

604 J. JAHN

In the case of a real-valued objective function Conn, Scheinberg and Vicente [5]
highlight the usefulness of derivative-free methods in nonlinear programming. For
set-valued objective maps and standard order relations pattern search methods as
special descent methods have shown to be appropriate for the numerical solution of
convex set optimization problems ([9]). In this paper pattern search methods are
extended to nonconvex set optimization problems and they are not restricted to a
single iteration path but they are extended to a whole tree consisting of iteration
pathes starting at the same point. In this sense a rooted tree method is presented.

This paper is organized as follows. Section 2 presents basic results for the minmax
order relation together with a measure being useful for the algorithmic treatment of
this special order relation. In Section 3 a derivative-free rooted tree descent method
is given and convergence of this algorithm is investigated. Numerical results are
given for problems with sets in R2, R3 and even R4 in Section 4. A short appendix
shows some algorithmic parts carried out on Nvidia’s GPUs with CUDA C and
Matlab.

2. Basic results

Throughout this paper we investigate set optimization problems in the following
setting.

Assumption 2.1. Let S be a nonempty subset of a real linear space X, let C be a
convex cone in a real linear space Y , and let F : S ⇒ Y be a set-valued map with
F (x) ̸= ∅ for all x ∈ S.

Under Assumption 2.1 we now investigate the set optimization problem

(2.1) min
x∈S

F (x).

Minimal solutions of problem (2.1) are defined using the minmax less order rela-
tion.

Definition 2.2. Let Assumption 2.1 be satisfied.

(a) The set of all minimal elements of a nonempty subset A of Y is denoted by

minA := {a ∈ A | ({a} − C) ∩A ⊂ {a}+ C},

and

maxA := {a ∈ A | ({a}+ C) ∩A ⊂ {a} − C}
denotes the set of all maximal elements of the set A.

(b) Let A,B be subsets of Y with minA,minB,maxA,maxB ̸= ∅. Then the
set less order relation ≼s is defined by

A ≼s B :⇐⇒ B ⊂ A+ C and A ⊂ B − C.

The order relation ≼ defined by

A ≼ B :⇐⇒ minA ≼s minB and maxA ≼s maxB

is called minmax less order relation.

DERIVATIVE-FREE ROOTED TREE METHOD 605

(c) x̄ ∈ S is called a minimal solution of the set optimization problem (2.1) iff
F (x̄) is a minimal set of the system of sets F (x) (with arbitrary x ∈ S), i.e.

F (x) ≼ F (x̄), x ∈ S =⇒ F (x̄) ≼ F (x).

If x̄ is a minimal solution with respect to the intersection of a ball and the
feasible set S, one speaks of a locally minimal solution.

It is well-known from vector optimization that the set minA is nonempty in a
topological linear space Y with closed ordering cone C, if the set A has a compact
section (e.g., see [8, Thm. 6.3,(c)]). A similar result also holds for maxA.

The set less order relation ≼s has been introduced to optimization by Kuroiwa
(e.g., see [11]; a first publication has been given by Kuroiwa, Tanaka and Ha [12]).
Outside the optimization community this notion has been used by Young [17] in
algebra, by Nishnianidze [15] in fixed point theory and by Chiriaev and Walster
[4] in computer science and interval analysis. The minmax less order relation ≼
has been defined in [10, Def. 3.5] in order to avoid some drawbacks of the set less
order relation ≼s. This order relation is more restrictive and from a computational
point of view it is even more difficult to treat but it is more realistic in real-world
applications.

The set optimization problem (2.1) is formulated without convexity assumptions
and, therefore, we cannot expect that one can determine minimal solutions but at
best locally minimal solutions.

Based on the order relation ≼ we now introduce an equivalence relation among
sets and a strict relation.

Definition 2.3. Let A,B be subsets of a real linear space Y , which is partially
ordered by a convex cone C, with minA,minB,maxA,maxB ̸= ∅.

(a) The relation ∼ is defined by

A ∼ B :⇐⇒ (minA) + C = (minB) + C, (minA)− C = (minB)− C,

(maxA) + C = (maxB) + C and

(maxA)− C = (maxB)− C.

In this case the sets A and B are called equivalent.
(b) Let Y be a topological space and let C be a convex cone in Y . Then the

relation ≺ is defined by

A ≺ B :⇐⇒ ∃ an open set O ⊂ Y so that (minB) +O ⊂ (minA) + C,

(minA) +O ⊂ (minB)− C,

(maxB) +O ⊂ (maxA) + C,

(maxA) +O ⊂ (maxB)− C.

Notice that there are equivalent sets which are not equal. It is obvious that the
relation ∼ is an equivalence relation because it is reflexive, transitive and symmetric.
The relation ≺ is not an order relation because it is not reflexive although it is
transitive. It is some kind of a strict minmax less relation, which is useful for
numerical methods.

The following simple lemma is useful for the formulation of various results ([7]);
its proof is trivial.

606 J. JAHN

Lemma 2.4. For nonempty subsets A,B of a real linear space Y and a convex cone
K ⊂ Y it holds

A ⊂ B +K ⇐⇒ A+K ⊂ B +K.

Proposition 2.5. For subsets A,B of a real linear topological space Y , which is
partially ordered by a convex cone C ̸= Y , with minA,minB,maxA, maxB ̸= ∅ it
holds

A ≺ B =⇒ A ≼ B and A ̸∼ B.

Proof. Since A ≺ B, it is obvious that A ≼ B. Moreover, there exists an open set
O ⊂ Y so that

(minB) +O ⊂ (minA) + C, (minA) +O ⊂ (minB)− C,

(maxB) +O ⊂ (maxA) + C, (maxA) +O ⊂ (maxB)− C.

With Lemma 2.4 it then follows

(minB) +O + C ⊂ (minA) + C, (minA) +O − C ⊂ (minB)− C,

(maxB) +O + C ⊂ (maxA) + C, (maxA) +O − C ⊂ (maxB)− C.

These inclusions imply

(minB) + C ⫋ (minA) + C, (minA)− C ⫋ (minB)− C,

(maxB) + C ⫋ (maxA) + C, (maxA)− C ⫋ (maxB)− C.

So, we obtain A ̸∼ B. □

With the following result the equivalence relation ∼ can be characterized in a
simpler way.

Proposition 2.6. Let A,B be subsets of a real linear space Y , which is partially
ordered by a convex cone C, with minA,minB,maxA,maxB ̸= ∅. Then

(a) (minA) + C = (minB) + C ⇐⇒ minA = minB

(b) (minA)− C = (minB)− C ⇐⇒ minA = minB

(c) (maxA) + C = (maxB) + C ⇐⇒ maxA = maxB

(d) (maxA)− C = (maxB)− C ⇐⇒ maxA = maxB

(e) A ∼ B ⇐⇒ minA = minB and maxA = maxB.

Proof. (a) The implication “⇐” is trivial. For the proof of the converse implication
we obtain with Lemma 2.4

(minA) + C = (minB) + C

=⇒ minA ⊂ (minB) + C

⇐⇒ ∀ a ∈ minA ∃ b ∈ minB, c ∈ C : a = b+ c.(2.2)

Assume that c ̸= 0Y . Then we have a ̸= b and b ≤C a where the partial ordering
≤C is induced by C. Since a ∈ minA, we conclude b ̸∈ (minA)+C = (minB)+C.
This contradicts the property that b ∈ minB. Consequently, we have c = 0Y and
a = b. The condition (2.2) then implies minA ⊂ minB. By renaming we also get
minB ⊂ minA. So we have minA = minB.

DERIVATIVE-FREE ROOTED TREE METHOD 607

(b) This proof follows the lines of part (a). For the proof of the implication “⇒”
we notice

(minA)− C = (minB)− C =⇒ ∀ a ∈ minA ∃ b ∈ minB, c ∈ C : a = b− c

and the assumption c ̸= 0Y leads to a contradiction. So, we obtain minA ⊂ minB
and minB ⊂ minA by renaming. These two inclusions lead to the assertion.
(c),(d) By parts (a) and (b) it holds

(maxA)± C = (maxB)± C

⇐⇒ (−min(−A))± C = (−min(−B))± C

⇐⇒ (min(−A))∓ C = (min(−B))∓ C

⇐⇒ min(−A) = min(−B)

⇐⇒ maxA = maxB.

(e) This assertion immediately follows from the definition of the equivalence relation
and the parts (a),...,(d). □

Next, we turn our attention to normed spaces. For arbitrary nonempty subsets
A,B of a real normed space (Y, ∥ · ∥Y) it is well-known that the Hausdorff distance
of A and B is given by

dH(A,B) := max

{
sup
b∈B

inf
a∈A

∥a− b∥Y , sup
a∈A

inf
b∈B

∥a− b∥Y
}
.

Based on this distance we now define

ψ(A,B) := max
{
dH(minA,minB), dH(maxA,maxB)

}
,

if the sets minA,minB,maxA,maxB are nonempty.
Now we show that the function ψ is bounded for bounded sets. Recall that the

norm of a nonempty subset A of Y is defined by ∥A∥ := supa∈A ∥a∥Y .

Lemma 2.7. Let A,B be subsets of a real normed space (Y, ∥·∥Y), which is partially
ordered by a convex cone C, with minA,minB,maxA,maxB ̸= ∅. Then it holds

0 ≤ ψ(A,B) ≤ 2max{∥A∥, ∥B∥}.

Proof. Let sets A,B ⊂ Y with minA, minB, maxA, maxB ̸= ∅ be arbitrarily
chosen. By definition of the function ψ it immediately follows ψ(A,B) ≥ 0. For an
arbitrary x ∈ minA we conclude for any y′ ∈ minB

inf
y∈minB

∥x− y∥Y ≤ ∥x− y′∥Y ≤ ∥x∥Y + ∥y′∥Y ≤ 2max{∥A∥, ∥B∥}

and we obtain

sup
x∈minA

inf
y∈minB

∥x− y∥ ≤ 2max{∥A∥, ∥B∥}.

Then we also get dH(minA,minB) ≤ 2max{∥A∥, ∥B∥}. Since this inequality also
holds for the sets maxA and maxB, it follows ψ(A,B) ≤ 2max{∥A∥, ∥B∥}. This
completes the proof. □

The essential point is now that the function ψ is closely related to some relations
used in this section.

608 J. JAHN

Lemma 2.8. For subsets A,B of a real normed space (Y, ∥ · ∥), which is partially
ordered by a convex cone C, with minA,minB,maxA,maxB ̸= ∅ it holds:

(a) A ≼ B and B ≼ A =⇒ ψ(A,B) = 0.

(b) If minA, maxA, minB and maxB are compact, then the converse implication
in (a) is true.

(c) A ̸∼ B ⇐= ψ(A,B) > 0.

(d) If minA, maxA, minB and maxB are compact, then the converse implication
in (c) is true.

(e) If minA, maxA, minB and maxB are compact, then we have
A ∼ B ⇐⇒ A ≼ B and B ≼ A.

Proof. Let A,B ⊂ Y with minA,minB,maxA,maxB ̸= ∅ be arbitrarily given.
(a) We conclude with Lemma 2.4 and Proposition 2.6

A ≼ B and B ≼ A

⇐⇒ minA ≼s minB, maxA ≼s maxB,

minB ≼s minA and maxB ≼s maxA

⇐⇒ minB ⊂ (minA) + C, minA ⊂ (minB)− C,

maxB ⊂ (maxA) + C, maxA ⊂ (maxB)− C,

minA ⊂ (minB) + C, minB ⊂ (minA)− C,

maxA ⊂ (maxB) + C and maxB ⊂ (maxA)− C

⇐⇒ (minB) + C ⊂ (minA) + C, (minA)− C ⊂ (minB)− C,

(maxB) + C ⊂ (maxA) + C, (maxA)− C ⊂ (maxB)− C,

(minA) + C ⊂ (minB) + C, (minB)− C ⊂ (minA)− C,

(maxA) + C ⊂ (maxB) + C and (maxB)− C ⊂ (maxA)− C

⇐⇒ (minA) + C = (minB) + C, (minA)− C = (minB)− C,

(maxA) + C = (maxB) + C and (maxA)− C = (maxB)− C

⇐⇒ minA = minB and maxA = maxB

=⇒ dH(minA,minB) = dH(maxA,maxB) = 0

⇐⇒ ψ(A,B) = 0.

(b) For compact sets minA, maxA, minB and maxB we have

dH(minA,minB) = 0 ⇐⇒ minA = minB

and

dH(maxA,maxB) = 0 ⇐⇒ maxA = maxB

and, therefore, dH(minA,minB) = dH(maxA,maxB) = 0 implies minA = minB
and maxA = maxB. Then the proof follows the lines of the proof of part (a).

(c) We obtain with Proposition 2.6

A ̸∼ B ⇐⇒ minA ̸= minB or maxA ̸= maxB

DERIVATIVE-FREE ROOTED TREE METHOD 609

⇐= dH(minA,minB) > 0 or dH(maxA,maxB) > 0

⇐⇒ ψ(A,B) > 0.

(d) This proof follows the lines of the proof of parts (b) and (c).

(e) The assertion follows from (a), (b), (c) and (d). □

The previous lemma already shows that ψ is an important measure for optimality
which can be used for numerical methods.

3. A derivative-free descent method

In [9] a descent method has been recently introduced for the determination of
minimal solutions of the set optimization problem (2.1) using the set less order
relation under certain convexity assumptions. This investigation is now extended
to the more complex minmax less order relation and to nonconvex sets F (x) (with
x ∈ S). Problems in such a complex setting are difficult to handle so that it
makes sense to try to obtain more information about all possible points x ∈ S
with F (x) ≼ F (x0) where x0 ∈ S is any feasible starting point. Starting from
x0 ∈ S we do not work with only one descent direction (as in [9]) but with various
possible descent directions. The iteration process then produces a tree with the
starting point as a root, the iteration points as nodes and the terminal iteration
points (nodes without child nodes) as leaves. An illustration of such a rooted tree
as result of an iteration process is given in Figure 1. A directed path of this tree,
i.e. a sequence of edges (all directed in the same direction) connecting a sequence of
nodes, is also illustrated. We speak of a rooted tree descent method, if we determine

Figure 1. Illustration of a rooted tree descent method with starting
point x0 ∈ S ⊂ R2 and one directed path.

all leaves generated by descent directions with x0 ∈ S as a starting point. Such a
method has a high numerical effort and the advantage that one gets a good overview
on locally minimal solutions of the set optimization problem (2.1).

For the investigations in this section we now spezialize Assumption 2.1 to normed
spaces and the unconstrained case.

610 J. JAHN

Assumption 3.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be real normed spaces, let C
be a convex cone in Y , and let F : X ⇒ Y be a set-valued map with minF (x),
maxF (x) ̸= ∅ for all x ∈ X.

In the following algorithm we assume that Assumption 3.1 is satisfied.

Algorithm 3.2. (derivative-free rooted tree descent method)

1 Input: F : X ⇒ Y , starting vector x0 ∈ X, maximal number imax of
2 iterations, number k ∈ N of iteration directions, radius ε > 0
3 of a small ball, smallest positive step length δ ≪ 1, step size factor
4 µ ∈ (0, 1).
5

6 % initialization
7 choose k directions d1, . . . , dk on the sphere around 0X with radius ε
8 nodes := (x0)
9 leaves := ()
10 i := 0
11

12 % iteration loop
13 while #(nodes) ≥ 1 and i ≤ imax do
14 xi := nodes(1)
15 leaf flag := true
16 for j = 1, . . . , k do
17 zj := xi + dj

18 if zj /∈ nodes then
19 if F (zj) ≼ F (xi) and F (zj) ̸∼ F (xi) then % append this
20 % new node
21 nodes := (nodes, zj)
22 leaf flag := false % i.e., xi cannot be a leaf
23 else % refine the step length
24 λ := 1
25 while λ ≥ δ do
26 λ := µλ
27 zj := xi + λdj

28 if zj /∈ nodes then
29 if F (zj) ≼ F (xi) and F (zj) ̸∼ F (xi) then
30 % append this new node
31 nodes := (nodes, zj)
32 leaf flag := false % i.e., xi cannot be a leaf
33 break (and continue after the next
34 end while)
35 end if
36 else
37 leaf flag := false
38 end if
39 end while

DERIVATIVE-FREE ROOTED TREE METHOD 611

40 end if
41 else
42 leaf flag := false
43 end if
44 end for
45 if leaf flag = true then % append this new leaf
46 leaves := (leaves, xi)
47 end if
48 nodes := (nodes(2), . . .) % i.e., delete the first node
49 i := i+ 1
50 end while
51

52 Output: leaves

Algorithm 3.2 starts with the selection of possible iteration directions in line 7
and begins at the starting point as root in line 8. The actual iteration process is
carried out in the while-loop from line 13 to line 50. xi (line 14) denotes the i-th
iterated node. Then for every direction dj it is checked whether xi + dj (line 17)
leads to a decrease von F . If not, with a step size λ, being decreased step by step
in line 26, points xi + λdj are checked. This is done for λ ≥ δ (line 25) in line 27.
If a node cannot be improved, it is marked as a leave in line 46. In this way the
whole tree with root x0, including the leaves, is determined.

We begin the investigation of Algorithm 3.2 with a simple result.

Proposition 3.3.

(a) Algorithm 3.2 is well-defined.
(b) Let x0 ∈ X be an arbitrary starting point of Algorithm 3.2. For an arbitrary

directed path of the rooted tree let the sequence (xi)i∈N0 of nodes be generated
by Algorithm 3.2 with the property that for every i ∈ N the point xi is a child
of the point xi−1 in the tree with root x0. Then we have

F (xi+1) ≼ F (xi) and F (xi+1) ̸∼ F (xi) for all i ∈ N0.

Proof. Part (a) is obvious and part (b) follows from the construction of a new node
in the “if” part (lines 29–35) in Algorithm 3.2. □

In order to be able to prove convergence of Algorithm 3.2 we follow the theory
developed by Torczon et al. [16, 6], but in this special set-valued case we need an
appropriate convergence measure. The function ψ introduced in Section 2 can be
used as such a convergence measure. The following convergence result concerns an
arbitrary directed path of the rooted tree generated by Algorithm 3.2.

Theorem 3.4. Let x0 ∈ X be an arbitrary starting vector of Algorithm 3.2. For
an arbitrary directed path of the rooted tree let the sequence (xi)i∈N0 of nodes be
generated by Algorithm 3.2 with the property that for every i ∈ N the node xi is
a child of the node xi−1 in the tree with root x0. Let the sets F (x) be uniformly
bounded on this directed path (i.e., there is some α > 0 with ∥F (xi)∥ ≤ α for all
i ∈ N0). For some β ∈ (0, 1) and a null sequence (εi)i∈N0 with εi > 0 for all i ∈ N0

612 J. JAHN

let the step size rule be used:
While ψ(F (xi + λhi), F (xi)) ≥ εi > 0 set λ := βqλ0 for q := 0, 1, 2, . . .
(where λ0 and hi denote the initial step length and the descent direction at
an iteration point xi, respectively).

Then it follows

lim sup
i→∞

ψ(F (xi+1), F (xi)) = 0.

Proof. Choose an arbitrary directed path of the rooted tree given by the se-
quence (xi)i∈N0 of nodes. Since the sets F (x) are uniformly bounded on the directed
path, there is some α ≥ 0 with ∥F (xi)∥ ≤ α for all i ∈ N0. Then by Lemma 2.7
0 ≤ ψ(F (xi+1), F (xi)) ≤ 2α for all i ∈ N0. Consequently, the limit superior exists.
Assume that lim sup

i→∞
ψ(F (xi+1), F (xi)) ̸= 0. Then there exists a subsequence (xij)j∈N

with lim
j→∞

ψ(F (xij+1), F (xij)) =: β ̸= 0. Since the function values of ψ are nonneg-

ative by definition, we have β > 0. Then we obtain

ψ(F (xij+1), F (xij)) ≥ β

2
> 0 for sufficiently large j ∈ N.

Since (εi)i∈N0 is a null sequence, we get

β

2
≥ εij > 0 for sufficiently large j ∈ N.

Then we obtain

ψ(xF (ij+1), F (xij)) ≥ β

2
≥ εij for sufficiently large j ∈ N.

This is a contradiction to the used step size rule. □

In order to show convergence to some set being minimal in a certain sense we
need some special Lipschitz continuity.

Definition 3.5. Let Assumption 3.1 be satisfied. The set-valued map F is called
ψ-Lipschitz continuous at some x̄ ∈ X, if there is a ball B(x̄, δ) around x̄ with
radius δ > 0 and some constant L > 0 so that

ψ(F (x), F (x̄)) ≤ L∥x− x̄∥ for all x ∈ B(x̄, δ).

It is pointed out in [1, Lemma 2.2] that the Hausdorff distance of two compact
sets equals the Euclidian norm of the metric difference of the two sets. Since ψ is the
maximum of certain Hausdorff distances, there is a close relation of the notion in
Definition 3.5 to the standard Lipschitz continuity of set-valued maps [1, Definition
3.1].

Theorem 3.6. Let the assumptions of Theorem 3.4 be satisfied. For an arbitrary
directed path of the rooted tree let the sequence (xi)i∈N0 of nodes be generated by
Algorithm 3.2 with the property that for every i ∈ N the node xi is a child of the
node xi−1 in the tree with root x0.

(a) If the sequence is finite with the final iteration point xk (k ∈ N), then F (xk)
is a minimal element of the set system {F (x0), . . . , F (xk)}.

DERIVATIVE-FREE ROOTED TREE METHOD 613

(b) For an arbitrary accumulation point x̄ of the sequence (xi)i∈N0 (i.e. x̄ is the
limit of a subsequence (xij)j∈N) let F be ψ-Lipschitz continuous at x̄. Then
we have
(i) lim

j→∞
ψ(F (xij), F (x̄)) = 0.

(ii) If

F (xij+1) ≺ F (xij) for all j ∈ N,
then F (x̄) is a minimal element of the set system

{
F (xij)j∈N, F (x̄)

}
.

Proof. (a) By Proposition 3.3 we have

F (xk) ≼ F (xk−1) ≼ . . . ≼ F (x0)

implying that F (xk) is a minimal element of the set system {F (x0), . . . , F (xk)}.
(b)(i) Since F is ψ-Lipschitz continuous at x̄, there is some L ≥ 0 so that

ψ(F (xij), F (x̄)) ≤ L∥xij − x̄∥ for sufficiently large j ∈ N.

Because of lim
j→∞

xij = x̄ we then conclude

lim
j→∞

ψ(F (xij), F (x̄)) = 0

which has to be shown.

(ii) First we show

(3.1) F (x̄) ≺ F (xij) for all j ∈ N.

Let an index j ∈ N be arbitrarily chosen. By the assumption we have F (xij+1) ≺
F (xij) and, therefore, there exists some ε > 0 with(

minF (xij)
)
+B(0Y , ε) ⊂

(
minF (xij+1)

)
+ C,(

minF (xij+1)
)
+B(0Y , ε) ⊂

(
minF (xij)

)
− C,(

maxF (xij)
)
+B(0Y , ε) ⊂

(
maxF (xij+1)

)
+ C,(

maxF (xij+1)
)
+B(0Y , ε) ⊂

(
maxF (xij)

)
− C.

Since lim
j→∞

ψ(F (xij), F (x̄)) = 0 by part (i), for an arbitrary δ > 0 there exists some

j′ ∈ N with j′ ≥ j + 1 and ψ(F (xij′), F (x̄)) ≤ δ. This implies

dH(minF (xij′),minF (x̄)) ≤ δ,

dH(maxF (xij′),maxF (x̄)) ≤ δ.

Then we obtain(
minF (xij)

)
+B(0Y , ε) ⊂

(
minF (xij+1)

)
+ C

⊂
(
minF (xij′)

)
+ C

⊂ (minF (x̄)) +B(0Y , δ) + C(3.2)

and

(3.3)
(
maxF (xij)

)
+B(0Y , ε) ⊂ (maxF (x̄)) +B(0Y , δ) + C.

614 J. JAHN

The inclusions

minF (x̄) ⊂ (minF (x̄))− C

⊂
(
minF (xij′)

)
+B(0Y , δ)− C

⊂
(
minF (xij+1)

)
+B(0Y , δ)− C

imply

(minF (x̄)) +B(0Y , ε) ⊂
(
minF (xij+1)

)
+B(0Y , ε)︸ ︷︷ ︸

⊂(minF (xij))−C

+B(0Y , δ)− C

⊂
(
minF (xij)

)
+B(0Y , δ)− C.(3.4)

With the same arguments we get

(3.5) (maxF (x̄)) +B(0Y , ε) ⊂
(
maxF (xij)

)
+B(0Y , δ)− C.

The inclusions (3.2), (3.4), (3.3) and (3.5) hold for all δ > 0 and consequently we
obtain (

minF (xij)
)
+B

(
0Y ,

ε

2

)
⊂ (minF (x̄)) + C,

(minF (x̄)) +B
(
0Y ,

ε

2

)
⊂

(
minF (xij)

)
− C,(

maxF (xij)
)
+B

(
0Y ,

ε

2

)
⊂ (maxF (x̄)) + C,

(maxF (x̄)) +B
(
0Y ,

ε

2

)
⊂

(
maxF (xij)

)
− C.

This means that F (x̄) ≺ F (xij), and the inequality (3.1) is shown.
The inequality (3.1) immediately implies that F (x̄) is a minimal element of the set
system

{
F (xij)j∈N, F (x̄)

}
. □

Notice that it is required in part (b),(ii) of the preceding theorem that Algorithm
3.2 generates sets being strictly ordered. Proposition 2.5 clarifies this point.

4. Numerical results

Although we investigate nonconvex sets in this paper, we still need a certain
structure of these sets for the implementation of Algorithm 3.2. As a possible
structure we can assume that these sets are piecewise starshaped with respect to
certain elements.

Definition 4.1. A nonempty subset A of a real linear space is called piecewise
starshaped iff there are finitely many nonempty subsets A1, . . . , Ar of A (with r ∈ N)

so that A =
r∪

i=1

Ai and every subset Ai (with i ∈ {1, . . . , r}) is starshaped with

respect to some ŷi ∈ Ai, i.e.

λy + (1− λ)ŷi ∈ Ai for all λ ∈ [0, 1] and all y ∈ Ai.

DERIVATIVE-FREE ROOTED TREE METHOD 615

Figure 2. Set F (2, 3) with minimal and maximal elements in Ex-
ample 4.2.

Even though every nonempty convex set is also starshaped with respect to each of
its elements, starshaped sets are nonconvex, in general. Since a piecewise starshaped
set is the union of finitely many starshaped subsets, even highly nonconvex sets can
be considered. Such a set may also be non-connected so that we work with a very
general class of sets.

As another possible structure we can assume that the boundary of nonconvex sets
is parameterized by some parameters. The following examples work with starshaped
sets with a parameterization of the boundary. The computations are carried out
with Matlab R2014a on a Fujitsu Celsius R570-2 with Nvidia’s GPU Tesla C2075.
Simple tests with this GPU have shown for the computation of all minimal and
maximal elements of a discrete set that speed-ups of 32 are possible.

Example 4.2. Let F : R2 ⇒ R2 be a set-valued map where for every x ∈ R2 the
boundary of the set F (x) is given by

∂F (x) =

{(
e0.5x1 cosx2 + x1 cosx2 cos

3 φ− x2 sinx2 sin
3 φ

e0.05x2 sinx1 + x1 sinx2 cos
3 φ+ x2 cosx2 sin

3 φ

)
∈ R2

∣∣∣∣∣
φ ∈ [0, 2π)

}
.

The set F (x) (with x ∈ R2) is a shifted, warped and rotated asteroid; an example
of such an asteroid is illustrated in Figure 2. Obviously, asteroids are nonconvex
sets. In R2 let the partial ordering be given in a componentwise sense, i.e. C := R2

+.
Starting at the point x0 = (3, 3) Figure 3 illustrates a rooted tree generated by
Algorithm 3.2. Here k := 40 iteration directions are used, and the Euclidean norm
of these vectors is chosen as ε := 0.4. The boundary of the considered sets is
discretized by 1,000 points. The step size factor, which decreases the step length,
is set to µ := 0.5.

616 J. JAHN

3 3.5 4 4.5 5
2.8

2.9

3

3.1

3.2

3.3

Figure 3. Illustration of a rooted tree generated by Algorithm 3.2
for Example 4.2 with starting point (3, 3).

Now we turn our attention to sets in 3 dimensions. This is possible, if one makes
computations in parallel.

Example 4.3. Let F : R2 ⇒ R3 be a set-valued map where for every x ∈ R2 the
boundary of the set F (x) is given by

∂F (x)

=

{
g(x) + (x21 + x42)

 (2.1 + x21 + cos φ1

2 sinφ2 − sin φ1

2 sin 2φ2) cosφ1

(2.1 + x21 + cos φ1

2 sinφ2 − sin φ1

2 sin 2φ2) sinφ1

sin φ1

2 sinφ2 + cos φ1

2 sin 2φ2


∈ R3

∣∣∣∣∣ φ1, φ2 ∈ [0, 2π)

}
with

g(x) := 100

[(−x1
x1 + x22
−x1

)
+ 100max{0, x21 − x2}

+ 100max{0, x1 + 2x2 − 3}

(
1
1
1

)]
.

The set F (x) (with x ∈ R2) is a shifted and scaled set being called the “figure
8” immersion of the Klein bottle, and it is illustrated in Figure 4 for the starting
point x0 := (−2, 2). Starting at x0 Figure 5 illustrates a rooted tree generated by
Algorithm 3.2 with k := 10 iteration directions. The boundary of the considered
sets is discretized by 10, 000 points. Other parameters are chosen as in Example
4.2. The point x∗ := (−0.0044902,−0.070108) is one of the leaves of the rooted tree
and the set F (x∗) is illustrated in Figure 6.

The following example shows that parallel computation is the base even for prob-
lems with four dimensional sets.

DERIVATIVE-FREE ROOTED TREE METHOD 617

4.978

4.98

104

4.982

5.07

5.065 4.99104

5.06 4.985
104

4.985.055
4.975

5.05
4.97

Figure 4. Illustration of F (−2, 2) in Example 4.3.

−2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

3

Figure 5. Illustration of a rooted tree generated by Algorithm 3.2
for Example 4.3 with starting point (−2, 2).

618 J. JAHN

701.7316
701.73162

701.32525

701.73164
701.73166
701.73168

701.3252
701.73175701.32515

701.7317701.3251
701.73165

701.32505 701.7316
701.325 701.73155

Figure 6. Illustration of F (x∗) in Example 4.3.

Example 4.4. Let F : R2 ⇒ R4 be a set-valued map where for every x ∈ R2 the
boundary of the set F (x) is given by

∂F (x) =

{
g(x) +

(
x1 +

1

10
sin 20φ1 sin 20φ2

)
cosφ1

sinφ1 cosφ2

sinφ1 sinφ2 cosφ3

sinφ1 sinφ2 sinφ3


∈ R4

∣∣∣∣∣ φ1, φ2 ∈ [0, 2π), φ3 ∈ [0, π)

}
with

g(x) := 100(x21 + x22 − 9)2


|x1|
|x2|

|x1 + x2|
|x2|

 .

The projection of the set F (x) (with x ∈ R2) to the y1-y2-y3 coordinate system
is for φ3 = 0 some kind of a hyperball with “oscillating radius” in R3 (compare
Figure 7). Figure 8 illustrates a rooted tree generated by Algorithm 3.2 with the
starting vector x0 = (1, 1) and k := 11 iteration directions. The boundary of the
considered sets is discretized by 103,823 points. Such a high discretization leads
to a high elapsed time of about 7 days and 23 hours and 12 minutes. The other
parameters are chosen as in Example 4.2.

In Figure 8 a part of the circle with center (0, 0) and radius 3 is also drawn. It
turns out that most of the leaves are located very close to this circle. Only 6 leaves
have a certain distance to this circle. At these points it was not possible to get an
improvement with only 11 iteration directions. Since this circle plays an important
role in the translation g(x) in the definition of the boundary of F (x) (with x ∈ R2),

DERIVATIVE-FREE ROOTED TREE METHOD 619

Figure 7. Illustration of the projection of F (1, 1) for φ3 = 0 in R3

in Example 4.4.

it seems that this circular arc describes solutions of this special set optimization
problem.

Algorithm 3.2 computes 436 nodes; most of them are needed for a refinement
of the step length. This leads to the good approximation of the circular arc by

Figure 8. Illustration of a rooted tree generated by Algorithm 3.2
for Example 4.4 with the starting point (1, 1) together with the circle
with center (0, 0) and radius 3.

620 J. JAHN

Figure 9. Enlarged part of Figure 8.

the computed leaves. If one enlarges a part of this circuler arc, one can see the
approximation behaviour of this algorithm in Figure 9.

If one works only with 1,000 discretization points of the considered sets, 403
nodes are computed with an elapsed time of about 1 hour and 6 minutes. The
generated rooted tree is very similar to the illustration in Figure 8. It is interesting
to observe that although the finer discretization is 103 times as high as the coarser
discretization, the elapsed time is about 174 times longer than in the simple case.
Although the complexity increases strongly, the increase of the elapsed time is
moderate because parts of Algorithm 3.2 work in parallel.

5. Conclusion

The method of this paper can also be adapted to problems using simpler order
relations, like the set less relation or its lower and upper versions. It seems that
parallel computing is the key for the numerical solution of set optimization problems.
Although GPUs are very helpful in set optimization, the numerical investigations
could also be extended to multicore machines.

Acknowledgement
The author thanks E. Köbis for discussions on numerical aspects in a very early
stage of this paper and T.X.D. Ha for discussions on parts of this paper. He is also
indebted to an anonymous referee for constructive comments on a first version of
this paper.

DERIVATIVE-FREE ROOTED TREE METHOD 621

Appendix

Although computation has been done with Matlab R2014a, computational ex-
pensive parts can be carried out in parallel using a graphics processing unit (GPU).
Listing 1 gives a simple example of a CUDA C program code for the determina-
tion of minimal and maximal elements of sets in R2. The points of the discretized
boundary of a set are contained in the input array (y 1[], y 2[]) and the input point
(y1, y2) is the reference point which is checked for minimality and maximality. Out-
put variables are sum min and sum max with the following meaning: If

sum min = number of discretized boundary points,

then (y1, y2) is a minimal point of the set of these points. With sum max one gets
a similar result with respect to maximality.

Listing 1. Computation of minimal and maximal points on Nvidia’s GPUs

//
// CUDA−Kernel : Determination o f minimal and maximal po in t s
//

g l o b a l void Min Max(const f loat ∗y 1 , const f loat ∗y 2 ,
const f loat y1 , const f loat y2 ,
int ∗sum min , int ∗sum max ,
const int numElements ,
const int ThreadsPerBlock ,
const int LastBlockID ,
const int ThreadsPerLastBlock)

{ s h a r e d int temp min [4 4 8] ;
s h a r e d int temp max [4 4 8] ;

int i = blockDim . x ∗ blockIdx . x + threadIdx . x ;
i f (i < numElements)
{ i f ((y 1 [i] <= y1 && y 2 [i] < y2) | |

(y 1 [i] < y1 && y 2 [i] <= y2))
{ temp min [threadIdx . x] = 0 ; }

else
{ temp min [threadIdx . x] = 1 ; }

i f ((y 1 [i] >= y1 && y 2 [i] > y2) | |
(y 1 [i] > y1 && y 2 [i] >= y2))

{ temp max [threadIdx . x] = 0 ; }
else

{ temp max [threadIdx . x] = 1 ; }
}

sync th r ead s () ;
i f (0 == threadIdx . x && blockIdx . x < LastBlockID)
{ int sum1 = 0 ;

int sum2 = 0 ;
for (int j = 0 ; j < ThreadsPerBlock ; j++)

{ sum1 += temp min [j] ;
sum2 += temp max [j] ; }

atomicAdd (sum min , sum1) ;
atomicAdd (sum max , sum2) ;

622 J. JAHN

}
i f (0 == threadIdx . x && blockIdx . x == LastBlockID)
{

int sum1 = 0 ;
int sum2 = 0 ;
for (int j = 0 ; j < ThreadsPerLastBlock ; j++)

{ sum1 += temp min [j] ;
sum2 += temp max [j] ; }

atomicAdd (sum min , sum1) ;
atomicAdd (sum max , sum2) ;

}
}

If sets in R2 are starshaped with respect to some reference point and if boundary
points are given by radial functions, the Matlab arrayfun function transforms the
radial function written in Matlab to a CUDA C version being carried out on the
GPU. Listing 2 illustrates this point where t is a discretization of the interval [0, 2π]
and x is the actual parameter vector.

Listing 2. Computation of boundary points on Nvidia’s GPUs

y hat = ReferencePoint (x) ;
t gpu = gpuArray (t) ;
[y 1 gpu , y 2 gpu] . . .
= arrayfun (@RadialFunction , t gpu , x (1) , x (2) , y hat (1) , . . .

y hat (2)) ;
y 1 = gather (y 1 gpu) ;
y 2 = gather (y 2 gpu) ;

A concrete formulation of the radial function of Example 4.2 is given in Listing 3.
The radial function values are then determined on the GPU whereas the reference
point is computed on the CPU.

Listing 3. Evaluation of radial functions on Nvidia’s GPUs

% rad i a l f unc t i on on GPUs
function [y 1 , y 2] = RadialFunct ion (t , x1 , x2 , y1 hat , y2 hat)

y 1=y1 hat+x1 .∗ cos (x2) . ∗ (cos (t).ˆ3)−x2 .∗ sin (x2) . . .
. ∗ (sin (t) . ˆ 3) ;

y 2=y2 hat+x1 .∗ sin (x2) . ∗ (cos (t) .ˆ3)+x2 .∗ cos (x2) . . .
. ∗ (sin (t) . ˆ 3) ;

end
% re f e r ence po in t on CPU
function [y hat] = ReferencePoint (x)

y hat=[exp (0 . 5∗ x (1))∗ cos (x (2)) . . .
exp (0 . 05∗ x (2))∗ sin (x (1))] ;

end

DERIVATIVE-FREE ROOTED TREE METHOD 623

References

[1] R. Baier and E. Farkhi, Regularity of set-valued maps and their selections through set differ-
ences: Part 1: Lipschitz continuity, Serdica Math. J. 39 (2013), 365–390.

[2] M. Bischoff and J. Jahn, Economic objectives, uncertainties and decision making in the energy
sector, J. Bus. Econ. 86 (2016), 85–102.

[3] M. Bischoff, J. Jahn and E. Köbis, Hard uncertainties in multiobjective layout optimization of
photovoltaic power plants, Optimization 66 (2017), 361–380.

[4] A. Chiriaev and G. W. Walster, Interval Arithmetic Specification, Technical Report, 1998.
[5] A. R. Conn, K. Scheinberg and L. N. Vicente, Introduction to Derivative-Free Optimization,

MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2009.
[6] E. D. Dolan and R. M. Lewis and V. Torczon, On the local convergence of pattern search,

SIAM J. Optim. 14 (2003), 567–583.
[7] T. X. D. Ha, private communication, 2015.
[8] J. Jahn, Vector Optimization - Theory, Applications, and Extensions, Springer, Heidelberg,

2011.
[9] J. Jahn, A derivative-free descent method in set optimization, Comput. Optim. Appl. 60 (2015),

393–411.
[10] J. Jahn and T. X. D. Ha, New Order Relations in Set Optimization, J. Optim. Theory Appl.

148 (2011), 209–236.
[11] D. Kuroiwa, Natural criteria of set-valued optimization, manuscript, Shimane University,

Japan, 1998.
[12] D. Kuroiwa, T. Tanaka and X. T. D. Ha, On cone convexity of set-valued maps, Nonlinear

Anal. 30 (1997), 1487–1496.
[13] S. Limmer, D. Fey and J. Jahn, GPU implementation of a multiobjective search algorithm,

Positivity 16 (2012), 397–404.
[14] N. Neukel, Order Relations of Sets and its Application in Socio-Economics, Appl. Math. Sci.

(Ruse) 7 (2013), 5711–5739.
[15] Z. G. Nishnianidze, Fixed points of monotonic multiple-valued operators (in Russian), Bull.

Georgian Acad. Sci. 114 (1984), 489–491.
[16] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim. 7 (1997), 1–25.
[17] R. C. Young, The algebra of many-valued quantities, Math. Ann. 104 (1931), 260–290.

Manuscript received September 6 2017

revised December 13 2017

J. Jahn
Department Mathematik, Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany

E-mail address: johannes.jahn@fau.de

