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EQUIVALENCE OF OPTIMALITY CRITERIONS FOR DISCRETE
TIME OPTIMAL CONTROL PROBLEMS

ALEXANDER J. ZASLAVSKI

ABSTRACT. In this paper we study solutions of an infinite horizon discrete-time
optimal control problem arising in economic dynamics with a compact metric
space of states which is a subset of a finite-dimensional Euclidean space. Usu-
ally, these problems are studied under assumptions that all their good programs
converges to a turnpike which is an interior point of the set of admissible pairs.
In this paper we study a large class of control systems for which the turnpike
is not necessarily an interior point of the set of admissible pairs and show the
equivalence of several optimality criterions.

1. INTRODUCTION AND THE MAIN RESULT

The study of the existence and the structure of solutions of optimal control prob-
lems defined on infinite intervals and on sufficiently large intervals has recently
been a rapidly growing area of research. See, for example, [3-11, 16,19, 23,25,29—
33,35] and the references mentioned therein. These problems arise in engineer-
ing [1,21,40,43], in models of economic growth [9,12,17,18,24,27,28,34,36,38-42],
in infinite discrete models of solid-state physics related to dislocations in one-
dimensional crystals [2,37] and in the theory of thermodynamical equilibrium for
materials [22,26]. In this paper we study the infinite horizon problem related to a
discrete-time optimal control system describing a general model of economic dynam-
ics [12,21,24,27,36,40-42]. Usually, these problems are studied under assumptions
that all their good programs converge to a turnpike which is an interior point of the
set of admissible pairs. In this paper we study a large class of control systems for
which the turnpike is not necessarily an interior point of the set of admissible pairs
and show the equivalence of several optimality criterions.

Let the n-dimensional space R™ with the Euclidean norm || - || be ordered by the
cone R? ={z = (z1,...,2y) € R": 2; >0, i=1,...,n} and let x >> y, x > vy,
x > y have their usual meaning.

Let X C R} be a compact subset of R, Q2 be a nonempty closed subset of X x X
and let v : Q — R! be a bounded upper semicontinuous function.

A sequence {z:}7°, C X is called an (2)-program (or just a program if the set
Q is understood) if (z4,z¢+1) € Q for all integers ¢t > 0. A sequence {z¢}7_,, where
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T is a natural number, is called an (Q2)-program (or just a program if the set  is
understood) if (¢, x441) € Q for all integers ¢t € [0,T — 1].

In models of economic growth the set X is the space of states, v is a utility
function and v(x, 441) evaluates consumption at moment ¢.

We consider the problems

T—1
Z v(2;, Tiy1) — Max, {(xi,ﬂﬂiﬂ)}iT;()l CQ, x0=12
i=0

and

T—1
Z v(2i, Tip1) — Max,
i=0

{(zs, 2i41) Yo' CQ, o = 21, 217 > 29,
where T is a natural number and z7, 29 € X.

One of the main topics in the infinite horizon optimal control theory is to study
the existence of solutions of problems over an infinite horizon using different opti-
mality criteria. In the present paper, studying infinite horizon problems, we deal
with the notion of good programs introduced by D. Gale in [12] which is of great
usage in optimal control and economic dynamics (see, for example, [9,40,42] and
the references mentioned therein), with the notion of agreeable programs introduced
and studied in 1973 by P. J. Hammond and the Nobel laureate J. Mirrlees [15] and
with the notion of overtaking optimal program [9,12,36,40,42,43]. We also consider
the notion of locally maximal programs which is a version of optimality criterion
introduced by S. Aubry and P. Y. Le Daeron in their seminal paper on the discrete
Frenkel-Kontorova model [2].

Set

(1.1) ol = sup{lv(z,y)| : (z,y) € Q}.
We assume that ||v|| > 0.
For each z,y € X and each integer T' > 1 set
T—1

(1.2)  o(v,T,x) = sup { Z v(zi, zi1) : {xi}, is a program and zg = x},
i=0
(1.3)
T-1
o, T,x,y) = sup{ v(xs, 1) : {zi}, is a program and zg = x, x7 > y},
=0
T-1
(1.4) o, T) = sup{ Z v(zg, zi) s {i}g is a program}.
=0

(Here we use the convention that the supremum over an empty set is —c0).

We suppose that there exist £ € X and a constant ¢ > 0 such that the following
assumptions hold.

(A1) (z,2) € Q and v: Q — R! is continuous at (Z, ).

(A2) o(v,T) < Tv(z,z) + ¢ for all integers T' > 1.
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It is easy to see that for each natural number 7" and each program {l‘t};f:o,
T—1
(1.5) > v(@e wi1) < o0, T) < To(z,7) + c.
t=0
Inequality (1.5) implies the following result.

Proposition 1.1. For each program {z}{2, either the sequence

T-1 -

{ Z v(T, Try1) — TU(f'?»iU)}T:l
t=0

is bounded or limT%m[ZZﬂ:_ol v(xg, xpy1) — To(z, T)] = —o0.
A program {z;:}7°, is called good [9,12,36,40,42,43] if the sequence
T-1 -
) =T _a x }
{;v(mt Ty1) v(Z,T) _

is bounded.
We suppose that the following assumption holds.
(A3) (the asymptotic turnpike property) For any good program {z;}?°, the equal-
Put
o(zy) = —loll = 1, (2,9) € (X x X)\ Q.

Clearly, v is a bounded upper semicontinuous function on X x X.

Remark 1.1. In [42] we assume that (z,Z) is an interior point of Q. Namely, we
suppose there that there is € > 0 such that {(z,y) € X x X : |z — |, ||y — Z|| <
€} € Q. We show in [42] that this assumption holds for many models of economic
dynamics but it does not hold for an important class of Robinson-Solow-Srinivasan
models studied in [17,18,38,39] for which the turnpike is not an interior point of €.
In the present paper instead of this assumption we use another assumptions (A4)
and (A5) given below which hold for a large class of control systems containing
the Robinson-Solow-Srinivasan model as well as many other models of economic
dynamics [41].

We suppose that the following assumptions hold.

(A4) If (g, x1) € Q and if yg € X satisfies yg > xg, then there exists y; € X such
that

(30, y1) € €, v(yo,y1) = v(@o,z1) and 0 < y1 — z1 < Yo — Zo.

(A5) There exists 7 > 0 such that for each x,y € X satisfying ||[x—z||, |[y—zZ| < 7
there exists ¥’ € X such that ¢y >y and (z,y’) € Q. Moreover, for each € > 0 there
exists 0 > 0 such that for each x,y € X satisfying ||z — Z||, ||y — Z|| < ¢ there is
y’" € X such that

y' >y, (z.y) €Qand |y -7 <e

It is known [41] that assumptions (A1)-(A5) hold for many models of economic
dynamics. It is clear that assumption (A4) is a natural monotonicity property
of the technology set 2 while (A5) is a weakened version of the assumption used
in [17,18,38,39].
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Assumption (A4) implies that if {x;}7° is a program and yo € X satisfies yp > o,
then there exists a program {y:}7°, such that for all integers t > 0, v(yt, yi4+1) >
v(e, Ty41), Y¢ > xp and yy — xp < yo — xo. The last two inequalities imply that if all
xy, t=0,1,... and yg are close to Z, then 1y is also close to  for all integers ¢ > 0.

Assumption (A5) means that for each =,y which are close to z if a state of the
model at time ¢ is x, then at moment ¢ + 1 a state of the model can be 3’ which is
also close to T and satisfies 3/ > v.

For each M > 0 denote by Xjs the set of all x € X for which there exists a
program {z;}7°, such that zo = x and that for all integers 7' > 1

T-1

Z v(xg, Tep1) — To(Z,T) > —M.
=0

Clearly, U{Xs : M > 0} is the set of all points z € X for which there exists a
good program from z.
For each natural number 7" denote by Y7 the set of all # € X for which there
exists a program {z;}L_, such that z¢ = z, 27 > 7.
In the sequel we use a notion of an overtaking optimal program [9,12,36,40,42,43].
A program {z}}22, is called overtaking optimal if for each program {y;}7°, sat-
isfying yo = x{, the inequality
T—1
lim sup Z[U(yt,yt-H) —v(zy, 27)] <0
T—o0 —0

holds.
The following result, which was obtained in [41], establishes the existence of an
overtaking optimal program.

Theorem 1.2. Assume that x € X and that there exists a good program {x:}72,
such that xo = x. Then there exists an overtaking optimal program {xf}52, such
that zf, = x.

The following result, also obtained in [41], provides necessary and sufficient con-
ditions for overtaking optimality.

Theorem 1.3. Let {x:}7°, be a program such that zo € U{Xp : M € (0,00)}.
Then the program {z:}?2, is overtaking optimal if and only if the following con-
ditions hold: (i) imy_o ||z — Z|| = 0; (i) for each natural number T and each
program {y}i—y satisfying yo = o, yr > a7 the inequality S, v(yr, 1) <
T-1
Yo v(@e, xe41) holds.
A program {z}}7°, is called weakly optimal [9,40] if for each program {y:}32,
satisfying yo = x(, the inequality

T-1
liirni>iorc1>f tz_;[v(yt, Yer1) — v(wy, vi1)] <0

holds.
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The following optimality notion is a version of the optimality criterion introduced
in [2] where it was used for infinite-horizon discrete models of solid-state physics
related to dislocations in one-dimensional crystals.

A program {x}}{° is called locally maximal if for each integer T' > 0 and each

program {y;}1_, satisfying
Yo = Tg, Yr = T

the following inequality holds:
T—

1 T—1
V(Yts Yit1) E v xtamt—i—l
t=0 t=0

A program {x}}7°, is called agreeable if for any natural number T, and any
€ > 0 there exists an integer T, > Ty such that for any integer T' > T, there exists
a program {z;}1_, which satisfies

*
r=x;,t=0,...,Tp

and

~
L

v(xg, xpy1) > o(v, T, x) — €.

-+
Il
o

The notion of agreeable programs is well-known in the economic literature [13-15].
In this paper we prove the following result.

Theorem 1.4. Let {z}}{2, be a program and assume that there exists a good pro-
ram {x}}°, satisfying xf = x{,. Then the following properties are equivalent:
g t1i=0 Y 0 0
(i) the program {x}}$°, is overtaking optimal;
the program {x} }72, is weakly optimal;
t J1=0
iii) the program {x;}:2, s locally maximal and good;
t J1=0
iv) the program {x} }7°, is locally mazximal and satisfies lim;_ oo 1 = Z;
t J1=0
the program {x} }2, is locally mazimal and satisfies liminf; . ||x:—Z| = 0;
t Si=0
) the program {x}};2, is agreeable.

2. A TURNPIKE RESULT

The proof of Theorem 1.4 is based on the following turnpike result obtained
in [41].

Theorem 2.1. Let €, M be positive numbers. Then there exist a natural number
L and a positive number & such that for each integer T > 2L and each program
{z}], which satisfies

T-1

20 € Xar, Y v(@e, xer1) > 0(v,T,x0) — 6

t=0
there exist nonnegative integers 11, T2 € [0, L] such that ||z: — Z|| < € for all t =
Tl,...,T—TQ.
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3. PROOF OF THEOREM 1.4

Clearly, (i) implies (ii). We show that (ii) implies (iii). Assume that the program
{z}}72, is weakly optimal. Then
T-1
(3.1) timinf 3" fo(a, af41) — v(a, 2f)] <0
t=0

Since the program {z}}7°, is good we have

T-1
(3.2) sup{‘ v(xh, ) — Tv(:?,:i)‘ :T=1,2,... } < 0.
t=0
By (3.1) and (3.2),
T-1
(3.3) lim sup [Z v(zy, xpyq) — To(z, f)} > —00.
T— 00 =0

Proposition 1.1 and (3.3) imply that {z}}22, is good. In view of (A3),
(3.4) lim z} = 7.

t—00
We claim that {z}}72, is locally maximal. Assume the contrary. Then there exist
A > 0, a natural number T and a program {yt}tTiO such that

(35) Yo = xaa Yty > :E%Oa
To—l TO_1

(3.6) > o) = Y v} af) + A
t=0 t=0

(A4) and (3.5) imply that there exist y; € X for all integers ¢t > Tj such that {y;}52,
is a program, y; > zf for all integers t > Ty and that for all integers ¢t > Ty, we have
O(Yes Yev1) = v(@, Tp40).

Together with (3.6) this implies that

T-1 — To—1 To—1
liTIgigéf {Z U(Yes Ye+1) Z (g, w74 1) ] = Z v(Yes Yer1) — Z v(@y, w74 1)
t=0 t=0 t=0 t=0
>A>0

and {z}}{2, is not weakly optimal. The contradiction we have reached proves that
{z}}72, is locally maximal.

By (A3), (iii) implies (iv). Clearly, (iv) implies (v). We show that (v) implies
(ii).

Assume that {x}}7° is a locally maximal program and that

- £

(3.7) htrgégf |z} — || = 0.
We show that {z}}{2, is a good program. (Al) implies that there exists ey € (0, 1)
such that
(3.8) |v(z,y) —v(z,z)| <1 for each (x,y) € Q satistying ||z — z|, ||y — Z|| < €o.
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(A5) implies that there exists dp € (0, €) such that the following property holds:
(a) for each (z,y) € X satisfying ||z — 7|, ||y — Z|| < dp there exists y' € X such
that
y, >y, (ZE,y/) € Q, ”y, - EH < €o-
There exists My > 0 such that for each natural number T,

T—1
(3.9) ) S olal, 2hyy) — To(@,7)| < Mo,
t=0
It follows from (A3) that
. m r; =T.
(3.10) lim

t—o00

By (3.7) and (3.10), there exists a strictly increasing sequence of natural numbers
{T}}72 | such that T1 > 10,

(3.11) |z, — Zl| < do, k=1,2,...,

(3.12) |z} — Z|| < dp for all integers ¢t > Ty — 1.
Let k > 1 be an integer. It follows from (3.11) and (3.12) that
(3.13) l2%, =zl < do, 27,1 — Z[| < do.

Property (a) and (3.13) imply that there exists z € X such that

(3.14) z>ap, (o7, _1,2) €Q, |z —Z|| < e.

Define

(3.15) ye=ay, t=0,....,7, — 1, yp, = z.

By (3.14) and (3.15), {yt}tTiO is a program satisfying

(3.16) Yo = Ty, YT, = T, -

It follows from (3.9), (3.15) and (3.16) that
Tp—1 T —1 Tp—1
> o(af, i) = Y vlynv) = Y viah,ah) — 2l
t=0 t=0 t=0

(3.17) > =2||lv|| = Moy + Tv(Z, 7).

Theorem 1.1 and (3.17) imply that {z}}2°, is a good program and (iii) holds. In
view of Theorem 1.3, (iv) implies (i). Therefore properties (i)-(v) are equivalent.

Let us show that (vi) implies (iv). Assume that {z}}{°, is agreeable. Since
{x}}52, is good and zf, = x{; there exists M > 0 such that

J}S e Xyu.

We show that {x}}7°, is locally maximal. Assume the contrary. Then there exist
A > 0, a natural number Ty and a program {yt}tTio such that

(318) Yo = xSa Y1, 2 x;oa
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Tofl Tofl
(3.19) Z v(Yt, Y1) > Z v(@y, Tip) + A
t=0 t=0

Since {z}};2, is an agreeable program there exist a natural number 77 > Ty + 8
and a program {$t}zio such that

(3.20) xy=x;, t=0,...,Tp,
T1—1

(3.21) > v(wy wi41) = o0, Ty, 25) — AJ4.
t=0

(A4) and (3.18) imply that there exist y;, t = To + 1,..., T} such that {yt}go is a
program,

(3.22) Yt >z, t =Ty, ..., T,
(323) U(ytayt+1) Z’U(xt?xt-i-l)a tzTOa"'le -1
By (3.18), (3.19), (3.21) and (3.23),
-1
A4 > o(v,Th,x5) — Z v(@t, Tey1)
t=0
- -1
Z V(Yt, Ye+1) Z v(Tg, Tit1)
= t=0
T0—1 To—1
> Z O(Yt, Y1) — Z vy, T41) > A,
t=0 t=0

a contradiction. The contradiction we have reached proves that {z;}2°, is a locally
maximal program.

Let us show that lim;_, ||z} —Z|| = 0. Let € > 0. Theorem 2.1 implies that there
exist a natural number Ly and a positive number § € (0, €) such that the following
property holds:

(b) for each integer T > 2Lg and each program {z;}~ , which satisfies

T-1
xy = Xy, Z v(xg, Tpp1) > o(v, Tyxg) —
t=0
we have ||z; — Z|| < e for all t = Lg,...,T — Ly.

Let a natural number S > 2Lg. Since {z} }?2, is an agreeable program there exist

a natural number 7 > S + Lo and a program {z;}£ , such that

(3.24) xp=ux;,t=0,...,5,
T-1

(3.25) Zv Tt, Teg1) > o(v, 11, zg) — 0.
=0

Property (b), (3.24) and (3.25) imply that
(3.26) |zt — %) <€, t = Lo, ..., T — Lo.
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In view of (3.24) and (3.26),
|lxy —z|| <€, t=Lo,...,S.

This implies that
|z — Z|| < e for all interges t > Lo

and lim;_, ||z — Z|| = 0. Thus (iv) holds.
We show that (iv) implies (vi). Assume that {x}}$°, 1 a locally maximal program
and

(3.27) |z} — z| = 0.

Let Tp be a natural number and € € (0,1). (A1) implies that there exists oo € (0, €/4)
such that

(3.28) lv(z,y) —v(Z,Z)| <€/8

for each (z,y) € Q satisfying ||z — z||, ||y — Z|| < 2dp. (A5) implies that there exists
5 € (0,dp) such that the following property holds:
(c) for each z,y € X satisfying

e =z, ly—z| <0
there exists ¢’ € X such that
y, >y, (J:ay/) €, ||y, - jH < do.
Clearly, there exists M > 0 such that

(3.29) x5 € Xy
and there exists a natural number 77 such that
(3.30) |z} — Z|| < 4 for all integers ¢t > T1.

Theorem 2.1 and (3.29) imply that there exists a natural number L such that the
following property holds:
(d) for each integer T > 2Lg and each program {z;}1_, which satisfies

T-1

20 =15, Y vz, z41) = o(v, T, x5)
=0

we have ||z; — Z|| < d for all t = Ly,..., T — Ly.
Let a natural number

(3.31) T >1Ty+2Ly+ T, + 4.

There exists a program {y:}7_, such that

T-1

(332) Yo = 338’ Z U(ytvyt-i-l) = O-(U’Ta 556)
t=0

Property (d), (3.31) and (3.32) imply that

In view of (3.30) and (3.33),
(3.34) lyr-ro-1 =2l <6, lyr—r, — 2| <6,
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(3.35) -1 — Tl <0, [leg_z, — | < 0.

Property (c), (3.34) and (3.35) imply that there exists ¥’ € X such that
(3.36) Y > yr—ro, Iy — 7| <o, (#7_ry1,9) € Q.

It follows from (A4) and (3.36) that there exists a program {7;}Z_, such that

(3.37) Go=af, t=0,...,T—Lo—1,
(338) :/y\TfLo :y/7 @\t Z Yt t :T_L07°"5T7
(339) (yt,yt+1) (ytayt+1) t= T—Lo,...,T— 1.

In view of (3.32) and (3.37),

T—1 71
ZU (Y, Ye1) < o(v, Ty z5) = ) vy, Yey1)-
t=0 t=0
By (3.28), (3.30) and (3.35)-(3.39),
T-1 T—1 T—Lo—1 T—Lo—1
Z (Y, Ye+1) — Z (Y, Yer1) = Z (Y, Ye+1) — Z (Y, Yet1)
=0 =0 =0 =0
T—Lo—1 T—Lo—1
= Z v(ay, wip) — Z O(Yts Yr+1)
=0 =0
- ’U(l';—'—Lo—l’ x%—LQ) + U(x}—L()—17 y,)
T—Lo—1 T—Lo—1
2 Z v(@y, @iy1) — Z V(Yts Yi41)
t=0 t=0
(3.40) —¢/4.

Property (c), (3.34) and (3.35) imply that there exists z/ € X such that
(3.41) 2z ot g, 17 =2 <0, (Wrope-1,7) €L

By (3.31) and (3.41) there exists a program {Et}tT:BLD such that

(3.42) Zi=uy, t=0,....,T—Lo—1, Zp_r, = 2.

In view of (3.32), (3.41) and (3.42),

T—Lo—1 T—Lo—1

(3.43) > ovafaia) > Y v(E E)

t=0 t=0
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By (3.28), (3.34) and (3.41)-(3.43),

T—Lo—1 T—Lo—1
0< Z v(zy, xpq) — Z v(Zt, Zt+1)
t=0 t=0
T—Lo—1 T—Lo—1
= Z v(@y, @i41) — Z O(Yt, Ye+1)
t=0 t=0
+ 0(Yr—Lo-1,Y7—Lo) — V(YT—L9—1,2")
T—Lo—1 T—Lo—1
(3.44) < Z v(@y, zip) — Z v(Yt, Y1) + €/4.
t=0 t=0
In view of (3.44),
T—Lo—1 T—Lo—1
(3.45) > v ai) = Y vy ye) > —e/4.
t=0 t=0

It follows from (3.40) and (3.45) that

T-1
Z (Yt Y1) Z O(Yt, Yr+1) = —€/2.
=0 t=0

By the relation above, (3.31), (3.32) and (3.37),
T-1

Z/U yt7yt+1 > O'(’U T xO) 6/27
t=

gt:.%‘?, tZO,...,T()
Thus {z}}72, is an agreeable program, and (iv) implies (vi). This completes the
proof of Theorem 1.4.
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