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Conjecture 1. Every rational completely positive matrix is completely positive over
the rationals.

By definition, a matrixA is completely positive over the rationals ifA =
∑k

i=1 bib
T
i ,

where the vectors bi are rational and nonnegative. An alternative approach is to
say that A is completely positive over the rationals if it can be decomposed in the
form

(1.1) A =
m∑
i=1

dixix
T
i ,

where each di is a nonnegative rational number and each xi is a nonnegative rational
vector. That is,

(1.2) A = XDXT ,

where X = (x1| . . . |xm) is a nonnegative rational matrix, and D = Diag(d1, . . . , dm)
is a diagonal nonnegative rational matrix.

These two approaches are equivalent: consider p
qxx

T where p, q are positive

integers and the vector x is rational and nonnegative. Then according to La-
grange’s four-square theorem there exist nonnegative integers s1, . . . , s4 such that
pq = s21 + s22 + s23 + s24, and we get

p
q xx

T = pq
q2

xxT =
s21+s22+s23+s24

q2
xxT =

4∑
i=1

(
si
q x

)(
si
q x

)T
.

Note that the number of rank-one matrices needed in the decompositions A =∑
bib

T
i and A =

∑
dixix

T
i may differ by a factor of up to 4, as can be seen in the

above construction. An explicit example is

A =

(
7 0
0 0

)
=

(
1
0

)
· 7 ·

(
1
0

)T

=

(
2 1 1 1
0 0 0 0

)(
2 1 1 1
0 0 0 0

)T

,

where no smaller decomposition exists, since for any positive integer q, the number
7q2 cannot be represented as a sum of less than four squares. For the definition of
the rational cp-rank, we prefer to work with rational decompositions of the form
(1.1). That is, for a matrix A that is completely positive over the rationals, the
rational cp-rank of A, rcprA, is the minimal number of summands in (1.1) (i.e., the
minimal number of columns of X in (1.2)). We refer to a decomposition in the form
(1.1) as a rational cp-decomposition. Note that rankA ≤ cprA ≤ rcprA for every
matrix A which is CP over the rationals.

The following discussion may suggest that the truth of Conjecture 1 is not ob-
vious. A matrix A is called completely positive over the integers if it can be de-
composed as A = BBT , where the entries of B are nonnegative integers. It has
been recently shown in [20] that every 2 × 2 integral completely positive matrix is
completely positive over the integers, but this is no longer true for matrices of order
greater than 2. The matrices 1 1 1

1 a 0
1 0 b

 , with a, b integers, a ≥ 2, b ≥ 2,
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and  2 3 1
3 5 3
1 3 c

 , with c integer, c ≥ 5,

are integral and completely positive, but not completely positive over the integers,
and hence the analogue of Conjecture 1 is not true for complete positivity over the
integers. These examples are special cases of the following theorem.

Theorem 1.1 ([11]). For every graph G that is not a disjoint union of paths on two
vertices and isolated vertices there exists an integral completely positive matrix that
is not completely positive over the integers, whose graph is G. (For the definition
of the graph of a matrix, see Section 3.)

Conjecture 1, however, is strongly supported by the following result of Dutour
Sikirić, Schürmann and Vallentin [16].

Theorem 1.2 ([16]). Every rational matrix that lies in the interior of CPn is
completely positive over the rationals.

By this theorem, it remains to consider rational matrices on the boundary of CPn.
In this paper we collect some results that may be helpful in this consideration. The
rest of the paper is divided into three parts. In Section 2 we make some basic
observations which are useful in the study of Conjecture 1. In Section 3 we survey
results on necessary conditions and sufficient conditions for a symmetric nonnegative
matrix to be completely positive, and we show that under these conditions, rational
completely positive matrices are completely positive over the rationals. In Section 4
we give upper bounds for rcprA and show that for n ≥ 3 there exist n×n matrices
A for which rcprA > cprA.

2. Rational complete positivity — basic tools

It is well known that if A is a rational positive semidefinite matrix, then the
Cholesky algorithm can be used to obtain a decomposition A = XDXT , where D
is a nonnegative diagonal matrix, and both X and D are rational matrices. This
obviously implies:

Observation 2.1. Let A be a rational completely positive matrix, and let A =
XDXT be its Cholesky factorization. If X is nonnegative, then A is completely
positive over the rationals and rcprA = rankA.

A related result is the following:

Observation 2.2. If a matrix of the form

A =

(
B CT

C E

)
,

is positive semidefinite and rational and E is nonsingular, then both the Schur
complement A/E = B − CTE−1C and the matrix(

CTE−1C CT

C E

)
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are rational positive semidefinite matrices. If both are CP over the rationals, then
A is also CP over the rationals.

More generally, this holds for the generalized Schur complement, when E is not
necessarily nonsingular and the Moore-Penrose generalized inverse E† is used in-
stead of E−1. As A is positive semidefinite, C = EY . The matrix Y , whose
columns are solutions to linear systems with rational coefficients, may be taken to
be rational. Thus CTE†C = Y TEE†EY = Y TEY is rational. For details about the
Moore-Penrose generalized inverse see [7].

Most of the basic tools used in the study of complete positivity (see [6, Section
2.1]) also hold in the rational case. In particular,

• If A1, A2 are CP over the rationals and d1, d2 are nonnegative rational num-
bers, then A := d1A1 + d2A2 is CP over the rationals.

• Let A = A1 ⊕ A2. Then A has a rational cp-decomposition if and only if
both A1 and A2 have such decompositions.

• Let P be a permutation matrix. Then A has a rational cp-decomposition if
and only if the matrix P TAP has.

Also, the property of being completely positive over the rationals is invariant
under diagonal scaling by a nonnegative rational diagonal matrix:

• Let D be a rational diagonal matrix with positive diagonal entries. Then A
has a rational cp-decomposition if and only if the matrix DAD has.

In the study of (real) complete positivity, diagonal scaling is often used to con-
veniently replace a matrix A by a matrix DAD whose diagonal entries all equal
1. However, for a rational positive semidefinite matrix A, the matrix D used in
this scaling is not necessarily rational, nor is it necessarily of the form

√
dD with

a rational diagonal matrix D and a positive rational number d. Therefore, known
results on complete positivity need to be carefully checked for validity in the ratio-
nal case. The next three lemmas assert that some basic techniques carry over from
(real) complete positivity to the rational case.

First, since the inverse of a nonsingular rational matrix is rational, it is easy to
see that the following rational version of [6, Proposition 3.3] holds:

Lemma 2.3. Let A be a symmetric rational matrix and let S be a nonsingular
rational matrix with S−1 nonnegative. If SAST is completely positive over the
rationals, then A is completely positive over the rationals.

This, in turn, can be used to prove (exactly as in the real case) the following
rational version of [6, Lemma 3.5] which is originally due to Loewy and Tam [21].

Lemma 2.4. Let A be a positive semidefinite and nonnegative rational matrix.
Suppose that for some 1 ≤ p ̸= q ≤ n the support of row p of A is not empty, and
contained in the support of row q. Let

µ = min
apj>0

aqj
apj

.

Let S be an n× n rational matrix with all diagonal entries equal to 1, and all other
entries zero except for Sqp = −µ. Then we have:
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(a) SAST is rational, positive semidefinite and nonnegative, and rank(SAST ) =
rank(A).

(b) If aij = 0 for some 1 ≤ i, j ≤ n, then (SAST )ij = 0.
(c) There is at least one additional zero entry in row q of SAST , compared to

row q of A.

The following useful lemma is by Barioli [2], and the proof of its rational version
follows the original proof exactly, using Observation 2.1 (see also [6, Lemma 2.1]):

Lemma 2.5. Let A be completely positive over the rationals, and let B be a rational
positive semidefinite matrix which is zero except for a 2× 2 principal submatrix. If
A+B is nonnegative, then A+B is completely positive over the rationals.

3. Sufficient conditions for rational complete positivity

We start with a few definitions. Let A be an n×n symmetric nonnegative matrix.
The comparison matrix of A is defined by[

M(A)
]
ij
=

{
aij if i = j,

−aij if i ̸= j.

The graph of A, denoted by G(A), has n vertices and an edge between i and j if and
only if aij > 0. The graph that consists of n− 2 triangles sharing a common base is
denoted by Tn. A graph G is completely positive if it does not have an odd cycle of
length greater than 4. This means that each block of the graph is either bipartite,
or a Tk, or has at most 4 vertices (recall that a block of a graph is a subgraph that
has no cut vertex, which is maximal with respect to this property). In the following
theorem we group together necessary conditions and sufficient conditions for a real
matrix to be completely positive.

Theorem 3.1. Let A be a symmetric nonnegative matrix.

(a) A sufficient condition for A to be completely positive is that M(A) is positive
semidefinite. If G(A) is triangle free, then this sufficient condition is also
necessary.

(b) A necessary condition for A to be completely positive is that A is positive
semidefinite. If G(A) is completely positive, then this necessary condition is
also sufficient.

Part (a) was proved by Drew, Johnson and Loewy [14]. Part (b) was proved by
Ando [1] and by Kogan and Berman [19]. The proof of Kogan and Berman is based
on the proof for the case n ≤ 4 in [23], on the proof for bipartite graphs [3], and
on [4].

The proofs of the following results are similar to those for real completely positive
matrices (see [6, Section 2.3]). We include these proofs to demonstrate how to bypass
diagonal scaling by diagonal matrices which may not be rational.

Theorem 3.2. Let A be an n × n rational completely positive matrix. Then A is
completely positive over the rationals in any of the following cases:

(a) rankA ≤ 2,
(b) n ≤ 3,
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(c) n = 4,
(d) A is diagonally dominant,
(e) M(A) is positive semidefinite,
(f) G(A) is triangle free,
(g) G(A) = Tn,
(h) G(A) is completely positive.

Proof. (a) If rank(A) = 1, then A is completely positive over the rationals by
Observation 2.1. If rank(A) = 2, then A = BBT , where B ≥ 0 has two
columns [6, Theorem 3.1]. It is shown in [17] that here exists an orthogonal
2× 2 matrix Q such that BQ ≥ 0 and BQ has a row with only one positive
entry, say row i. By permuting rows and columns of A if necessary, we may
assume that i = 1. Then in the Cholesky decomposition A =

∑2
i=1 yiy

T
i ,

we get that y1 is a multiple of the first column of BQ, and thus (y1 y2) =
BQ ≥ 0. Since y1y

T
1 coincides with A in its first row and column, the

Cholesky decomposition is a rational cp-decomposition.
(b) The case n ≤ 2 follows from (a), so assume n = 3. It follows from Maxfield

and Minc [23] (see also [6, Corollary 2.13]) that there exists a permutation
P such that applying the Cholesky decomposition to the rational matrix
PAP T yields a cp-decomposition. This provides a rational decomposition
of A due to Observation 2.1.

(c) If A has a zero diagonal entry, then the result follows from the case n = 3
in part (b). So suppose that all diagonal entries of A are positive.

If A has a zero off-diagonal entry, we may assume a34 = 0. Then A has
the form

A =

(
B CT

C D

)
,

where all blocks are 2× 2 and D is a positive diagonal matrix. Let

A1 =

(
CTD−1C CT

C D

)
and A2 =

(
A/D 0
0 0

)
.

Then A = A1 + A2. Clearly, A1 is nonnegative, rational and positive semi-
definite, and A2 is rational and positive semidefinite. Since rank(A1) = 2, it
follows from (a) that A1 is completely positive over the rationals, and since
A2 is zero except for a 2 × 2 principal submatrix, the result follows from
Lemma 2.5.

If A is positive, we define

µ = min
1≤j≤n

a1j
a2j

.

Let S be a 4 × 4 rational matrix whose diagonal entries are all equal to 1,
and whose off-diagonal entries all equal zero except for s12 = −µ. Then
by Lemma 2.4, SAST is a 4 × 4 matrix which is rational, nonnegative,
positive semidefinite and has an off-diagonal zero entry, so by the previous
case, SAST is completely positive over the rationals. Applying Lemma 2.3
concludes the proof.
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(d) If A is diagonaly dominant, the known simple cp-decomposition dating back
to Kaykobad [18] is a rational cp-decomposition: Let Eij denote the sym-
metric matrix whose only nonzero entries are 1’s in positions ii, jj, ij and
ji. Then the decomposition is

A =
∑

1≤i<j≤n

aijEij +Diag(δ1, . . . , δn), where δi = aii −
n∑

j=1
j ̸=i

aij ≥ 0.

(e) As in the real case, the proof of (e) is by showing that for some rational pos-
itive diagonal matrix D, the matrix DAD is diagonally dominant, which is
equivalent to showing that DM(A)D is diagonally dominant. Let 1 denotes
the vector of all ones.

If M(A) is nonsingular, then there exists a positive diagonal matrix D
such that M(A)D1 > 0 (e.g., take D = Diag(d), where d is the positive
eigenvector corresponding to the minimal eigenvalue of M(A)). By slightly
perturbing the entries of D if necessary, we may choose D to be rational.
This makes DM(A)D a rational strictly diagonally dominant matrix.

On the other hand, if M(A) is singular, then there exists a positive di-
agonal matrix D such that DM(A)D1 = 0. Since D1 is a solution to the
rational linear system M(A)x = 0, D may be chosen to be rational. This
makes DM(A)D a rational diagonally dominant singular matrix.

(f) In a cp-factorization A = BBT , B ≥ 0, each column of B is supported
by a clique in the triangle free graph G(A), and therefore has at most two
positive entries. Construct a matrix X from B by reversing the sign of
the second positive entry in each column whose support is of size 2. Then
XXT = M(A), soM(A) is positive semidefinite. The result therefore follows
from (e).

(g) By applying a suitable permutation if necessary, we may assume that

A =

(
B CT

C D

)
,

where D is an (n− 2)× (n− 2) rational positive diagonal matrix. Define

A1 =

(
CTD−1C CT

C D

)
and A2 =

(
B − CTD−1C 0

0 0

)
.

Then A = A1 + A2. Both A1 and A2 are rational positive semidefinite by
Observation 2.2. The matrix A1 is completely positive over the rationals by
the following decomposition (which is its Cholesky decomposition):

A1 =

(
CTD−1

I

)
D

(
CTD−1

I

)T

.

The result then follows from Lemma 2.5.
(h) If G(A) = G1 ∪ G2, where G1 and G2 share exactly one vertex, we may

assume that

A =

 B u 0
uT c wT

0 w E

 .
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By Observation 2.2 the matrices

A1 = A/E =

(
B u
uT c−wTEw

)
and

 0 0 0T

0 wTEw wT

0 w E


are rational positive semidefinite, and they are nonnegative. The graph

of A/E is G1, and the graph of

(
wTEw wT

w E

)
is G2. As G(A) is a

completely positive graph, by Theorem 3.1(b) these matrices are completely
positive. Thus A is a sum of rational completely positive matrices such that
the graphs of their nonzero principal submatrices are the blocks of G(A).
Since every block of a completely positive graph is either bipartite, or a Tk,
or has at most 4 vertices, the result follows from (f), (g), and (c).

□

4. Rational cp-rank

In this section we discuss the rational cp-rank. Since the space of n× n rational
symmetric matrices is an 1

2n(n+ 1)-dimensional linear space over the rationals, we
get by Carathéodory’s theorem that for every matrix A which is completely positive
over the rationals, rcprA ≤ 1

2n(n + 1). In fact, if we replace in [24] every phrase
“... is completely positive” by “... is completely positive over the rationals” we get
the following results:

Theorem 4.1. Let A be a rank r matrix which is completely positive over the
rationals. If there exists an r×r nonsingular principal submatrix of A with N zeros
above the diagonal, then

rcprA ≤ r(r + 1)

2
−N.

In the case that N ≤ 1, this bound can be reduced by 1:

Theorem 4.2. Let A be a rank r matrix which is completely positive over the
rationals, and let N ∈ {0, 1}. If there exists an r×r nonsingular principal submatrix
of A with N zeros above the diagonal, then

rcprA ≤ r(r + 1)

2
−N − 1.

The proof of Theorem 4.2 uses the fact that the Cholesky decomposition of an
inverse M -matrix A has nonnegative factors [22], and by Observation 2.1, rcprA =
rankA.

The bound 1
2r(r+1)−N in Theorem 4.1 is sharp. For example, in the case that

A has a diagonal r×r nonsingular principal submatrix, i.e., N = 1
2r(r−1), we have

rcprA = r = 1
2r(r + 1)−N .

From Theorem 4.2, we get the following corollary:

Corollary 4.3. Let A be an n×n matrix that is completely positive over the ratio-
nals. Then rcprA ≤ 1

2n(n+ 1)− 1.
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Remark 4.4. For matrices in CPn with n ≥ 7, the best known upper bound on
the (real) cp-rank was shown in [25] (see also [9]) to be 1

2n(n + 1) − 5. However,
the proof uses the duality of the closed convex cones CPn and its dual (the cone
of n× n copositive matrices), and we do not know an alternative proof that would
carry over to the rational case.

We conclude by remarking that the inequality cprA ≤ rcprA may be strict, as
in the following example.

Example 4.5. The matrix

A =


3 1 0 1
1 3 1 0
0 1 3 1
1 0 1 3


is completely positive over the rationals since A = BBT with

B =


1 0 0 0 1 0 0 1
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 .

It is easy to see that cprA = 4: we have cprA ≤ 4 by [23], and cprA ≥ rankA = 4.
It follows from [12] that in a minimal cp-decomposition A = BBT , the matrix B
must be of the form

B =


x 0 0 1/w
1/x y 0 0
0 1/y z 0
0 0 1/z w

 ,

with x =

√
3±

√
5

2 /∈ Q. Consequently, rcprA > 4. In fact, rcprA = 5 because of the

rational cp-decomposition A = XDXT with

X =


1 1 0 0 0
0 0.5 0 1 0
0 0 0.5 0.4 1
1 0 1 0 0

 and D = Diag(1, 2, 2, 2.5, 2.1).

Note that n = 4 is the smallest order for which strict inequality cprA < rcprA
may hold, since for A of order n ≤ 3 there exists a permutation matrix P such that
the Cholesky decomposition of P TAP is a rational cp-decomposition.
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