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T tATm = Bm = λT tTm = λm and Bm = λm. Finally, since T is a one-to-one
mapping,

Av = λv ⇐⇒ Bm = λm(2.1)

and (m,λ) → (v, λ) is a one-to-one correspondence.

2.3. Algorithm. In this section we treat the real symmetric case, combining the
reduction with the Rayleigh Quotient Iteration:

• Initialization: Start with an empty set L of computed A-eigenvectors, an
identity matrix as an orthonormal basis T for the null space of L, and B = A.

• Reduction step: Compute an eigenvector of B using the Rayleigh Quo-
tient Iteration (RQI, Algorithm 27.3 in [4]). Denote this B-eigenvector
by m. Then Tm is an eigenvector of A. Update the set L of computed
A-eigenvectors (and eigenvalues). Update the orthonormal basis T for the
null space of L and the B matrix.

• Repeat the reduction step n times where n is the size of A.

2.4. Notes. To solve RQI’s linear system use the Conjugate Gradient algorithm
(CG, Algorithm 38.1 in [4]). The properties of the RQI and CG algorithms are well
known. We now show that when the size of B is k × k (and T ’s size is n× k), the
orthonormal basis T and the B matrix can be updated by k − 1 two-dimensional
rotations. Therefore, this update requires O

(
n2

)
multiplications.

Given v = Tm, v /∈ L, compute a rotation R12 of the first two columns of T such
that v is orthogonal on the first column of T12 = TR12 (if a and b are the inner

products of v with columns (1, 2) of T respectively, x = b/
√
a2 + b2, y = a/

√
a2 + b2,

and the (1, 2) block of R12 is

[
x y
−y x

]
). Then (i) v is orthogonal on the first column

of T12, (ii) since a rotation matrix is orthogonal, T12 is an orthonormal basis for
the null space of L, (iii) the columns of T other than those rotated by R12 (and
their inner products with v) are unchanged, and (iv) the product TR12 requires
O (n) multiplications. Rotate again with T123 = T12R23 = TR12R23 such that v
is orthogonal on the second column of T123. Then T123 is an orthonormal basis
for the null space of L; the columns of T12 other than those rotated by R23 are
unchanged in T123; and v is orthogonal on columns 1 and 2 of T123. Continuing in
this manner produces an orthonormal basis T12...k for the null space of L such that
v is orthogonal on all its columns except the last one. Since v is also orthogonal on
L, the last column of T12...k must be v. The first k − 1 columns of T12...k are then
the updated orthonormal basis of the null space of L − {v}, and computing this
basis requires O

(
n2

)
multiplications. Since B = T tAT , a rotation on T is reflected

by two rotations on B: (TR)tA (TR) = RtT tATR = RtBR. It follows that B can
be updated simultaneously with T . The last row of T t

12...kAT12...k is
[
0 . . . 0 λ

]
where Av = λv,Bm = λm and, when the last column of T12...k is dropped, the last
row and column of B are dropped. Updating B requires O

(
n2

)
multiplications.
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3. Optimization notes

If α is not an eigenvalue of A, then A− αI is not singular and the only solution
of the equation (A− αI)x = 0 is x = 0 which is not an eigenvector since an
eigenvector must be a non-zero vector. While the terms“not an eigenvalue” and “a
non-zero vector” are meaningful as infinite precision concepts, the finite precision
spectrum computation problem is closely related to singularity (if α is an eigenvalue
of A) and ill-conditioning (if α is close to an eigenvalue of A) of A − αI. A new
algorithm (Algorithm B67 by this author) is stable, fast, and applicable on singular
linear systems, but like all such iterative algorithms that do not terminate in a finite
number of steps, its convergence rate is linear. Since an algorithm’s convergence is
as slow as its slowest sub-algorithm, it is preferable to employ the CG algorithm,
which converges in n steps where n is the size of A, as the RQI’s linear solver.
In that case, the slowest part of our spectrum algorithm is the Rayleigh Quotient
Iteration. The RQI’s asymptotic rate of convergence is cubic and Trefethen and Bau
[4, p. 208] describe its convergence speed as “spectacular.” In practice, it converges
in a very small number of steps which appear to be independent of the problem’s
size, in which case the computation of the entire spectrum practically requires only
O
(
n4

)
multiplications. Note that the behaviour of the CG algorithm if A is not a

real symmetric matrix has not been studied and that the RQI algorithm may not
converge (see [1]), or it may converge slowly in that case.

Despite the fact that optimization is a powerful tool, it has its theoretical and
computational limitations. There are no efficient solutions for the general opti-
mization (or solution of equations) problem of order 2, since some NP-complete
problems are of this order. The solution of a linear system of equations is a sub-
step of optimization algorithms (e.g. Newton’s Method and RQI), yet the rate of
convergence of all iterative algorithms for solving linear equations is linear, implying
poor performance for ill-conditioned problems. Constructing a superlinearly con-
vergent algorithm for solving the general linear equations problem (i.e. including
the singular and ill-conditioned cases) or proving that such an algorithm does not
exist is a difficult challenge.

Newton’s Method (and its variants) for minimizing a general (non-convex) smooth
function, even in the one-dimensional case, is not guaranteed to converge to a global
minimum, to a local minimum, or to converge at all.

Establishing that an algorithm’s convergence point satisfies optimality conditions
is itself a difficult problem in the general case. There are no universal necessary
and sufficient optimality conditions and the minimum of a smooth function on a
real interval may be attained at its end-points where no optimality conditions are
satisfied. In the case of constrained optimization in higher dimensions, even for a
smooth function, the feasible region’s boundary structure is generally complicated.

4. Summary

The proposed algorithm takes advantage of the Rayleigh Quotient Iteration and
Conjugate Gradients algorithms, a new generalized matrix quotient, and a reduc-
tion that guarantees that the computed eigenvector/eigenvalue pairs constitute the
entire spectrum. It yields high-precision results and it does not require preparatory
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matrix decompositions or eigenvalues estimates (cf. the QR algorithm’s “shifts”).
Implementing this algorithm does not require the very great amount of understand-
ing that is needed to address all the subtleties that a state-of-the-art implementation
of the QR algorithm requires (see Trefethen and Bau [4, p. 338]).

The use of the RQI and CG algorithms is motivated by considerations of rates
of convergence of linear solvers near singularities. These considerations and related
limitations of optimization algorithms are noted.
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