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is relaxed so that each data point may be assigned to more than one cluster, i.e.,
clusters could overlap. A basic well-known formulation of the partitioning cluster-
ing problem can be set up as follows. Let A =

{
a1, a2, . . . , am

}
be a given set of

points in Rn and assume that 1 < k < m. For each l = 1, 2, . . . , k, the cluster is
represented by its center xl ∈ Rn. The clustering problem can be formulated as the
following optimization problem:

(CP) min
x∈Rnk

m∑
i=1

min
1≤l≤k

d
(
xl, ai

)
,

where x =
(
x1, x2, . . . , xk

)
∈ Rnk and d(·, ·) is some distance-like function which

measures the similarity between xl and ai. The similarity measure in clustering
can be defined using various distance-like functions. The use of different similarity
measures allows one to find different cluster structures in a data-set.

A widely used similarity measure is based on the squared Euclidean norm, that is,
d (u, v) = ∥u− v∥2. In that case, one of the most famous hard clustering algorithm
to solve problem (CP) is the so-called k-means algorithm [17], which can be traced
back to [29]. The k-means algorithm partitions the data-set A in an iterative way,
where it begins with a random initialization of the centers and then alternates
between two steps. The first step is the assignment of each data point to the closest
center. The second step is the center update as a weighted arithmetic mean of all
points assigned to each cluster center. The simplicity of the algorithm, both in
the updating rules and implementation aspects, made it very popular. However,
it is well-known that it has several drawbacks, e.g., it is highly sensitive to the
initial choice of cluster centers, it can produce empty clusters, and it does not
properly handle outliers, due to the use of the squared Euclidean distance. The
inherent nonconvexity and nonsmooth nature of the problem is a major difficulty
which has generated intensive research activities toward the search and design of
approximation algorithms that could produce better quality clustering. Moreover,
different data types arising in many applications have justified the use of other
meaningful distance-like functions, including non-Euclidean proximity measures,
that can better model a given data-set. As a result, a large number of hard and
soft clustering algorithms have emerged from various and different perspectives, see,
e.g., [10, 16, 25, 3, 31, 19, 20], and for a unified framework covering many of these
clustering methods, see [30] and references therein.

Motivated by this line of research, in this work we focus on the (CP) model when
the similarity measure is the Euclidean norm, rather the usual squared norm, which
as alluded above might provide a better way to handle the presence of outliers in a
given data-set. The resulting optimization model is the nonsmooth and nonconvex
problem, given by

(CP-N) min
x∈Rnk

m∑
i=1

min
1≤l≤k

∥∥∥xl − ai
∥∥∥ .

While this paper is motivated by the challenging nonsmooth and nonconvex formu-
lation of the clustering problem (CP-N), our developments, algorithm and analysis
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will focus on a broader class of optimization problems which involves the minimiza-
tion of a finite sum of a minimum collection of nonsmooth and convex functions
described by (see Section 2 for details):

(NS) min

{
m∑
i=1

min
1≤l≤k

di
(
xl
)

: x1, x2, . . . , xk ∈ Rn

}
,

which clearly includes the clustering problem (CP-N) as a particular case. Our
main objective is to develop and analyze a new, simple method for tackling problem
(NS). In this optimization model, the nonsmoothness occurs in a double way: once
due to the “min” operation, the other due to the nonsmoothness of di (·), i =
1, 2, . . . ,m. Removing the first level of nonsmoothness will be the starting point of
our developments. Relying on a simple and well-known observation, we first derive
an equivalent reformulation of the problem, which eliminates the nonsmoothness
caused by the inner discrete minimum through the use an of additional variable
and a simple constraint. The obtained constrained problem remains nonsmooth
due to the nonsmoothness of the functions di (·), i = 1, 2, . . . ,m. This second level
of nonsmoothness is then addressed by a simple smoothing technique, to produce a
smooth approximate optimization model, see Section 2. As we shall see in Section
3, this naturally paves the way to design a Smoothing Alternating Minimization-
Based Algorithm (SAMBA) which involved two simple explicit computational steps.
The underlying idea of this approach can be traced back to the so-called Weiszfeld
algorithm [32] for solving the Fermat-Weber location theory problem, see [4] for
recent developments on this method. Building on some very recent convergence
results for semi-algebraic optimization [1, 13], and, in particular, the general proof
mechanism developed in [13], the convergence analysis of SAMBA is developed in
Section 4, where we prove that the proposed method generates a sequence of iterates
which converges globally to a critical point of the smoothed objective function. In
Section 5, we applied our results to the clustering problem (CP-N), deriving two
variants of SAMBA which are similar to the k-means algorithm in the sense that they
alternates between clusters assignment and centers update. In fact, both versions of
SAMBA produces the same clusters assignment as the k-means, while the centers
update are given through a closed and computationally inexpensive formula. In the
last section we illustrate the performance of both smoothing techniques.

Notation. Our notation and basic definitions are standard and can be found, for

example, in [27]. We denote the unit simplex defined by ∆ = {w ∈ Rk :
∑k

l=1wl =
1, w ≥ 0}, and the Cartesian product of m copies of the unit simplex ∆, we denote
by ∆m := ∆×∆×· · ·×∆. The orthogonal projection onto the simplex ∆ is defined
by P∆ (u) := argminv∈∆ ∥v − u∥2, and δ∆ stands for the indicator function of ∆.

2. A constrained smooth based approximation approach

For the purpose of our developments, we consider the following general nonsmooth
and nonconvex optimization model, which naturally captures and extends the basic
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clustering problem (CP-N):

(NS) min

{
F
(
x1, x2, . . . , xk

)
≡

m∑
i=1

min
1≤l≤k

di
(
xl
)

: x1, x2, . . . , xk ∈ Rn

}
.

Throughout this paper we assume:

• For each i = 1, 2, . . . ,m, the function di : Rn → R is continuous, nonsmooth
and convex.

• Problem (NS) is solvable, namely, argminF ̸= ∅.

Our objective is to tackle the nonsmooth problem (NS) via a smooth approximation
counterpart. The nonsmoothness here clearly occurs in two different levels:

(a) through the finite “min” operator (even if di (·), i = 1, 2, . . . ,m, would be
smooth); and

(b) through di (·), i = 1, 2, . . . ,m, which here is assumed to be nonsmooth.

To handle the first level of nonsmoothness as mentioned in item (a), we first refor-
mulate problem (NS) as a constrained minimization, by replacing the inner discrete
minimization with a minimum over the unit simplex ∆. To this end, following [30],
we use the simple fact that for any u ∈ Rk,

min
1≤l≤k

ul = min {⟨u,w⟩ : w ∈ ∆} ,

which for each l = 1, 2, . . . , k admits the minimizer w∗
l = 1 if l = argmin1≤j≤kuj ,

else w∗
l = 0.

Using this fact, in problem (NS), and introducing new variables wi ∈ Rk, i =
1, 2, . . . ,m, yields the equivalent reformulation of problem (NS)

min
x∈Rnk

m∑
i=1

min
wi∈∆

k∑
l=1

widi
(
xl
)
.

Therefore, problem (NS) reduces to the following constrained problem

min
x∈Rnk,w∈Rmk

{
m∑
i=1

k∑
l=1

wi
ld

i(xl) : w ∈ ∆m

}
,

where w =
(
w1, w2, . . . , wm

)
∈ Rkm. This constrained reformulation is now linear in

w, but remains nonsmooth in the variable x, as alluded above in item (b), due to the
nonsmoothness of each di, i = 1, 2, . . . ,m. To handle this, we follow the simple idea
(see, e.g., [7]) of replacing each nonsmooth function di (·), i = 1, 2, . . . ,m, by an ad-
equate smooth approximation of it, which leads us to introduce the following notion
of a smooth approximation of a given convex function which is nondifferentiable.

Definition 2.1 (Smooth approximation). Let d : Rn → R be a continuous and
convex function which is nondifferentiable. A function ds : Rn → R is a smooth ap-
proximation of d (·) with smoothing parameter s > 0, if the following two conditions
hold:

(i) ds : Rn → R is convex, continuously differentiable and satisfies lims→0+ ds (u) =
d (u) for every u ∈ Rn.
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(ii) There exists a continuous function ls : Rn → [0,∞), such that the convex
function ds (·) satisfies

(2.1) ds (v) ≤ ds (u) + ⟨∇ds (u) , v − u⟩ +
ls (u)

2
∥v − u∥2 , ∀ u, v ∈ Rn.

For convenience, we denote by S[Rn, ls] the class of smooth approximations,
namely d ∈ S[Rn, ls], means that there exists a convex and continuously differ-
entiable function ds satisfying the premises of Definition 2.1.

In Section 5, we will discuss two different approaches to generate smoothing
functions ds (·) for the clustering problem. Meanwhile, a few remarks are in order
regarding the above definition. First, it should be noted that the concept of a
smooth approximation of a nondifferentiable function is not new, see e.g., [8, 7]
for some earlier works and references therein, and [30, 6] for more recent ones.
Our definition bears similarity and is closer to [6] who have introduced a general
concept of smoothable convex functions, except that instead of asking Lipschitz
continuity of the gradient of the convex function ds (·) on Rn, which is equivalent to
the classical Descent Lemma (see [9]), here the premise of Definition 2.1(ii), allows
for more flexibility by considering ls (·) to be a function of u, rather than, a usual
constant ls ≡ l > 0. As we shall see in Section 5, this is motivated by the clustering
problem itself (see problem (CP-N)), where appropriate smoothing techniques will
be given (in one scenario this flexibility will allow us to find a better step size in
the forthcoming algorithm).

Throughout, we assume that di ∈ S[Rn, ls] for each i = 1, 2, . . . ,m.

Equipped with the above, we have now all of the necessary components to consider
a smooth approximation model for problem (NS). To that end, and to facilitate the
forthcoming development, we first introduce some convenient notations. For each
i = 1, 2, . . . ,m we denote

ρis (x) :=
(
dis

(
x1

)
, dis

(
x2

)
, . . . , dis

(
xk

))
∈ Rk,

and

Hs (x,w) :=

m∑
i=1

k∑
l=1

wi
ld

i
s

(
xl
)

=

m∑
i=1

⟨
wi, ρis (x)

⟩
.

We then suggest to consider the following smooth approximation model of problem
(NS):

(SA-NS) min
{
Hs (x,w) : x ∈ Rnk, w ∈ ∆m

}
.

Since the above objective is already smooth (linear) in w, we show below that
Hs (·, w) satisfies the premises (i) and (ii) of Definition 2.1. For any w ∈ ∆m, and
all l = 1, 2, . . . , k, we define, for u ∈ Rn, the function

(2.2) H l
s (u,w) :=

m∑
i=1

wi
ld

i
s (u) .
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First, since Hs (x,w) =
∑k

l=1H
l
s

(
xl, w

)
, it is easy to see that for any w ∈ ∆m,

we have that x → Hs (x,w) is convex, continuously differentiable, and
lims→0+ Hs (x,w) = H (x,w), since by assumption dis (·), i = 1, 2, . . . ,m, shares
the same properties. Thus, it shows that Hs (·, w) satisfies Definition 2.1(i). The
next result shows that H l

s (·, w), l = 1, 2, . . . , k, satisfies the condition of Definition
2.1(ii), which will be useful to show that Hs (·, w) satisfies this property too.

Lemma 2.2. Fix w ∈ ∆m and l = 1, 2, . . . , k. Then, for all u, v ∈ Rn, we have

(2.3) H l
s (v, w) ≤ H l

s (u,w) +
⟨
∇uH

l
s (u,w) , v − u

⟩
+
Ll
s (u,w)

2
∥v − u∥2 ,

where

(2.4) Ll
s (u,w) :=

m∑
i=1

wi
l ls (u) .

Proof. Since each di (·), i = 1, 2, . . . ,m, satisfies Definition 2.1(ii), we can multiply
(2.1) by the nonnegative parameter wi

l and summing for all i = 1, 2, . . . ,m, which
yields that (2.3) holds true, as stated. □

As an immediate consequence, we get for all x, y ∈ Rnk that

(2.5) Hs (x,w) ≤ Hs (y, w) + ⟨∇xHs (y, w) , x− y⟩ +
Ls (y, w)

2
∥x− y∥2 ,

with Ls (y, w) =
∑m

i=1

∑k
l=1w

i
lL

l
s

(
yl, w

)
, thus showing that the desired property of

Definition 2.1(ii) holds for Hs (·, w).

The particular structure of the smoothed problem (SA-NS) naturally provides
the key step towards designing a simple algorithm, and its convergence analysis
which is developed next.

3. SAMBA: A smoothing alternating minimization-based algorithm

Let Fs : Rnk × Rmk → (−∞,+∞] be the function defined by

(3.1) Fs (x,w) := Hs (x,w) +

m∑
i=1

δ∆
(
wi

)
.

Using this notation, problem (SA-NS) can be written as

min
{
Fs (x,w) : x ∈ Rnk, w ∈ Rmk

}
.

Note that Fs (·, ·) is nonconvex in (x,w). However, it is convex in each of its
arguments, when the other is kept fixed. This two-block structure of the objective
function Fs (·, ·) can be exploited towards simple computations with respect to each
block separately. To this end, we will build on the well-known concept of Alternating
Minimization (AM) [2, 9], which allow us to focus on each block separately. That
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is, starting with x (0) ∈ Rnk we generate iteratively a sequence {(x (t) , w (t))}t∈N
via the following

w (t+ 1) = argmin
{
Fs (x (t) , w) : w ∈ Rmk

}
,

x (t+ 1) = argmin
{
Fs (x,w (t+ 1)) : x ∈ Rnk

}
.

Using the AM idea, we have split the difficult task of minimizing the nonconvex
function Fs (·, ·) into two convex sub-problems that should be solved in each itera-
tion.

As we shall see below, the minimization subproblem with respect to w is immedi-
ate and can be solved analytically. On the other hand, with respect to x we have a
convex subproblem which, due to the choice of dis (·), i = 1, 2, . . . ,m, is not analyt-
ically solvable, but thanks to the property of Hs (·, w), for fixed w ∈ Rmk, suggests
approximating its solution via a single gradient step. Very recently, this general
technique of combining AM with approximate steps was used in several contexts
and scenarios (see, for example, [13, 18, 5] and the references therein). Here we will
develop a new algorithm which is designed to tackle problem (SA-NS) via simple
computations.

3.1. The subproblem with respect to the w-block. It is easy to see that the
function w → Fs (x,w), for fixed x ∈ Rnk, is separable for all i = 1, 2, . . . ,m
and each part consists of a linear function that should be minimized over the unit
simplex ∆. Indeed, for fixed x ∈ Rnk, we have, for all i = 1, 2, . . . ,m, the following
optimization problem:

min
wi∈Rk

{⟨
wi, ρis (x)

⟩
: wi ∈ ∆

}
.

This subproblem is easy to solve and requires finding the minimal entry of the vector
ρis (x), which we denote by l (i), that is,

l (i) := argmin1≤l≤k d
i
s

(
xl
)
.

Then, an optimal solution wi is given by

wi
l =

{
1, l = l (i) ,

0, otherwise.

3.2. The subproblem with respect to the x-block. The convex subproblem
of (SA-NS) with respect to x is unconstrained and separable for all l = 1, 2, . . . , k,
and, therefore, we can minimize Fs (·, w) with respect to each xl separately. Recall
that for fixed w ∈ Rmk and all l = 1, 2, . . . , k,

(3.2) H l
s (u,w) =

m∑
i=1

wi
ld

i
s (u) , u ∈ Rn,

and the function u → H l
s (u,w) is convex and satisfies the upper approximation

given in (2.3). This obviously suggests to tackle the unconstrained minimiza-
tion with respect to each xl, l = 1, 2, . . . , k, via a simple gradient descent step
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on H l
s (·, w). Therefore, we propose the following generic algorithm to solve the

problem (SA-NS).

Smoothing Alternating Minimization-Based Algorithm – SAMBA

(1) Smoothing function: Pick dis ∈ S[Rn, ls] for each i = 1, 2, . . .m.
(2) Initialization: Start with any x (0) ∈ Rnk.
(3) Iterative step: Generate the sequence {(x (t) , w (t))}t∈N via:

• For all i = 1, 2, . . . ,m compute

wi (t+ 1) = argmin
{⟨
wi, ρis (x (t))

⟩
: wi ∈ ∆

}
.

• For each l = 1, 2, . . . , k compute

Ll
s (t) := Ll

s

(
xl (t) , w (t+ 1)

)
=

m∑
i=1

wi
l (t+ 1) ls

(
xl (t)

)
,

and

xl (t+ 1) = xl (t) − 1

Ll
s (t)

∇xH
l
s

(
xl (t) , w (t+ 1)

)
.

Remark 3.1. We would like to comment about the possibility that at certain itera-
tion t ∈ N, we will have that Ll

s (t) = 0. This obviously can only be if wi
l (t+ 1) = 0

for all l = 1, 2, . . . , k. In such cases, we can always replace Ll
s (t) with

Ll
s (t) := max

{
Ll
s (t) , β̄

}
,

for some given β̄ > 0, and the upper approximation obtained in Lemma 2.2 (see
(2.3)) remains valid. Hence, without the loss of generality we can assume that

Ll
s (t) ≥ β̄, t ∈ N,

and, therefore, the updating rule of xl, l = 1, 2, . . . , k, is well-defined.

4. Convergence analysis

We are now ready to derive the global convergence analysis of SAMBA to a
critical point of the smoothed objective function Fs (·, ·). To this end, we will follow
the recent methodology of [13], which provides the foundation to derive global
convergence of descent algorithms in the nonconvex setting. Unfortunately, this
general mechanism cannot be directly applied in our case, and, therefore, we will
present a weaker variant which fits our setting; see also the very recent work [14]
for a related approach analyzing nonconvex Lagrangian schemes. We first describe
this variant in general, since it could be also of interest in other scenarios, and then
will provide the convergence analysis of SAMBA.

4.1. Abstract Framework. Suppose one is interested in the minimization of a
certain function Ψ : Rd → (−∞,+∞]. The authors of [13] have formulated a set of
three conditions, which are needed to show that a sequence, generated by a generic
algorithm, converges globally to a critical point of the function Ψ (·). In this general
setting of nonsmooth and nonconvex functions, and following [28], we say that z∗
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is a critical point of Ψ (·), if 0 ∈ ∂Ψ (z∗), where ∂Ψ (·) denotes here the (limiting)
subdifferential of Ψ (·).

The first essential step of the methodology of [13] is proving that the generated
sequence is a gradient-like descent sequence for minimizing Ψ (·) in the following
sense.

Definition 4.1. A sequence {zt}t∈N is called a gradient-like descent sequence for
minimizing Ψ : Rd → (−∞,+∞], if the following three conditions hold:

(C1) Sufficient decrease property. There exists a positive scalar ρ1 such that

ρ1
∥∥zt+1 − zt

∥∥2 ≤ Ψ
(
zt
)
− Ψ

(
zt+1

)
, ∀ t ∈ N.

(C2) A subgradient lower bound for the iterates gap. There exist some ut+1 ∈
∂Ψ

(
zt+1

)
and a positive scalar ρ2 such that∥∥ut+1

∥∥ ≤ ρ2
∥∥zt+1 − zt

∥∥ , ∀ t ∈ N.

(C3) Let z be a limit point of a subsequence
{
zt
}
t∈T , then

lim sup
t∈T ⊂N

Ψ
(
zt
)
≤ Ψ (z) .

As mentioned above, we will need to consider a variant of this definition, which
will be suited to our setting. The reason for studying this weaker variant, is the fact
that SAMBA generates a sequence, which satisfies a sufficient decrease property, as
in condition (C1), but the descent is not measured in terms of the whole sequence
{(x (t) , w (t))}t∈N itself, and holds only partially for the x-sequence. Therefore,
here we study a weaker version of conditions (C1) and (C2), while condition (C3)
remains the same. More precisely, based on Definition 4.1, for our optimization
model, we suggest the following version, but keep the same terminology for the sake
of simplicity.

Definition 4.2. A sequence {zt}t∈N is called a gradient-like descent sequence for
minimizing Ψ : Rd → (−∞,+∞], if {zt}t∈N can be split as follows zt =

(
xt, wt

)
,

t ∈ N, and the following three conditions hold:

(C1′) Sufficient decrease property. There exists a positive scalar ρ1 such that

ρ1
∥∥xt+1 − xt

∥∥2 ≤ Ψ
(
zt
)
− Ψ

(
zt+1

)
, ∀ t ∈ N.

(C2′) A subgradient lower bound for the iterates gap. There exist some ut+1 ∈
∂Ψ

(
zt+1

)
and a positive scalar ρ2 such that∥∥ut+1

∥∥ ≤ ρ2
∥∥xt+1 − xt

∥∥ , ∀ t ∈ N.

(C3) Let z be a limit point of a subsequence
{
zt
}
t∈T , then

lim sup
t∈T ⊂N

Ψ
(
zt
)
≤ Ψ (z) .

Now, in order to obtain global convergence of a gradient-like descent sequence
for minimizing Ψ (·), we need the objective function Ψ (·) to satisfy an additional
property which is semi-algebraicity (for more information on this property and the
relation to optimization we refer the reader to [11, 12] and the references therein).
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It should be noted that here, since we use the weaker version of gradient-like descent
sequence (see Definition 4.2), we are able to prove that only the sequence {xt}t∈N
converges globally and not the whole sequence {zt}t∈N as done in [13]. More pre-
cisely, following [13], we propose now the following general result and postpone its
proof to the appendix.

Theorem 4.3. Let
{
zt =

(
xt, wt

)}
t∈N be a bounded gradient-like descent sequence

for minimizing Ψ (·). If Ψ is semi-algebraic, then the sequence {xt}t∈N has finite
length, i.e.,

∑∞
t=1

∥∥xt+1 − xt
∥∥ < ∞, and it converges to some x∗. In addition, for

any limit point w∗ of {wt}t∈N, z∗ = (x∗, w∗) is a critical point of Ψ.

4.2. Convergence of SAMBA. We will show now that {(x (t) , w (t))}t∈N gen-
erated by SAMBA is a gradient-like descent sequence for minimizing Fs (·, ·) (see
Definition 4.2).

We start with the following elementary result which will be essential below, and
is an immediate consequence of the property of each H l

s (·, w), for fixed w ∈ Rmk

and l = 1, 2, . . . , k, as established in Lemma 2.2. For completeness we include the
proof.

Lemma 4.4. Fix w ∈ Rmk and l = 1, 2, . . . , k. For any u ∈ Rn, and u+ ∈ Rn

defined by

u+ = u− 1

Ll
s (u,w)

∇xH
l
s (u,w) ,

we have

(4.1) H l
s

(
u+, w

)
≤ H l

s (u,w) − Ll
s (u,w)

2

∥∥u+ − u
∥∥2 .

Proof. Substituting in (2.3) v = u+, yields that

H l
s

(
u+, w

)
≤ H l

s (u,w) +
⟨
∇xH

l
s (u,w) , u+ − u

⟩
+
Ll
s (u,w)

2

∥∥u+ − u
∥∥2

= H l
s (u,w) − Ll

s (u,w)
⟨
u+ − u, u+ − u

⟩
+
Ll
s (u,w)

2

∥∥u+ − u
∥∥2

= H l
s (u,w) − Ll

s (u,w)

2

∥∥u+ − u
∥∥2 ,

which proves the desired result. □
In the forthcoming analysis, we will use the following simple property of block

vectors.

Lemma 4.5. For any v =
(
v1, v2, . . . , vp

)
∈ Rnp, the following holds:

(4.2) ∥v∥ ≤
p∑

j=1

∥∥vj∥∥ ≤ √
p ∥v∥ .

Proof. For any v =
(
v1, v2, . . . , vp

)
∈ Rnp, we have that ∥v∥ =

√∑p
j=1 ∥vj∥

2. The

left-hand side inequality in (4.2) follows, with αj :=
∥∥vj∥∥, from the obvious fact

that
∑p

j=1 α
2
j ≤

(∑p
j=1 αj

)2
, which holds for any αj ≥ 0, j = 1, 2, . . . , p. To obtain
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the right-hand side inequality of (4.2), note that for any αj ∈ R, we have (by the
convexity of α→ α2) that  p∑

j=1

αj

2

≤ p

p∑
j=1

α2
j ,

and the desired result follows with αj :=
∥∥vj∥∥, j = 1, 2, . . . , p. □

Equipped with the above, the following result shows that condition (C1’) holds
true, where the descent is measured in terms of the sequence {x (t)}t∈N. For sim-
plicity, from now on, we denote z (t) = (x (t) , w (t)), t ∈ N.

Proposition 4.6 (Sufficient decrease property). Let {z (t)}t∈N be a sequence which
is generated by SAMBA. Then, there exists ρ1 > 0 such that

ρ1 ∥x (t+ 1) − x (t)∥2 ≤ Fs (z (t)) − Fs (z (t+ 1)) , ∀ t ∈ N.

Proof. The iteration for the w-step is actually an exact minimization of the func-
tion Fs (x (t) , ·) with respect to each wl, l = 1, 2, . . . , k, separately. Therefore, we
obviously have that

(4.3) Fs (x (t) , w (t+ 1)) ≤ Fs (x (t) , w (t)) , ∀ t ∈ N.

From iteration for the x-step and Lemma 4.4 with u = xl (t) and u+ = xl (t+ 1),
we get for all l = 1, 2, . . . , k that

H l
s

(
xl (t+ 1) , w (t+ 1)

)
≤ H l

s

(
xl (t) , w (t+ 1)

)
− Ll

s (t)

2

∥∥∥xl (t+ 1) − xl (t)
∥∥∥2 .

Summing the last inequality over l = 1, 2, . . . , k, yields

Hs (z (t+ 1)) ≤ Hs (x (t) , w (t+ 1)) −
k∑

l=1

Ll
s (t)

2

∥∥∥xl (t+ 1) − xl (t)
∥∥∥2

≤ Hs (x (t) , w (t+ 1)) −
k∑

l=1

β̄

2

∥∥∥xl (t+ 1) − xl (t)
∥∥∥2

= Hs (x (t) , w (t+ 1)) − β̄

2
∥x (t+ 1) − x (t)∥2 ,

where the second inequality follows from Remark 3.1 and the equality follows from

the fact that ∥v∥2 =
∑p

j=1

∥∥vj∥∥2 for any v =
(
v1, v2, . . . , vp

)
∈ Rnp. Now, from the

definition of Fs (·, ·) (see (3.1)) we obtain that

(4.4) Fs (x (t+ 1) , w (t+ 1)) ≤ Fs (x (t) , w (t+ 1)) − β̄

2
∥x (t+ 1) − x (t)∥2 .

The result now follows by combining (4.3) and (4.4). □

Before proving that SAMBA satisfies condition (C2’), we need the following tech-
nical result.
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Lemma 4.7. Let {z (t)}t∈N be a bounded sequence, which is generated by SAMBA.
For each t ∈ N, there exist R > 0 such that

∥∇xHs (z (t+ 1))∥ ≤ R ∥x (t+ 1) − x (t)∥ .
Proof. Fix l = 1, 2, . . . , k. Since

{
xl (t)

}
t∈N is bounded, and ls (·) is a continuous

function (see Definition 2.1(ii)), it follows that
{
ls
(
xl (t)

)}
t∈N is bounded from

above for all t ∈ N, which together with the boundedness of {w (t)}t∈N, implies that

Ll
s (t) :=

∑m
i=1w

i
l(t + 1)ls(x

l(t)) is bounded from above for all t ∈ N. Thus, there
exists M > 0 such that Ls (t) ≤ M . Now, from Lemma 2.2, we obtain that the
convex function H l

s

(
·, wl (t+ 1)

)
, t ∈ N, satisfies the classical Descent Lemma [9],

and hence ∇xH
l
s

(
·, wl (t+ 1)

)
is M -Lipschitz continuous, i.e.,∥∥∥∇xH

l
s

(
xl (t+ 1) , wl (t+ 1)

)
−∇xH

l
s

(
xl (t) , wl (t+ 1)

)∥∥∥ ≤

M
∥∥∥xl (t+ 1) − xl (t)

∥∥∥ .(4.5)

From the iteration for the x-step we have that

xl (t+ 1) = xl (t) − 1

Ll
s (t)

∇xH
l
s

(
pl (t)

)
,

where, for simplicity, in this proof we denote pl (t) :=
(
xl (t) , w (t+ 1)

)
. Therefore,

using (4.5) we obtain∥∥∥∇xH
l
s

(
zl (t+ 1)

)∥∥∥ =
∥∥∥∇xH

l
s

(
zl (t+ 1)

)
−∇xH

l
s

(
pl (t)

)
+

Ll
s (t)

(
xl (t) − xl (t+ 1)

)∥∥∥
≤

∥∥∥∇xH
l
s

(
zl (t+ 1)

)
−∇xH

l
s

(
pl (t)

)∥∥∥
+ Ll

s (t)
∥∥∥xl (t+ 1) − xl (t)

∥∥∥
≤M

∥∥∥xl (t+ 1) − xl (t)
∥∥∥ +M

∥∥∥xl (t+ 1) − xl (t)
∥∥∥

= 2M
∥∥∥xl (t+ 1) − xl (t)

∥∥∥ .
Thus

∥∇xHs (z (t+ 1))∥ ≤
k∑

l=1

∥∥∥∇xH
l
s

(
zl (t+ 1)

)∥∥∥
≤ 2M

k∑
l=1

∥∥∥xl (t+ 1) − xl (t)
∥∥∥

≤ 2M
√
k ∥x (t+ 1) − x (t)∥ ,

where the first and the last inequalities follow from Lemma 4.5. This proves the
stated result. □

We will now prove that the generated sequence {(x (t) , w (t))}t∈N also satis-
fies condition (C2’), where the bound is measured again in terms of the sequence
{x (t)}t∈N, as required in Definition 4.2.
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Proposition 4.8 (Subgradient lower bound). Let {z (t)}t∈N be a bounded sequence
which is generated by SAMBA. For each t ∈ N there exist some u (t+ 1) ∈ ∂Fs (z (t+ 1))
and ρ2 > 0 such that

∥u (t+ 1)∥ ≤ ρ2 ∥x (t+ 1) − x (t)∥ , ∀ t ∈ N.

Proof. Let t ∈ N. By the definition of Fs (·, ·) (see (3.1)) we get

∂Fs (z (t+ 1)) = ∇Hs (z (t+ 1)) +
(
0,

[
∂δ∆

(
wi (t+ 1)

)]m
i=1

)
,

where
[
vi
]m
i=1

:=
(
v1, v2, . . . , vm

)
. Therefore, by using the optimality condition for

the iteration of the w-step, we have that (with p (t) :=
(
xl (t) , w (t+ 1)

)
)

0 ∈ ∇wiHs (p (t)) + ∂δ∆
(
wi (t+ 1)

)
.

Thus, with

u (t+ 1) := (∇xHs (z (t+ 1)) ,∇wHs (z (t+ 1)) −∇wHs (p (t))) ,

we have that u (t+ 1) ∈ ∂Fs (z (t+ 1)). By the definition of Hs (·, ·), we have for
all i = 1, 2, . . . ,m that

∇wiHs (z (t+ 1)) −∇wiHs (p (t)) = ρis (x (t+ 1)) − ρis (x (t)) .

Now, from the definition of ρis (·), i = 1, 2, . . . ,m, we obtain

∥∇wHs (z (t+ 1)) −∇wHs (p (t))∥ ≤
m∑
i=1

∥∇wiHs (z (t+ 1)) −∇wiHs (p (t))∥

=
m∑
i=1

∥∥ρis (x (t+ 1)) − ρis (x (t))
∥∥

≤
m∑
i=1

k∑
l=1

∣∣∣dis (xl (t+ 1)
)
− dis

(
xl (t)

)∣∣∣ ,(4.6)

where the first and last inequalities use the left-hand side inequality of (4.2), as
established in Lemma 4.5.

Now, since
{
xl (t)

}
t∈N, l = 1, 2, . . . , k, is bounded, invoking the classical Lip-

schitzian property (cf. [27, Theorem 10.4]), for the convex function dis (·), i =
1, 2, . . . ,m, there exists M > 0 such that

(4.7)
∣∣∣dis (xl (t+ 1)

)
− dis

(
xl (t)

)∣∣∣ ≤M
∥∥∥xl (t+ 1) − xl (t)

∥∥∥ .
Therefore, by combining (4.6) and (4.7) we obtain that

∥∇wHs (z (t+ 1)) −∇wHs (p (t))∥ ≤M
m∑
i=1

k∑
l=1

∥∥∥xl (t+ 1) − xl (t)
∥∥∥

= mM
k∑

l=1

∥∥∥xl (t+ 1) − xl (t)
∥∥∥

≤ mM
√
k ∥x (t+ 1) − x (t)∥ ,(4.8)
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where the last inequality follows from Lemma 4.5 (see the right-hand side inequality
of (4.2)). Now, from Lemma 4.7 we obtain that there exists R > 0 such that

(4.9) ∥∇xHs (z (t+ 1))∥ ≤ R ∥x (t+ 1) − x (t)∥ .
By combining (4.8) and (4.9) we derive

∥u (t+ 1)∥ ≤ ∥∇xHs (z (t+ 1))∥ + ∥∇wHs (z (t+ 1)) −∇wHs (p (t))∥

≤ R ∥x (t+ 1) − x (t)∥ +mM
√
k ∥x (t+ 1) − x (t)∥

=
(
R+mM

√
k
)
∥x (t+ 1) − x (t)∥ ,

which proves the desired result with ρ2 = R+mM
√
k. □

We have proven, so far, that SAMBA generates a sequence which satisfies condi-
tions (C1’) and (C2’). Therefore, all we need now, is to show that condition (C3)
holds true. Theorem 4.3 can then be applied directly to obtain the partial global
convergence. This is recorded in the following result.

Theorem 4.9. Let {z (t)}t∈N be a bounded sequence, which is generated by

SAMBA and assume that each dis (·), i = 1, 2, . . . ,m, is smooth approximation
and semi-algebraic. Then, the sequence {x (t)}t∈N has finite length, i.e.,∑∞

t=1 ∥x (t+ 1) − x (t)∥ < ∞, and it converges to some x∗. In addition, for any
limit point w∗ of {w (t)}t∈N, z∗ = (x∗, w∗) is a critical point of Fs (·, ·).

Proof. In Propositions 4.6 and 4.8, we have proven that {z (t)}t∈N satisfies con-
ditions (C1’) and (C2’) of Definition 4.2, respectively. We will now show that
condition (C3) also holds true in this case. As assumed, the sequence {z (t)}t∈N is
bounded and, therefore, there exists a subsequence {z (tq)}q∈N which converges to

some z̄ = (x̄, w̄). From the continuity of Hs (·, ·) and the facts that w (t) ∈ ∆, t ∈ N,
and w̄ ∈ ∆ we obtain that

lim sup
t→∞

Fs (x (t) , w (t)) = lim sup
t→∞

Hs (x (t) , w (t)) = Hs (x̄, w̄) = Fs (x̄, w̄) .

It is easy to check that in our setting, Fs (·, ·) is semi-algebraic, and since {z (t)}t∈N
is a gradient-like descent sequence for minimizing Fs (·, ·) according to Definition
4.2, we get the desired result from Theorem 4.3, as stated. □

5. Smoothing approaches and SAMBA for clustering

In this section, we apply our results to the nonsmooth and nonconvex clustering
problem which was described in the introduction, namely

(CP-N) min
x∈Rnk

m∑
i=1

min
1≤l≤k

∥∥∥xl − ai
∥∥∥ .

Hence, here we have di
(
xl
)

=
∥∥xl − ai

∥∥, i = 1, 2, . . . ,m and l = 1, 2, . . . , k, which
clearly fits to our general optimization model (NS).

To apply SAMBA and its convergence analysis developed in Section 4, all we
need is to identify for each i = 1, 2, . . . ,m, an adequate smoothing function dis (·),
namely, to show that di ∈ S[Rn, ls]. To that end, we will use two very well-known
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and natural smoothing approaches for the Euclidean norm (see, e.g., [7, 6] and the
references therein):

(a) A direct smoothing approach.
(b) Smoothing via Moreau’s Envelope.

For simplicity, we drop all the indices. Let a ∈ Rn. For any u ∈ Rn let d (u) :=
∥u− a∥ and for any s > 0, let ds (·) be a convex smoothing function of d (·). Below,
we consider two convex smooth functions in S[Rn, ls].

• Direct Smoothing
Consider the following smooth approximation function:

(5.1) ds (u) :=
(
∥u− a∥2 + s2

)1/2
.

Clearly, for every u ∈ Rn, we have

d (u) ≤ ds (u) ≤ d (u) + s, and lim
s→0+

ds (u) = d (u) .

Moreover, note that ds (u) = ψ (u− a) with ψ (z) :=
√

∥z∥2 + s2, and a

straightforward computation shows that:

∇2ψ (z) =
I

ψ (z)
− zzT

ψ3 (z)
⪯ I

ψ (z)
⪯ s−1I,

where I is the identity n×n matrix. Therefore,
∥∥∇2ψ (z)

∥∥ ≤ s−1, and hence
the function ds (·) belongs to the class of continuously differentiable func-
tions which have Lipschitz continuous gradient with Lipschitz constant s−1.
Therefore, the smoothing function ds (·) satisfies the premises of Definition
2.1, here with a constant function ls (·) = 1/s.

• Smoothing via Moreau’s Envelope
A classical way of smoothing a convex function is obtained via the so-

called Moreau envelope [26]; see also [6] for a more recent study and the ref-
erences therein. We first recall some fundamental results regarding Moreau’s
envelope and proximal mapping, which will be essential to our discussion.
Let φ : Rn → (−∞,+∞] be a proper, lower semicontinuous and convex
function. For t > 0, the Moreau Envelope is defined by

(5.2) Mtφ (u) := min
v∈Rn

{
φ (v) +

1

2t
∥v − u∥2

}
,

and the proximal mapping is defined by

(5.3) proxtφ (u) = argminv∈Rn

{
φ (v) +

1

2t
∥v − u∥2

}
.

It is well-known [26] that the Moreau’s envelope Mtφ (·) is convex and con-
tinuously differentiable on Rn, with a (1/t)-Lipschitz continuous gradient
given by

(5.4) ∇Mtφ (u) =
1

t

(
u− proxtφ (u)

)
.
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Using the Moreau envelope, we thus consider here the following smooth
approximation function:

ds (u) = Msd (u) ,

where here d (x) = ∥x− a∥. Therefore, a simple calculation shows that
the Moreau envelope (see (5.2)) and the proximal mapping (see (5.3)) are
respectively given by:

(5.5) ds (u) = Msd (u) =

{
∥u− a∥ − s

2 , ∥u− a∥ > s,
1
2s ∥u− a∥2 , ∥u− a∥ ≤ s,

and

proxsd (u) =

(
1 − s

max{∥u− a∥ , s}

)
(u− a) + a

= u− s (u− a)

max{∥u− a∥ , s}
.(5.6)

Clearly, we thus have

d (u) − s

2
≤ ds (u) = Msd (u) ≤ d (u) , and lim

s→0+
ds (u) = d (u) .

Moreover, thanks the properties of the Moreau Envelope just alluded above,
it follows that ds (·) is convex and has 1/s-Lipschitz continuous gradient, and
hence ds (·) satisfies the premises of Definition 2.1(ii) with ls (·) = 1/s.

Both the direct and the Moreau smoothing approaches provide us with a smooth and
convex function ds (·) ∈ S[Rn, ls], with the same ls (·) = 1/s. Thus, we can activate
SAMBA for the clustering problem in both cases. However, recalling the step-size
Ll
s(·, ·) given in SAMBA, in both cases, for fixed w ∈ ∆m and all l = 1, 2, . . . , k, we

obtain that

Ll
s (u,w) =

m∑
i=1

wi
l

s
,

which for small values of the smoothing parameter s, can be a large number. To
overcome this potential difficulty, we will show below that in both cases, we can
improve the situation by using a dynamic and smaller Ll

s (u,w), which takes into
consideration the data-set of the clustering problem, resulting in a larger and better
step-size in SAMBA for the clustering problem. Moreover, thanks to the analysis
developed below, we will also show that the resulting update for the cluster center
in SAMBA admits a delightful convex combination formula of the data-set, similar
to the usual k-means scheme based on the squared Euclidean norm.

5.1. Dynamic Step-Size for the Smooth Approximation Function. The
next result establishes a descent-like lemma, however, where the usual Lipschitz
constant is replaced by a function.

Lemma 5.1. For any s > 0, let ds (·) be the smooth approximation function ob-
tained via direct (see (5.1)) or Moreau (see (5.5)) smoothing techniques. Then, for
all u, v ∈ Rn, we have

ds (v) ≤ ds (u) + ⟨∇ds (u) , v − u⟩ +
ls (u)

2
∥v − u∥2 ,
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where

(a) for direct smoothing:

(5.7) ls (u) =
1(

∥u− a∥2 + s2
)1/2

,

(b) for Moreau smoothing:

ls (u) =
1

max{∥u− a∥ , s}
.

Proof. We first prove the Case (a), that is, for the direct smoothing. Define the
following auxiliary function h : Rn × Rn → R given by

h (v, u) :=
∥v − a∥2 + s2(

∥u− a∥2 + s2
)1/2

=
d2s (v)

ds (u)
.

Then, clearly h (u, u) = ds (u), and it easily seen that ∇vh (u, u) = 2∇ds (u). In-
voking, for all α ∈ R and β > 0, the basic fact:

(5.8)
α2

β
≥ 2α− β,

we obtain

h (v, u) =
d2s (v)

ds (u)
≥ 2ds (v) − ds (u) .

In addition, the function v 7→ h (v, u) is quadratic with the associated matrix ls (u) I.
Therefore, its second-order Taylor expansion around u leads to the following identity

h (v, u) = h (u, u) + ⟨∇vh (u, u) , v − u⟩ + ls (u) ∥v − u∥2 ,

and using the facts proven above, the desired result follows.

Now we prove the Case (b), i.e., for the Moreau Smoothing. In a similar vein,
define the following auxiliary function h : Rn × Rn → R given by

h (v, u) =

{
∥v−a∥2
∥u−a∥ − s

2 , ∥u− a∥ > s, v ∈ Rn,
1
2s ∥v − a∥2 , ∥u− a∥ ≤ s, v ∈ Rn.

Then, clearly h (u, u) = Msd (u) ≡ ds (u), and it is easily seen that

∇vh (u, u) =

{
u−a
d(u) , ∥u− a∥ > s,
u−a
s , ∥u− a∥ ≤ s.

When, ∥u− a∥ ≤ s and v ∈ Rn, since ds (u) = (1/2s) ∥u− a∥2, we immediately
obtain

ds (v) = ds (u) + ⟨∇ds (u) , v − u⟩ +
1

s
∥v − u∥2 .
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For the other case, namely when ∥u− a∥ > s and v ∈ Rn, invoking again (5.8), it
follows that

h (v, u) ≥ 2 ∥v − a∥ − ∥u− a∥ − s

2

= 2
(
∥v − a∥ − s

2

)
−
(
∥u− a∥ − s

2

)
= 2ds (v) − ds (u) .

Moreover, since the function v 7→ h (v, u) is quadratic, with the associated matrix
(1/d (u)) I, then like in the Case (a), its second-order Taylor expansion around
u leads to an identity, and combining all the established facts, the desired result
follows. □

We can now develop SAMBA where the smoothing functions dis (·), i = 1, 2, . . . ,m,
are defined either trough the direct smoothing or the Moreau smoothing. SAMBA
for the clustering problem reads as follows:

SAMBA for Clustering

(1) Input: Data set A, s > 0 and the function ds (·) given in (5.1) or (5.5).
(2) Initialization: Start with x (0) ∈ Rnk.
(3) General step (t = 0, 1, . . .):

• Cluster assignment: for all i = 1, 2, . . . ,m compute

wi (t+ 1) = argmin
{⟨
wi, ρis (x (t))

⟩
: wi ∈ ∆

}
.

• Center update: for each l = 1, 2, . . . , k compute

xl (t+ 1) =

m∑
i=1

λli (t) ai,

where λli, i = 1, 2, . . . ,m, is computed through ls (·) which is given
via either one of the formulas (5.9) or (5.10) below.

As can be seen, SAMBA for clustering, which solves problem (CP-N) shares
the pattern of most center-based clustering algorithms, namely, this algorithm al-
ternates between cluster assignment (the subproblem with respect to w) and the
centers update (the subproblem with respect to x). In fact, we will now show that
the x-step is indeed like in the k-means scheme, which means a convex combination
of the data points in A. This will, in turn, prove that SAMBA for clustering gen-
erates a bounded sequence, as recorded in the following result, a property which is
needed to apply the global convergence result (see Theorem 4.9) in this case.

Lemma 5.2. The sequence {(x (t) , w (t))}t∈N, generated by SAMBA for clustering,
is bounded. In particular, the x-step reads, for each l = 1, 2, . . . , k, as follows

xl (t+ 1) =
m∑
i=1

λli (t) ai, with λli (t) =
wi
l (t+ 1)

Ll
s (t)

ls

(
xl (t)

)
, i = 1, 2, . . . ,m,

with Ll
s (t) :=

∑m
i=1w

i
l (t+ 1) ls

(
xl (t)

)
, and where for i = 1, 2, . . . ,m and each

l = 1, 2, . . . , k,
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(a) for direct smoothing:

(5.9) ls

(
xl (t)

)
:=

1(
∥xl (t) − ai∥2 + s2

)1/2
≡ 1

ds (xl (t))
,

(b) for Moreau smoothing:

(5.10) ls

(
xl (t)

)
:=

1

max{∥xl (t) − ai∥ , s}
.

Proof. It is straightforward from the algorithm that wi (t) ∈ ∆ for all t ∈ N and i =
1, 2, . . . ,m. Therefore, we obviously have that {w (t)}t∈N is bounded. In addition,
we will now show that x (t), t ∈ N, can be written as a weighted arithmetic mean
of the data points in A, which completes the boundedness assertion of the sequence
{(x (t) , w (t))}t∈N. Indeed, for any l = 1, 2, . . . , k, we have by definition of the x-step
in SAMBA:

xl (t+ 1) = xl (t) − 1

Ll
s (t)

∇H l
s

(
xl (t) , w (t+ 1)

)
where we recall that by definition, for w ∈ ∆m and all l = 1, 2, . . . , k, we have that
(cf (2.2)):

(5.11) H l
s (u,w) :=

m∑
i=1

wi
ld

i
s (u) and Ll

s (u,w) =

m∑
i=1

wi
l ls (u) .

We will now show that in both Cases (a) and (b) the cluster centers admit a convex
combination representation of the data-set, with the corresponding convex weights.
First, we note that for every i = 1, 2, . . . ,m we have for Case (a) the following:

∇dis (u) =
u− ai

ds (u)
=

(
u− ai

)
ls (u) with ls (u) :=

1

ds (u)
,

and for Case (b), from (5.6), we have the following

∇dis (u) =
u− proxsdi (u)

s
=

u− ai

max{∥u− ai∥ , s}
=

(
u− ai

)
ls (u) ,

with

ls (u) :=
1

max{∥u− ai, s}∥
.

Thus, for both cases we obtain:

∇H l
s

(
xl (t) , w (t+ 1)

)
=

m∑
i=1

wi
l (t+ 1)

(
xl (t) − ai

)
ls

(
xl (t)

)
,

and

Ll
s(t) ≡ Ll

s

(
xl (t) , w (t+ 1)

)
=

m∑
i=1

wi
l (t+ 1) ls

(
xl (t)

)
,
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where ls
(
xl (t)

)
are respectively given by (5.9) and (5.10). Therefore, we obtain for

both cases:

xl (t+ 1) = xl (t) − 1

Ll
s (t)

m∑
i=1

wi
l (t+ 1)

(
xl (t) − ai

)
ls

(
xl (t)

)
=

1

Ll
s (t)

m∑
i=1

wi
l (t+ 1) ls

(
xl (t)

)
ai ∈ Conv(A),

and this complete the proof of the desired result with the corresponding convex
weights λil for both Cases (a) and (b). □

Equipped the above results, we immediately obtain the following convergence
result of SAMBA for clustering.

Theorem 5.3. Let {z (t)}t∈N be a sequence which is generated by SAMBA for
clustering with either one of the smooth function (5.1) or (5.5). Then, the sequence
{x (t)}t∈N has finite length, i.e.,

∑∞
t=1 ∥x (t+ 1) − x (t)∥ < ∞, and it converges to

some x∗. In addition, for any limit point w∗ of {w (t)}t∈N, z∗ = (x∗, w∗) is a critical
point of Fs (·, ·).

6. Numerical results

In this section we report numerical experiments comparing the performance of
the two variants of SAMBA for to the clustering problem, as developed in the
previous section. For simplicity, from now on, SAMBA with direct smoothing will be
denoted below by SAMBA - D while SAMBA with Moreau’s smoothing is denoted
by SAMBA - M.

We consider four data-sets taken from the UC Irvine Machine Learning Reposi-
tory [15], where in Table 1 we summarize the parameters of every data-set, namely
the number of data points m, their corresponding dimension n and the number of
clusters k.

Dataset Name m n k

Glass (Gl) 214 9 6
Iris (Ir) 150 4 3

Salary (Sa) 30162 14 2
Seeds (Se) 210 7 3

Table 1. Parameters of the UCI Machine Learning Repository databases.

Since our data-sets are in higher dimensions than 2D or 3D, visualization of the
clustering results are not possible. Therefore, we will follow some classical math-
ematical indices for evaluating the clustering performances of the two algorithms
(see [33] for details and more information about these aspects). We computed the
Rand, Jaccard (Jacc), Purity-Efficiency (PE) and Variation of Information (VI)
indices, which are so-called external measures. In addition, we also computed the
Davies-Bouldin (BD) index, that is so-called internal measure. It should be noted
that the indices Rand, Jacc and PE should be maximized, i.e., clustering result with
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Rand Jacc PE
S - D S - M S - D S - M S - D S - M

s
=

10
Gl 0.6714 0.6718 0.2479 0.2502 0.5671 0.5714
Ir 0.8087 0.8075 0.5731 0.5718 1.0415 1.0404
Sa 0.5584 0.5573 0.4614 0.4605 0.9099 0.9086
Se 0.9015 0.9014 0.7407 0.7405 1.2035 1.2033

s
=

1

Gl 0.6814 0.6818 0.2236 0.2212 0.5238 0.5194
Ir 0.8017 0.8016 0.5681 0.568 1.0395 1.0395
Sa 0.5525 0.5528 0.4624 0.4618 0.9095 0.9086
Se 0.905 0.8995 0.7486 0.7359 1.2108 1.1991

s
=

0
.1

Gl 0.6811 0.6813 0.2202 0.2203 0.5204 0.5206
Ir 0.7999 0.8 0.5705 0.5706 1.0449 1.0449
Sa 0.5551 0.5551 0.4657 0.4657 0.9139 0.9139
Se 0.8886 0.8886 0.7121 0.7121 1.1759 1.1759

s
=

0
.0

1 Gl 0.6783 0.6783 0.2206 0.2206 0.5199 0.5199
Ir 0.8034 0.8034 0.5734 0.5734 1.0453 1.0453
Sa 0.552 0.552 0.4599 0.4599 0.9058 0.9058
Se 0.889 0.889 0.7142 0.7142 1.1779 1.1779

Table 2. Values of the five indices for clustering produced by
SAMBA - D and SAMBA - M. Each run is halted after 50 itera-
tions, which is enough in most cases to achieve stable values of x
and w. The best results in each data-set and each index are marked
by boldface.

higher value for these indices is better. Whereas, the VI and the DB indices should
be minimized.

Experiments Information. For each data-set, we executed SAMBA - D and
SAMBA - M, 100 times with different initial centers x (0). In each execution we have
computed all the five indices, where in Tables (2) (for the maximizing indices) and
(3) (for the minimizing indices) we present the average results over the 100 tests.
Since these two algorithms also depend on the value of the smoothing parameter s,
we have repeated all these experiments with four different values of this parameter,
which are 10, 1, 0.1 and 0.01. It should be noted that we normalized each feature in
each data-set by subtracting its mean and dividing by its standard deviation.

To conclude, clearly, for larger values of the smoothing parameter (s = 10 and
s = 1), the variant of SAMBA with direct smoothing approach (SAMBA - D) is
better in the majority of cases. However, for small smoothing parameter (s = 0.1),
the SAMBA with Moreau’s smoothing achieves slightly better results. In the case
of the smallest smoothing parameter (s = 0.01), both algorithms perform the same
way.
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VI DB
S - D S - M S - D S - M

s
=

10

Gl 2.023 2.0108 1.1907 1.172
Ir 0.7552 0.756 0.8129 0.8125
Sa 0.9958 0.996 2.5411 2.544
Se 0.5862 0.5868 0.9226 0.9227

s
=

1
Gl 2.1696 2.1842 1.3145 1.3376
Ir 0.7428 0.7427 0.8001 0.8
Sa 1.0012 1.0016 2.5371 2.5369
Se 0.5735 0.5968 0.9271 0.9279

s
=

0
.1

Gl 2.2014 2.2014 1.3628 1.3634
Ir 0.7247 0.7245 0.7918 0.7918
Sa 0.9984 0.9984 2.5207 2.5207
Se 0.6429 0.6428 0.9323 0.9323

s
=

0
.0

1 Gl 2.1981 2.1983 1.3468 1.3468
Ir 0.7311 0.7311 0.8004 0.8004
Sa 1.0055 1.0055 2.5647 2.5647
Se 0.6373 0.6373 0.9365 0.9365

Table 3. Values of the five indices for clustering produced by
SAMBA - D and SAMBA - M. Each run is halted after 50 itera-
tions, which is enough in most cases to achieve stable values of x
and w. The best results in each data-set and each index are marked
by boldface.

7. Appendix: Proof of theorem 4.3

In order to prove Theorem 4.3, we will need first to prove the following re-
sult which shows that conditions (C1’) and (C2’) are enough to guarantee that
a gradient-like descent sequence is subsequently converges to a point in crit Ψ, that
is, a critical point of Ψ. For simplicity, we denote the set of all limit points of
{zt}t∈N by ω

(
z0
)
.

The next result establishes the promised subsequential convergence.

Lemma 7.1 (Subsequence Convergence). Let Ψ : Rd → (−∞,+∞] be a lower
semicontinuous function and let

{
zt =

(
xt, wt

)}
t∈N be a bounded gradient-like de-

scent sequence for minimizing Ψ. Then, ω
(
z0
)
is a nonempty and compact subset

of crit Ψ, and we have

(7.1) lim
t→∞

dist
(
zt, ω

(
z0
))

= 0.

In addition, the objective function Ψ is finite and constant on ω
(
z0
)
.

Proof. Since {zt}t∈N is bounded, there is z∗ ∈ Rd and a subsequence
{
ztq

}
q∈N such

that ztq → z∗ as q → ∞ and hence ω
(
z0
)

is nonempty. Moreover, the set ω
(
z0
)

is compact, since it can be viewed as an intersection of compact sets. Now, from
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condition (C3) and the lower semicontinuity of Ψ, we obtain

(7.2) lim
q→∞

Ψ
(
ztq

)
= Ψ (z∗) .

On the other hand, from conditions (C1’) and (C2’), we know that there is ut ∈
∂Ψ

(
zt
)
, t ∈ N, such that ut → 0 as t→ ∞. The closedness property1 of ∂Ψ implies

thus that 0 ∈ ∂Ψ (z∗). This proves that z∗ is a critical point of Ψ, and hence (7.1)
is valid.

To complete the proof, let limt→∞ Ψ
(
zt
)

= α ∈ R. Then
{

Ψ
(
ztq

)}
q∈N converges

to α and from (7.2) we have that Ψ (z∗) = α. Hence the restriction of Ψ to ω
(
z0
)

equals α. □
To achieve our main goal, i.e., to establish global convergence of the whole se-

quence, we need an additional assumption on the class of functions Ψ: it must satisfy
the so-called nonsmooth Kurdyka- Lojasiewicz (KL) property [11] (see [23, 24] for
smooth cases). We refer the reader to [12] for an in depth study of the class of KL
functions, as well as references therein. We now provide the formal definition of the
KL property and two important results.

Denote [α < Ψ < β] :=
{
z ∈ Rd : α < Ψ (z) < β

}
. Let η > 0, and set

Φη =
{
φ ∈ C0[0, η) ∩ C1(0, η) : φ (0) = 0, φ concave and φ′ > 0

}
.

Definition 7.2 (The nonsmooth KL property). A proper and lower semicontinuous
function Ψ : Rd → (−∞,+∞] has the Kurdyka- Lojasiewicz (KL) property locally
at z ∈ dom Ψ, if there exist η > 0, φ ∈ Φη, and a neighborhood U (z) such that

φ′ (Ψ (z) − Ψ (z)) dist (0, ∂Ψ (z)) ≥ 1,

for all z ∈ U (z) ∩ [Ψ (z) < Ψ (z) < Ψ (z) + η].

Verifying the KL property of a given function might often be a difficult task.
However, thanks to a fundamental result established in [11], it holds for the broad
class of semi-algebraic functions.

Theorem 7.3. Let Ψ : Rd → (−∞,+∞] be a proper and lower semicontinuous
function. If Ψ is semi-algebraic, then it satisfies the KL property at any point of
dom Ψ.

Our last ingredient is a key uniformization of the KL property proven in [13,
Lemma 6, p. 478], which we record below.

Lemma 7.4 (Uniformized KL Property). Let Ω be a compact set and let Ψ : Rd →
(−∞,+∞] be a proper and lower semicontinuous function. Assume that Ψ is con-
stant on Ω and satisfies the KL property at each point of Ω. Then, there exist ε > 0,
η > 0 and φ ∈ Φη such that for all z in Ω one has,

(7.3) φ′ (Ψ (z) − Ψ (z)) dist (0, ∂Ψ (z)) ≥ 1,

and all z ∈
{
x ∈ Rd : dist (x,Ω) < ε

}
∩ [Ψ (z) < Ψ (z) < Ψ (z) + η].

1Let
{(

qt, pt
)}

t∈N be a sequence in graph (∂Ψ) that converges to (q, p) as t → ∞. By the very

definition of ∂Ψ (q), if Ψ
(
qt
)

converges to Ψ (q) as t → ∞, then (q, p) ∈ graph (∂Ψ).
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We can now prove the following abstract convergence result, which is a weaker
variant of the global convergence result obtained in [13] (see also [14] for an-
other variant of the abstract convergence result, which was designed for analyzing
Lagrangian-based methods).

Theorem 7.5 (Global Convergence). Let Ψ : Rd → (−∞,+∞] be a lower semi-
continuous function and let

{
zt =

(
xt, wt

)}
t∈N be a bounded gradient-like descent

sequence for minimizing Ψ. If Ψ is semi-algebraic, then the sequence {xt}t∈N has
finite length, i.e.,

∑∞
t=1

∥∥xt+1 − xt
∥∥ <∞, and it converges to some x∗. In addition,

for any limit point w∗ of {wt}t∈N, z∗ = (x∗, w∗) is a critical point of Ψ.

Proof. Since {zt}t∈N is bounded, there exists a subsequence
{
ztq

}
q∈N such that

ztq → z as q → ∞. In a similar way as in Lemma 7.1, we get that

(7.4) lim
t→∞

Ψ
(
zt
)

= Ψ (z) .

If there exists an integer t̄ for which Ψ
(
z t̄
)

= Ψ (z), then condition (C1’) would

imply that z t̄+1 = z t̄. A trivial induction then shows that the sequence {zt}t∈N is
stationary and the announced results are obvious. Since

{
Ψ
(
zt
)}

t∈N is a nonincreas-

ing sequence, it is clear from (7.4) that Ψ (z) < Ψ
(
zt
)

for all t > 0. Again from (7.4)

for any η > 0 there exists a nonnegative integer t0 such that Ψ
(
zt
)
< Ψ (z) + η for

all t > t0. From Lemma 7.1, we know that limt→∞ dist
(
zt, ω

(
z0
))

= 0. This means

that for any ε > 0, there exists a positive integer t1 such that dist
(
zt, ω

(
z0
))
< ε

for all t > t1.

From Lemma 7.1, we know that ω
(
z0
)

is nonempty and compact, the function

Ψ is finite and constant on ω
(
z0
)
. Hence, we can apply the Uniformization Lemma

(see Lemma 7.4) with Ω = ω
(
z0
)
. Therefore, for any t > t̄ := max {t0, t1}, we have

(7.5) φ′ (Ψ (
zt
)
− Ψ (z)

)
dist

(
0, ∂Ψ

(
zt
))

≥ 1.

This makes sense, since we know that Ψ
(
zt
)
> Ψ (z) for any t > t̄. From condition

(C2’), we get that

(7.6) φ′ (Ψ (
zt
)
− Ψ (z)

)
≥ 1

ρ2

∥∥xt − xt−1
∥∥−1

.

For convenience, we define for all p, q ∈ N and z the following quantity

∆p,q := φ (Ψ (zp) − Ψ (z)) − φ (Ψ (zq) − Ψ (z)) .

From the concavity of φ we get that

(7.7) ∆t,t+1 ≥ φ′ (Ψ (
zt
)
− Ψ (z)

) (
Ψ
(
zt
)
− Ψ

(
zt+1

))
.

Combining condition (C1’) with (7.6) and (7.7) yields, for any t > t̄, that

(7.8) ∆t,t+1 ≥
∥∥xt+1 − xt

∥∥2
ρ ∥xt − xt−1∥

, where ρ := ρ2/ρ1.

Using the fact that 2
√
αβ ≤ α+β for all α, β ≥ 0, we infer from the later inequality

that

(7.9) 2
∥∥xt+1 − xt

∥∥ ≤
∥∥xt − xt−1

∥∥ + ρ∆t,t+1.
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Summing up (7.9) for i = t̄+ 1, . . . , t yields

2
t∑

i=t̄+1

∥∥xi+1 − xi
∥∥ ≤

t∑
i=t̄+1

∥∥xi − xi−1
∥∥ + ρ

t∑
i=t̄+1

∆i,i+1

≤
t∑

i=t̄+1

∥∥xi+1 − xi
∥∥ +

∥∥∥xt̄+1 − xt̄
∥∥∥ + ρ

k∑
i=t̄+1

∆i,i+1

=

t∑
i=t̄+1

∥∥xi+1 − xi
∥∥ +

∥∥∥xt̄+1 − xt̄
∥∥∥ + ρ∆t̄+1,t+1,

where the last inequality follows from the fact that ∆p,q + ∆q,r = ∆p,r for all
p, q, r ∈ N. Since φ ≥ 0, recalling the definition of ∆t̄+1,t+1, we thus have for any
k > l that

t∑
i=t̄+1

∥∥xi+1 − xi
∥∥ ≤

∥∥∥xt̄+1 − xt̄
∥∥∥ + ρφ

(
Ψ
(
z t̄+1

)
− Ψ (z)

)
,

which implies that
∑∞

t=1

∥∥xt+1 − xt
∥∥ < ∞, i.e., {xt}t∈N is a Cauchy sequence and

hence converges to some x∗. Let w∗ be a limit point of {tk}k∈N, then from Lemma
7.1 we obtain that z∗ = (x∗, w∗) is a critical point of Ψ. □

Acknowledgments

We are delighted to contribute to this volume in honor of Adi Ben-Israel 85th
birthday. Marc Teboulle, wants to express his deepest thanks and appreciation to
him. Adi is my academic grand father, and has essentially paved the ways to my
academic career. Starting from my early stages at the undergraduate level, Adi has
continuously and generously provided me with his enthusiastic strongest support.
His fundamental and pioneering works in Linear Algebra, Optimization, and his
vast knowledge in mathematical sciences have been a constant source of inspiration
and admiration. Adding to that his great sense of humor, the fun in is company is
unlimited. Happy Birthday Adi!

References

[1] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions
involving analytic features, Math. Program. Ser. B 116 (2009), 5–16.
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