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In this paper, a graph is a pair (V (G), E(G)) where V (G) = {1, 2, . . . , n} and
E(G) is a set of 2-element subsets of V (G), each having the form {u, v} where
1 ≤ u < v ≤ n. We also denote an edge {u, v} as uv; in this case vertices u and
v are adjacent and are neighbors. The neighborhood of vertex u is N(u) = {v ∈
V (G) : uv ∈ E(G)}. A leaf is a vertex with only one neighbor. The order of G is
the number of vertices, |V (G)|. A graph G′ = (V ′, E′) is a subgraph of G = (V,E)

if V ′ ⊆ V and E′ ⊆ E. We say that a subgraph G̃ = (Ṽ , Ẽ) is a spanning subgraph

of G if Ṽ = V .
Let G be a graph of order n. The set S(G) of matrices representing G is the set

of real symmetric n × n matrices A = [aij ] such that for i ̸= j, aij ̸= 0 if and only
if ij ∈ E(G) (the diagonal is unrestricted). For a matrix A, the number of distinct
eigenvalues of A is denoted q(A) and the minimum number of distinct eigenvalues
of a graph G is

q(G) = min{q(A) : A ∈ S(G)}.
Section 2 contains a discussion of the SMP and SSP and applies them to the

determination of q. Section 3 presents bounds on q(G) for graphs G constructed
as Cartesian, tensor, or strong products. Section 4 presents results about q(G) for
certain types of block-clique graphs and joins. The ability of these graph operations
to raise or lower q is discussed in Section 5. We determine values of q(G) for all
graphs of order 6 in Section 6 and then summarize the values of all graphs G for
which q is currently known in Section 7. The remainder of this introduction contains
additional definitions and results from the literature that will be used.

1.1. Terminology and notation. Matrices discussed are real and symmetric, so
all eigenvalues are real and each matrix has an orthonormal basis of eigenvectors.
Let A be an n × n matrix. The spectrum of A is the multiset of eigenvalues of
A (repeated according to multiplicity) and is denoted by spec(A). The notation
λk(A) denotes the kth eigenvalue of A with λ1(A) ≤ · · · ≤ λn(A). If the matrix
A has distinct eigenvalues µ1 < µ2 < . . . < µq with multiplicities m1,m2, . . . ,mq,
respectively, then the ordered multiplicity list of A is m(A) = (m1,m2, . . . ,mq). In
this paper we denote the set of distinct eigenvalues of a matrix A by dev(A). A
principal submatrix of A is a submatrix obtained from A by deleting a set of rows
and the corresponding set of columns. For 1 ≤ k ≤ n, the principal submatrix A(k)
is the (n−1)×(n−1) matrix obtained from A by deleting row k and column k from
A. The formal definitions of the maximum nullity (which is equal to the maximum
multiplicity of an eigenvalue) and minimum rank are

M(G) = max{null(A) : A ∈ S(G)} and mr(G) = min{rank(A) : A ∈ S(G)}.

It is easy to observe that mr(G)+M(G) = |V (G)|, so the study of maximum nullity
is equivalent to the study of minimum rank.

A path of order n is a graph Pn with V (Pn) = {vi : 1 ≤ i ≤ n} and E(Pn) =
{{vi, vi+1} : 1 ≤ i ≤ n− 1}. The length of Pn is the number of edges, i.e., n− 1. A
graph G is connected if for every pair of distinct vertices u and v, G contains a path
from u to v. In a connected graphG, the distance from u to v, denoted by distG(u, v),
is the minimum length of a path from u to v. If n ≥ 3, a cycle of order n is a graph
Cn with V (Cn) = {Vi : 1 ≤ i ≤ n} and E(Cn) = {{vi, vi+1} : 1 ≤ i ≤ n− 1} ∪
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{{vn, v1}}. A complete graph of order n is a graphKn with V (Kn) = {vi : 1 ≤ i ≤ n}
and E(Kn) = {{vi, vj} : 1 ≤ i < j ≤ n}. A complete bipartite graph with partite
sets X and Y of orders s and t is the graph Ks,t with V (Ks,t) = X ∪ Y where
X = {xi : 1 ≤ i ≤ s} and Y = {yi : 1 ≤ i ≤ t} are disjoint, and E(Ks,t) =
{{xi, yj} : 1 ≤ i ≤ s, 1 ≤ j ≤ t}.

1.2. Results cited.

Theorem 1.1 (Interlacing Theorem). [15, Theorem 8.10]] For A ∈ Rn×n and 1 ≤
k ≤ n,

λ1(A) ≤ λ1(A(k)) ≤ λ2(A) ≤ · · · ≤ λn−1(A) ≤ λn−1(A(k)) ≤ λn(A).

More generally, if B is a principal submatrix of A obtained by deleting the rows and
columns corresponding to a set of m indices, then

λk(A) ≤ λk(B) ≤ λk+m(A) for k = 1, . . . , n−m.

Proposition 1.2. [1, Proposition 2.5] For a graph G, q(G) ≤ mr(G) + 1.

Observation 1.3. [4, p. 23] For a graph G on n vertices, ⌈ n
M(G)⌉ ≤ q(G).

Observation 1.4. [1, p. 678] If q(G) = 2, then there exists a symmetric orthogonal
matrix A ∈ S(G).

Proposition 1.5. For any n ≥ 2, q(Kn) = 2 [1, Lemma 2.2]. For any n ≥ 1,
q(Pn) = n [1, p. 676]. For any n ≥ 3, q(Cn) =

⌈
n
2

⌉
[1, Lemma 2.7].

Theorem 1.6. [1, Corollary 6.5] For any m,n with 1 ≤ m ≤ n,

q(Km,n) =

{
2 m = n
3 m < n

.

Theorem 1.7. [11, Theorem 5.2] Let G and G′ be connected graphs of order n.
Then q(G ∨G′) = 2 and there is a matrix M ∈ S(G ∨G′) with m(M) = (n, n).

The next theorem is often referred to as the “unique shortest path theorem.”

Theorem 1.8. [1, Theorem 3.2] If there are vertices u and v in a connected graph
G such that distG(u, v) = d and the path of length d is unique, then q(G) ≥ d+ 1.

Theorem 1.9. [1, Theorem 4.4] For a connected graph G on n vertices, if q(G) = 2,
then for any independent set of vertices {v1, . . . , vk} we have∣∣∣∣∣∣

∪
i ̸=j

(N(vi) ∩N(vj))

∣∣∣∣∣∣ ≥ k or

∣∣∣∣∣∣
∪
i ̸=j

(N(vi) ∩N(vj))

∣∣∣∣∣∣ = 0.

Theorem 1.10. [4, Theorem 51] A graph G has q(G) ≥ |V (G)|−1 if and only if G
is one of the following: a path; the disjoint union of a path and an isolated vertex;
a path with one leaf attached to an interior vertex; a path with an extra edge joining
two vertices at distance 2.

A path on n vertices with one leaf attached to an interior vertex is called a
generalized star and is denoted by S(k− 1, n− k− 1, 1), where k is the vertex with
the extra leaf with path vertices numbered in path order. An order n path with
an extra edge joining the two vertices k + 1 and k + 3 (0 ≤ k ≤ n − 3) is called a
generalized bull and is denoted by GB(k, n− k − 3).
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2. Strong properties

The Strong Spectral Property (SSP) and Strong Multiplicity Property (SMP)
were introduced in [4] and additional properties and applications are given in [3].
These properties can yield powerful results. In this section we define and apply
them.

The entry-wise product of A,B ∈ Rn×n is denoted by A◦B and the trace (sum of
the diagonal entries) of A is denoted by trA. An n×n symmetric matrix A satisfies
the Strong Spectral Property (SSP) [4] provided no nonzero symmetric matrix X
satisfies

• A ◦X = 0 = I ◦X and
• AX −XA = 0.

A n × n symmetric matrix A satisfies the Strong Multiplicity Property (SMP) [4]
provided no nonzero symmetric matrix X satisfies

• A ◦X = 0 = I ◦X,
• AX −XA = 0, and
• tr(AiX) = 0 for i = 0, . . . , n− 1.

If a matrix has SSP, then it also has SMP, but not conversely [4]. The definitions of
the SMP and SSP just given are linear algebraic conditions that allow the applica-
tion of the Implicit Function Theorem to perturb one or more pairs of zero entries
to nonzero entries while maintaining the nonzero pattern of other entries and pre-
serving the ordered multiplicity list or spectrum (see [4] for more information). The
next theorem will be applied to give an upper bound on q.

Theorem 2.1. [4, Theorem 20] Let G be a graph and let G̃ be a spanning subgraph

of G. If Ã ∈ S(G̃) has SMP, then there exists A ∈ S(G) with SMP having the same

multiplicity list as Ã.

The SMP minimum number of distinct eigenvalues of a graph H is defined in [4]
to be

qM (H) = min{q(A) : A ∈ S(H), A has SMP}.
The next result is clear from the definitions and Theorem 2.1.

Observation 2.2. Let G be a graph and let G̃ be a spanning subgraph of G. Then

q(G) ≤ qM (G) ≤ qM (G̃).

A Hamilton cycle in a graph is a cycle that includes every vertex. The next result
is a simplified form of [4, Corollary 49] and follows from qM (Cn) =

⌈
n
2

⌉
[4, Theorem

48].

Corollary 2.3. [4] Let G be a graph of order n that has a Hamilton cycle. Then
q(G) ≤

⌈
n
2

⌉
.

It is known (see, for example, [4]) that for any set of distinct eigenvalues λ1 <
· · · < λn and any graph G of order n there is a matrix A ∈ S(G) with spec(A) =
{λ1, . . . , λn}. The next result includes the additional requirement that every entry
of the diagonal of A is nonzero.



MINIMUM NUMBER DISTINCT GRAPH EIGENVALUES 541

Theorem 2.4. Let G be a graph of order n. Then any set of n distinct nonzero
real numbers can be realized by some matrix A ∈ S(G) that has SSP and has all
diagonal entries nonzero.

Proof. Let λ1, . . . , λn be distinct nonzero real numbers. As noted in [4, Remark
15], there is a matrix A ∈ S(G) that has SSP and spec(A) = {λ1, . . . , λn}. The
matrix A is obtained from the matrix D = diag(λ1, . . . , λn) by a perturbation of
the entries; note that D has SSP since the diagonal entries are distinct [4, Theorem
34]. Since such perturbation may be chosen arbitrarily small, we may assume the
diagonal entries of A are all nonzero. □

The next two results about strong properties appear in [4] and [3] and are used
in Section 6. Theorem 2.5 allows verification of the SSP or SMP for A ∈ S(G) by
computation of the rank of a matrix constructed from A and G. Lemma 2.6 allows
us to import results from the solution of the IEPG for graphs of order 5 to determine
the value of q for order 6. Some definitions are needed first. The support of a vector
x is supp(x) = {i : xi ̸= 0}. Let H be a graph with vertex set {1, 2, . . . , n} and
edge-set {e1, . . . , ep}. We denote the endpoints of ek by ik and jk. For a symmetric
n×n matrix A = [aij ], we denote by vecH(A) the p×1 vector whose kth coordinate
is aikjk . Thus vecH(A) makes a vector out of the elements of A corresponding to the
edges in H. The matrix Eij denotes the n × n matrix with a 1 in the i, j-position
and 0 elsewhere, and Kij denotes the n× n skew-symmetric matrix Eij −Eji. The

complement G of G is the graph with the same vertex set as G and edges exactly
where G does not have edges. The next theorem is used to determine whether a
matrix has SSP.

Theorem 2.5. [4, Theorem 31] Let G be a graph, let A ∈ S(G) and let p be the
number of edges in G. Then A has SSP if and only if the p ×

(
n
2

)
matrix whose

columns are vecG (AKij −KijA) for 1 ≤ i < j ≤ n has rank p.

Lemma 2.6 (Augmentation Lemma). [3, Lemma 7.5] Let G be a graph on vertices
{1, . . . , n} and A ∈ S(G). Suppose A has SSP and λ is an eigenvalue of A with
multiplicity k ≥ 1. Let α be a subset of {1, . . . , n} of cardinality k + 1 with the
property that for every eigenvector x of A corresponding to λ, | supp(x) ∩ α| ≥ 2.
Construct H from G by appending vertex n + 1 adjacent exactly to the vertices in
α. Then there exists a matrix B ∈ S(H) such that B has SSP, the multiplicity of
λ has increased from k to k + 1, and other eigenvalues and their multiplicities are
unchanged from those of A.

The Augmentation Lemma is usually applied to a specific matrix where the eigen-
vectors can be determined (as in Section 6). However, it is also possible to apply it
without a specific matrix as is done in the next corollary.

Corollary 2.7. Suppose G is a graph, each vertex of G has at least two neighbors,
and H is constructed from G by adding a new vertex adjacent to every vertex of G.
If A ∈ S(G) has SSP and m(A) = (m1, . . . ,mr), then for each j = 1, . . . , r there
exists a matrix Bj ∈ S(H) such that Bj has SSP, the distinct eigenvalues of Bj are
the same as those of A, and m(A) = (m1, . . . ,mj−1,mj + 1,mj+1, . . . ,mr).
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Proof. We apply the Augmentation Lemma with α = {1, . . . , n}, so |α| ≥ mj + 1.
For any vector x, | supp(x) ∩ α| = | supp(x)|. Suppose | supp(x)| = 1 for some
eigenvector x. Let k be the position containing the one nonzero entry of x. Then
Ax = λx implies the kth column of A has at most one nonzero entry, which is
impossible since A ∈ S(G) and every vertex of G has at least two neighbors. So
| supp(x) ∩ α| ≥ 2. Then there exists a matrix Bj ∈ S(H) with the required
properties by the Augmentation Lemma. □

Corollary 2.8. For n ≥ 4, q(Kn − e) = 2 and there is a matrix M ∈ S(Kn − e)
with SSP and m(M) =

(⌈
n
2

⌉
,
⌊
n
2

⌋)
.

Proof. The graphs K4− e and K5− e are done in [4], so assume n ≥ 6. For n = 2k,
the result follows from joining Kk with Kk − e by Theorem 1.7, which shows there
exists a matrix A ∈ S(Kn − e) with m(A) = (k, k). We show that A has SSP, and
the result then follows from Corollary 2.7. Note that A ◦ X = O = I ◦ X implies
X = [xij ] has only one symmetrically placed pair of possibly nonzero entries, say
x12 = x21 = x. Then (AX −XA)23 = xa23. Since a23 ̸= 0, x = 0 and X = O. □

3. Graph products

In this section we compute bounds for q for Cartesian, tensor, and strong prod-
ucts of graphs, and in some cases we determine the value of q for graphs constructed
by these products. The Kronecker product of matrices plays a central role in con-
structing matrices realizing graph parameters for graphs that are products. For
A ∈ Rn×n and A′ ∈ Rn′×n′

, the Kronecker product of A and A′ is the nn′ × nn′

matrix

A⊗A′ =


a11A

′ a12A
′ · · · a1nA

′

a21A
′ a22A

′ · · · a2nA
′

...
...

. . .
...

an1A
′ an2A

′ · · · annA
′

.
For sets or multisets of real numbers S and T , we define sets or multisets S+T =

{s + t : s ∈ S, t ∈ T} and ST = {st : s ∈ S, t ∈ T} (for sets duplicates are
removed, but for multisets duplicates are left in place). It is well known that
spec(A⊗ A) = spec(A) spec(A′) (see, for example, [15, Theorem 4.8]); this implies
dev(A⊗A) = dev(A) dev(A′).

3.1. Cartesian products. The Cartesian product of graphs G and G′, denoted
by G□G′, has vertex set V (G)× V (G′) and edge set {(u, v)(x, y) : u = x and vy ∈
E(G′) or v = y and ux ∈ E(G)}. We present several bounds on the value of q for
Cartesian products of graphs that apply when certain hypotheses on the constituent
graphs are met.

Proposition 3.1. Let G1 and G2 be graphs. If q(Gi) can be realized by matrices
Ai ∈ S(Gi), i = 1, 2 with dev(Ai) = {1, 2, . . . , qi(G)}, then q(G1□G2) ≤ q(G1) +
q(G2)− 1.
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Proof. Assume the required Ai exist. We observe that dev(A1 ⊗ I + I ⊗ A2) =
dev(A1)+dev(A2) = {2, . . . , q(G1)+ q(G2)}. Therefore there are q(G1)+ q(G2)− 1
distinct eigenvalues of (A1 ⊗ I + I ⊗ A2) ∈ S(G1□G2), and so q(G1□G2) ≤
q(G1) + q(G2)− 1. □

Since any set of distinct eigenvalues can be realized as the eigenvalues of a path,
we have the following result.

Corollary 3.2. If G is a graph such that q(G) can be realized by a matrix A ∈ S(G)
with dev(A) = {1, 2, . . . , q(G)}, then q(G□Ps) ≤ q(G) + s− 1.

For s = 2, the bound q(G□P2) ≤ 2q(G) − 2 given in [1, Theorem 6.7] is better
than that in Corollary 3.2 when q(G) = 2, and the bounds are equal for q(G) = 3,
but otherwise the bound in Corollary 3.2 is better.

Corollary 3.3. If G is a graph such that q(G) can be realized by a matrix A ∈ S(G)
with dev(A) = {1, 2, . . . , q(G)}, then q(G□Cn) ≤ q(G) +

⌈
n
2

⌉
.

Proof. Assume the hypotheses. For C2k+1 we can realize the ordered multiplicity list
(2,...,2,1) with any spectrum by [7]. For C2k we can realize the ordered multiplicity
list (2,...,2) with any spectrum by [8] (cited in [1, Lemma 2.7]). □

Proposition 3.4. Let G and G′ be graphs and let d denote the length of the unique
shortest path between vertices of distance d in G. If q(G) = d+1, then q(G□G′) ≥
q(G).

Proof. Assume q(G) = d+1. Let v1, vd+1 ∈ V (G) such that distG(v1, vd+1) = d and
let v1, v2, . . . , vd+1 be the unique shortest path of length d from v1 to vd+1 inG. Then
for any v′ ∈ V (G′), (v1, v

′), (v2, v
′), . . . , (vd+1, v

′) is a path of length d in G□H. It
is clear that distG□H((v1, v

′), (vd+1, v
′)) = d. This path is the unique path of length

d since a path involving (vi, u
′) for some other u′ ∈ V (G′) would be longer and any

other path (v1, v
′), (w2, v

′), . . . , (wd, v
′), (vd+1, v

′) would contradict the uniqueness
of the path in G. So by Theorem 1.8, q(G□H) ≥ (q(G)− 1) + 1 = q(G). □

Corollary 3.5. For any path Ps on s ≥ 2 vertices, q(Ps□P2) = s.

Proof. By Proposition 3.4, we have s ≤ q(Ps□P2). Observe Ps□P2 has a Hamilton
cycle of order 2s, so by Corollary 2.3 we know q(Ps□P2) ≤ s. Thus, q(Ps□P2) =
s. □

The matrix Ĉs obtained from the adjacency matrix of Cs by changing the sign on

a pair of symmetrically placed ones is called the flipped cycle matrix; note that Ĉs

has every diagonal entry equal to zero. Set k =
⌈
s
2

⌉
. The distinct eigenvalues of Ĉs

are λj = 2 cos π(2j−1)
s , j = 1, . . . , k, each with multiplicity two except that λk = −2

has multiplicity one when s is odd [2].

Proposition 3.6. Let G be a graph of order t. If there exists a matrix A ∈ S(G)
such that q(A) = q(G) and − dev(A) = dev(A), then q(C4□G) ≤ q(G) + 1. If in
addition 0 ̸∈ dev(A), then q(C4□G) ≤ q(G).
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Proof. Assume A ∈ S(G), q(A) = q(G), and −dev(A) = dev(A). Define

M =


A It 0 −It
It −A It 0
0 It A It

−It 0 It −A

,
so

M2 =


A2 + 2It 0 0 0

0 A2 + 2It 0 0
0 0 A2 + 2It 0
0 0 0 A2 + 2It

.
This implies dev(M) ⊆ S := {±

√
λ2 + 2 : λ ∈ dev(A)}. If 0 ̸∈ dev(A), then

|{λ2 + 2 : λ ∈ dev(A)}| = q(A)
2 and |S| = q(A). If 0 ∈ dev(A), then |{

√
λ2 + 2 :

λ ∈ dev(A)}| = q(A)+1
2 and |S| = q(A) + 1. Observe that M = Ĉ4 ⊗ It +D ⊗A for

D = diag(1,−1, 1,−1). Thus, M ∈ S(C4□G). □

The next result shows that the bound in Proposition 3.6 is tight.

Corollary 3.7. For k ≥ 1, s ≥ 2 and s ̸≡ 2 mod 4,

• q(C4□P2k) = 2k, and
• q(C4□Cs) =

⌈
s
2

⌉
.

Proof. We present upper and lower bounds that are equal to the stated value. For
the upper bound we apply Proposition 3.6: Use the adjacency matrix A for G = P2k,
and note that − spec(A) = spec(A) and 0 ̸∈ spec(A). Use the flipped cycle matrix

Ĉs for G = Cs, and note that − spec(Ĉs) = spec(Ĉs), and 0 ̸∈ spec(A) if s ̸≡ 2
mod 4. For P2k, Proposition 3.4 provides the lower bound. Since M(C4□Cs) ≤ 8
(this is well known and is immediate from [2, Proposition 2.4 and Corollary 2.8]),
Observation 1.3 provides the lower bound for Cs. □

3.2. Tensor products. The tensor product of graphsG andG′, denotedG×G′, has
vertex set V (G)×V (G′) and edge set {(u, u′)(v, v′) : uv ∈ E(G) and u′v′ ∈ E(G′)}.

Remark 3.8. For s ≥ 2, the graph Ps × P2 is two (disjoint) copies of Ps, so
q(Ps × P2) = s.

Proposition 3.9. Let G and G′ be connected graphs. Let A = [aij ] ∈ S(G) with a
zero diagonal and A′ = [a′ij ] ∈ S(G′) with a zero diagonal. Then A⊗A′ ∈ S(G×G′).

Proof. Let u ∈ V (G) and u′ ∈ V (G′). Then, the vertices of G ×G′ are (u, u′) and
the edges are (u, u′)(v, v′) where uv and u′v′ are edges in G and G′, respectively.
Since auu = a′u′u′ = 0, auv and a′u′v′ are both nonzero if and only if uv ∈ E(G) and
u′v′ ∈ E(G′). Thus, (A⊗A′) ∈ S(G×G′). □

Proposition 3.10. Let G be a graph. If there exists A ∈ S(G) such that the
diagonal of A is zero, q(A) = q(G), and −dev(A) = dev(A), then q(C4×G) ≤ q(G).
In particular:

(1) q(C4 × Ps) = s.
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(2) q(C4 × C4) = 2.
(3) q(C4 × C2k) ≤ k.

Proof. Assume the hypotheses. Define

M =
1√
2


0 A 0 −A
A 0 A 0
0 A 0 A

−A 0 A 0

, so M2 =


A2 0 0 0
0 A2 0 0
0 0 A2 0
0 0 0 A2

.
This implies devM ⊆ dev(A) ∪ (−dev(A)) = dev(A), so q(M) = q(A). Let B =

0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

. Then M = B ⊗A ∈ S(C4 ×G) and q(C4 ×G) ≤ q(G).

Since spec(A) = − spec(A) for A the adjacency matrix of Ps or C2k, q(C4×Ps) ≤ s
and q(C4×C2k) ≤ k. The specific results then follow from the general upper bound
just established, and that C4 × Ps has a unique shortest path on s vertices and
q(C4) = 2. □

The next result gives a bound on the tensor product of two paths. Since it is
known that a path can be realized with any distinct spectrum, it would be reasonable
to ask for a spectrum that behaves well under products, e.g., {1, 2, 4, . . . , 2k−1} for
k = s, t. However, much less is known about what spectra can be realized by
paths assuming a zero diagonal. It is not true that a path can be realized with any
spectrum and zero diagonal, because the sum of the eigenvalues must be zero.

Proposition 3.11. For the tensor product of paths,

min{s, t} ≤ q(Ps × Pt) ≤


ts
2 for s, t even
(t−1)s

2 + 1 for s even, t odd
(t−1)(s−1)

2 + 1 for s, t odd

Proof. The lower bound is a direct application of Theorem 1.8.
For the upper bound, note that for paths the adjacency matrix achieves q. We

can find the eigenvalues of Ps × Pt by multiplying all possible pairs of eigenvalues
from the adjacency matrices for Ps and Pt. As a path is bipartite, the adjacency
eigenvalues of the path are symmetric about zero. We then count the eigenvalues.

If s and t are both even, we have t
2 positive eigenvalues of Pt and since the s

eigenvalues of Ps are symmetric about zero, we have at most ts
2 distinct eigenvalues

for Ps × Pt.
If s is even and t is odd, then there are t−1

2 distinct positive eigenvalues of Pt

and s non-zero eigenvalues of Ps. Thus, we have at most (t−1)s
2 distinct nonzero

eigenvalues. Since t is odd, Pt contains a zero eigenvalue, and so does Ps × Pt.
Therefore we add 1 to our bound.

If s and t are odd, then there are t−1
2 distinct positive eigenvalues of Pt and

s− 1 non-zero eigenvalues of Ps. Thus we have at most (t−1)(s−1)
2 distinct nonzero

eigenvalues. Since t is odd, Pt contains a zero eigenvalue, and so does Ps × Pt.
Therefore we add 1 to our bound. □
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3.3. Strong products. The strong product of graphs G and G′, denoted G ⊠ G′,
has vertex set V (G⊠G′) = V (G)× V (G′) and edge set

E(G⊠G′) = {(u, u′)(v, v′) : u = v and u′v′ ∈ E(G′)}
∪ {(u, u′)(v, v′) : u′ = v′ and uv ∈ E(G)}
∪ {(u, u′)(v, v′) : u′v′ ∈ E(G′) and uv ∈ E(G)}.

That is, E(G ⊠ G′) = E(G × G′) ∪ E(G□G′). Note that the strong in strong
product has no connection with the strong in Strong Multiplicity Property (or Strong
Spectral Property).

Proposition 3.12. Let A ∈ S(G) and A′ ∈ S(G′) with both having every diagonal
entry nonzero. Then A⊗A′ ∈ S(G⊠G′).

Proof. Let DA denote the matrix containing the diagonal of A and similarly for
DA′ . We observe that

A⊗A′ = (A−DA +DA)⊗ (A′ −DA′ +DA′)

= (A−DA)⊗ (A′ −DA′) + (A−DA)⊗DA′ +

DA ⊗ (A′ −DA′) +DA ⊗DA′ .

Observe that (A−DA)⊗ (A′ −DA′) gives the edges of G×G′ by Proposition 3.9.
The edges G□G′ are given by (A−DA)⊗DA′ +DA ⊗ (A′ −DA′). We note that
the Cartesian and tensor products of graphs have no common edges, so there is
no cancellation, and that adding the preceding matrices gives us the off-diagonal
nonzero pattern of G⊠G′. Adding DA⊗DA′ will not affect the off-diagonal pattern.
Therefore, A⊗A′ ∈ S(G⊠G′). □

Proposition 3.13. Let G be a graph. If A ∈ S(G), every diagonal entry of A is
nonzero, q(A) = q(G), and (−dev(A) = dev(A) or 0 ∈ dev(A)), then q(G⊠ P2) ≤
q(G).

Proof. Assume A ∈ S(G), every diagonal entry of A is nonzero, and q(A) = q(G).

If −dev(A) = dev(A), choose B = 1√
2

[
1 1
1 −1

]
, so spec(B) = {−1, 1}. If 0 ∈

dev(A), choose B = 1
2

[
1 1
1 1

]
, so spec(B) = {0, 1}. Then, A⊗ B ∈ S(G⊠ P2) and

dev(A⊗B) = dev(A) dev(B) = dev(A). Therefore q(G⊠P2) ≤ q(A⊗B) ≤ q(G). □

Proposition 3.14. Let A ∈ S(G) with every diagonal entry nonzero such that
q(A) = q(G) and dev(A) = −dev(A). Then

q(G⊠ P3) ≤
{

q(G) + 1 if 0 /∈ dev(A)
q(G) if 0 ∈ dev(A)

.

Proof. We may realize the spectrum {−1, 0, 1} for P3 with the matrix

B =


−5

6

√
3
5 −5

6

√
3
5 0

−5
6

√
3
5

1
2

√
3
5

2
3

√
3
5

0 2
3

√
3
5

1
3

√
3
5

,
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which has every diagonal entry nonzero. By similar reasoning as in Proposition
3.13, dev(A⊗B) = dev(A) ∪ 0. The upper bound follows immediately. □

Corollary 3.15. q(P3 ⊠ P3) = 3.

Proof. We observe that 3 ≤ q(P3 ⊠ P3) since the diagonal vertices in P3 ⊠ P3 have
a unique shortest path of length 2. Furthermore, q(P3 ⊠ P3) ≤ 3 by Proposition
3.14. □

The next result is worse for odd paths than Proposition 3.14 because Theorem
2.4 does not apply when a zero eigenvalue is desired.

Proposition 3.16. For s′ ≥ s ≥ 2,

s ≤ q(Ps ⊠ Ps′) ≤
{

s+ s′ − 2 for s, s′ even
s+ s′ − 1 otherwise

.

Proof. With the vertices of Ps and Ps′ labeled by {1, . . . , s} and {1, . . . , s′},
there is a unique shortest path in Ps ⊠ Ps′ between vertices (1, 1) and (s, s), so
s ≤ q(Ps ⊗ Ps′). By Theorem 2.4, for any λ1, . . . , λn, there is a matrix B ∈ S(Pn)
and spec(B) = {λ1, . . . , λn}. Choose A ∈ S(Ps) with spec(A) = {1, 2, . . . , 2s−1} and

A′ ∈ S(Ps′) with spec(A) = {1, 2, . . . , 2s′−1}. Then dev(A⊗A′) = {1, 2, . . . , 2s+s′−2},
so q(A ⊗ A′) = s + s′ − 1. In the case s and s′ are both even, choose spec(A) =

{±1, 2, . . . ,±2s/2−1} and A′ ∈ S(Ps′) with spec(A) = {±1,±2, . . . ,±2s
′/2−1}. Then

dev(A⊗A′) = {±1,±2, . . . ,±2s/2+s′/2−2}, so q(A⊗A′) ≤ s+ s′ − 2. □

4. Other graph operations

In this section we present results for block-clique graphs and for joins.

4.1. Block Clique-Graphs. Let G = (V,E) and G′ = (V ′, E′) be graphs. The
union of G and G′ is the graph G ∪G′ = (V ∪ V ′, E ∪E′). If V ∩ V ′ = ∅, then the
union is disjoint and can be denoted by G ∪̇G′. If V ∩V ′ ̸= ∅, then the intersection
of G and G′ is the graph G ∩G′ = (V ∩ V ′, E ∩ E′). If V ∩ V ′ = {v}, then G ∪G′

is called the vertex sum of G and G′ and can be denoted by G⊕v G
′; in this case v

is called the summing vertex. A block-clique graph is constructed from cliques by a
sequence of vertex sums. In this section we establish the value of q for two families
of block-clique graphs, clique-paths and clique-stars, which we define below.

Definition 4.1. For s ≥ 2 and nsi ≥ 2 for i = 1, . . . , s, we define a graph
KP (n1, n2, . . . , ns), called a clique-path, to be a graph constructed by vertex sums
using distinct summing vertices and cliques Kn1 ,Kn2 , . . . ,Kns in order.

Definition 4.2. For s ≥ 2 and nsi ≥ 2 for i = 1, . . . , s, we define a graph
KS(n1, n2, . . . , ns), called a clique-star, to be a graph constructed by vertex sums
using only one summing vertex and cliques Kn1 ,Kn2 , . . . ,Kns . The vertex that is
in every clique is called the center and every other vertex is called noncentral.

Of course, KP (n1, n2) = KS(n1, n2).

Theorem 4.3. For s ≥ 2 and ni ≥ 2, i = 1, . . . , s, q(KP (n1, n2, . . . , ns)) = s+ 1.
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Proof. We observe that there is a unique shortest path between the first summing
vertex and the last summing vertex. We can extend this path by 2 vertices, one in
Kn1 and one inKns to find a unique path of length s. Thus, q(KP (n1, n2, . . . , ns)) ≥
s+ 1 by Theorem 1.8.

For the reverse inequality, number the vertices of Kni consecutively in order of
the cliques, with the first summing vertex in Kni as first and the second summing
vertex in Kni last among the vertices of Kni for i = 2, . . . , n − 1; the summing
vertex of Kn1 is last and the summing vertex of Kns is first among vertices in these
cliques. Then the matrix

A=



Jn1−1 1n1−1

1T
n1−1 2 1T

n2−2 1
1n2−2 Jn2−2 1n2−2

1 1T
n2−2 2

. . .

. . .
. . .

2 1T
ns−1

1ns−1 Jns−1


∈S(KP (n1, , . . . , ns)).

Since rankA = s, q(KP (n1, n2, . . . , ns)) ≤ s+ 1 by Theorem 1.2. □

Theorem 4.4. For all s ≥ 2 and nsi ≥ 2, i = 1, . . . , s, the clique-star G :=
KS(n1, n2, . . . , ns) has q(G) = 3.

Proof. Let ℓi = ni − 1 (the cardinality of the set of noncentral vertices of Kni),
n = 1 +

∑s
i=1 ℓi (the order of G), and number the noncentral vertices of Kni

consecutively in order of the cliques, with the center last (vertex n). There is a
unique path of length two from any noncentral vertex in one Kni to any noncentral
vertex in another Knj (j ̸= i) through the center vertex n, so q(G) ≥ 3 by Theorem
1.8.

Define J̃k = 1
kJk, 1̃k = 1

k1k, and

A =


J̃ℓ1 1̃ℓ1

. . .
...

J̃ℓs 1̃ℓs

1̃T
ℓ1

· · · 1̃T
ℓs

∑s
i=1

1
ℓi

 ∈ S(G).

We show that q(A) = 3, implying q(G) = 3.

Observe that A(n) = J̃ℓ1 ⊕ · · · ⊕ J̃ℓs . We can construct A from A(n) by tak-
ing the sum of one row associated with each Kni to form a new last row, and
then adding the corresponding columns of this n × (n − 1) matrix to form a new
last column. Thus rankA = rankA(n) = s, which implies multA(0) = n − s.

Since xi := [0T , . . . ,0T , 1̃T
ℓi
,0T , . . . ,0T ]T is an eigenvector for eigenvalue 1 of A(n),

multA(n)(1) ≥ s. By interlacing (Theorem 1.1), multA(1) ≥ s − 1, so multA(0) +
multA(1) ≥ n− 1. Since q(A) ≥ 3, there is exactly one more eigenvalue (necessarily
different from 0 and 1 and of multiplicity one) and q(A) = 3. □
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4.2. Joins. The join of disjoint graphs G = (V,E) and G′ = (V ′, E′), which is
denoted by G∨G′, has vertex set V ∪V ′ and edge set E∪E′∪{vv′ : v ∈ V, v′ ∈ V ′}.
It was shown in [1] that q(Kn∨Kn) = 2 and q(Kn∨Km) = 3 for n ̸= m (see Theorem
1.6). Monfared and Shader showed in [11] that q(G ∨H) = 2 for connected graphs
G and H of the same order (see Theorem 1.7). The next example shows that a join
can require an arbitrarily large number of distinct eigenvalues.

Example 4.5. Since Ps ∨K1 has an induced Ps, mr(Ps ∨K1) ≥ mr(Ps) = s − 1,
and since Ps ∨K1 is not a path, mr(Ps ∨K1) ≤ s− 1. Thus M(Ps ∨K1) = 2, which
implies q(Ps∨K1) ≥

⌈
s+1
2

⌉
by Observation 1.3. Since Ps∨K1 has a Hamilton cycle,

q(Ps ∨K1) ≤
⌈
s+1
2

⌉
by Corollary 2.3.

Theorem 4.6. Let G and G′ be connected graphs such that |V (G)| = n and
|V (G′)| = n− ℓ for some 1 ≤ ℓ < n. Then q(G ∨G′) ≤ 2 + ℓ.

Proof. Create a graph G′′ by adding new vertices v1, . . . , vℓ to G′ and adding some
combination of possible edges involving these vertices to make G′′ connected. Then
G ∨ G′ is a subgraph of G ∨ G′′. By Theorem 1.7 we have q(G ∨ G′′) = 2 and
there is a matrix A ∈ S(G ∨G′′) with two eigenvalues each of multiplicity n. Then
λ1(A) = · · · = λn(A) < λn+1(A) = · · · = λ2n(A). By deleting rows and columns
of A corresponding to the new vertices v1, . . . , vℓ, we obtain a principal submatrix
B ∈ S(G ∨G′). Then by eigenvalue interlacing (Theorem 1.1), we have

λ1(A) ≤ λ1(B) ≤ · · · ≤ λn−ℓ(B) ≤ λn(A) = λ1(A)

λ1(A) = λn−ℓ+1(A) ≤ λn−ℓ+1(B) ≤ · · · ≤ λn(B) ≤ λn+ℓ(A) = λ2n(A)

λn+1(A) ≤ λn+1(B) ≤ · · · ≤ λ2n−ℓ(B) ≤ λ2n(A) = λn+1(A).

This gives us λ1(A) = λ1(B) = · · · = λn−ℓ(B) and λn+1(A) = λn+1(B) = · · · =
λ2n−ℓ(B). The remaining ℓ eigenvalues are bounded such that λ1(A) ≤ λn−ℓ+1(B) ≤
· · · ≤ λn(B) ≤ λ2n(A). Therefore q(G ∨G′) ≤ 2 + ℓ. □

5. Summary of the impact of graph operations

In this section we provide some new examples illustrating the impact of graph
operations on q and summarize what is known about the impact of other operations.
If we say that an operation · on two graphs G and H raises q, this means that
q(G · H) > max{q(G), q(H)}. Saying that · on G and H lowers q means that
q(G ·H) < min{q(G), q(H)}, whereas saying · maintains q means that q(G ·H) =
q(G) = q(H). The meaning of raises, lowers, and maintains is clear when the
operation is on a single graph.

It is clear from Theorem 1.7 that the join operation is capable of decreasing q;
for example, q(Pn ∨ Pn) = 2 but q(Pn) = n. Of course, the join can also maintain
q. To see that the join can raise q, define the dth hypercube recursively by Q1 = P2

and Qd = Qd−1□P2. The vertices of Qd are written as strings of zeros and ones
of length d, and two vertices are adjacent if and only if they differ in exactly one
place.

Proposition 5.1. The join can raise the value of q, because q(Q5 ∨ P2) ≥ 3.
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Proof. The set of vertices S = {00000, 00111, 11110} in Q5 is an independent set of
Q5 ∨ P2. The only common neighbors of these vertices are v1, v2 ∈ V (P2). That is,∣∣∣∣∣∣

∪
u,w∈S,u̸=w

(N(u) ∩N(w))

∣∣∣∣∣∣ = |{v1, v2}| = 2 < 3 = |S|.

By the contrapositive of Theorem 1.9, we have q(Q5∨P2) ̸= 2 and therefore q(Q5∨
P2) ≥ 3. Note that q(Q5) = 2 [1, Corollary 6.9] and q(P2) = 2. □

Let G = (V,E) be a graph. For e ∈ E, the notation G − e means the result of
deleting edge e from G. For v ∈ V , the notation G−v means the result of deleting v
and all edges incident with v. The contraction of edge e = uv of G, denoted by G/e,
is obtained from G by identifying the vertices u and v, deleting a loop if one arises
in this process, and replacing any multiple edges by a single edge. The subdivision
of edge e = uv of G, denoted by Ge, is the graph obtained from G by deleting e
and inserting a new vertex w adjacent exactly to u and v.

Examples are given in [1] showing that the difference between q(G) and q(G− v)
and the difference between q(G) and q(G − e) can grow arbitrarily large in either
direction as a function of the number of vertices. The construction of a main example
can be done with vertex sums. Let x and y be two nonadjacent vertices of C4, and
denote the other two vertices by w and z. Suppose also that x is an endpoint of
one Pk+1 and y is an endpoint of another Pk+1. The graph Pk+1 ⊕x C4 ⊕y Pk+1 is
denoted by Sk,k in [1] and it is shown there that q(Sk,k) = k + 2 [1, Lemma 6.6].

Remark 5.2. Deleting the midpoint of P2k+1 creates 2Pk and lowers q. Deleting
a vertex from Kn creates Kn−1 and maintains q. Deleting the vertex z from G =
Pk+1 ⊕x C4 ⊕y Pk+1 results in a path on 2k + 3 vertices. Since q(G) = k + 2 and
q(P2n+3) = 2k + 3, the deletion of z has raised q.

Remark 5.3. Deleting the middle edge from P2k creates 2Pk and lowers q. Deleting
an edge from Kn creates Kn − e and maintains q for n ≥ 4 (see Proposition 2.8).
Deleting the edge xz from G = Pk+1 ⊕x C4 ⊕y Pk+1 results in S(k+ 2, k, 1), a path
with an extra leaf. Since q(G) = k + 2 and q(S(k + 2, k, 1)) = 2k + 3, the deletion
of xz has raised q.

Remark 5.4. Contracting an edge of Pn creates Pn−1 and lowers q. Contracting an
edge of Kn creates Kn−1 and maintains q (for n ≥ 3). Contracting the edge e = xz
of G = Pk+1 ⊕x C4 ⊕y Pk+1 results in a P2k+2 with 3 cycle. Thus q(G) = k+ 2 and
q(G/e) = 2k + 2, raising q.

Remark 5.5. Subdividing the edge {k + 1, k + 3} of GB(k, n − k − 3) creates
Pk+1⊕xC4⊕yPk+1 and lowers q. Subdividing an edge of C2k+1 maintains q because
q(C2k+1) = k+1 = q(C2k+2). Subdividing a cycle edge of Pk+1⊕xC4⊕yPk+1 creates
a unique shortest path on 2k + 3 vertices and raises q.

Table 1 summarizes the possible effect on q of various graph operations.
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Table 1. Possible effects on q of various graph operations. A col-
umn headed # gives the result # that describes the example illus-
trating lowering, maintaining, or raising q.

Operation Lower q # Maintain q # Raise q #
Join Pn ∨ Pn, n ≥ 3 1.7 P2 ∨ P2 1.7 Q5 ∨ P2 5.1

CartesianProduct Ps □P2 3.5
Tensor Product C4 × Ps 3.10 K3×P2=C6 1.5
Strong Product P3 ⊠ P3 3.15
Vertex Sum KS(n, n, n) 4.4 KP (3, 3) 4.3

Vertex Deletion Pn 5.2 Kn 5.2 Cn 1.5
Edge Deletion Pn 5.3 Kn 5.3 Cn 1.5
Edge Contract Pn 5.4 Kn 5.4 Pk+1 ⊕x C4 ⊕y Pk+1 5.4
Edge Subdivide GB(k, n− k − 3) 5.5 C2k+1 5.5 Pk+1 ⊕x C4 ⊕y Pk+1 5.5

Table 2. Values of q for graphs of order at most 5 (using the graph
numbering in [14]). All values of q can be determined from the
information in [3, Figure 1].

G# q(G#) G# q(G#) G# q(G#) G# q(G#) G# q(G#)

G1 1 G3 2 G6 3 G7 2 G13 3
G14 4 G15 3 G16 2 G17 2 G18 2
G29 3 G30 4 G31 5 G34 3 G35 4
G36 4 G37 3 G38 3 G40 3 G41 3
G42 3 G43 3 G44 3 G45 3 G46 3
G47 3 G48 2 G49 2 G50 2 G51 2
G52 2

6. Values of q for graphs of order at most 6

The IEPG has been solved for all connected graphs of order at most 4 in [5] and
order 5 in [3]. Solution of the IEPG establishes the value of q; the results for all
connected graphs of order at most 5 are summarized in Table 2. In this section
we apply our previous results and additional ideas to determine q for all connected
graphs of order 6 (see Table 3). Note that Ahn, Alar, Bjorkman, Butler, Carlson,
Goodnight, Harris, Knox, Monroe, and Wigal have recently determined all possible
ordered multiplicity lists for graphs of order 6; most of their work is independent
but in a few cases they cite results from this paper.

Note that if a graph G is disconnected with connected components Gi, i = 1, . . . , c
then q(G) = max{q(Gi) : i = 1, . . . , c} and the solution to the IEPG for G can be
deduced immediately from the solutions for each Gi, so data is customarily provided
only for connected graphs. All graphs are numbered using the notation in Atlas of
Graphs [14].

We begin by establishing ordered multiplicity lists attaining the minimum value
of q that are attainable with SSP or SMP for some specific graphs. We then apply
those results to determine q for other graphs by using Observation 2.2. In many
cases there is more than one way to establish the result, and in a few cases (most
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notably K6 = G208) the result is already known. However, we have grouped graphs
by a subgraph having a matrix with SMP (or SSP, which implies SMP) for efficiency.
We begin with graphs having q(G) = 3. Oblak and Šmigoc [12, Example 4.8] provide
the matrix M96 in the next lemma and state its spectrum {−1,−1, 0, 0, 2, 2}.

Lemma 6.1. The matrix

M96 =



0 0 1√
2

0 0 0

0 0 1√
2

0 0 0
1√
2

1√
2

1 − 1√
2

0 − 1√
2

0 0 − 1√
2

0 1 0

0 0 0 1 1 −1
0 0 − 1√

2
0 −1 0


has SSP, m(M96) = (2, 2, 2), and M96 ∈ S(G96). Furthermore, q(G96) = qM (G96) =
3.

Proof. It can be verified by computation thatM96 has SSP (see [10], where Theorem
2.5 is applied to M96). Since there is a unique shortest path on three vertices,
q(G96) = qM (G96) = 3. □

Corollary 6.2. The following graphs G have q(G) = qM (G) = 3: G111, G114,
G118, G121, G126, G133, G135, G136, G137, G140, G141, G144, G145, G149,
G150, G156−G159, G161− 167, G169− 173, G177− 180, G182− 185, G193.

Proof. Each graph G has G96 as a spanning subgraph, so by Lemma 6.1 and Ob-
servation 2.2, q(G) ≤ qM (G96) = 3. With three exceptions, each G has a unique
shortest path on three vertices, and so has q(G) = 3 by Theorem 1.8.

The exceptions are G161, G170, and G179. In each of these cases we exhibit
a set of independent vertices without enough common neighbors, so q(G) ̸= 2 by
Theorem 1.9. The vertices are numbered as in Figure 1.
G161: The set {3, 4, 5, 6} is an independent set of four vertices, but the union of
neighborhood intersections is {1, 2}.
G170: The set {3, 4, 6} is an independent set of three vertices, but the union of
neighborhood intersections is {1, 2}.
G179: The set {3, 4, 5} is an independent set of three vertices, but the union of
neighborhood intersections is {1, 2}. □

Remark 6.3. Since each of the graphs G = G105, G127, G147, G148, G151−G153
has a Hamilton cycle and each has a unique shortest path on three vertices, q(G) =
qM (G) = 3.

Lemma 6.4. The graph G125 has a matrix with SSP and ordered multiplicity list
(2, 2, 2).

Proof. Observe that graph G125 can be constructed by adding a new vertex 6
adjacent to vertices 2 and 3 of the Banner = G37 (see Figure 2). It can be verified
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3 6

1

43 5

22

3 6

1

43 5

22

3 6

1

43 5

22

G161 G170 G179

Figure 1. Graphs to which the Theorem 1.9 is applied in the proof
of Corollary 6.2

by computation (see [10]) that Goodnight’s matrix [9]

M =



4
3 −

√
2
3

√
2
3 0 0

−
√

2
3 0 0 2

3 0√
2
3 0 0 2

3 0

0 2
3

2
3

4
3

2
3

0 0 0 2
3 0


∈ S(G37)

has SSP and eigenvalues µ1 = −2/3, µ2 = 0, and µ3 = 2 with multiplicities 2,
1, 2, respectively, so the ordered multiplicity list of M is (2, 1, 2). Furthermore,
the vector x = [0,−1

2 ,−
1
2 , 0, 1]

T is a basis for the eigenspace of eigenvalue µ2 = 0.
Since supp(x) = {2, 3, 5}, | supp(x) ∩ {2, 3}| = 2. Therefore, we can apply the
Augmentation Lemma (Lemma 2.6) to obtain a matrix having eigenvalue µ2 = 0
with multiplicity 2 and also eigenvalues µ1 and µ3 each with multiplicity 2. Thus
the graph G125 has a matrix with SSP and ordered multiplicity list (2, 2, 2). □

1 2

3 4 5

 6

1 3

2

5 3

1

4  6

G125 G190

Figure 2. Graphs to which the Augmentation Lemma is applied

Corollary 6.5. The following graphs G have q(G) = qM (G) = 3: G138, G143, G160.

Proof. Each graph G has G125 as a spanning subgraph, so by Lemma 6.4 and
Observation 2.2, q(G) ≤ qM (G96) = 3. Since each has a unique shortest path on
three vertices, each has q(G) = qM (G) = 3 by Theorem 1.8. □
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Lemma 6.6. The graph G129 has a matrix with SMP and ordered multiplicity list
(2, 2, 2). Furthermore, q(G129) = qM (G129) = 3.

Proof. Observe that graphG129 can be constructed by adding a new vertex adjacent
to two nonadjacent vertices v and w of C5 = G38. In [4, Theorem 48] it was

shown that Ĉ5 =


0 1 0 0 −1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
−1 0 0 1 0

 has SMP. The eigenvalues of Ĉ5 are µ1 =

−2, µ2 = 1
2

(
1−

√
5
)
, and µ3 = 1

2

(
1 +

√
5
)
with ordered multiplicity list (1, 2, 2).

Furthermore, the vector [1,−1, 1,−1, 1]T is a basis for the eigenspace of eigenvalue
µ1 = −2. Thus it is not possible for an eigenvector x for µ1 to have a zero entry,
so | supp(x) ∩ {v, w}| = 2. Therefore, we can apply the Augmentation Lemma to
obtain a matrix having eigenvalue µ1 = −2 with multiplicity 2 and also eigenvalues
µ2 and µ3 each with multiplicity 2. Thus the graph G129 has a matrix with SMP
and ordered multiplicity list (2, 2, 2). Since G129 has a unique shortest path on
three vertices, q(G129) = qM (G129) = 3. □

Remark 6.7. Oblak and Šmigoc show that G99 has a matrix with every eigenvalue
of even multiplicity [12, Example 3.1] and give a form to construct such a matrix in
[12, Theorem 3.1]. One such matrix is M99 below. They also provided the matrix
M115 [13], which they found in their research in preparation for [12].

M99 =


0 1 0 0 0 0
1 0 1 0 0 −1
0 1 0 0 1 0
0 0 0 0 1 0
0 0 1 1 0 1
0 −1 0 0 1 0

, M115 =


−1 2 0 0 0 0
2 −3 −1 −1 0 0
0 −1 1 1 2 0
0 −1 1 1 −2 0

0 0 2 −2 −2
√
3

0 0 0 0
√
3 0

.

It is straightforward to verify that spec(M99) =
{
−
√
3,−

√
3, 0, 0,

√
3,
√
3
}

and

spec(M115) =
{
−1− 2

√
3,−1− 2

√
3, 0, 0,−1 + 2

√
3,−1 + 2

√
3
}
. Since each of G99

and G115 has a unique shortest path on three vertices, q(G99) = 3 = q(G115) by
Theorem 1.8. Note that no matrix A ∈ S(G99) or A ∈ S(G115) that has q(A) = 3
can have SMP because each is a spanning subgraph of G134, which has a unique
shortest path on four vertices.

Next we establish that q(G) = 2 for various graphs G, starting with some that
have SSP. The statement that q(G) can be realized by a matrix with SSP implies
qM (G) = q(G), because SSP implies SMP.

Lemma 6.8. Each matrix M# below is orthogonal with SSP, m(MG#) = (3, 3),
and M# ∈ S(G#) for the graphs G# = G174, G186. Thus q(G#) = 2.
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M174 =



− 1√
10

√
2
5

√
2
5

1√
10

0 0√
2
5

− 1√
10

√
2
5

0 1√
10

0√
2
5

√
2
5

− 1√
10

0 0 1√
10

1√
10

0 0 1√
10

−
√

2
5

−
√

2
5

0 1√
10

0 −
√

2
5

1√
10

−
√

2
5

0 0 1√
10

−
√

2
5

−
√

2
5

1√
10


.

M186 =



1
9

(
−3−

√
3
)

1
18

(
2
√
3− 3

)
0 1

3

√
23
6

− 1√
3

− 1
3

− 1
2

1
18

(
2
√
3− 3

)
1
18

(
−3− 4

√
3
)

1
18

(
3− 2

√
3
)

0 2
3

− 1
2

0 1
18

(
3− 2

√
3
)

1
9

(
−3−

√
3
)

1
3

√
23
6

− 1√
3

1
3

1
2

1
3

√
23
6

− 1√
3

0 1
3

√
23
6

− 1√
3

1
9

(
3 +

√
3
)

0 0

− 1
3

2
3

1
3

0 1√
3

0

− 1
2

− 1
2

1
2

0 0 1
2

 .

Corollary 6.9. The graphs G = G188, G192, G194, G196 − G208 have q(G) = 2
and the ordered multiplicity list (3, 3) can be realized by a matrix with SSP.

Proof. Each of the graphsG188, G196, G198, G199, G202−G208 hasG174 as a span-
ning subgraph and each of G192, G194, G197, G200, G201 has G186 as a spanning
subgraph. So by Lemma 6.8 and Observation 2.2, q(G) = 2. □

Lemma 6.10. The graph G190 has a matrix with SSP and ordered multiplicity list
(3, 3).

Proof. The graph G190 is constructed by adding vertex 6 adjacent to {1, 2, 3} of G48
(see Figure 2). The ordered multiplicity list (3, 2) of G48 is realized by the matrix

M =


1 0

√
2 1 1

0 1 −
√
2 1 1√

2 −
√
2 4 0 0

1 1 0 2 2
1 1 0 2 2

, which has SSP [3, Lemma 3.5]. Furthermore,

the vectors [12 ,
1
2 , 0, 1, 1]

T and [ 1
2
√
2
,− 1

2
√
2
, 1, 0, 0]T are a basis for the eigenspace of

eigenvalue 5. Thus, it is not possible for an eigenvector for λ = 5 to have more than
two zero entries, and the only way to achieve two zeros in an eigenvalue for λ = 5
is to have the zeros in positions 4 and 5. Therefore, | supp(x) ∩ {1, 2, 3}| ≥ 2, and
we can apply the Augmentation Lemma to conclude there is a matrix B ∈ S(G190)
which has SSP and has eigenvalues λ=5 and λ=0 each with multiplicity 3. □

Corollary 6.11. For G = G195, q(G) = 2 and ordered multiplicity list (3, 3) can
be realized by a matrix with SSP.

Proof. The graph G195 has G190 as a spanning subgraph, so by Lemma 6.10 and
Observation 2.2, q(G195) and ordered multiplicity list (3, 3) can be realized by a
matrix with SSP. □

The next result can be verified by computation.
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Lemma 6.12. Each matrix M# below is orthogonal, m(MG#) = (3, 3), and M# ∈
S(G#) for the graphs G#. Thus q(G#) = 2.

M154 =

M168 =



− 7
12

0 1
12

√
3
2

2
−

√
5
6

3
−

√
5
3

3

0 − 2
3

0 0

√
10
3

3
−

√
5
3

3

1
12

0 − 7
12

√
3
2

2

√
5
6

3

√
5
3

3√
3
2

2
0

√
3
2

2
1
2

0 0

−
√

5
6

3

√
10
3

3

√
5
6

3
0 2

3
0

−
√

5
3

3
−

√
5
3

3

√
5
3

3
0 0 2

3



M181 =



0 1√
2

1√
2

0 0 0

1√
2

− 1
4

1
4

1
8

√
23
8

0

1√
2

1
4

− 1
4

− 1
8

−
√
23
8

0

0 1
8

− 1
8

1
8

(
4−

√
23

)
1
8

1
4

√
11
2

+ 2
√
23

0
√
23
8

−
√

23
8

1
8

1
2
− 1

8
√
23

− 1
4

√
11
46

+ 2√
23

0 0 0 1
4

√
11
2

+ 2
√
23 − 1

4

√
11
46

+ 2√
23

3√
23

− 1
2


For graphs G = G154, G168, G181 and matrix A ∈ S(G), if q(A) = 2, then A

does not have SMP, because in each case it is possible to add an edge to G and
obtain a unique shortest path on 3 vertices.

Remark 6.13. As it may be useful for future research, here we briefly describe the
method that was used to find the matrices M186 and M168. The graph G186 has
three independent vertices, which we label 4, 5, and 6. Vertices 1, 2, and 3 form
a clique missing one edge. All but one of the possible edges between vertices in

{1, 2, 3} and {4, 5, 6} are present. Thus we have the form M186 =

[
A C
CT D

]
where

D is diagonal, C has one zero, AT = A, and A has one pair of symmetrically placed
zeros. In order for M186 to be orthogonal, we must have CTC + D2 = I, so the
columns of C are orthogonal (but may have different lengths). Then AC+CD = 0,
so A = −CDC−1. The conditions
(i) D is diagonal with distinct diagonal entries strictly between zero and one,
(ii) the columns of C are orthogonal and scaled so that CTC +D2 = I, and
(iii) A = −CDC−1

suffice to ensure

[
A C
CT D

]
is orthogonal. The columns of C can be chosen with a

zero in the first column, and one diagonal entry of D can be used as a parameter
that is set to achieve the desired pair of zeros in A. The case of M168 is similar
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except that now there are two pairs of zeros in A, and some care must be taken in
the choice of the vectors for C.

Next we show the two graphs G187 and G189 have q(G) = 3 by showing they do
not allow an orthogonal realization.

Lemma 6.14. The graph G187, the wheel on 6 vertices, does not allow an orthog-
onal matrix and q(G) = 3.

Proof. Since G197 has a Hamilton cycle, q(G187) ≤ 3 by Corollary 2.3. Showing
that G187 does not allow an orthogonal matrix completes the proof because q(G) =
2 implies G allows an orthogonal matrix by Observation 1.4. We have the following
matrix:

M =


a w 0 0 v q
w b x 0 0 r
0 x c y 0 s
0 0 y d z t
v 0 0 z e u
q r s t u f



Suppose M is orthogonal, so M2 = I where M2 =

We denote the i, j-entry of M2 by hij , we know hij = 0 for i ̸= j, and we apply
this repeatedly to specific entries.

0 = h1,3 = qs+ wx ⇒ x = −qs

w
(6.1)

0 = h2,5 = ru+ vw ⇒ v = −ru

w
(6.2)

0 = h3,5 = su+ yz ⇒ z = −su

y
(6.3)

0 = h3,6 = qs+ wx ⇒ y = −qs

w
(6.4)
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0 = h15 = qu+ av + ev = 0 ⇒ w = −(a+ e)r

q
and a+ e ̸= 0(6.5)

(6.1) and (6.5) ⇒ x = − qs

(a+ e)r
(6.6)

(6.2) and (6.5) ⇒ v = − qu

a+ e
(6.7)

(6.6) and (6.4) ⇒ y =
s

t

(
q2 − (c+ f)(a+ e)

a+ e

)
(6.8)

(6.8) and (6.3) ⇒ z =
−tu(a+ e)

q2 − (c+ f)(a+ e)
(6.9)

(6.5) and 0 = h1,2 = qr + aw + bw ⇒ q2 = −(a+ b)(a+ e)(6.10)

(6.5), (6.10), and(6.11)

0 = h2,3 = rs+ bx+ cx ⇒ r2 = −(a+ b)(b+ c)

(6.8), (6.10), and(6.12)

0 = h3,4 = st+ cy + dy ⇒ t2 = (c+ d)(a+ b+ c+ f)

(6.9) and 0 = h4,5 = tu+ dz + ez ⇒ q2 = (a+ e)(c+ d+ e+ f)(6.13)

(6.10), (6.13), and(6.14)

a+ e ̸= 0 ⇒ a+ b+ c+ d+ e+ f = 0

(6.5), (6.7), (6.10), (6.12), (6.15), and(6.15)

0 = h1,6 = aq + fq + uv + rw!⇒ u2 = −(a+ e)(d+ e)

(6.5), (6.6), (6.10), (6.12), (6.15), and(6.16)

0 = h2,6 = br + fr + qw + sx!⇒ s2 = −(c+ d)(b+ c)

We then consider the following chart, which begins with two possible cases for
equation (6.10) using q2 > 0. Each of these cases is then applied successively to
other equations that require positive values.

# equation Case 1 Case 2
(6.10) q2 = −(a+ e)(a+ b) > 0 (a+ e) > 0 (a+ e) < 0

and (a+ b) < 0 and (a+ b) > 0
(6.12) r2 = −(a+ b)(b+ c) > 0 (b+ c) > 0 (b+ c) < 0
(6.17) s2 = −(c+ d)(b+ c) > 0 (c+ d) < 0 (c+ d) > 0
(6.13) t2 = −(d+ e)(c+ d) > 0 (d+ e) > 0 (d+ e) < 0
(6.16) u2 = −(a+ e)(d+ e) > 0 (a+ e) < 0 (a+ e) > 0

In each case, we find the contradiction that (a+ e) < 0 and (a+ e) > 0. □

Lemma 6.15. Graph G189 does not allow an orthogonal matrix and q(G) = 3.

Proof. Since G96 is a subgraph of G189, q(G189) ≤ 3 by Observation 2.2. Showing
that G189 does not allow an orthogonal matrix completes the proof because q(G) =
2 implies G allows an orthogonal matrix by Observation 1.4. We have the following
matrix:
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M =


a q r t 0 0
q b s 0 u v
r s c 0 w x
t 0 0 d y z
0 u w y e 0
0 v x z 0 f

.

Suppose M is orthogonal, so M2 is the identity matrix. Observe that M2 is and

denote the i, j-entry of M2 by hij .
Note that h1,4 = h4,5 = h4,6 = 0 implies a = −d = e = f . We make these

substitutions in M and M2 becomes Denote the i, j-entry of this matrix by kij . We

know kij = 0 for i ̸= j, and we apply this repeatedly to specific entries.

0=k1,2 = aq + bq + rs and 0 = k1,3 = ar + cr + qs ⇒ q2=
(a+ c)

(a+ b)
r2(6.17)

0=k1,2 = aq + bq + rs and 0 = k1,3 = ar + cr + qs ⇒ s2 = (a+ b)(a+ c)(6.18)

0=k2,6 = av + bv + sx and 0 = k3,6 = sv + ax+ cx ⇒ v2=
(a+ c)

(a+ b)
x2(6.19)

0=k2,5=au+ bu+ sw and 0 = k3,5=su+ aw + cw ⇒ u2=
(a+ c)

(a+ b)
w2(6.20)

¿From (6.17) and (6.18), q = ±
√

(a+c)
(a+b)r and s = ±

√
(a+ b)(a+ c). If q and s

are both positive roots or both negative roots,

0 = k1,2 = aq + bq + rs ⇒
√
2(a+ b)

√
a+ c = 0,

which is a contradiction. Therefore q and smust be roots of opposite sign. Similarly,
we can see v and u must be the opposite sign of s as well. Therefore we have the
following two cases.

Case 1: For the first case, we let s =
√
(a+ b)(a+ c), q = −

√
(a+c)
(a+b)r, v =

−
√

(a+c)
(a+b)x, and u = −

√
(a+c)
(a+b)w.
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size

0 = k1,5 = qu+ rw + ty,(6.21)

(6.17), and (6.20) ⇒ y =
−rw(2a+ b+ c)

t(a+ b)

0 = k1,6 = qv + rx+ tz,(6.22)

(6.17), and (6.19) ⇒ z =
−rx(2a+ b+ c)

t(a+ b)

0 = k5,6 = uv + wx+ yz,(6.23)

(6.22), and (6.23) ⇒ t =

√
− (2a+ b+ c)2r2

(a+ c)(a+ b) + (a+ b)2

Equation (6.24) yields a contradiction since t is imaginary.

Case 2: For the second case, we let s = −
√
(a+ b)(a+ c), q =

√
(a+c)
(a+b)r, v =√

(a+c)
(a+b)x, and u =

√
(a+c)
(a+b)w.

We observe that the same equations result from case 2 as in case 1 and we obtain
the same contradiction. □

Finally we establish the value of q for the few remaining graphs.

Remark 6.16. It is well known that the path is the only graph for which q(G) =
|V (G)| (see [1, Proposition 3.1]). Thus q(G83 = P6) = 6. It is shown in [1]
that G = S(k − 1, n − k − 1, 1) and G = GB(k, n − k − 3) have q(G) = n − 1.
Since G80 = S(2, 2, 1) and G81 = S(3, 1, 1), q(G80) = 5 = q(G81). Since G97 =
GB(2, 1) and G102 = GB(3, 0), q(G97) = 5 = q(G102). By Theorem 1.10, every
graph other than G80, G81, G83, G97, G102 has q(G) ≤ 4. For G = G78, G79,
G93, G94, G95, G98, G100, G103, G104, G112, G113, G119, G120, G122−G124,
G130, G134, G139, G142, G has a unique shortest path on 4 vertices, so q(G) = 4.

We have now established q for all graphs of order six. For each graph, a reason
is given.

Theorem 6.17. Tables 3 lists the value of q for each connected graph of order six.
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Table 3. Values of q for graphs of order 6 using the graph number-
ing in [14]. A column headed # gives the result # that justifies the
corresponding q(G#).

G# q(G#) # G# q(G#) # G# q(G#) #

G77 3 4.4 G78 4 6.16 G79 4 6.16
G80 5 6.16 G81 5 6.16 G83 6 6.16
G92 3 4.4 G93 4 6.16 G94 4 6.16
G95 4 6.16 G96 3 6.1 G97 5 6.16
G98 4 6.16 G99 3 6.7 G100 4 6.16
G102 5 6.16 G103 4 6.16 G104 4 6.16
G105 3 6.3 G111 3 6.2 G112 4 6.16
G113 4 6.16 G114 3 6.2 G115 3 6.7
G117 3 4.4 G118 3 6.2 G119 4 6.16
G120 4 6.16 G121 3 6.2 G122 4 6.16
G123 4 6.16 G124 4 6.16 G125 3 6.4
G126 3 6.2 G127 3 6.3 G128 3 3.5
G129 3 6.6 G130 4 6.16 G133 3 6.2
G134 4 6.16 G135 3 6.2 G136 3 6.2
G137 3 6.2 G138 3 6.5 G139 4 6.16
G140 3 6.2 G141 3 6.2 G142 4 6.16
G143 3 6.5 G144 3 6.2 G145 3 6.2
G146 3 1.6 G147 3 6.3 G148 3 6.3
G149 3 6.2 G150 3 6.2 G151 3 6.3
G152 3 6.3 G153 3 6.3 G154 2 6.12
G156 3 6.2 G157 3 6.2 G158 3 6.2
G159 3 6.2 G160 3 6.5 G161 3 6.2
G162 3 6.2 G163 3 6.2 G164 3 6.2
G165 3 6.2 G166 3 6.2 G167 3 6.2
G168 2 6.12 G169 3 6.2 G170 3 6.2
G171 3 6.2 G172 3 6.2 G173 3 6.2
G174 2 6.8 G175 2 1.6 G177 3 6.2
G178 3 6.2 G179 3 6.2 G180 3 6.2
G181 2 6.12 G182 3 6.2 G183 3 6.2
G184 3 6.2 G185 3 6.2 G186 2 6.8
G187 3 6.14 G188 2 6.9 G189 3 6.15
G190 2 6.10 G191 3 4.3 G192 2 6.9
G193 3 6.2 G194 2 6.9 G195 2 6.11
G196 2 6.9 G197 2 6.9 G198 2 6.9
G199 2 6.9 G200 2 6.9 G201 2 6.9
G202 2 6.9 G203 2 6.9 G204 2 6.9
G205 2 6.9 G206 2 6.9 G207 2 6.9
G208 2 6.9
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7. Values of q for families of graphs

The next table summarizes known values of q(G).

Table 4. Values of q for families of graphs

Graph G q(G) Reason

Kn 2 [1, Lemma 2.2]

Cn ⌈n2 ⌉ [1, Lemma 2.7]

Pn n [1, Proposition 3.1]

Kn,m

{
2, if m = n

3, if m < n
[1, Corollary 6.5]

Qn 2 [1, Corollary 6.9]

GB(k, n− k − 3) n− 1 [1, Proposition 7.1]

S(k − 1, n− k − 1, 1) n− 1 [1, Proposition 7.2]

|V (G)| ≤ 6 Tables 2 and 3

KP (n1, n2, . . . , ns) for s ≥ 2, ni ≥ 2 s+ 1 Theorem 4.3

KS(n1, n2, . . . , ns) for s ≥ 2, ni ≥ 2 3 Theorem 4.4

Ps□P2 s Corollary 3.5

C4□P2s 2s Corollary 3.7

C4□Cs for s ≥ 4 & s ̸≡ 2 mod 4
⌈
s
2

⌉
Corollary 3.7

Ps × P2 s Corollary 3.8

C4 × Ps s Proposition 3.10

P3 ⊠ P3 3 Corollary 3.15

Ps ∨K1

⌈
s+1
2

⌉
Example 4.5

Kn − e 2 Corollary 2.8
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A. Wangsness), Zero forcing sets and the minimum rank of graphs, Linear Algebra App. 428
(2008), 1628–1648.

[3] W. Barrett, S. Butler, S.M. Fallat, H.T. Hall, L. Hogben, J.C.-H. Lin, B.L. Shader, and M.
Young. The inverse eigenvalue problem of a graph: Multiplicities and minors, available at
http://arxiv.org/abs/1708.00064.



MINIMUM NUMBER DISTINCT GRAPH EIGENVALUES 563

[4] W. Barrett, S.M. Fallat, H.T. Hall, L. Hogben, J.C.-H. Lin, and B.L. Shader, Generalizations
of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph,
Electron. J. Combinatorics 24 (2017), P2.40 (28 pages).

[5] W. Barrett, C.G. Nelson, J.H. Sinkovic, and T. Yang, The combinatorial inverse eigenvalue
problem II: all cases for small graphs, Elec. J. Lin. Alg. 27 (2014), 742–778.

[6] S. Fallat and L. Hogben, Minimum Rank, Maximum Nullity, and Zero Forcing Number of
Graphs, Handbook of Linear Algebra, 2nd edition, L. Hogben editor, CRC Press, Boca Raton,
FL, 2014.

[7] W .E. Ferguson, Jr., The Construction of Jacobi and periodic Jacobi matrices with prescribed
spectra, Math. Computation 35 (1980), 1203–1220.

[8] R. Fernandes and C.M. da Fonseca, The inverse eigenvalue problem for Hermitian matrices
whose graphs are cycles, Linear Multilinear Algebra 57 (2009), 673–682.

[9] A. Goodnight, Personal communication.
[10] L. Hogben, Verifications of SSP, PDF available at http://orion.math.iastate.edu/lhogben/

BHPRT17_SSPtest--Sage.pdf and Sage worksheet available at http://orion.math.iastate.
edu/lhogben/BHPRT17_SSPtest.sws.

[11] K.H. Monfared and B. L. Shader, The nowhere-zero eigenbasis problem for a graph, Linear
Algebra App. 505 (2016), 296–312.
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