions
from X to R ∪ {+∞}. Assume that there exists x0 ∈ domf ∩ domg such that f is
continuous at x0. Then

inf
x∈X

{f(x) + g(x)} = max
v∈X∗

{−f∗(v)− g∗(−v)},

where X∗ is the dual space of X, and f∗ is the Fenchel conjugate of f , that is,
f∗(v) = supx∈X{⟨v, x⟩ − f(x)}.

In the following theorem, we show Fenchel duality for convex set functions in
terms of convex analysis on the embedding normed space (C2/ ≡).

Theorem 3.4. Let F and G be proper convex set functions from A0 to R∪{+∞}.
Assume that domF ∪ domG ⊂ C, domF ∩ domG is nonempty, and F is continuous
on C. Then

inf
A∈A0

{F (A) +G(A)} = max
V ∈FL

{−F ∗(V )−G∗(−V )}.

Proof. Let µ = infA∈A0{F (A) + G(A)}. At first, we show the following Fenchel
weak duality:

µ ≥ sup
V ∈FL

{−F ∗(V )−G∗(−V )}.

Actually, for each A ∈ domF ∩ domG and V ∈ domF ∗ ∩ domG∗, we can check that
A ∈ domV . Hence,

−F ∗(V )−G∗(−V ) = − sup
B∈domF

{V (B)− F (B)} − sup
B∈domG

{−V (B)−G(B)}

≤ −V (A) + F (A) + V (A) +G(A)

= F (A) +G(A).

Since F and G be proper, F ∗(FL) ∪G∗(FL) ⊂ (−∞,∞]. Therefore,

sup
V ∈FL

{−F ∗(V )−G∗(−V )} = sup
V ∈domF ∗∩domG∗

{−F ∗(V )−G∗(−V )}

≤ inf
A∈domF∩domG

{F (A) +G(A)}
= µ.

If µ = −∞, then Fenchel strong duality holds.
Assume that µ > −∞. Since domF ∩ domG is nonempty, µ ∈ R. Clearly,

F ≥ −G+ µ. We define F̄ and Ḡ by the similar way in the proof of Theorem 3.2,
then F̄ ≥ −Ḡ+ µ. We can easily show that F̄ and Ḡ are proper convex functions,
and domF̄ ∩ domḠ is nonempty. Additionally, we can show that F̄ and −F̄ is lsc
on C2/ ≡ by the similar way in the proof of Theorem 3.2. This shows that F̄ is
continuous on C2/ ≡.

By Theorem 3.3, Fenchel duality on the embedding normed space (C2/ ≡) holds.
Hence, there exist a continuous, real-valued linear function v on C2/ ≡ and β ∈ R
such that

F̄ ≥ v + β ≥ −Ḡ+ µ.

Let V0 be the following proper function on A0: for each B ∈ C,
V0(B) = v([B, {0}]),
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and for each B /∈ C, V0(B) = ∞. We can check that V0 is a linear set function. In
addition,

F ≥ V0 + β ≥ −G+ µ.

This shows that −β ≤ F ∗(V0) and −µ+ β ≤ G∗(−V0). Hence,

sup
V ∈FL

{−F ∗(V )−G∗(−V )} ≥ −F ∗(V0)−G∗(−V0) ≥ β + µ− β = µ.

This completes the proof. �
By the similar way, we can show the sandwich theorem: for each proper convex

set functions F , G satisfying F ≥ −G. Assume that there exists A0 ∈ domF∩domG
such that F is continuous at A0, then there exists an affine set function V such that

F ≥ V ≥ −G.
In addition, we can show the following Toland duality: for each proper, lsc convex
set functions F , G, the following equation holds:

sup
A∈A0

{F (A)−G(A)} = sup
V ∈FL

{G∗(V )− F ∗(V )}.

4. Discussions and applications

We compare our convex set functions with Morris’s set functions. In addition,
we study applications of our results to uncertain problems with motion uncertainty.
We regard a decision variable set as an error caused by a motion, and introduce
robust approach for the uncertain problem.

Let (X,A,m) be an atomless finite measure space with L1 := L1(X,A,m) sep-
arable. For Ω ∈ A, χΩ denotes the characteristic function of Ω. For S ⊂ A, we
denote χS = {χΩ | Ω ∈ S} and define clS is the w∗-closure of χS in L∞. In [23],
Morris proved that for each Ω, Λ ∈ A and α ∈ [0, 1], there exist L∞-sequences {Ωn}
and {Λn} such that

χΩn

w∗
−→ (1− α)χΩ\Λ, χΛn

w∗
−→ αχΛ\Ω,

and

χΩn∪Λn∪(Ω∩Λ)
w∗
−→ (1− α)χΩ + αχΛ,

consequently, clχA contains the convex hull of χA. We call the sequence {Γn =
Ωn∪Λn∪ (Ω∩Λ)} a Morris sequence associated with (α,Ω,Λ). A subfamily S ⊂ A
is said to be convex if for every (α,Ω,Λ) ∈ [0, 1]×S ×S and every Morris sequence
{Γn} associated with (α,Ω,Λ), there exists a subsequence {Γnk

} of {Γn} such that
{Γnk

} ⊂ S. Let S be a convex subfamily of A. A set function F : S → R is
said to be convex if for every (α,Ω,Λ) ∈ [0, 1] × S × S and every Morris sequence
{Γn} associated with (α,Ω,Λ), there exists a subsequence {Γnk

} of {Γn} such that
{Γnk

} ⊂ S and
lim sup
k→∞

F (Γnk
) ≤ (1− α)F (Ω) + αF (Λ).

Clearly, our definition and Morris’s definition are different. Our definition is implied
by convex analysis in a natural way.

Finally, we study applications of our results to uncertain problems with mo-
tion uncertainty. Mathematical programming problems with data uncertainty are
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becoming important in optimization due to the reality of uncertainty in many real-
world optimization problems. Various researchers study duality theory for math-
ematical programming problems under uncertainty with the worst-case approach,
see [2,12–15,19,32]. In mathematical programming, we often regard a decision vari-
able as the level of activity or the amount of a resource to use. However, in many
cases, such a decision may have an error caused by motion and/or data uncertainty.
In this paper, we regard a decision variable set as an error caused by a motion, and
introduce the following robust approach for the problem with motion uncertainty.

Let I be an index set, f an extended real-valued convex function on Rn, gi an
extended real-valued convex function on Rn for each i ∈ I. The following problem
(P ) is a convex programming problem on Rn without uncertainty:

(P )

{
minimize f(x),
subject to gi(x) ≤ 0,∀i ∈ I.

For such a problem, we may not be able to choose an exact vector because of an error
by a motion. Hence, we introduce a worst case approach with motion uncertainty.
Let F be the following function on A0: for each A ∈ A0,

F (A) = sup
x∈A

f(x).

For constraint functions, we define Gi similarly, that is, Gi(A) = supx∈A gi(x). We
consider the following robust problem (RP ) with motion uncertainty:

(RP )

{
minimize F (A),
subject to Gi(A) ≤ 0, ∀i ∈ I.

In (RP ), F and Gi are set functions, and A means an error caused by a motion.
Since F (A) is the supremum of the value of f at x ∈ A, (RP ) is one of the worst-case
approach. Additionally, we can easily prove that F and Gi are convex set functions.
Hence we can solve the problem (RP ) by using our results, for example, Fenchel
duality.

Appendix

We introduce an embedding vector space C2/ ≡ and an embedding function ψ.
All definitions and results are based on the previous literatures, see [9–11]. Let ≡
be a binary relation on C2 defined by

(A,B) ≡ (C,D) if and only if A+D = B + C,

then ≡ is an equivalence relation on C2. To show this, the following cancellation
law is used: for each A, B, C ∈ C,

A+ C = B + C =⇒ A = B.

Denote the equivalence class of (A,B) ∈ C2 as [A,B] = {(C,D) ∈ C2 | (A,B) ≡
(C,D)}, and the quotient space of C2 by ≡ as C2/ ≡= {[A,B] | (A,B) ∈ C2}. On
the quotient space, we define addition and scalar multiplication as follows:

[A,B] + [C,D] = [A+ C,B +D],

λ · [A,B] =

{
[λA, λB] if λ ≥ 0,
[(−λ)B, (−λ)A] if λ < 0.
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Then (C2/ ≡,+, ·) becomes a vector space over R with the null vector [{0}, {0}](=:
θ). Clearly, [A,A] = θ for each A ∈ C by using the cancellation law. Next we can
define a norm on C2/ ≡. Define

∥[A,B]∥ = H(A,B),

for every [A,B] ∈ C2/ ≡, then ∥ · ∥ is a norm on C2/ ≡, and we equip the vector
space C2/ ≡ with the topology which is induced by the norm. Define an embedding
function ψ : C → C2/ ≡ by

ψ(A) = [A, {0}]
for all A ∈ C. The embedding space C2/ ≡ and the embedding function ψ play very
important role to study set optimization problems.
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