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ON LOCAL PERRON-FROBENIUS THEORY

BIT-SHUN TAM

ABSTRACT. For A € M,(C), x € C", and any nonnegative integer k, we de-
note by W, (respectively, WE, ws (A, z)) the A-cyclic subspace (respectively, the
real A-cyclic subspace, the convex cone) generated by z (respectively, by z, by
Az for i = k,k+1,...). We relate spectral conditions on Alw, (such as the
Perron-Schaefer condition, or having a positive or nonnegative eigenvalue) to the
geometric conditions involving the cones wi(A,z) (k = 0,1,2...) or their clo-
sures (such as being a pointed cone, or being a real subspace). In particular,
it is proved that the cone clwg(A,z) is pointed if and only if A satisfies the
local Perron-Schaefer condition at x (or, equivalently, A|w, satisfies the Perron-
Schaefer condition). By considering the linear map £4 on M, (C) given by
L4(X) = AX, we recover the intrinsic Perron-Frobenius theorems obtained by
H. Schneider. Under the assumption that clwo (A, x) is a pointed cone, we give
two sets of spectral conditions on A|w, that are equivalent to respectively the

condition Y7, ., E/(\U*(A‘WI)_I)(A)x € wo(A, z) and Ei:p(g()A)il)(A)x € wo(A, x),

where Eg\k) (A) denotes the kth component of A corresponding to A, p(A) is the
local spectral radius of A at z, and A = {\ € o(Alw,) : |A| = p2(A), va(Alw,) =
Uy (ay(Alw,)}. The latter conditions, in turn, are necessary conditions for the
cone wo(A, z) to be closed, and in the special case when the eigenvalues of A|w,
are all of the same modulus, we characterize when the cone wo(A,z) is closed.
As applications, we characterize when A|W5 is irreducible, primitive or strictly
positive with respect to clwo(A, z). We settle the question of when there exists
a closed pointed cone in R™ (or C™) that contains some given vectors x1, ..., T
in R™ (or in C™). When A is a real matrix that satisfies the Perron-Schaefer
condition, we show that there is an A-invariant proper cone, which is the sum
of m cones of the form clwgy(A,x), where m is the maximum of the geomet-
ric multiplicities of the eigenvalues of A, and this m is the best possible lower
bound. A complex version of the result is also derived. Some partial results are
found for the question of when there exists a proper cone C' in WE containing
z such that Alyz € Aut(C). In particular, we find an equivalent condition for
Alwr € Aut(clwo(4,z)). We also characterize when there exists an indecom-
posable proper polyhedral cone K such that A € Aut(K). A treatment of the
local Perron-Frobenius theory for cross-positive matrices is also offered. Finally,
a number of open questions are posed.
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1. INTRODUCTION

This is the seventh of a sequence of papers (namely, [32], [25], [28], [29], [30], [27]
and the current paper) on a newly developed subject, the geometric spectral theory
of positive linear operators (in finite dimensions), which is concerned with the study
of the classical Perron-Frobenius theory of a (square, entrywise) nonnegative matrix
and its generalizations from the geometric cone-theoretic viewpoint. For reviews on
the subject, see [26] and [31]. For a ramification of the theory in the study of
exponents of polyhedral cones, see [14], [15] and [13].

In the previous papers of the sequence, we usually fix a proper (i.e., closed,
pointed, full convex) cone K and a (square) matrix A such that A is nonnegative
on K (i.e. AK C K) and consider different aspects of A in each paper — the
Collatz-Wielandt sets, the distinguished eigenvalues, the core, the invariant faces,
linear equations over cones, and the Perron generalized eigenspace and the spectral
cone (a unified approach to several topics of interest in combinatorial spectral theory
of nonnegative matrices). In this work we change our viewpoint somewhat. We treat
the local Perron-Frobenius theory. Here we use the word “local” in the loose sense
of “pertaining to a single vector”. Given a complex matrix A, we consider closed,
pointed (or, proper) cones invariant under A with various properties. In particular,
we are interested in closures of A-cyclic cones, i.e., cones of the form clwy(A,x),
where wy (A, z) denotes the cone generated by A*x, A**1z ... in C". One reason
for our interest in closures of A-cyclic cones is that, such cones often appeared as
illustrative examples in previous papers of this sequence (see [32, Example 3.7],
[28, Example 5.2], [29, Example 5.3|, [30, Example 4.9], [27, Example 3.10]; [25,
Example 5.5] and [29, Example 5.4]). Proper polyhedral cones K for which there
exist a K-primitive matrix A such that the digraph associated with A is given by
the Wielandt digraph or the near-Wielandt digraph have also played a major role
in the recent study of maximal exponents of polyhedral cones ([14], [15] and [13]).
As can be readily seen, such cones K are necessarily A-cyclic.

In a sense, this work can also be considered as a continuation of the work of
Schneider [20] in investigating the relation between the algebraic properties and
the geometric properties of a matrix A € M,,(C). According to [20], an algebraic
property is one which can be determined from the Jordan form of A, while by a
geometric property it is meant some association between A and a geometric object,
namely a cone.

A natural question to ask is, when a given real matrix leaves invariant a proper
cone. The answer is known and is provided by the following:

Theorem A. For an n X n real matriz A, there exists a proper cone K in R™ such
that AK C K if and only if A satisfies the following set of conditions:

(a) p(A), the spectral radius of A, is an eigenvalue of A.

(b) For each eigenvalue A of A with modulus p(A), va(A) < vya)(A), where
vA(A) denotes the index of X as an eigenvalue of A.

That condition (a) in Theorem A is a necessary condition for the existence of a
proper A-invariant cone K was first established by Birkhoff [4], using an elementary
argument that makes use of the Jordan basis of C" associated with A. (Birkhoff also
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showed, in addition, that K contains an eigenvector corresponding to p(A).) Ex-
tending Birkhoff’s argument, Vandergraft [33] showed that condition (b) is another
necessary condition. In the same paper, Vandergraft also proved that conditions
(a) and (b) together is also a sufficient condition for the existence of K. (Elsner
[8, Satz 3.1] also established Theorem A in the setting of a compact linear operator
on a real Banach space.) Following Schneider [20], we say an n x n complex (or
real) matrix A satisfies the Perron-Schaefer condition if conditions (a) and (b) of
Theorem A hold. (Rodman et.al. [18] use the term Vandergraft matrices for real
matrices that satisfy the Perron-Schaefer condition.)

We would like to add that, with slight modifications, Vandergraft’s proof shows
that Theorem A still holds if A is an n X n complex matrix and R" is replaced by
c™.

In order to characterize the Perron-Schaefer condition on a complex matrix A
by a geometric property directly associated with A, Schneider introduced, for each
nonnegative integer k, the intrinsic cone wi(A) of A, which is the cone generated
by A¥, AF1 .. and obtained the following result ([20, Theorem 1.4]):

Theorem B. Let A € M, (C), and let k be a nonnegative integer. Then the cone
clwy(A) is pointed if and only if A satisfies the Perron-Schaefer condition.

Schneider [20, p.255] refers to the above result as an intrinsic Perron-Frobenius
theorem and attributes one direction of the result to Schaefer [19]. In [20, the
first and second paragraphs on p.265] Schneider also remarked that since 7(K) is a
proper cone in M,,(C) whenever K is a proper cone in C", if AK C K then clwg(A)
is pointed. As a consequence, the “only” if part of Theorem A and the “only if”
of Theorem B (for k£ = 0) are “equivalent”, and the “if” part of Theorem A, which
is due to Vandergraft, implies the “if” part of Theorem B. He also asked whether
there is a simple argument to derive the “if” part of Theorem A from the “if”
part of Theorem B. We believe the answer to the latter question is in the negative.
However, if we use a local version of Theorem B and the concept of cyclic cones (see
Theorem 3.6, (al)<(bl)), then there is a natural simple way to construct invariant
proper cones for a matrix that satisfies the Perron-Schaefer condition.

Denoting by L4 the linear map on M, (C) given by L£4(X) = AX, one read-
ily shows that wo(L4,A) = wi(A). Conceivably, the intrinsic Perron-Frobenius
theorems obtained by Schnieder [20] can be recovered by proving the correspond-
ing results involving the cones wy (A, x) first. This is another reason why we are
interested in such cones.

We now describe the contents of this paper in some detail. Some necessary defini-
tions, notations, known or preliminary results are given in Section 2. In particular,
we provide an equivalent condition for the Perron-Schaefer condition on a complex
matrix, given in terms of the roots of the minimal polynomial of the matrix. It
is proved that A satisfies the local Perron-Schaefer condition at z if and only if
the restriction map Alw, (or, equivalently, Alyyr), where W, (respectively, WE)
denotes the subspace (respectively, the real subspace) of C" generated by A‘x for
i = 0,1,..., satisfies the Perron-Schaefer condition. (The definition of the local
Perron-Schaefer condition will be given in Section 2.) We offer a direct proof for
the known result that if K is a closed, pointed A-invariant cone, then A satisfies
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the local Perron-Schaefer condition at x for every x € K. In the course of proof,
we also take note of the connection between the minimal polynomial of Ay, and
that of A|Wg§ and show that they either both satisfy or both do not satisfy the local
Perron-Schaefer condition at x.

In [20] Schneider gave geometric conditions (given in terms of the cones wy(A) or
their closures) for a complex matrix A to satisfy the Perron-Schaefer condition or to
have a positive (or nonnegative) eigenvalue. In Section 3 we provide local versions of
these results. We examine the connections between spectral conditions on Alyy, or
Alwe (such as the Perron-Schaefer condition, or having a positive (or nonnegative)
eigenvalue) and geometric conditions involving the cones wy(A, ) or their closures
(such as being a real subspace, or being a pointed cone). In particular, we prove that
A satisfies the local Perron-Schaefer condition at x if and only if the cone clwg (A4, z)
is pointed. The connection between wy(A,x) (or their closures) for different k’s
is also noted. We recover the intrinsic Perron-Frobenius theorems obtained by
Schneider. Necessary conditions for clwg(A, z) to be a pointed polyhedral cone are
found. An equivalent condition for wy(A, x) to be a pointed polyhedral cone (or a
simplicial cone) is also given.

In Section 4, under the assumption that the cone clwg(A, x) is pointed, we exam-

ine the following conditions: («) the cone wg (A4, x) is closed; (/) Ep:ﬁ('i;)A)_l) (Alwz)x €

wo (A, z), where p,(A) is the local spectral radius of A at x and E&k) (A) is the kth

principal component of A corrresponding to A; and (y) > ycp E/(\VA_I)(A|W§);U €

wo(A, x), where A denotes the set of peripheral eigenvalues A of Aly= for which
UA(Alwer) = vy, (a)(Alwe). According to some known results, we always have the
implications (o) = (f) and () = (7). Here we provide two sets of spectral con-
ditions on Aly, that are equivalent to conditions (5) and () respectively, and as
a consequence we have (y)=-(f). In the special case when the eigenvalues of Al
are all of the same modulus, we also provide a spectral characterization of condition
(a). As applications, we characterize when A‘W§ is irreducible, primitive or strictly
positive with respect to clwg(A, ).

In Section 5 we settle the question of when there exists a closed pointed A-
invariant cone that contains some given vectors z1,...,z;. We also show that if
A € M, (R) satisfies the Perron-Schaefer condition, then we can always construct a
proper A-invariant cone K in R™ which is the sum of the closures of finitely many
A-cyclic cones. Indeed, we show that the least possible number of A-cyclic cones we
need is m, where m is the maximum of the geometric multiplicities of the eigenvalues
of A. A complex version of the result is also derived.

In Section 6 we treat the questions of the existence of various kinds of cone
automorphisms. For A € M,,(C) and 0 # x € C", it is shown that there exists
a proper cone C in WX containing z such that Alwr € Aut(C) if and only if
A‘WQ§ is nonsingular and the cone cl(pos{(A|W§)ix :0,£1,+2,...,} is pointed. It
is found that the condition that Alyr is nonsingular, and Alyr and its inverse
both satisfy the Perron-Schaefer condition is weaker than the preceding equivalent
conditions. We also prove that Aly= € Aut(clwo(A4,z)) if and only if Afye is
nonzero, diagonalizable, all eigenvalues of Al are of the same modulus and p;(A)
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is an eigenvalue of A|Wg]§. We give some conditions that are either equivalent to or
are weaker than the condition that A is nonzero, diagonalizable and all eigenvalues
of A are of the same modulus; and when A satisfies the Perron-Schaefer condition,
all these conditions are equivalent and are also equivalent to the condition that there
exists a proper cone K such that A € Aut(K) and A has an eigenvector in int K.
Finally, we characterize when there exists an (indecomposable) proper polyhedral
cone K such that A € Aut(K).

A matrix A € M,,(C) is cross-positive on a proper cone K in C" if for all z €
K,z € K*, where K* denotes the dual cone of K, Re(z*z) = 0 implies Re(z*Az) >
0. It is readily shown that the class of matrices cross-positive on K includes the
extension, by multiples of the identity matrix, of the class of matrices nonnegative
on K.

In Section 7 we treat the local Perron-Frobenius theory for cross-positive matrices

and derive the parallel results. Instead of the A-cyclic cones wy (A, x) (respectively,

.. -1 .
the principal component E;Z’E”A()A ) )) we work with the cones pos{e!dz : t > 0}

g
abscissa of A at . Also, we introduce the new concept of the real spectral pair of a

matrix relative to a vector, the ESV (Elsner-Schneider-Vidyasagar) condition and
the local ESV condition.

To motivate further work, a number of open questions are posed in Section 8, the
final section.

In previous papers of this sequence, we usually formulate our results in the setting
of a real matrix acting on a cone in a (finite-dimensional) real vector space, because
“cone” is a real concept. It is explained in [28, Section 8] how one can obtain the
corresponding results for a complex matrix acting on a cone in a complex vector
space. However, for a complex matrix, sometimes it is more natural to give results
directly in the complex setting. So in this paper we formulate our results mostly
in the setting when the underlying matrix is a complex matrix. The results in the
real setting either follow from the corresponding results in the complex setting or
have a parallel proof.

This research work began more than twenty eight years ago and was carried out
off and on. The forthcoming of this paper was announced in the reference list of [28]
under the tentative title “On matrices with invariant closed pointed cones”, and a
few results in this paper have appeared, without proofs, in the review papers [26]
and [31]. Due to a shift of research interest and other reasons, this research work
was suspended about fifteen years ago. Most of the results in the present paper
were obtained and some new ideas were found when the research work was resumed
in the past few months.

(respectively, the principal component ), where £, (A) is the local spectral

2. PRELIMINARIES

A familiarity with convex cones, convex sets and cone-preserving maps is as-
sumed. For references, see [1], [3], [17], [24], [26], [31]. For convenience and to
fix notation, we collect in this section some of the necessary definitions, notations
and known results that are used throughout the paper. A few more definitions and
notations will be introduced in later sections.
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A (convex) cone K is a nonempty subset of a finite-dimensional real or complex
vector space V such that K + K C K and aK C K for all & > 0. The cone K is
said to be pointed if KN (—K) = {0}; K is closed if K is closed relative to the usual
topology of V' and full if int K # () or, equivalently, K — K(=realspan K) =V. A
cone is proper if it is pointed, closed and full.

We give our definitions and formulate our results in the setting when the under-
lying space is R™ or C™. As can be seen, our definitions or results can also be stated
in the slightly more general setting of a finite-dimensional real or complex vector
space.

The following notation will be adopted.

M, (F): the set of all n x n matrices with entries from the field F.

R? : the nonnegative orthant of R".

F[t]: the set of all polynomials with coefficients from the field F.

R, [t]: the set of all polynomials with nonnegative coefficients.

Ji(A): the k x k upper triangular elementary Jordan block associated with the
eigenvalue A.

pos(S): the positive hull of S, i.e., the set of all nonnegative linear combinations
of vectors taken from S.

o(A): the spectrum of the (square) matrix A, i.e., the set of eigenvalues of A.

p(A): the spectral radius of the matrix A.

vA(A) (or vy): the index of A relative to A, i.e., the least nonnegative integer k
such that rank(A — A\I)*+1 = rank(A4 — \I)*.

N (A): the null space of the matrix A.

nullity (A): the nullity of the matrix A, i.e., dim N'(A).

NF(A)={z e C": (A—A)Fz =0}

N ;*(A) (A) (or N{*): generalized eigenspace of A corresponding to the eigenvalue

span(S): (linear) subspace of C™ spanned by the subset S.

spang (5): real subspace of C™ spanned by the subset S.

ri C: relative interior of the convex set C.

Ego) (A) (or E&O)): the projection of C™ onto the generalized eigenspace Ny* A) (A)
along the direct sum of other generalized eigenspaces of A.

E/(\k)(A) (or E'g\k)): kth principal component of A corresponding to A, i.e., (A —
ADFEQ (A).

A cone K is said to be polyhedral if K = pos(S) for some nonempty set .S; if, in
addition, S is a set of linearly independent vectors, then K is said to be simplicial.

A (not necessarily closed, pointed) cone K is said to be the direct sum of cones
Ki,..., Ky, and we write K = K1 @ --- @ K, if each vector in K can be expressed
uniquely as x1 + - - + x,, where ; € K;,1 <1i < p. K is called decomposable if it
is the direct sum of two nonzero cones; otherwise, it is said to be indecomposable.

A linear transformation 7" on an n-dimensional vector space U is said to be a cyclic
transformation if there exists a vector b € U for which {b,Tb,...,T" b} is a basis
for U. A matrix A € M,,(C) is said to be nonderogatory if every eigenvalue of A has
geometric multilplicity 1. It is known that a matrix A € M,,(C) is nonderogratory



ON LOCAL PERRON-FROBENIUS THEORY 699

if and only if A acts as a cyclic linear transformation on C". For references, see [10,
Chapter 6] or [11, Section 3.3].

Let A € M,,(C) and let z € C". We denote by W, (respectively, WX), or W, (A)
(respectively, WR(A)) if there is the need to indicate the dependence on A, the
A-cyclic subspace (respectively, the real A-cyclic subspace) of C™ generated by z,
ie. W, = {p(A)x : p(t) € C[t]} (respectively, WE = {p(A)x : p(t) € R[t]}). When
A € M, (R) and x € R™, to follow the notation of our earlier papers, sometimes we
write WX simply as W,.

Let A € M, (C) and let 0 # = € W, where W is an A-invariant subspace of C™.
Since the representation of = as a sum of generalized eigenvectors of Aly and as a
sum of generalized eigenvectors of A are the same, for any eigenvalue \ of Ay and
any nonnegative integer k, we have E&k) (Alw) = Eg\k) (A)|lw. As a consequence, we
may write E/(\k) (Alw, )z simply as Eg\k(A)x

For A € M, (C), by the peripheral spectrum of A we mean the set {\ € o(A4) :
|A| = p(A)}. We also use terms peripheral eigenvalues and non-peripheral eigenval-
ues with the obvious meanings.

For A € M,,(C) and = € C", p,(A) (or simply p;), the local spectral radius of
A at z is given by p,(A) = lim sup,, . |[A"z||"/™, where || - || is any norm of C"
or, equivalently, p,(A4) = p(Alw,). If x is nonzero and x = 1 + -+ + x is the
representation of x as a sum of generalized eigenvectors of A corresponding, respec-
tively, to distinct eigenvalues Aq, ..., Ag, then p,(A) is also equal to max)<;<x|A|.
(See, for instance, [32, Theorem 2.3].) We also define and denote the order of =
relative to A by ords(x) = max{orda(x;) : |\i| = pz(A)}, where ord(z;) is the
order of the generalized eigenvector z;, i.e., the least positive integer [ such that
(A —M\ID!z; = 0. The ordered pair (p,(A),orda(z)), denoted by sp4(z), is called
the spectral pair of x relative to A. Tt was first introduced in [29] and has proved to
be a useful concept.

Let A be an n x n complex (or real) matrix. A set K is said to be invariant
under A, (or A leaves invariant K or A is K-nonnegative) if AK C K. When K is
a proper cone, we denote by m(K') the set of all such matrices A. Matrices in m(K)
are often referred to as cone-preserving maps or as positive operators on K.

A matrix A € w(K) is said to be irreducible with respect to K or K-irreducible
if A has no eigenvectors in the boundary of K or, equivalently, the only faces of K
that A leaves invariant are {0} and K itself; A is strictly positive with respect to
K or strictly K-positive if A(K \ {0}) C intK; A is primitive with respect to K or
K -primitive if AP is strictly K-positive for some positive integer p.

If Aen(K) and z € K is an eigenvector (respectively, generalized eigenvector),
then x is called a distinguished eigenvector (respectively, distinguished generalized
eigenvector) of A for K, and the corresponding eigenvalue is known as a distin-
guished eigenvalue of A for K. When there is no danger of confusion, we simply
use the terms distinguished eigenvector, distinguished generalized eigenvector and
distinguished eigenvalue (of A).

Let K be a proper cone in C" (or R™"). A matrix A € n(K) is said to be an
automorphism of K if its inverse A™1 exists and belongs to 7(K). The set of all
automorphisms of K forms a group under matrix multiplication and is denoted by
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Aut(K). It is clear that for any A € M,,(C) (or M, (R)), A € Aut(K) if and only
if AK = K.

An n x n complex matrix A is said to satisfy the Perron-Schaefer condition if
p(A) € 0(A) and vy(A) < v,4)(A) for any peripheral eigenvalue A of A.

To follow the common practice, by the spectrum of an n x n real matrix A
we mean its spectrum as a complex matrix or the spectrum of the extension of
A (as a linear operator) in the complexification C" of R™. To say a real matrix
(respectively, a linear transformation on a finite-dimensional real vector space V')
satisfies the Perron-Schaefer condition, we really mean the real matrix, regarded as
a complex matrix (respectively, the complex extension of the linear transformation
to the complexification of V'), satisfies the Perron-Schaefer condition. One can also
formulate an equivalent definition for the Perron-Schaefer condition on a real matrix
that corresponds to its real Jordan form, but in this paper we do not pursue such
approach.

It is well-known that for a complex matrix A, o(A) equals the set of roots of the
minimal polynomial of A, and for any A € o(A), v\(A) equals the multiplicity of
A as a root of the minimal polynomial of A. So the Perron-Schaefer condition on
a complex matrix (or a complex linear transformation) can also be restated in an
equivalent form in terms of its minimal polynomial.

Remark 2.1. Let A € M, (C) (or T € L(V), where V is a finite-dimensional
complex vector space). Then A (or T) satisfies the Perron-Schaefer condition if and
only if p(A) (or, p(T)) is a root of the minimal polynomial of A (or, of T') and with
multiplicity not less than that of any other root with the same modulus.

If Ais an n x n real matrix (or a linear transformation on a finite-dimensional
real vector space), then the minimal polynomial of A over C and the minimal
polynomial of A over R are the same. However, if A is complex, then the said
minimal polynomials are usually different but are closely related.

Lemma 2.2. Let A € M,,(C). Denote the minimal polynomial of A over C and
the minimal polynomial of A over R by ¢(t) and ¢®(t) respectively.

(i) o®(t) is the unique monic polynomial determined from ¢(t) by the following
properties: ¢X(t) has the same real roots as ¢(t) and with the same multi-
plicities; the set of non-real complex roots of $%(t) equals the set of non-real
complex roots of ¢(t) together with their complex conjugates; and for each
non-real complex root \ of ¢(t), the multiplicities of X\ and X as roots of ¢&(t)
are both equal to the maximum of the multiplicities of X and X\ as roots of
é(t). (If X is not a root of (), its multiplicity is taken to be zero.)

(ii) #®(t) equals the minimal polynomial (over R) of A when treated as a real
linear transformation acting on C" (as a real vector space).

Proof. (i) Let v(t) denote the monic polynomial with the described properties.
Clearly, ¥(t) is a real polynomial, divisible by ¢(t). As ¢(t) annihilates A, so does
(t). If f(t) is a real annihilating polynomial for A, then f(¢) is divisible by ¢(t).
So each real root of ¢(t) is a root of f(t) and with multiplicity not less, and the non-
real complex roots of f(t) occur in conjugate pair and with a common multiplicity
not less than the maximum of the corresponding multiplicities of these numbers as
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roots of ¢(t). Thus f(t) is divisible by v (¢). This proves that 1 (t) is the minimal
polynomial of A over R, as desired.

(ii) By [28, Lemma 8.1] when A is treated as a real linear transformation acting
on C", it can be represented by a matrix similar to diag(A, A), where A denotes
the conjugate matrix of A. So its minimal polynomial (over R) is equal to the
polynomial v (t), which, in turn, is ¢®(t). O

Let A € M, (C) and let 0 # x € C". We say A satisfies the local Perron-Schaefer
condition at x if in the representation of x as a sum of generalized eigenvectors of
A, there is a generalized eigenvector corresponding to p,(A) and the order of this
generalized eigenvector is not less than that of any other generalized eigenvector
that appears in the representation and corresponds to an eigenvalue with modulus
pz(A). The local Perron-Schaefer condition was first introduced in [30] in the setting
when A € M,,(R) and = € R™. Here we extend the concept to the complex case.
(Certainly, we can also formulate the concept in the slightly more general setting
when A € L(V), where V is a finite dimensional real or complex vector space.)
For convenience, we adopt the convention that A satisfies the local Perron-Schaefer
condition at the zero vector.

It is clear that A satisfies the local Perron-Schaefer condition at x if and only if
$pA(2) = (pelA), Uy, (1) (Al1r,)).

We denote by = the lexicographic ordering between ordered pairs of real numbers
given by: (&1,&2) = (n1,1n2) if either & < n1 or & = n1 and & < ny. We also write
(&1,&2) < (m1,m2) if (&1,&2) = (M1, n2) but the equality (in the usual sense) does not
hold.

In [29, Theorem 4.7], using the concept of the spectral pair of a vector relative
to a matrix, it is proved that if A € w(K), where K is a proper cone in R", then for
every ¢ € K, A satisfies the local Perron-Schaefer condition at x. The latter result
has been applied in the work of [30] and [27]. We will give a direct proof for the
complex version (and hence also the real version) of the latter result.

Lemma 2.3. Let A € M,,(C) and let 0 # x € C™. Suppose that x = x1 + - - - + Xk,
where x1, . ..,T, are generalized eigenvectors of A corresponding respectively to dis-
tinct eigenvalues Aq,...,\,. For j = 1,...,k, let n; be the order of the general-
ized eigenvector xj. Then B = U§:1{(A — XD (A = N D 2, (A —
Nil)zj,z;} is an ordered basis for W, the matriz of Alw, relative to 5 is Jn, (A1) ®
- I, (Ak), and the minimal polynomial of Alw, is H?zl(t — Aj).

Proof. As can be readily checked, for each j = 1,...,k, 8; = {(A—=X ;1) 1z;, (A—
N 2x;, ... (A — N\;jI)z;,2;} is an ordered basis for A|sz and the matrix of
A|W$]_ relative to 3; equals J,;();). Since Aq,..., )\ are distinct eigenvalues of A,
the sum Wy, +--- + Wy, is a direct sum and the matrix of the restriction of A
to this direct sum relative to the ordered basis 81 U --- U By is @;?:1 Jn;(Nj). We
are going to show that W, = W,, & --- @& W,,. Once this is proved, the matrix
of Alw, relative to 8 is clearly @?:1 Jn;(Aj) and the assertion about the minimal
polynomial of Ay, will also follow. (We would like to add that the assertion about
the minimal polynomial of Ay, can also be established directly by showing that
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H?Zl(t — ;)™ is an annihilating polynomial for Ay, but none of its proper divisor
annihilates Alw,.)

The inclusion W, C @?:1 Wy, is obvious because W, and @?:1 Wy, are both
A-invariant and x € @;?:1 W,,. For the polynomial p(t) := H?Zl(t —\;j)", we have
p(A)x =0, but f(A)z # 0 for any proper divisor f(t) of p(t). So p(t) is the minimal
polynomial of Aly,. Hence we have

dim W, =degp(t) =n1 +--- +np = dim(Wy, @ --- & Wy,).

This establishes the equality relation W, = @?:1 W, and completes the proof. [

Corollary 2.4. Let A € M,,(C) and let 0 # x € C". The following conditions are
equivalent :

(a) A satisfies the local Perron-Schaefer condition at x.
(b) Alw, satisfies the Perron-Schaefer condition.
(c) Alwe satisfies the Perron-Schaefer condition.

Proof. The equivalence of (a) and (b) clearly follows from Lemma 2.3.

(b)<(c): It is readily checked that the minimal polynomial of Ay, over C (re-
spectively, of A|W§ over R) equals the minimal polynomial of A with respect to
x over C (respectively, over R), i.e. the unique monic complex (respectively, real)
polynomial 14 ,(t) (respectively, w]}},x(t) of least degree such that 14 ,(A)z = 0
(respectively, 1/)§,I(A)m = 0). So Ya(t) divides ¢§7$(t) and, in fact, ¢§7x(t) is
the unique (necessarily real) monic polynomial obtained from 14 ,(t) as follows:
¢§,x(7§) has the same real roots as ¥4 ,(t) and with the same multiplicities; the
set of non-real complex roots of d)R(t) equals the set of non-real complex roots of
1 A,2(t) together with their complex conjugates; and for each non-real complex root
A of 4 2(t), the multiplicities of A and A as roots of ¢§7m(t) are both equal to the
maximum of the multiplicities of A and A as roots of ¥4 ,(t). (If A is not a root
of P4,2(t), its multiplicity is taken to be zero.) Hence p(Alw,) equals p(Aly=z) and
p(Alw,) is a root of ¥4 ,(t) if and only if p(Aly=z is a root of #®(t) and when it
happens, the multiplicity of p(A|w,) as a root of 14 ,(?) is equal to that of p(Alyr)
as a root of ¢§,m(t)-

Now by Remark 2.1 Ay, satisfies the Perron-Schaefer condition if and only if
p(Alw,) is aroot of 14 ,(t) and with multiplicity not less than that of other root with
the same modulus. In view of what we have done above, the latter is equivalent to
the condition that p(Aly=r) is a root of ¢§,m(t) and with multiplicity not less than
that of other root with the same modulus. On the other hand, since Afy= is a
real linear transformation, by Lemma 2.2(i) (or rather by its linear transformation
version), its minimal polynomials over C and over R are the same. By Remark
2.1 again it follows that A\W§ satisfies the Perron-Schaefer condition if and only if
p(Alwe) is a root of the minimal polynomial of Alyw over R, i.e., the polynomial
¢§,x(t)7 and with multiplicity not less than that of any other root with the same
modulus. We can now conclude that Aly, satisfies the Perron-Schaefer condition if
and only if Alym satisfies the Perron-Schaefer condition. O
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In the course of the proof of Corollary 2.4, (b)<(c), we also establish the follow-
ing:
Remark 2.5. Let A € M,,(C) and let 0 # x € C". The minimal polynomial of
Alw, over C (respectively, of Alyyr over R) equals ¢4 ,(¢) (respectively, 1/}%736 (t)), the
minimal polynomial of A with respect to = over C (respectively, over R). Moreover,
¢§7x(t) has the same real roots as 14 ,(t) and with the same multiplicities; the

set of non-real complex roots of ¢§,x (t) equals the set of non-real complex roots of
14 2(t) together with their complex conjugates; and for each non-real complex root
A of 4 ,(t), the multiplicities of A and A as roots of wﬁ’z(t) are both equal to the
maximum of the multiplicities of A and A as roots of 14 .(t). (If A is not a root of
4 (1), its multiplicity is taken to be zero.)

Corollary 2.6. Let A € M, (C), and let K be a closed pointed cone in C". If
AK C K, then A satisfies the local Perron-Schaefer condition at x for every x € K.

Proof. For any 0 # z € K, WE N K is an A-invariant proper cone in WX and we
have Aly= € T(WENK). So by the “only if” part of Theorem A, Al satisfies the
Perron-Schaefer condition, and by Corollary 2.4 A satisfies the local Perron-Schaefer
condition at z. g

Remark 2.7. Let K be a proper cone in C" and let A € 7(K). Then every
distinguished eigenvalue of A for K is a nonnegative real number.

Proof. Let A be a distinguished eigenvalue of A for K and let x € K be a corre-
sponding eigenvector. In view of Corollary 2.6, A satisfies the local Perron-Schaefer
condition at x; so A equals p,(A) and is a nonnegative real number. O

Example 2.8. Let A = diag(1,i) and let x = (1,1)7. We have Az = (1,4)T, A%z =
(1,-1)T, A3z = (1, —i)T and A%z = . Let p(t) = t>— (1+14)t+i. Then, p(A)x = 0,
but no monic polynomial with smaller degree has the same property. So p(t) is the
minimal polynomial of A|y, over C. As p(t) = (¢t — 1)(t — @), it is clear that
Alw, satisfies the Perron-Schaefer condition. Since the representation of z as a
sum of generalized eigenvectors of A is given by: (1,1)T = (1,0)T + (0,1), where
(1,0)7,(0,1)T are respectively eigenvectors of A corresponding to 1 and 4, it is clear
that A satisfies the local Perron-Schaefer condition at x.

Now note that pg(t) := (t — 1)(t —i)(t +1i) = t> — t?> +t — 1 is the real monic
polynomial of least degree that satisfies pr(A)x = 0. So the minimal polynomial of
Alwez is pr(t) and it is clear that A[yr also satisfies the Perron-Schaefer condition.

In this case, wg(A,z) is the 3-dimensional pointed polyhedral cone with dis-
tinct extreme vectors z, Az, A%z, A3z. The real A-cyclic subspace WX is the 3-
dimensional real subspace spanned by z, Az and A%z. The complex A-cyclic sub-
space W, is C2. Note also that the complex space W, is not equal to a complexifi-
cation of the real space WR, as dime¢ W, = 2 # 3 = dimp WZR.

We will need the following elementary lemma (cf. [3, Lemma 1.3.4] and [20,
Lemma 4.2]):

Lemma 2.9. Let A be a finite nonempty set of complex numbers such that each
A € A is off the nonnegative real axis. Then there exists a polynomial v(t) with
positive coefficients such that v(0) =1 and v(\) =0 for all X\ € A.
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Lemma 2.10. Let A € M, (C) and let 0 # x € C". Suppose that Alw, has no
positive eigenvalue. Then there exists a polynomial v(t) with positive coefficients
such that v(0) = 1 and A®v(A)z = 0, where vy = vo(Alw,).

Proof. If Alw, is nilpotent, take p(t) to be the constant polynomial 1. So we assume
that Alw, is non-nilpotent. Then Aly, can be represented by a matrix of the form
B@® N, where B is a nonsingular matrix, each of whose eigenvalues is either complex
non-real or negative real, and N is a nilpotent matrix with index of nilpotency
equal to vg. Note that the summand B must exist, but the summand N may or
may not exist, depending on whether or not 0 is an eigenvalue of Aly,. Since B
does not have a nonnegative eigenvalue, by Lemma 2.9 there exists a polynomial
u(t) € Ry[t] of positive degree such that w(0) = 1 and u(A) = 0 for all eigenvalues
A of B. Then u(B) is a nilpotent matrix and we can find a positive integer [ such
that u(B)! = 0. Let v(t) be the polynomial u(¢)!. Then v(t) is a polynomial with
positive coefficients such that v(0) = 1 and v(B) = 0. Now it should be clear that
we have (Alw,)"°v(Alw,) = 0 or, in other words, A"°v(A)x = 0. O

3. CHARACTERIZATIONS OF THE LOCAL PERRON-SCHAEFER CONDITIONS AND
RELATED CONDITIONS

Following [20], for any A € M, (C) and any nonnegative integer k, we denote by
wy(A) the cone pos{A’: i =k, k+1,...}. When z is a vector of C", we also denote
by wg (A, x) the cone pos{A'z: i=k,k+1,...}.

Remark 3.1. Let A € M, (C) and let 0 # = € C". Then A satisfies the local
Perron-Schaefer condition at x if and only if A satisfies the local Perron-Schaefer
condition at A*x for some (or, for every) positive integer k.

Proof. Tt suffices to show that A satisfies the local Perron-Schaefer condition at
z if and only if A satisfies the local Perron-Schaefer condition at Ax. Let x =

x1 + -+ + x, where x1, ..., 2 are generalized eigenvectors of A corresponding to
distinct eigenvalues A1,..., Ay. Then Ax = Axq+-- -+ Axy is the representation of
Az as a sum of generalized eigenvectors of A and, moreover, for each i = 1,...,k,

Az; is a generalized eigenvector of A corresponding to A; and with the same order
as x;, except that when \; = 0, Ax; is a generalized eigenvector of order one less
than that of z; (or does not appear if the order of z; is 1). So from the definition
of the local Perron-Schaefer condition, it is clear that A satisfies the local Perron-
Schaefer condition at x if and only if A satisfies the local Perron-Schaefer condition
at Ax. O

Remark 3.2. Let A € M,,(C) and let 0 # x € C". Let k be a nonnegative integer.

(i) wr(A,z) is a real subspace if and only if —A*z € wi(A, x).

(ii) The cones wg(A,x), wi(Alw,), wr(Alwz) are either all zero (respectively,
pointed, closed) or all nonzero (respectively, not pointed, not closed).

(iii) The cones clwy (A, ), clwg(Alw, ), clwi(Alwr) are either all zero (respec-
tively, pointed) or are all nonzero (respectively, not pointed, not closed).

(iv) If A is non-nilpotent, then wg(A,z) is nonzero. If A is nilpotent, then
wg (A, x) is nonzero if and only if k£ < vo(Alw,) — 1.
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Proof. (i) It suffices to prove the “if’ part. Suppose —AFz € wi(A4,x).
Then —A*z = Aky(A)z for some v(t) € Ry[t]. So for any p(t) € R [t], we
have —A¥p(A)x = AFp(A)w(A)z € wi(A,x). So wy(A,x) is a cone and we have
—wi (A, x) C wi(A, x); hence wi (A, ) is a real subspace.

(ii) and (iii): We are going to show that the cones clwy(A, x), clwi(Alw, ),
clwy(Alyz) are either all pointed or all not pointed. The proofs for the remaining
parts are similar.

Suppose that the cone cl wi(Alw, ) is not pointed. Then there exist polynomials
pj(t),q;(t) € t*R4[t], for j = 1,2,..., such that jlirgopj(A]Ww) and jlirgoqj(A|Wr)

both exist, are nonzero, and lim p;(Alw,) = — lim ¢j(A|w,). Then the limits
Jj—o0 Jj—o0

lim pj(A)z and lim gj(A)z both exist, are nonzero, and are the negative of each

Jj—o0o Jj—o0

other. So the cone clwg (A, x) is not pointed.
Conversely, suppose that the cone clwg(A, x) is not pointed. Then there exist
polynomials p;(t), g;(t) € t*R[t], for j = 1,2,..., such that the limits lim p;(A4)x
j—o0

and lim g;(A)x both exist, are nonzero, and are the negative of each other. Then
j—o0

lim p;(A)v(A)z = — lim g;(A)v(A)z for every v(t) € t*R[t]; hence we have 0 #

j—o0 j—o0o

lim p;(Alw,) = — lim ¢;(Alw, ), and so the cone cl wy(A|w,) is not pointed.

j‘)OO j‘)OO

By replacing Alw, by Alyye in the above argument, we also show that the cones
clwg(A, z), clwy(Alyr) are either both pointed or both not pointed.
(iv) Obvious. O

Remark 3.3. Let A € M,,(C) and let 0 # = € C". Let vy denote the order of the
generalized eigenvector corresponding to 0 that appears in the representation of x as
a sum of generalized eigenvectors of A. (If there is no such generalized eigenvector,
v is taken to be zero.) Then w;(A,x) is (linearly) isomorphic to w,, (A, z) for any
integer j > 1y, and for any nonnegative integer j < vy — 1, w;j(A,x) is the direct
sum of w,, (A, ) and the simplicial cone pos{Aix, ..., A 1z},

Proof. Note that vy = vo(Alyr). When j > vy, we have, Ao, (A z) =
w;(A, z), and since the restriction of A to spang{A’z : i = vo,1p + 1,...} is an
isomorphism, w; (A, z) is isomorphic to w,, (4, z).

Now suppose 0 < j < vy — 1. Clearly, we have

w;(A,z) = pos{Alz, AVTlz, ... A" 12} + w, (A, x).
To show that the sum is in fact a direct sum, let a;,j < i < vg — 1, be real scalars
such that Z;’i;l a;A'r = w, where w € spang w,, (A, z). Write = as y + z, where y
is a generalized eigenvector of A corresponding to 0 of order vy and z belongs to the
direct sum of generalized eigenspaces of A corresponding to nonzero eigenvalues.
(If 0 is not an eigenvalue of A then 1y = 0, and we are done.) Upon rewriting, the
above equality relation becomes Z;’i}l a;Aly = w — Z;’i;l A’z. Now the vector
on the left side of the equality belongs to the generalized nullspace of A, whereas
the vector on the right side belongs to the direct sum of generalized eigenspaces of
A corresponding to nonzero eigenvalues because Z’;i;l A’z is one such vector and

so is w (as w € spangwy, (A, ) = spangw,, (4, z)). So this common vector must
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be the zero vector. As y is a generalized eigenvector corresponding to 0 of order
1, the vectors y, Ay, ..., A¥ 1y are linearly independent; thus we have a; = 0 for
7 <1 <1y—1, and hence Zﬁ;l a;A'xz = 0. This shows that the sum is indeed a
direct sum.

Note that the linear independence of {y, Ay, ..., A"y} also implies that of
{x, Az, ..., A" 1z}; hence pos{z, Az, ..., A” 1z} is a simplicial cone. O

It is not difficult to obtain the following analogous result :

Remark 3.4. Let A € M,,(C). let Wy be the L£4-cyclic subspace generated by A
and denote v9(A) by 1. Then:
(i) Wa =span{A,..., A 1} @span{A», ..., A1} where m is the degree of
the minimal polynomial of A ;
(ii) w;(A) = pos{AJ, AT+ .. AW} @, (A) for j =0,...,19 — 1, and the
cones wj(A), for j = vy, v9+1,..., are pairwise isomorphic.
If A is nilpotent, the second summand in (i) does not appear. If A is nonsingular,
the first summands in (i) and (ii) both do not appear.

Using Remark 3.3, we readily obtain the following;:

Remark 3.5. Let A € M,,(C) and let 0 # 2z € C™.

(i) The following conditions are equivalent:
(a) For every nonnegative integer k, the cone wg(A4, k) is pointed (respec-
tively, closed, pointed and closed).
(b) For some nonnegative integer k, the cone wg(A, k) is pointed (respec-
tively, closed, pointed and closed).
(¢) The cone wy(A, x) is pointed (respectively, closed, pointed and closed).
(ii) The following conditions are equivalent:
(a) For every nonnegative integer k, the cone clwg(A, k) is pointed.
(b) For some nonnegative integer k, the cone clwg(A, k) is pointed.
(¢) The cone clwy(A, z) is pointed.

Theorem 3.6. For any A € M, (C) and let 0 # x € C". The following conditions
are equivalent:

(al) A satisfies the local Perron-Schaefer condition at x.

a2) Alyz satisfies the Perron-Schaefer condition.

3) Alw, satisfies the Perron-Schaefer condition.

1) For every nonnegative integer k, the cone clwg(A,x) is pointed.
2) The cone clwy(A, ) is pointed.

3) For some nonnegative integer k, the cone clwy(A,x) is pointed.
1) There is an A-invariant closed, pointed, cone that contains x.
2) There is an A-invariant proper cone in WX that contains x.
(c3) There is an A-invariant proper cone in WX,

Proof. The equivalence of (al), (a2) and (a3) holds by Corollary 2.4. The equiva-
lence of (bl), (b2) and (b3) follows from Remark 3.5.

(b2) = (c2): clwg(A, z) is the desired proper cone in WX,

The implications (c¢2) = (c1) and (c¢2) = (c3) are both obvious.
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(cl)= (b2): Let C' be an A-invariant closed pointed cone that contains z. Then
we have clwg(A,z) C C, and as C' is pointed, so is clwy(A, x).

(c3) = (a2): Follows from the “only if” part of Theorem A.

We complete the proof by establishing the implication (al) = (b2) as follows:

Suppose that A satisfies the Perron-Schaefer condition at z, but clwg(A,x)
is not pointed. Then there exist pm(t),gm(t) € Ri[t],m = 1,2,..., such that
limy, 00 P (A)x, limy,— 00 gm(A)z both exist, are nonzero, and are the negative of
each other. Let z = x1 + - - - + x, where 1, ...,z are generalized eigenvectors of
A corresponding to distinct eigenvalues Ap,..., A\p respectively, with A\ = p,(A4).
We have limy, 00 (Pm + ¢m)(A)x = 0 and hence lim,, o0 (Pm + ¢m)(A)x; = 0 for
i =1,...,k; in particular, limy, oo (Pm + ¢m)(A)z1 = 0. By the theory of functions
of matrices and, in particular, a formula for f(J;(\)) (see, for instance, [12, Chapter
9]), we have

J J .

(o -+ ) (A)ry = 3y A0 (4 i,
where v, = v, (4)(Alw,) and a similar equality relation holds for (pm + gm)(A)z;
fori=2,...,k. So we have

limmﬁoo(p%) + q%))(pz) =0forj=0,...,v,,.

Consider any \; with modulus p,. By the local Perron-Schaefer condition of A at

x, vy, S Vp,. For j=0,...,v), — 1, we have
0 < [p5 (A)] < P (pa) < (08 + a) (o)
0 limy, 00 priv’ (A;) = 0. Hence lim,, 500 pm(A)z; = 0 whenever |\;| = p,. Now

consider any A; with |\;| < pg. Let C denote the circle |z — Ni| = pz — |
in the complex plane. Noting that max,ecc [pm(w)| < pm(pz), by Cauchy’s in-
equality ([6, p.125]) or the Cauchy integral formula for derivatives, we have 0 <

2

|p£fb)()\i)\ < mpm(px), which implies limmﬁoop%)()\i) =0forj=0,...,v),.
So limy,—y00 pm(A)x = 0, which is a contradiction. O

Note that in the proof of Theorem 3.6 we are assuming the “only if” part of
Theorem A, but not its “if” part. In Section 5, we will establish the “if” part of
Theorem A by showing that if A satisfies the Perron-Schaefer condition then there
is a proper A-invariant cone which can be expressed as a finite sum of the closures
of A-cyclic cones. Our argument will rely on Theorem 3.6, (a2)=-(b2), which says
that if A\Wg satisfies the Perron-Schaefer condition, then there is a proper cone in
WE which is invariant under A (namely, clwg(A, x)).

Next, we are going to deduce Theorem B, the intrinsic Perron-Frobenius theorem,
from Theorem 3.6. We need the following lemma.

Lemma 3.7. Let 0 # A € M,,(C). Let L4 be the linear operator on My (C) given
by La(X) = AX, and let Wy (respectively, W%) denote the L 4-cyclic subspace
(respectively, real subspace) of My (C) generated by A. Also let m be the degree of
the minimal polynomial of A over C (respectively, over R).

(i) If A is nonsingular, then {I,, A, ..., A"~ 1} forms a basis for W (respectively,
for WE), and the minimal polynomial of Lalw, (respectively, of £A’W§) equals the
minimal polynomial of A over C (respectively, over R).
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(i) If A is singular, then {A, ..., A"} forms a basis for W (respectively, for
W), and the minimal polynomial of Lalw, (respectively, of £A|W§) is equal to the
minimal polynomial of A over C (respectively, over R) divided by t.

Proof. Let q(t) = t™ + ayy_1t™ ! +- -+ a1t + ag denote the minimal polynomial of
A over C (or over R).

(i) Since ¢(t) is the minimal polynomial for A and A is nonsingular, we have
ap # 0,1, € Wy (respectively, W%) and {I,, 4,...,A™ !} is a spanning set for
W4 (respectively, for Wf). Indeed, the latter set forms an ordered basis for Wy
(respectively, for WE), else we would obtain a nonzero annihilating polynomial for A
of degress less than that of ¢(¢). Straightforward calculation shows that, relative to
the said ordered basis for W4 (respectively, for W5), La|w, (respectively, £ A|W§)

is represented by the companion matrix of ¢(t), that is, the matrix Cj given by

- 0 —ap T
1 0
c,=| 1
0 —am—2
L 1 —am_1 |

As ¢(t) is the minimal polynomial of C, (see, for instance, [11, Theorem 3.3.14]), it
follows that ¢(t) is also the common minimal polynomial for A and L£4|w, (respec-
tively, for A and £A|W§) .

(i) When A is singular, by modifying the argument given in the proof for part
(i), one can show that the set {A, A%, ..., A™~!} forms an ordered basis for Wy
(respectively, for W£) and relative to this ordered basis £, (respectively, £ A|W§)
is represented by the companion matrix of the polynomial ¢(¢)/t. So, in this case,
the minimal polynomial of £4|w, (respectively, of £ A‘Wﬁ) is equal to the minimal
polynomial of A divided by t. O

The following alternative proof for the complex version of Lemma 3.7 may be of
interest:

First, take note of the following: (1) For any A € o(A) \ {0}, /\Eg\o) + E/(\l) is
a generalized eigenvector of L4 corresponding to A of order vy(:= v)\(C); (2) if
0 € 0(A), then Eél) is a generalized eigenvector of L4 corresponding to 0 of order

vy — 1, provided that vy > 2, but E(()l) = 0 when vy = 1. So the spectral resolution
of A in terms of its components (see, for instance, [12, p.315, Exercise 1(b)]), i.e.,

A=Y OB +ED),
A€o (A)

where the (nonzero) term E(()O) + E[()l) does not appear when 0 € 0(A) and vy = 1,
is in fact the representation of A as a sum of generalization eigenvectors of L4.
But the minimal polynomial of a matrix C' equals Hle(t — X)), where A1, ..., Mg
are the distinct eigenvalues of C' ([11, Theorem 3.3.6]), it follows that the minimal
polynomial of £4|w, equals the minimal polynomial of A when A is nonsingular,
and equals the minimal polynomial of A divided by ¢ when A is singular.
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Corollary 3.8. Let 0 # A € M, (C). The following conditions are equivalent:

(a) A satisfies the Perron-Schaefer condition.

(b) Lalw, satisfies the Perron-Schaefer condition.

(c) A, treated as a real linear transformation on C", satisfies the Perron-Schaefer
condition.

(d) EA\W§ satisfies the Perron-Schaefer condition.

Proof. Let ¢(t) (respectively, ¢®(t)) denote the minimal polynomial of A over C
(respectively, over R). For brevity, denote by 7" when A is treated as a real linear
transformation on C".

According to Lemma 2.2, ¢®(¢) is the minimal polynomial of T', ¢(t) and ¢®(¢)
share the same real eigenvalues and with the same multiplicities, the non-real com-
plex eigenvalues of ¢®(t) are precisely the non-real complex eigenvalues of ¢(t)
together with their complex conjugates, and for each non-real complex eigenvalue
A, A(T) = max{rvy(A),v5(A)}. Now it should be clear that A satisfies the Perron-
Schaefer condition if and only if 7" satisfies the Perron-Schaefer condition, i.e., con-
ditions (a) and (c) are equivalent.

By Lemma 3.7 the minimal polynomial of L4|w, (respectively, of L A|W§)) is
equal to ¢(t) (respectively, ¢®(t)) or ¢(t) (respectively, ¢*(¢)) divided by ¢, de-
pending on whether A is nonsingular or singular. So the nonzero part of the spec-
trum of A (respectively, of T') and that of La|w, (respectively, of £ A‘W§) are the

same. Moreover, for each nonzero eigenvalue A, vy(A) = v (Lalw,) (respectively,
vA(T) = vr(L A|W§))- Hence, A satisfies the Perron-Schaefer condition if and only if

Lalw, satisfies the Perron-Schaefer condition (respectively, 1" satisfies the Perron-
Schaefer condition if and only if £ A‘W} satisfies the Perron-Schaefer condition), i.e.,

conditions (a) and (b) (respectively, (c) and (d)) are equivalent. O

The equivalence of conditions (a) and (b) in Corollary 3.8 is implicit in [20,
p.265, 2nd paragraph], where it was pointed out that the “only if” part of Theorem
A implies the “only if” part of Theorem B. Here we are elaborating and extending
the observation.

Proof of Theorem B. First, by Corollary 3.8 A satisfies the Perron-Schaefer condi-
tion if and only if £4|w, satisfies the Perron-Schaefer condition. Next, by Theorem
3.6, (a3)<(bl)<(b3), (with £4 and A playing the roles of A and x respectively), the
condition that L£4|w, satisfies the Perron-Schaefer condition is equivalent to that
for some (or, for every) nonnegative integer k, the cone clwy (L4, A) is pointed. As
we have wg (L4, A) = wi41(A) for every nonnegative integer k, the latter condition,
in turn, is equivalent to the condition that for some (or, for every) positive integer
k, the cone clwy(A) is pointed. Finally, by Remark 3.4(ii), for any positive integer
k, clwg(A) is pointed if and only if clwg(A) is pointed. So A satisfies the Perron-
Schaefer condition if and only if for some (or, for every) nonnegative integer k, the
cone clwg(A) is pointed. O

Theorem 3.9. Let A € M,,(C) and let 0 # = € R™. Let vy be the order of the
generalized eigenvector corresponding to 0 that appears in the representation of x
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as a sum of generalized eigenvectors of A. (If such vector does not appear in the

representation, vy is taken to be 0.) Then the following conditions are equivalent:
(al) In the representation of x as a sum of generalized eigenvectors of A, there

is a generalized eigenvector corresponding to a positive eigenvalue.

(a2) The linear map Alw, has a positive eigenvalue.

(a3) The linear map Alyr has a positive eigenvalue.

(bl) For every nonnegative integer k, the cone wy(A,x) is nonzero, pointed.
(b2) For every integer k > vy, the cone wi(A,x) is nonzero, pointed.

(b3) The cone wy,(A,x) is nonzero pointed.

(b4) For some integer k > vy, the cone wi(A, x) is nonzero, pointed.

(cl) For every integer k > vy, the cone wi(A,x) is not a real subspace of C™.
(c2) wy, (A, z) is not a real subspace of C™.

(c3) For some integer k > vy, the cone wi(A,x) is not a real subspace of C".

Proof. The equivalence of (al) and (a2) follows from Lemma 2.3. By Remark 2.5
Alw, and Alyye share the same real eigenvalues, so the equivalence of (a2) and (a3)
follows.

Since an isomorphism preserves the property of being nonzero, pointed (as well as
being a real subspace), by Remark 3.3, the equivalence of (b1)—(b4) (and (c1)—(c3))
follows.

(al) = (bl): Condition (al) clearly implies that x is not a generalized eigenvector
of A corresponding to 0. So, for every nonnegative integer k, wy (A, z) is a nonzero
cone. Since wo(A,x) O wi(A,z) for all positive integers k, it suffices to show
that the cone wg(A,z) is pointed. Assume that the contrary holds. By Remark
3.2(ii), the cone wy(Alw,) is also not pointed. So there exist nonzero polynomials
p(t),q(t) € Ri[t] such that p(A|w,) equals —g(A|w,) and is nonzero. Then we
have p(A)y = —q(A)y for every vector y € W,. Let o be a positive eigenvalue
of Alw, and let y be a corresponding eigenvector. We have p(a)y = —¢(a)y, and
hence p(a) + g(a) = 0. But p(t) 4+ ¢(¢) is a nonzero polynomial with nonnegative
coefficients, so we arrive at a contradiction.

Clearly we have the implication (b2)=-(cl). To complete the proof, it remains
to establish the implication (c3) = (a2).

(c3) = (a2): Suppose that for some integer k > v, wi (A, =) is not a real subspace.
Clearly, Ay, is non-nilpotent. Assume to the contrary that condition (a2) does
not hold. Then by Lemma 2.10, there exists a polynomial v(¢) of positive degree
r and with positive coefficients such that v(0) = 1 and A"v(A)z = 0, where vy =
vo(Alw, ). Say, v(t) = 3I_, a,t". Since k > vy, we have A¥v(A)z = 0, which implies
that

—AFy = A a, A7 a0 A2 4 an)z € wipa (A7) C wi(A, 7).

By Remark 3.2(i), wi(A, x) is a real subspace, which contradicts our assumption on
k. O

Using the kind of arguments given in the proof of Theorem 3.9, it is not difficult
to show the following;:

Remark 3.10. When x # 0, the condition that wo(A, z) is a nonzero pointed cone
is equivalent to the condition that either Aly= (or, Alw,) is nilpotent or Aly= (or,
Alw,) has a positive eigenvalue. Thus, the condition is weaker than the equivalent
conditions of Theorem 3.9.
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In view of Remark 3.2, to the list of equivalent conditions in Theorem 3.9, one
can add further conditions given in terms of the cones wy(Alw, ) or wi(Alyz).

Theorem 3.11. Let A € M,,(C), and let 0 # x € C". Then Alw, has a nonnega-
tive eigenvalue if and only if the cone wo(A, x) is not a real subspace.

Proof. “Only if” part: Assume to the contrary that wg(A,z) is a real subspace.
Then —x € wo(A,x) and so for some p(t) € R4 [t], we have —z = p(A)z and hence
—y =p(A)y for all y € W,.. Let a be a nonnegative eigenvalue of Ay, ane let y be
a corresponding eigenvector. Then we have —y = p(A)y = p(a)y and so —1 = p(«),
which is a contradiction.

“If” part: Suppose that Al|y, does not have a nonnegative eigenvalue. Then
Alw, is nonsingular and by Lemma 2.10 there exists a polynomial v(t) € R4 [t] of
positive degree m such that v(0) = 1 and v(A)x = 0. From the latter, we readily
obtain —z € pos{Azx,..., A"z} C wy(A,x) and hence wy(A,x) is a real subspace,
which is a contradiction. g

Using Theorem 3.9, we are going to re-derive the following known result ([20,
Theorem 1.6 and Theorem 6.4)):

Corollary 3.12. Let A € M,,(C). The following conditions are equivalent:
(a) A has a positive eigenvalue.
(b) For every (or, for some) integer k > vy(A), the cone wi(A) is nonzero,
pointed.
(c) For every (or, for some) integer k > vy(A), the set wi(A) is not a real
subspace of M, (C).
If, in addition, A is non-nilpotent, the following is also an equivalent condition:
(d) For every (or, for some) nonnegative integer k, the cone wy(A) is nonzero,

pointed.

Proof. Denote by L4 the linear operator on M, (C) defined by: £4(X) = AX. By
Lemma 3.7, A and L4|w, share the same nonzero eigenvalues; so condition (a) is
equivalent to the condition that £4|y, has a positive eigenvalue. By Theorem 3.9
(with £4 and A playing the roles of A and z respectively), the latter condition is
equivalent to the following:

(b)" For every (or, for some) integer k > wvo(Lalw,), the cone wi(L4,A) is

nonzero pointed.

Note that we always have wi(La|lw,,A) = wig+1(A). If A is singular, by Lemma
3.7 we have vo(Lalw,) = vo(A) — 1; hence condition (b)" is equivalent to condition
(b). If A is nonsingular, then so is £4 and hence also is La|w,. In this case,
vo(Lalw,) = vo(A) and condition (b)’ is equivalent to the condition that wg41(A)
is a nonzero pointed cone for every (or, for some) integer k > 1(A) = 0. Now by
Remark 3.4(ii), the cones wg(A), w1 (A),... are all isomorphic. So condition (b)’ is
also equivalent to condition (b).

In the above, we have established the equivalence of conditions (a) and (b). In a
similar way (and also making use of Theorem 3.9), we can show that conditions (a)
and (c) are equivalent.

When A is non-nilpotent, w,,(A,z) is nonzero, and again by Remark 3.4(ii),
condition (d) is another equivalent condition. O
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Condition (c¢) of Corollary 3.12 can also be replaced by the following (which is

the condltlon that appears in [20, Theorem 1.6]):
" For every (or, for some) integer k > 1(A), the set clwg(A) is not a real

subspace of M,,(C).
The point is, a convex set C' in a finite dimensional (real or complex) vector space is

a real subspace if and only if its closure is a real subspace. The latter, in turn, is a
consequence of the following basic property for a convex set C' in a finite-dimensional
vector space: riC = ri(clC).

By applying Theorem 3.11 (with A and = replaced by £4 and A respectively)
and Lemma 3.7, one can obtain the following:

Corollary 3.13. Let A € M, (C). The following conditions are equivalent:
(a) Either A has a positive eigenvalue, or 0 is an eigenvalue of A with index > 2.
(b) wy(A) is not a real subspace.

The following result has appeared in [20, Theorem 6.3]. We give another proof
here.

Theorem 3.14. Let A € M,,(C). The following conditions are equivalent:
(a) A has a nonnegative eigenvalue.
(b) wo(A) is not a real subspace.

Proof. (a)=-(b): Suppose that condition (a) holds. If A is nonsingular, then nec-
essarily A has a positive eigenvalue and by Corollary 3.12, (a) = (c), condition (b)
follows. If A is singular then, by part(ii) of Remark 3.4, wo(A) is the direct sum of
the cones pos{I,, A, ..., A~ and Wy, (4)(A). But the former cone is pointed,
so wp(A) is not a real subspace.

(b) = (a): If A is singular, then 0 is an eigenvalue of A and condition (a) clearly
holds. If A is nonsingular, then by Corollary 3.12, (c¢)=-(a), A has a positive eigen-
value. O

Lemma 3.15. Let A € M,,(C). If z is a generalized eigenvector of A corresponding
to a positive eigenvalue A, then clwy(A,x) is a pointed polyhedral cone if and only

if vx(Alw,) < 2

Proof. Clearly, A satisfies the local Perron-Schaefer condition at x. So the cone
clwy(A, z) is always pointed.

“If” part: If vy(Alw,) = 1, clwo(A,x) is simply the ray generated by x. If
vA(Alw,) = 2, then clwg(A,z) is the pointed polyhedral cone generated by the
extreme vectors x and Eg\l) (A)x.

“Only if” part: Without loss of generality, we may assume that A = Jx(\) and x
is the standard unit vector ey. Then '

wo(A,x) = pos{ (- JN—™HL L (A2, ()X AT < > o).

Now assume to the contrary that k(— vA(Alw,) > 3. Since clwg(A, x) is polyhedral,
so is the cone clC, where C' = pos{(5) A2, (] ))\Z LAHT 24 > 0}. Now C is the
same as pos{ (2) , (1))\ 11)T . i > 0} and is linearly isomorphic with the cone
pos{i(i —1)/2,i,1)T : i > 0} under the nonsingular matrix diag(A?,\,1)7. But
the latter cone is clearly a non-polyhedral closed pointed cone, so we arrive at a
contradiction. O
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According to [28, Theorem 7.9], for any A € M, (R), there exists a proper poly-
hedral cone K in R™ such that A € w(K) if and only if each peripheral eigenvalue
of A equals p(A) times a root of unity. For the local version, we have the following
partial result:

Theorem 3.16. Let A € M, (C). If clwy(A, x) is a pointed polyhedral cone, then
each of the following conditions is satisfied:

(a) A satisfies the local Perron-Schaefer condition at x.
(b) Fach peripheral eigenvalue of Alw, equals p,(A) times a root of unity.
(¢c) For each positive eigenvalue A of Alw,, vx(Alw,) < 2.

Proof. Condition (a) follows from Theorem 3.6, (b2) < (al).

Since Alyr € m(clwo(A,x)), by [28, Theorem 7.9] each peripheral eigenvalue of
Alwz equals p;(A) times a root of unity. By Remark 2.5 the same can be said for
the peripheral eigenvalues of Alyy, .

Now we show condition (c). Let = x; + --- + x be the representation of x
as a sum of generalized eigenvectors of A, with x; corresponding to A; for each i.
Consider any y € clwg(A,z). We have y = lim;,,,_o0 pm(A)z and some p,,(t) €
R4 [t],m =1,2,.... For each i, clearly lim,, ,~ pm(A)z exists, say, equals y;. Then
yi € clwo(A,z;). The assumption that clwg(A,z) is a pointed polyhedral cone
implies that if \; is a positive eigenvalue then clwg(A, x) is also a pointed polyhedral
cone, and so by Lemma 3.15 we have v(Alw,) = va(4lw,,) < 2. O

We end this section by noting the following observations, which are not difficult
to prove:

Remark 3.17. Let A € M,,(C) and let 0 # « € C". Then:

(i) wo(A,z) is a simplicial cone if and only if the minimal polynomial of Alyr
is of the form #™ — a1t™~! — ... — a,,, where m = dim WE and a1, ...,an
are all nonnegative real numbers.

(ii) wo(A,x) is a pointed polyhedral cone if and only if A satisfies the local
Perron-Schaefer condition at z and Alyz (or, Alw,) has an annihilating

polynomial of the form t? — a;tP~1 — ... — ap, where p is a positive integer
and ay,...,ap are nonnegative real numbers.

4. WHEN THE CONE wq(A, ) IS CLOSED AND POINTED
Lemma 4.1. Let A € M,(C) and let 0 # = € C". Suppose that A satisfies the
local Perron-Schaefer condition at x. Then:
(i) For any 0 # y € clwg(A, x), we have py(A) = py(A) and sp,(y) < spy(x).
(ii) If pz(A) > 0 then spy(y) = spa(z) for every 0 # y € wo(A, ).

Proof. (i) First, we show that py(A) < p,(A). Since y € clwg(A,x), there ex-
ist pm(t) € Ryft], m = 1,2,..., such that y = limy, oo pm(A)zx. Let z = z1 +

-+ 4+ xp, where x1,...,x) are generalized eigenvectorsof A corresponding to dis-
tinct eigenvalues A1, ..., \; respectively, and with \; = p,(A). The existence of
lim,, 00 Pm (A)x guarantees the existence of limy, o0 P (A)z; for i =1,... k. De-

note limy,, 00 pm(A)z; by y;. For each i, since z; € N:jl (Alw,), where vy, =
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vy, (Alw,) and N:jl (Alw,) is A-invariant, p,,(A)x; € N:jl (Alw,) for every m. So
we have y = y1 + -+ - + yp with y; € N:jl (Alw,) for each i, and hence

py(A) = max{|\;| : 1 <i < k,y; # 0} < maxi<i<y [Aif < pa(A).
Suppose py(A) # py(A). Then we must have p,(A) < py(A) and hence y; = 0

whenever |\;| = pz(A). In particular, we have, y; = 0, i.e., lim,,—00 P (A)z1 =
BN ) . .

0. As pp(A)a1 = 3% ! %(A — pzI)x1, where v, = v, (Alw,), it follows

that we also have lim,, p%) (pg) = 0 for j = 0,...,v,, —1. Then using an

argument given in the proof for Theorem 3.6,(al)=-(b2), we can show that for each
i=2,... .k

limmﬁoop%)()\i) =0forj=0,...,v, — L
So we have lim,;, o pm (A)z = 0, which is a contradiction. This proves that p,(A4) =
pz(A). Now, by definition, we have

orda(y) = max{orda(yi) : |Ni| = pz(A)} < max{vy, : | Ni| = pz(A)} = orda(x),
where the inequality holds as y; € N :jz (Alw,). Therefore, sp4(y) = sp4(x).

(ii) If 0 # y € wo(A,x), then y can be written as Y -_;a;A’z for some non-
negative integer p and some nonnegative real numbers ao, ..., a, with at least one
positive. By [29, Theorem 4.9(ii)(c)] we have sp4(y) = max{sp,(A‘z) : a; > 0},
where the maximum is taken in the sense of lexicographic ordering. Since Aly= €
m(clwo(A, z)) and py(A) > 0, by [29, Remark 4.1(ii)] we have spy(Az) = sp4(z)
and hence sp 4(A’x) = sp4(z) for every positive integer z. It follows that sp4(y) =
spa(z). O
Remark 4.2. In Lemma 4.1, if we drop the assumption that A satisfies the local
Perron-Schaefer condition at x, then the result, in its full strength, no longer holds.
However, by a slight modification of the original argument, one can show that
spa(y) < spa(x) for any 0 # y € clwy(A4, z).

To see this, take A = diag(—1, %) and z = (1,1)7. Then A does not satisfy
the local Perron-Schaefer condition at x, as p;(A) = 1 ¢ o(Alw,). For p(t) =
L+t,p(A)z = (0,3)"; s0 spa(p(A)x) = (5,1) < (1,1) = spa().

Remark 4.3. In part(i) of Lemma 4.1, we cannot replace < by the equality.

To see this, let A = Jo(1) and z = (0,1)7. Then, as can be readily shown,
wo(A,z) = RZ\ {\(1,0)7 : X > 0}, so clwg(4,z) = R%. Take y = (1,0)T. Then
spa(y) = (1.1) < (1,2) = spa(a). |

If K is an A-invariant closed pointed cone, then the set ()72, A"K, denoted by
coreg (A), is called the core of A relative to K. By [28, Theorem 2.2] coreg (A) is
always a closed, pointed cone (and usually its dimension is less than that of K) and
Algpang (corex (4)) 18 an automorphism of coref (A).

Lemma 4.4. Let A € M,(C) and let 0 # = € C". Suppose that A satisfies the
local Perron-Schaefer condition at x. Let A denote the set of peripheral eigenvalues
A of Alw, for which V)\(A‘WQ%Q) = me(A‘W§)~
(i) If pz(A) > 0 then E,(,I;”’“_l)(A)x and Y \eq Eg\y”““_l)(A)m both belong to
Nz clwi(A, z).
(ii) COTCcl g (A,z) (A’W$) = ﬂfio cl wi(A7 .CE)
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(iii) pz(A) is the only distinguished eigenvalue of Alyz for clwo(A,x) and (up
to positive multiples) Eﬁ:‘&;l) (A)x is the unique corresponding eigenvector
in clwy(A, z).

Proof. For brevity, denote Alsyanguw,,(4,2) SImply as Ay ;.

(i) For each nonnegative integer k, since A satisfies the local Perron-Schaefer
condition at z, by Theorem 3.6, clwy (A, z) is a proper cone in its own real linear
span, so Ay, € m(clwg(A,z)). When p,(A) > 0, by [27, the proof of Theorem 3.1],
we have

By (Are) = Tim (v = D)™ o+ )70 (A + 1Y AL,
e «cl wk(Ak,x)u

where p = p;(A),v = v, (a)(Alw,), and hence

E;Z’E“X)A)il)(A)m = Eﬁ:p(ﬁ)’q)il)(Akvx)x € clwi (A, x). Since this is true for each non-

negative integer k, we have, E;V?ﬁf)il)x € Moy lwi (A, z).

—1 N
To prove that (3, E/(\VPZ(A) ))CL‘ € Nipclwg(A, x), we use a similar argument,

except that now we apply instead [28, the proof of Theorem 7.1(i)], which says

that if A € n(K), then ), E/(\V”(A)(A)_l) € 7(K), where the sum is taken over all

eigenvalues A with |A| = p(A4) and vx(A) = v,4)(4).

(ii) Let y € corecyy(a,z)(Alwr). For each nonnegative integer i, there exist poly-
nomials pg(t) € Ry [t],k =1,2,... (depending on ), such that limy_,~ px(A)z exists
and y = A(limg_y00 pp(A)z). As Alpp(A)z € wi(A,z) for each k, it follows that
y € clw;(A,z). This establishes the inclusion corecy,(a,2)(Alw,) € Nz clwi(4, x).

To show the reverse inclusion, consider any y € (;2, clw; (4, ). For each positive
integer i, since y € clw;(A, ), we can find a vector y; € w;(A,x)(= Alwo(4,z))
such that [ly; — y|| < 1, where || - || denotes any norm in C". Then the sequence
(yi)icz, converges to y and as y; € A'clwy(4, z) for each 4, by [28, Remark 3.10] it
follows that y € corecy,(a,)(Alw, ), as desired.

(iii) Since Alyr € m(clwo(4, x)), by [25, Theorem 2.4], every distinguished eigen-
value of Aly= for clwo(4, x) equals py(A) for some nonzero y € clwy(A,z). By
Lemma 4.1(i), for any 0 # y € clwg(4,2),py(A) = pz(A). Hence p,(A) is the
only distinguished eigenvalue of Alyr for clwg(A,z). Since Alyr is a cyclic lin-
ear transformation, each of its eigerglcvalues has geometric multiglicity 1, and as

E[()Z’Ef;)‘q)_l)x € clwg(A4, z), by part (i) our assertion follows. O

We would like to add that the fact if A € M, (C) satisfies the Perron-Schaefer

condition then Eﬁ’;ﬁf )_1)(A) € N2y clwi(A) is known (see Schneider [20, Theorem
5.2(iii)]; a short direct proof can also be found in [27, the proof of Theorem 3.1}).

In part(i) of Lemma 4.4 we give a local version of the latter result.

Remark 4.5. If p;(A) = 0, then Lemma 4.4(i) no longer holds. Instead, we have

Vo, —1 v 1
Eﬁm,&) )(A)m = 2xeh Eg\ o )(A)x € wo(4,x).
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This is because, when p,(A) = 0, w;(A,z) = 0 for i > vy(Al|w,), and B ’a;l)(A)

Px
and Y ycp E/(\V"”_l)(A) are both equal to AV»=~1,
Lemma 4.6. Let A € M, (C) and let 0 # x € C". Suppose that A satisfies the

local Perron-Schaefer condition at x. Then E;:‘Z”X;‘)_l)(A)x € wo(A,x) if and only

if either py(A) =0 or py(A) > 0,0orda(x) =1 and Alw, (or Alyr) has no positive
eigenvalue other than p,(A).

Proof. Let © = x1+-- -+ x, where x1, ..., x; are generalized eigenvectors of A cor-
responding to the distinct eigenvalue Ay, ..., Ay respectively and with \; = p,(A).

“Only if” part: Assume that py(A) > 0. Since Eﬁ:ﬁ('ﬁA)_l)(A)m € wo(A4,z), by

)
Lemma 4.1(ii), spy(z) = spA(EIEZ‘Ej)A)_l)(A):c) = (pz(A),1), and so orda(z) = 1.

On the other hand, we also have, E/EZP(”X)A)_D(A)JU = p(A)x for some p(t) € Ry[t]. As

E/()Zp(j)‘”_l)(/l)x = Eﬁi’zﬁf)_l)(A)xl, p(A)z is an eigenvector of A corresponding to
pz(A) and for i = 2,..., k, we have p(A)z; = 0 or, equivalently, p(4)|w,, is the zero
operator. Now for i = 1,...,k, the matrix of A|W:ci relative to the ordered basis
{(A = NDi ey (A= ND™ 22, ... (A — NiI)xi,z;)} is the elementary Jordan
block J,,, (A;), where n; is the order of the generalized eigenvector x;. So the matrix
of p(A)|w,, relative to the said ordered basis is an upper triangular matrix with
diagonal entries all equal to p()\;) (see [12, p.311, Theorem 4]). Thus we have
p(Ai) = 0 for i = 2,...,k. Since the coefficients of the nonzero polynomisl p(t)
are all nonnegative, none of the numbers Ao, ..., A\; can be a positive real number.
This shows that Alw, (and hence also Alyyz) has no positive eigenvalue other than
pa(A).

“If” part: There is no problem if p,(A) = 0. Hereafter, we assume that p,(A) > 0.
Since ord4(x) = 1, z1 is an eigenvector of A corresponding to p;(A). As A|w, has no
positive eigenvalue other than p,(A), by applying Lemma 2.10 (with x = x9 +- - +
xr), we can find a nonzero p(t) € R4 [t] such that A*p(A)(x2+---+zx) = 0, where
vo = 10(Alw,,;.. 1., ). Then we have Ap(A)x = A"p(A)z1 = pz(A)"p(pz(A))z1.
It follows that z1 belongs to wo(A,z). Now, sine v, (4) = orda(x) = 1, we have,

v -1 Y -1 )
= o S0 B i) D

Lemma 4.7. Let A € M, (C) and let 0 # x € C™. Suppose that A satisfies the

local Perron-Schaefer condition at x. Then ), s ngwwﬁ)_l):n € wo(A, x), where

A has the same meaning as given in Lemma 4.4 if and only if either py(A) =0 or
pz(A) > 0,0rdg(x) = 1 and the following condition is satisfied: if the eigenvalues
of Alw, are not all of the same modulus then every peripheral eigenvalue of Alw,
equals p,(A) times a root of unity and for each non-peripheral eigenvalue p of Alw,,
u™ is not a positive real number, where m denotes the least positive integer such
that (ﬁ)m =1 for every peripheral eigenvalue A of A.

Proof. Let x = x1 + -+ + xx, where x1,...,x, are generalized eigenvectors of A
corresponding to the distinct eigenvalue Aq, ..., Ax respectively. Without loss of
generality, assume that A = {A1,..., \;} and A\ = p,(A).



ON LOCAL PERRON-FROBENIUS THEORY 717
“ o . : (a(Alw,)—1)
Only if” part: Suppose p,(A) > 0. Since ), Ey x € wo(A,x), by
VAi—l

Lemma 4.1(ii), spa() = spa(Sl_y By Va) = (po(A), 1), and so orda(x) = 1.

On the other hand, we have Zizl Ei’:kfl)m = p(A)z for some nonzero p(t) € R, [t].

(V)\i 71)

The latter equality relation implies that for i = 1,...,l, p(A)z; equals E)\i x;

and so is an eigenvector of A corresponding to \; and, for [+ 1 <1i < k, p(A)z; = 0.

As A satisfies the local Perron-Schaefer condition at z, for ¢ = 1,...,1, x; is an
vy, —1

eigenvector of \; and p(A)zx; = Eif )xi = x;.

Now suppose that | < k, i.e., A|y, has an eigenvalue with modulus less than
pz(A). In this case the polynomial p(t), considered above, must be of positive
degree. Normalizing A, we may assume that p,(A) = 1. Assume to the contrary
that there exists r,2 < r <, such that A\, = eﬁe, where 0 is a real number that
is not a rational multiple of . Say, p(t) = 3"7_, a;jt’. Note that the condition that
p(A)z1 = x; and 21 is an eigenvector of A corresponding to 1 implies that 7 ja; =
1. So the corresponding condition for x, implies that 1 is a convex combination of

the extreme points eﬁje,j =0,...,s, of the unit circle in the complex plane. As
f is not a rational multiple of 7, none of the numbers eﬁje,j =1,...,s, equals
1. It follows that we must have ag = 1 and a; = 0 for j = 1,...,s; hence p(t) is a

constant polynomial, which is a contradiction. This proves that every unimodular
eigenvalue of A is a root of unity.

A slight modification of the above argument also shows that the condition p(A)x; =
x;, for i = 1,...,1, implies that for each 5,0 < j < s,a; is nonzero only if j is a
multiple of m. So the polynomial p(¢) is of the form ¢(¢™) for some ¢(t) € Ry[t]
with positive degree. Then the conditions p(A)x; = 0 for i = [+ 1,...,k become
q(A™)x; = 0 or, equivalently, ¢(A)|lw,, = 0 for i =1+ 1,... k. For each such i,
since g(A]") is the only eigenvalue of g(A™)|w, , we must have ¢(\[*) = 0. As g(2)
belongs to Ry [t] and has positive degree, this implies that A" is not a positive real
number for i =1+ 1,... k.

“If” part: If p;(A) = 0 then we have > ., E&VA_I)QU = AvAlwa) =1 € (A, z).
Hereafter we assume that p,(A) > 0.

First, consider the case when the eigenvalues of A|yy, are all of the same modulus.

Then k£ = [ and since ord4(z) = 1, we have, Ei?i_l)m = Eg?)x = x; for each i;

hence ) y\cp E/(\Vkifl)x = Ele r; =x € wo(A,x).

Now consider the case when Alyy, has an eigenvalue with modulus less than p,(A).
Since none of the numbers A/} ,..., A" is a positive real number, by Lemma 2.10
there exists a nonzero ¢(t) € R4 [t] with positive degree such that ¢(1) = 1 and
Aq(A™) 2221 x; = 0, where ¢ is any common positive integral multiple of m and
VO(A|WIZ+1+W+%). Let p(t) = t°q(t™). Then p(t) € Ri[t]. For i =1,...,, since z;
is an eigenvector, p(A)x; = A°q(A™)z; = Nsq(A\")z; = q(1)x; = x;. So we have

p(A)z = Eisy p(A)as + p(A) Sy 1) = Ticy 71 = Dy BNV
This shows that >\, E&Vrl)x € wo(A, x). O

By Lemma 4.6 and Lemma 4.7 we readily obtain the following:
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Corollary 4.8. Let A € M,,(C) and let 0 # x € C™. Suppose that A satisfies the
local Perron-Schaefer condition at x. If 3\ a E/(\V*_l)af € wo(A,x), where A has

the same meaning as given in Lemma 4.4, then Ef):’gﬁf)_l) (A)x € wo(A, x).

When A satisfies the local Perron-Schaefer condition at x, by Lemma 4.4(i), we
have > yca E/(\sz_l)x € clwo(A, z). So ) \cn E;VA_I)(A).% € wo(A, ) is a necessary
condition for wgy(A,x) to be closed. However, it is not a sufficient condition, as
illustrated by the following example.

cosf) —sinf
sind  cosf
of 7, and take x = (1,0,1)7. Then WE = R3 A is diagonalizable (over C), o(A) =
{1,e? e} = A, p.(A) = p(A) = 1, A satisfies the local Perron-Schaefer conditon
at x, and ) ycp E/(\VA_I) = I. Thus ) ycp Eg\y_l)x = x € wo(A,x). In this case,
clwg(A, x) is the ice-cream cone K3 := {(£1,&0,&)T 1 & > (67 + €3)Y/2}. Also,
for any 0 # y € Ks,spy(y) = (1,1) = spy(x). However, wg(A,x) is not closed,
as all extreme vectors of K3, except those of the form A(cos kf,sin k6, 1)T with
k=0,1,2,...,A > 0, do not belong to wy(A, x).

Example 4.9. Let A = [ ] @ [1], where 6 is not a rational multiple

Lemma 4.10. Let A € M,,(C) and let 0 # = € C". Suppose that the eigenvalues
of Alw, are all of the same modulus and p,(A) is an eigenvalue of Alw,. Then the
cone wo(A, x) is closed if and only if either p;(A) =0 or pz(A) >0, orda(z) =1,
and every eigenvalue of Alw, equals p,(A) times a root of unity.

Proof. Let x = x1 + -+ + xx, where x1,...,x are generalized eigenvectors of A
corresponding to distinct eigenvalues Aj, ..., Ay respectively.

“Only if” part: Suppose that p,(A4) > 0. Since wy(A,x) is closed, by Lemma
4.4(1) Daen EiV*(A‘W“)fl)x € wo(A, ), where A has the same meaning as before.
Then by the “only if” part of Lemma 4.7, ords(x) = 1. Assume that Ay, has
an eigenvalue which is not equal to p,(A) times a root of unity. Without loss of
generality, assume that \; = p,(A4) =1 and Ay = eV=10 where 6 is not a rational
multiple of 7. Choose an increasing sequence of positive integers (m;);en such that
lim;_, 0 eV=Im;i exists and equals e‘/jl‘ﬁ, where ¢ is a real number such that eV—1o
is not a nonnegative integral power of eV=19 and im0 )\ij exists fort =1,... k.
Then lim;_,o, A™ix exists. Since wo(A, ) is a closed cone, lim; oo A™ix = p(A)x
for some p(t) € Ry[t]. Now we have p(1)z; = p(A)z; = lim; 00 A™x1 = 1, SO
p(1) = 1. Also p(e)zs = p(A)ra = limj_y00 A™ 29 = eV=1%2,. So we have eV~ 1¢ =
p(e‘/jw), i.e., V1% is a finite convex combination of nonnegative integral powers
of eV~ But eV~1% is an extreme point of the unit circle in the complex plane and
is not a nonnegative integral power of e‘/jw, so we arrive at a contradiction.

“If” part: In this case, we can find a positive integer m such that A\]* = p,(A)
for i = 1,...,k. Then A"z = p,(A)"x; so wy(A,z) is a pointed polyhedral cone
generated by z, Az, ..., A 1z, As such it must be a closed cone. O

m

Corollary 4.11. Let A € M, (C) and let 0 # x € C". Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A‘Wge 1s wrreducible with respect to
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clwo(A, z) if and only if either Az = 0 or A|W§§ is nonsingular, ord4(x) = 1 and
Alwz has no positive eigenvalue other than py(A).

Proof. Let x = x1 + -+ + x, where x1,...,x are generalized eigenvectors of A
corresponding to distinct eigenvalues A, ..., A\; respectively, and with A\; = p,(A).

“Only if” part: Since Alyz is irreducible with respect to clwo(4, z), EWes =)z,
the unique distinguished eigenvector of Alye for clwo(4,z), belongs to
ri(clwo(A,z)) = riwg(A,z). By Lemma 4.6, either py(A) = 0 or pz(A) > 0,
orda(z) = 1 and Afy= has no positive eigenvalue other than p;(A). If p;(A) =0

then clwy(A,z) equals the simplicial cone with distinct extreme vectors

x,..., A=~z But Eﬁ(,l;”*l)x equals AY»z 1z and in order that it belongs to

ri (clwg (A, x)), we must have v,, =1 and clwg(A, z) = pos{z}, i.e., Az = 0.

Now consider the case when p;(A) > 0. Since Afyr has no positive eigen-
value other than p,;(A), by Lemma 2.10 there exists a polynomial v(¢) with positive
coefficients such that A™v(A)(z2 + -+ + xx) = 0, where vo = v(Alyr). Then
AMy(A)x = AVv(A)xr = py(A)"v(pz(A))x1, where the second equality holds as
x1 is an eigenvector of A corresponding to py(A). Since pi(A)"v(pz(A4)) > 0,
A"y (A)z is a positive multiple of the eigenvector 1. Suppose that Alyr is singular.
Then vy > 1. Note that since 0 # v(t) € Ry[t], A”v(A)z € wy (A, x). According to
Remark 3.3, clwg(A, z) is the direct sum of the simplicial cone pos {z, ..., A"~ !z}
and clwy, (A, ). So the eigenvector of Aly= in clwy(A, ) belongs to the relative
boundary of clwy(A, ). This contradicts the irreducibility of Alye.

“If” part: If Az = 0, then clwg(A, x) equals the ray generated by z. As z €
ripos{A : A > 0}, Al is irreducible with respect to clwo(4, ).

Consider the case when A|Wg§ is nonsingular. By Lemma 2.10 there exists a poly-
nomial v(t) with positive coefficients such that v(A)(ze + - -+ z) = 0. Note that
the degree of v(t) can be chosen as large as we please. So we may assume that
degv(t) > dim WE. This guarantees that v(A)z € ri (clwg(A, x)). According to the
argument given in the proof for the “only if” part for the case p,(A) > 0, v(A)z

. .- . . . . -1

is a positive multiple of the eigenvector x; which, in turn, equals Epzp(ﬁ; " Vx as
.- . -1) .

Vpo(A) = ordg(z) = 1. By Lemma 4.4(iii), (up to positive multiples) E‘EZ’E‘Z;)A) )¢ is

the unique distinguished eigenvector of A|W§§< for clwg(A, z). So A|W§ has no eigen-

vector in the relative boundary of clwg(A, x); hence it is irreducible with respect to
clwy(A4, z). O

Corollary 4.12. Let A € M, (C) and let 0 # x € C". Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A|Wg§ 18 primitive with respect to
clwo(A,z) if and only if Alyr is nonsingular, orda(z) = 1, pi(A) is the only
peripheral eigenvalue of A‘Wf , and A\ng% has no positive eigenvalue other than

pa(A).

Proof. “Only if” part: The condition that Aly = is primitive with respect to clwo(4, x)
implies that A|W}} is irreducible with respect to clwg(A,z). So by Corollary 4.11,
either Az = 0 or Alyyr is nonsingular, ord4(z) = 1 and Al has no positive eigen-
value other than p,(A). Clearly, we can rule out the possibility that Az = 0. As
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Al is primitive with respect to clwo(A, z), by [3, Theorem 1.4.10] p;(A) is the
only peripheral eigenvalue of Al =.

“If” part: Let £ = 1+ - -+xk,zwhere x1,...,x are generalized eigenvectors of A
corresponding to distinct eigenvalues A1, ..., Ag respectively, and with A\; = p,(A).
By the proof for the “if” part of Corollary 4.11, there exists a polynomial v(t) with
positive coefficients such that v(A)z is a positive multiple of Eﬁ:‘zﬁ)“‘ =) (= x1),
the unique eigenvector of Az in clwy(A, ) and, moreover, degv(t) > dim WE,
so that v(A)x € riclwo(A,z). Replacing A by A/p,(A), if necessary, we may
assume that p;(A) = 1. Since 1 is the only peripheral eigenvalue of Aly=, we
have, limy, 0o A™(x2 + -+- + x;) = 0 and hence lim,, 0o A™x = z1. As 21 €
ri (clwg(A, x)), it follows that there exists a positive integer m such that A™z €
riwg(A, x) and hence (Alyr)™ is strictly positive with respect to clwg(A,z). Thus
Alwe is primitive with respect to clwg(A4, ). O

Corollary 4.13. Let A € M, (C) and let 0 # x € C". Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A|Wg§ is strictly positive with respect
to clwo(A,x) if and only if x is an eigenvector of A corresponding to a positive
etgenvalue.

Proof. “If” part: Obvious.

“Only if” part: Since A|W§ is strictly positive with respect to clwg(A, x), A|Wg]§
is also primitive with respect to clwy(A,x). By the proof for the “only if” part of
Corollary 4.12, clwg(A, z) is a pointed polyhedral cone generated by z, Az, ..., Alx
for some nonnegative integer [. As A is strictly positive with respect to

clwo(A, z), Alx € ri(clwo(A,x)) for i = 1,2,.... So we must have [ = 0 and
clwo(A, z) = pos{z}, i.e, z is an eigenvector of A corresponding to a positive eigen-
value. O

5. CONSTRUCTION OF CLOSED, POINTED INVARIANT CONES

For brevity, we relax our usage of the terms distinguished eigenvalues and distin-
guished eigenvectors. For A € M,,(C) and any closed, pointed A-invariant cone C,
if  is an eigenvector of A in C' corresponding to the eigenvalue \, we say x (respec-
tively, ) is a distinguished eigenvector (respectively, distinguished eigenvale) of A
(instead of Alspan,c) for C.

It is straightfoward to prove the following:

Lemma 5.1. Let C1,Cy be pointed cones in C". Then Cy 4+ Cs is a pointed cone if
and only if C; N (—Cq) = {0}.

Lemma 5.2. Let C1,Cy be closed, pointed cones in C™. The following conditions
are equivalent:

(a) cin (—CQ) = {0}

(b) C1 + Cy is pointed.

(c) C1+ Cq is closed and pointed.
Suppose, in addition, that C1,Cs are invariant under a matric A € My (C). For
1=1,2, let D; denote the cone generated by the distinguished eigenvectors of A for
C;. Then the following conditions are also equivalent to conditions (a)—(c).
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(d) C1 N (=C%) does not contain an eigenvector of A.
(e) The cone Dy + D3 is pointed.

Proof. The equivalence of (a) and (b) follows from Lemma 5.1.

(a) and (b) implies (c): Since Cy, Cy are closed cones and C1 N (—C2) = {0}, the
closedness of C] + Cs is guaranteed by a standard result in the theory of convex
sets (see, for instance, [17, Corollary 9.1.2]).

So conditions (a), (b) and (c) are equivalent.

Last Part: The implication (a)=-(d) is obvious.

(d)=(a): If C1 N (—C4) # {0}, then C; N (—C?>) is a nonzero closed pointed cone
invariant under A, and by the Perron-Frobenius theorem for cone-preserving maps,
A has an eigenvector in C1 N (—C?).

Note that for ¢ = 1,2, D; is a closed pointed cone, as C; is a closed pointed
cone and D; equals ®y[N(A — A) N C;], where the direct sum is taken over all
distinguished eigenvalues A of A for C;. In view of Lemma 5.1, condition (e) is
equivalent to the following:

(e)' D1 N —(D2) = {0}.

As the implications (a)=-(e)’ and ~(d)=-~(e)" are both obvious, (e) is clearly also
an additional equivalent condition. O

Lemma 5.3. Let A € M, (C), and let K, Ky be closed, pointed cones in C" in-
variant under A. Suppose that K1 + Ko is pointed. Then for every distinguished
eigenvalue X of A for K1 + Ko, we have

(K1 + Ko) NN(A= X)) = (KiNN(A=X)) + (KaNN(A—=XD)).
Thus the distinguished eigenvalues of A for K1 + Ko are precisely the distinguished
eigenvalues of A for Ky or for Ks.

Proof. 1t is clear that we have the inclusion
(Kl ON(A—)\I)) + (Kl ﬂN(A— )\I)) - (Kl —|—K2) QN(A—)\I)

To prove the reverse inclusion, let z = x1 + z9, with z1 € Ki,x2 € Ko, be an
eigenvector of A corresponding to A. Write each z; (i = 1,2) as u; + v;, where
u; € NY and v; € 6]9#75,\]\75. Clearly v1 + vo = 0. It suffices to show that ui,us
are each either the zero vector or an eigenvector corresponding to A\. Suppose not.
Then necessarily u1, us are both nonzero generalized eigenvectors of A corresponding
to A and with a common order m > 2. Without loss of generality, assume that
Pz, (A) > pz,(A). In view of the representation xo = ug + vo and an equivalent
definition of the local spectral radius, we have pg,(A) > pu,(A) = A. We contend
that pz,(A) = A. Once this is proved, we will have pg, (A) = pz,(A) = A. Assume
to the contrary that py, (A) > A. Then in the representation of v; as a sum of
generalized eigenvectors of A, there must be a generalized eigenvector, say y, that
corresponds to p,, (A), and as v;+ve = 0, —y also appears in the representation of vy
as a sum of generalized eigenvectors of A; hence py,(A) = py, (4A) > pay (A). As we
are assuming p, (4) > pz,(A), we obtain p,, (A) = pg, (A). Clearly, y (respectively,
—y) is also the generalized eigenvector that appears in the representation of z;
(respectively, of z2) as a sum of generalized eigenvectors of A that corresponds to
the eigenvalue p,, (A). Let p denote the order of y. Since z; € K, Alspanyi; € 7(K)

and ord(z;) = p (i = 1,2), by Lemma 4.4(i) we have Egp;;l)xi € K; fori=1,2.
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But Eé?l 1 =y, E;()zl —y and E(p Yy = (A — pg, )P~ 1E,()x) zi, it follows that
0+# Ep(pq)xl € Kin(—K. 2) In view of Lemma 5.1, this contradicts the assumption
]

that K7 + K> is pointed.
By what we have done above, py,(A) = pz,(A) = X and it is also clear that
we have ordg(xz;) = ordg(xze) = m, where m (> 2) is the common order of wu;

and uo. Now for ¢ = 1,2, we have, 0 # Ef,zz_l)mi = (A — MX)™ ly; and also

Eg\m_l)xl = —Egm_l)xg as

(A=A Yug+ug) = (A=A 2[(A=AXI)(u1 +u2)] = (A=A 2(A- X))z =
0.
So we obtain 0 # Eﬁ(,zfl):cl € K1 N (—Ky), which again contradicts the pointedness
assumption on K1 + Ko. O

Corollary 5.4. Let A € M,,(C) and let x1,...xp, k > 1, be vectors of C" and sup-
pose that A satisfies the local Perron-Schaefer conditions at x1, ...,z respectively.
Then the following conditions are equivalent :

(a) The cone clwo(A,z1) + -+ + clwo(A, xg) is closed and pointed.
(b) There exists a closed pointed A-invarnat cone in C™ that contains x1, . .., .

(¢) The cone pos{E pzz D:vi ci=1,...,k} is pointed.

When the equivalent condztions are satisfied, the set of distinguished eigenvalues
of A for clwo(A,x1) + -+ + clwo(A, zx) is {pz;(A) : i = 1,...,k} and the cone
genemted by the distinguished eigenvectors of A for clwg(A,x1)+ - -+ clwo(A, xx)

-1
is pos{E pxl )xi:i: 1,...,k}.

Proof. (a)=(b): When (a) is satisfied, clwg(A4, z1)+---+clwo(A, xi) is the desired
closed, pointed A-invariant cone.

(b)=(c): Suppose that there exists a closed, pointed A-invariant cone C' that
contains x1,...,x. For each i =1,...,k, by Lemma 4.4 (i) we have E,(,szz Y x; €
clwy(A, xl) C C, and hence pos{E p” l)xi ci=1,...,k} CC. As C is pointed,
so is pos{E Yo 1)332- ci=1,...,k}.

(c)=(a) and the last part: We proceed by induction on k. When k = 1,
conditions (a)—(c) are always satisfied and the last part of our result holds by
Lemma 4.4 (iii). Consider £k = p > 2, and assume that our assertion holds for
k = p — 1. By our induction assumption, the set of distinguished eigenvalues
of A for clwo(A,z1) + -+ + clwo(A,zp—1) is {pg(A) : ¢ = 1,...,p — 1}, and
as pz,(A) is the only distinguished eigenvalue of A for clw,(A,z,), by Lemma
5.3 the set of distinguished eigenvalues of A for clwy(A,z1) + -+ + clwo(A, zp)

is {pg;(4) : i = 1,...,p}. Our induction assumption also guarantees that the

cone clwg(A,z1) + -+ + clwo(A, zp—1) is closed and pointed, and the cone gener-

-1
ated by the distinguished elgenvectors of A for the latter cone is pos{E P )mi :

xr T 1 .
1= 1,. p—l} Smcepos{Ep” ,,}%—pos{El,fz )wi:z:l,...,p—l}

VP:):l 1)

equals pos{E,, x; i = 1,...,p} and is pointed, by Lemma 5.2, (e)=(c),
the cone cl wo(A,xl) + - 4+ clwo(A, zp) is also closed and pointed. It remains
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to show that D, the cone generated by the distinguished eigenvectors of A for
1
Woei Tl i = 1, pY. Tt s

z; i -
clear that we have the inclusion pos{E(Ii i 1 =1,...,p} € D. To prove
the reverse inclusion, let y € D and suppose that y corresponding to the distin-
guished eigenvalue A\. By Lemma 5.3 we can write y as y; + y2, where y; lies
in [clwg(A,x1) + -+ + clwo(A, zp—1)] N N(A — X) and hence, by the induction

(Vpaci _1)

clwo(A,z1) + -+ + clwo(A, zp), is precisely pos{E

VPzi - 1)

assumption, belongs to pos{E 1 =1,...,p — 1}, and y2 belongs to

clwg(A, z,) NN (A — AI), which is included in pos { E(Zm,, D, ) i view of Lemmma
4.4(iii); hence y € pOS{E(vpgci—D

Tq

x;:i=1,...,p+ 1}, as desired. O

Note that the real version of Lemma 5.4 (i.e., the version where M,,(C),C" are
replaced respectively by M,,(R), R™) also holds. With slight modification, the same
proof applies.

The following is clearly a necessary condition for the existence of an A-invariant
closed pointed cone that contains a given pair of vectors x, y:

For every pair of mnonnegative real numbers «,B, A satisfies the local
Perron-Schaefer conditions at ax + By and, moreover, we have, sp 4(ax + By) =
max{sp4(z),sp4(y)}, provided that o, 8 are both positive.

However, the condition is not sufficient as can be illustrated by the following exam-
ple:

Example 5.5. Let A = J3(1),2 = (0,0,1)" and y = (0, —1,0)T. Clearly, A satisfies
the local Perron-Schaefer conditions at x and y respectively, and we have spy(x) =
(1,3) = (1,2) = spy(y). It is readily shown that the above-mentioned necessary con-

dition is satisfied. Now pos {E,gl;”“_l)x,E,g:pyil)y} = pos {(1,0,0)T,(-1,0,0)T} =
span{(1,0,0)”} and is not pointed. By Corollary 5.4, there does not exist a closed
pointed A-invariant cone that contains both x and .

Next, for a matrix A that satisfies the Perron-Schaefer condition, we consider the
problem of constructing a proper A-invariant cone which is the sum of the closures
of finitely many A-cyclic cones.

Lemma 5.6. Let A € M, (C) be a nonzero nilpotent matriz. For any A-invariant
subspaces W1, ..., Wy of C"*, we have,
nullity (Alw, +...4w,, ) < nullity(Alw,) + - - - + nullity (A|w, ).

Proof. 1t is clear that we need only prove our assertion for the case k = 2, and
since every nilpotent operator on a finite-dimensional space can be written as a
direct sum of nilpotent operators, each with nullity one, we may also assume that
nullity (Alw,) = 1.

There is no problem if we have N (A|w,+w,) € N(Alw,) + N(Alw,). So we
assume that there exists w € (W1 +W2) NN (A) such that w ¢ N (Alw, ) +N (Alws,).
(Note that w ¢ W1 UW5,.) We can express w as w1 +wg with w; € Wy, i = 1,2. Since
W1, Wy are both A-invariant and w € N'(A), we have Alw; = —Alws € W1 NWs for
all positive integers i and, moreover, wi,wy are generalized null vectors of A with
a common order p > 1, and AP~ 1wy = — AP~ Ly is a (nonzero) null vector of A, so
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N(Alw,) € N(Alw,). We contend that (W1+W2)NN(A) = span{w}+(N (A ) Wa).
Once this is proved, our assertion for the case & = 2 and nullity(A|w,) = 1 will
follow, and we are done. It is clear that we have span{w} + (N(A) N Wg) -
(W1 4+ Wa) NN (A). To prove the reverse inclusion, let w' € [(W1 + Wa) NN (A)].
As there is no problem if w’ € W, hereafter we assume that w’ ¢ Ws. By what we
have done for w, we can write w’ as w] +w}, where w, € W;, i = 1,2, and w}, w) are
generalized null vectors of A with a common order p’ > 2. Let vy denote vo(Alw, ).
Recall that wy belongs to W7 and is a generalized null vector of A of order p. Since
Alw, is a nilpotent operator with nullity 1, every vector in Wj of order less than
vy has a pre-image under A in Wi. So we can find a vector x € Wj such that
AN TPy = w1 and {x, Az,..., A” 1z} is a basis for W;. As w] € W, we can write
wi as > % Ya;Alz; say, r = min{i : a; # 0}. We are going to show that we must
have r = 1y — p.

First, suppose r < vp—p. We have AV0~P~ ") = AV P~" (0 —wh) =— AP "), €
Ws. On the other hand, by applying A* P~ to both sides of the equality re-
lation w} = >0 1aZAZx and using the fact that APz = w;, we also obtain
AVTPTT = apwy 4 apy1Awy + -+ Gpgp1 AP Llw;. But a, # 0 and we have
ary1Awy + -+ + ar+p,1Ap_1w1 € W2 as A'w € Wy for all positive integers 4, it
follows that wi, and hence also w, belongs to Was, which is a contradiction.

Now suppose r > 1y — p. By applying A"""°P to both sides of the equality
relation APy = w; and using the fact that in this case we have w] = a, A"z +
aTHA’"_VO*p“wl + -+ a,,o,lAp_lwl, we obtain

AT—votptl

a, A" Py = a, A"x = w] — ap1 wy — - — a,,o_lApflwl.

But Aw; € Wy for all positive integer i, it follows that w}, and hence also w/,
belongs to W5, which is a contradiction.

So we must have r = vy — p. In view of wy = w — w; and wh = W' —w] =
w' — Zf _01 aT+ZA'w1, a little Calculation yields

w' = a;w 4 (wh — apwy + P appiAlwy) € span{w} + (N(A) N Wa),
as desired. O

Theorem 5.7. Let A € M, (R) (respectively, My (C)) satisfy the Perron-Schaefer
condition. Let m = max{nullity(A — X) : A € o(A)} (respectively, m' =
max{2nullity(4 — of), nullity(A — A\I) + nullity(4 — A\) : @ € R,A € C\ R}).
Then there exists a proper A-invariant cone K in R™ (respectively, in C"), which
is the sum of the closures of m (respectively, m') A-cyclic cones, but there is no
A-invariant proper cone in R™ (respectively, in C™) that is the sum of the closures
of less than m (respectively, m') A-cyclic cones.

Proof. We will treat the real case first and then deduce the complex case as a
consequence.

Let A € M,(R), and let Ay = p(A), Ag, ..., \x be the distinct eigenvalues of A.
For each i = 1,...,k, let m; denote nullity(\;] — A) or, equivalently, the number of
Jordan blocks in the Jordan form of A corresponding to A;, and let the sizes of the

OO

Jordan blocks associated with );, arranged in nonincreasing order, be I/, . .., L.

(Clearly l§ ) = »(4)-) Choose a Jordan basis 3 for C" associated with A such that
the generalized eigenvectors in [ corresponding to real eigenvalues are real and the
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generalized eigenvectors corresponding to conjugate complex eigenvalues occur in
conjugate pairs. Suppose the Jordan chain corresponding to the jth (1 < j < my)

Jordan block for \; (i = 1,...,k) is xg),xg), . 7$§f(1) (xg) being a generalized
2l
eigenvector of order ZJ(-Z) and x%) being an eigenvector).
2l
For i = 1,...,k, choose the] “top vector” of the first Jordan chain for A;, and

denote the sum of the “top vectors” by yi, i.e., y1 = a:&ll) + azgll) + o+ 37/(:1) Let
K, = clwg(A,y1). Note that by our choice of 3, if ;1 (1 < r < k) is a non-real
complex vector then ,; = x4 for some 5,1 < s < k;soy; € R” and K; C R". For

k=2,....,m,let K; = clwy(A,y;), where y; = xﬁ) —|—acg) —i—xéjl) —i—xéj) 4+ .- —i—x,(fl).

Here we adopt the convention that xl({) is taken to be the zero vector if j > m;.
Note that we also have K; C R" for 2 < j < k, and for j = 1,...,m, p,,(A) = p(A),
ord4(y;j) = vp(a) and A satisfies the local Perron-Schaefer condition at y;. Moreover,
E(prj -1 (1)

Py, y; equals 2V —i—x(j) if lj(.l) = Vp(a) and 2 < j < my, and equals T1ua)0

oy T 7 1vpa)
,1)

14 .
otherwise. So the cone pos{Epy:y] yj :j=1,...,m} is included in the simplicial

cone pos{xgjl,)pm) : l](.l) = Vy( A)} and hence is pointed. By the real version of Corollary

5.4 it follows that Ky + --- + K, is a closed, pointed A-invariant cone in R"™.
It remains to show that the cone Kj + --- + K, is full in R™. For j =1,...,m,

since xg) (t=2,...,k) appears in the representation of y; as a sum of generalized

eigenvectors of A, all vectors in the Jordan chain xl({), xg), e ,m(lj‘()i) lies in the A-
N

J
invariant subspace spancwo(A,y;)( = spancKj) of C*. (If j > m;, ignore the

argument.) Similarly, all vectors in the Jordan chain xgll),x%), el :L‘Sj)p(A)

in spancKj. For j = 2,...,mq, since :L'gll) + :c%) € spancK; and xgll) € spanck(y,

argjl) € spanc (K1 + Kj); hence, all vectors in the Jordan chain xgjl),w(lé), - ,mgzl
J

in spanc (K7 + K;). Thus, all vectors in 3 belong to spang (K + - -+ + Kp,); or, in
other words, spang(Kj + -« - + K,,) = C". But the cone Kj + - -+ + K, is included
in R™, so it is a full cone in R™.

Last Part. Let K be an A-invariant proper cone in R™ which is the sum of the
closures of p A-cyclic cones; say, K = clwo(A,u1)+-- - +clwo(A, up). Then we have
R" = spang K = spangwg(A,u1) + - - - + spangwo (A, up), which, in turn, implies
that C" = spancwg (A4, u1) + - - - +spancwo(A, up). Now let i be an eigenvalue of A
for which nullity(A — uI) = m. Then

N, *(A) = (spangwo(A, u1) N Ny*(A)) + -+ + (spangwo (A, u,) N N*(A)).

For each i = 1,...,p, if the subspace spangcwo(4,u,) N N,;*(A) is nonzero then the
restriction of A — ul to this subspace is a nilpotent operator with nullity 1. By
Lemma 5.6 it follows that m = nullity(A — ul) < p, as desired.

Now suppose A € M,,(C). We treat A as a linear transformation acting on C”
as a real vector space. As such, by [28, Lemma 8.1], A is similar to the matrix
diag(A, A). It is readily shown that the maximum geometric multiplicity of the
eigenvalues of diag(A4, A) equals m/. So our assertion follows from what we have
done for the real case. g

also lie

) lie
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Note that Theorem 5.7 does not say that if A satisfies the Perron-Schaefer condi-
tion, then every proper A-invariant cone can be written as the sum of the closures of
finitely many A-cyclic cones. Indeed, the latter is far from being true. For instance,
consider the case when A equals the identity matrix I,,. Clearly, every proper cone
in R™ is I,,-invariant. However, every non-polyhedral proper cone cannot be written
as the sum of the closures of finitely many I-cyclic cones, as every I-cyclic cone,
and hence also its closure, is a single ray.

For a closed pointed cone K in R™ (respectively, in C™), by the dual cone of
K, denoted by K*, we mean the (closed) cone {z € R™ : z'x > 0} (respectively,
{z € C": Re(z*z) > 0}).

Corollary 5.8. Let A € M, (R) (respectively, M,,(C)) satisfy the Perron-Schaefer
condition. For any closed pointed A-invariant cone C' in R™ (respectively, C™), there
exists a proper A-invariant cone K in R™ (respectively, C") which includes C'.

Proof. We give the proof only for the real case, as the complex case will follow as a
consequence.

Let C be a closed pointed A-invariant cone in R™. Choose any nonzero vector
z in the interior of the dual cone of C' in spanC. Then C\ {0} is included in

the open half-space {x € R" : 272 > 0}. Choose a basis {mgl) ,x&?} for (A —

v
p(A)I)”_lEp”(A), where v = v,4)(A) and 7 = dim(A — p(A)I)”_lE;(A), in such a
way that {ac%,), . ,l’g/)} is included in the closed half-space {z € R" : 2Tz > 0}
and extend it to a Jordan basis S for C™ associated with A in the standard way so
that the generalized eigenvectors corresponding to real eigenvalues are real and the
generalized eigenvectors corresponding to conjugate complex eigenvalues occur in
conjugate pairs. Now construct a proper A-invariant cone C’ in R™ (as the sum of
the closures of m A-cyclic cones, where m is the maximum geometric multiplicity
of the eigenvalues of A) in the way as described in the proof of Theorem 5.7. Note
that by construction p(A) is the only distinguished eigenvalue of A for C’ and
the cone generated by the distinguished eigenvectors of A for C’ is included in
pos{a:gllj), . ,3:57;)} and hence in the closed half-space {x € R" : 2Tz > 0}. But
C'\ {0} is included in the open half-space {z € R" : 2Tz > 0}. So C N (—C") does
not contain an eigenvector of A and by Lemma 5.2 K = C'+ " is the desired proper
A-invariant cone. O

Corollary 5.9. When A € M,,(C) satisfies the Perron-Schaefer condition, to the
list of equivalent conditions in Corollary 5.4, we can add the following condition:

(d) There exists a proper A-invariant cone in C" that contains x1,...,xk.

6. AUTOMORPHISMS
Theorem 6.1. Let A € M, (C) and let 0 # = € C". Consider the following
conditions:
(a) Alwr is nonsingular and the cone clpos{(A\W%a)ix ci=0,£1,+2,...} s
pointed (and Alye is an automorphism of the cone).
(b) There exists a proper cone C in WE containing x such that Alwz € Aut(0).
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c) There exists a closed, pointed cone C' in C™ containing x such that Alspan. ¢ €
pang

Aut(C).

(d) Alwe is nonsingular, Alyz and (A|Wlug)*1 both satisfy the Perron-Schaefer
condition.

(e) Let x = x1 + ... + xx be the representation of A as a sum of general-
ized eigenvectors of A corresponding to distinct eigenvalues A\i,...,\p re-
spectively. Then Ai,..., g are all nonzero, and there exist 7,7 such that

i = pz(A),orda(z;) = orda(x) and Aj = min{|\;| : 1 <4 < k},orda(z;) =
max{orda(z;) : |N| = Aj}.
Then (a), (b) and (c) are equivalent, and so are (d) and (e). Furthermore, we have

(a) = (d).

Proof. (a)=(b): The cone cl pos{(A|w, )"z : i = 0,+1,+2,...}, which is mapped
onto itself by A, is the desired proper cone in WX.

(b)=-(c): Obvious.

(c)=(a): Since A maps spangC onto spangC and WE is an A-invariant subspace
of spangC, A maps WE onto itself, i.e., Alwr is nonsingular. As Alspan,c € Aut(C)
and x € C, we have, (A|Spach)iac € C for i = 0,£1,%2,.... Note that we have
(Alspangc) "tz = (A|W§)_1x as the pre-image of z under Alspan,c must lie in WX,
Thus we have (Alspangc)'z = (Alwga)ix for all integers 7. So cl pos{(A\ng)ix D=
0,4+1,+2,...}, as a subset of C, is necessarily pointed.

By Theorem 3.6, (al)<(a2), condition (d) is equivalent to the following:

(d)" Alwe is nonsingular, and Alyr and (A|W5<)_1 both satisfy the local Perron-
Schaefer condition at x.

Condition (d)’, in turn, can be rewritten as condition (e).

(a)=(d): Note that condition (a) implies that the cones clpos{A‘z : i > 0}
and cl pos{((A|W91§)_1)ia: : i > 0} are both pointed. The former cone is the same
as clwg(A,z), and by Theorem 3.6, that clwg(A,z) is pointed is equivalent to
the condition that Alyr satisfies the Perron-Schaefer condition. By applying (a
more general version of) Theoem 3.6 to (A|W§)_1, we also conclude that (A|W£§)_1
satisfies the Perron-Schaefer condition. g

For the conditions (a)-(e) of Theorem 6.1, we do not have (e) = (a). For instance,
let A = J,(1) with n even, and take z to be the nth standard unit vector e,. Clearly,
condition (e) is satisfied. In this case, we have WX = R" and so Alwr = A. If the
cone clpos{J,(1)%e, : i =0,41,42 ...} is pointed, then J, (1) is its automorphism.
On the other hand, according to [28, Theorem 7.13], when n is even, there does not
exist a proper cone K in R™ such that J,,(1) € Aut(K). So the cone clpos {J,(1)%e,, :
i=0,£1,£2,...} is not pointed, i.e., condition (a) is not fulfilled.

Condition (a) of Theorem 6.1 suggests the following observation:

Remark 6.2. If \j,..., )\, are distinct positive real numbers, then there exists a
proper cone K in R™ such that diag(A1,...,\,) € Aut(K).

To see this, denote diag(\1, . .., An) by A and let K =clpos { Az :i=0,41,42,...},
where z = (1,1,...,1)T € R”. Then WE =R". As K C R", K is pointed; so K is
a proper cone in R™. It is clear that we have A € Aut(K).
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Theorem 6.3. Let A € M,,(C) and let 0 # = € C". Then clwy(A, x) is pointed
and A|W}§ € Aut(clwo(A, x)) if and only if A’WB is nonzero, diagonalizable (over
C), all eigenvalues of Alye are of the same modulus and p;(A) is an eigenvalue of
A|WR.

Proof. “Only if” part: Since clwg(A, x) is pointed, A must satisfy the local Perron-
Schaefer condition at z. So p;(A) is an eigenvalue of Alyyx.

As Alwr € Aut(clwo(4,2)), (A]Wg%a)*l € m(clwo(A,z)). So Alyr is nonzero,
and p((A|W§)_1) is a distinguished eigenvalue of (A|W;§)_1 for clwg(A,z). The
latter, in turn, implies that (p((A]y=z)~1)) "t is a distinguished eigenvalue of A|yr
for clwy(A,z). Now according to Lemma 4.4(iil), pz(A)(= p(Alwz) is the onlif
distinguished eigenvalue of Ay for clwo(A,z). So we have (P((A|W;§)_1))_1 =
pz(A). But (p((Alye)~1))~! is the least modulus of the eigenvalues of Ay, it
follows that all eigenwvalues of Alyr have the same modulus. It remains to show
that sz(A)(A|W§ = 1.

Since Aly= € Aut(clwo(A,)), there exists y € clwo(A4,z) such that Ay = .
Then Ay; = x1, where z1 (respectively, y1) is the generalized eigenvector of A
corresponding to p,(A) that appears in the representation of x (respectively, of y)

as a sum of generalized eigenvectors of A. So x1,y1 both belong to WE; indeed, y1
equals S (A= pl) L+ S (A= pl)Y 2y 4+ SR (A= plyay+ 1y, where
for brevity we denote p,(A) and v, (4)(Alyr) respectively by p and v, because the

latter vector is the unique pre-image of x1; under A in W;E. Note that if v > 1
then in the preceding representation of y; as a linear combination of the generalized
eigenvectors 1, (A — pI)x1,...,(A — pI)*“lz; of A, some of the coefficients are
negative. On the other hand, since y € clwg(A4, z), for some p,,(t) € Ry[t],m =
0,1,2,..., we have y = limy,—,00 pm(A)z, and hence y1 = limy, 00 P (A)z1. Then
a little calculation shows that each p,,(A)x1, and hence also vy, is a nonnegative
linear combination of the generalized eigenvectors x1, (A—pI)z1, ..., (A—pl)" L.
So we arrive at a contradiction. Therefore, we must have v = 1, as desired.

“If” part: Under the given assumptions, clearly A satisfies the local Perron-
Schaefer condition at z; so Alyyr € m(clwo(A,z)) and as Alye is nonzero, diago-
nalizable, and with all eigenvalues of the same modulus and p;(A4) € o(Alyr), by
28, Theorem 5.9,(a)<(c)] we have Aly= € Aut(clwy(4,z)). O

Theorem 6.4. Let A € M,,(C). Consider the following conditions:

(a) A is nonzero, diagonalizable (over C), and all eigenvalues of A are of the
same modulus.

(b) There is a subsequence of ((ﬁA)k)keN that converges to I.

(c) A is nonsingular and there is a subsequence of ((ﬁA)k)keN that converges
to p(A)A~L.

(d) A is nonsingular and A~' € clwy(A).

(e) I €clwi(A).

(f) L4 maps clwy(A) onto itself.
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We always have (a)<(b)<(c), (d)<(e)<(f), and (a)=(d). When A satisfies the
Perron-Schaefer condition, conditions (a)—(f) are all equivalent.

Proof. (a)=(b): Modify the proof of [28, Theorem 3,9(i)] or prove it directly.
(b)=(c): Suppose that ((A/p(A))*");en converges to I. As I is nonsingular,
(A/p(A))¥ is nonsingular for i sufficiently large; hence A is nonsingular, and

 converges to p(A)A~L.

Retracing the above argument backward, we readily obtain (c)=-(b).

(b)=(a): Clearly, condition (b) guaranteeds that p(A) > 0. Suppose that
((A/p(A))*);en converges to I. Then the said sequence is bounded, and so for any
peripheral eigenvalue A of A, necessarily, vy(A) = 1. On the other hand, for any
eigenvalue A of A, we also have, limiﬁm(ﬁ)ki = 1, which implies that |\| = p(A).
Thus, the eigenvalues of A are all of the same modulus, and condition (a) follows.

(¢c)=(d): Obvious.

(d)=>(e): Since A=t € clwg(A), there exist p,,(t) € Ry [t],m =1,2,..., such that
lim,;, 500 P (A) = A7L. Then we have lim,, 00 Apm(A) = I and hence I € clwy(A).

(e)=(d): Since I € clwy(A), there exist p,(t) € Ry[t],m = 1,2,..., such that
lim,;, o0 Apm(A) = I. Then A is necessarily nonsingular and we have A~! =
lim,, 500 P (A). So A71 € clwg(A).

(d) and (e) = (f): Since A is nonsingular, so is £4. Clearly, we have wy(A4) =
pos{I}+wi(A) = wo(A). On the other hand, we also have I € clw;(A), so wo(A) C
clwy(A) and hence clwg(A) = clwi(A). Now since Lawp(A) = wi(A) and L4 is
nonsingular, we have Laclwg(A) = clwi(A) = clwg(A).

(f)=-(d): Since I € wg(A), by condition (f) there exists B € clwg(A) such that
AB = 1. So A~! exists, equals B, and belongs to clwg(A).

(d) and (e)=-(a) (assuming that A satisfies the Perron-Schaefer condition): Since
A is nonsingular, p(A) > 0. Replacing A by ﬁA, hereafter, we assume that
p(A) = 1. As I € clwi(A), there exist pn,(t) € Ri[t],t = 1,2,..., such that
I = limy, 00 Apm(A). Then limy, 00 Apm(A) = 1 for every eigenvalue A of A. In
particular, since 1 € o(A), we have limy, 00 pn(1) = 1. Assume to the contrary
that A has an eigenvalue A with modulus less than 1. For each m € Z., since
Pm(t) € Ry[t] and [A] < 1, we have, [Apm(A)] < [Alpm([Al) < [Alpm(1). Letting
m — 00, we obtain lim;, oo |[Apm(A)| < |A| < 1, which is a contradiction.

Next, we show that v, 4)(A) = 1. Assume to the contrary that the Jordan form
of A contains a Jordan block J.(1) with » > 2. Since limy,—00 Apm(A4) = I, we
have limy, o0 Jr(1)pm(J-(1)) = I. By considering the (1,1) and (1,2) entries of
both sides, we obtain, lim; o P (1) = 1 and limy,— o0 (P}, (1) + pm (1)) = 0; hence
limy;,—y00 P), (1) = —1, and so p, (1) < 0 for m sufficiently large, which violates the
assumption that pp,(t) € Ry[t]. So v,4)(A) = 1, and since A satisfies the Perron-
Schafer condition, we also have v(A) =1 for all peripheral eigenvalues, and hence
for all eigenvalues, A of A. This establishes condition (a). O

Remark 6.5. The following conditions are also equivalent to the equivalent condi-
tions (d)—(f) of Theorem 6.4:

(el) I € clwg(A) for every positive integer k.

(e2) I € clwg(A) for some positive integer k.
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Proof. Clearly we have the implications (el)=-(e) and (e)=-(e2).

(e2)=(d): Suppose that I € clwg(A) for some positive integer k. Then I =
limy,, 00 A¥pp(A), where p,(t) € Ry [t],m = 1,2,.... The latter condition implies
that A is nonsingular and we have A~ = lim,, 00 A* 1p,(A) € clwp_1(A) C
clwp(A), so condition (d) holds.

(d)=(el): Suppose A™! = lim, 00 pm(A), where p,,(t) € Ry[t],m = 1,2,...
For any positive integer k, we have (A7) = lim,, oo pm(A)F € clwg(A). So
I =limy 00 AFp(A)* € cluwg(A). O

Remark 6.6. According to [28, the complex version of Theorem 5.9], the condition
p(A) € o(A), together with condition (a) of Theorem 6.4, is equivalent to the
condition that there exists a proper cone K in C" such that A € Aut(K) and A has
an eigenvector in int K. Four other equivalent conditions can also be found in the
same theorem.

Before we conclude this section, we provide the proofs for two results which were
announced but not proved in the review paper [26, Theorem 6.10 and Theorem
6.11]. We prove a lemma first.

For a closed pointed cone K, we denote by ExtK the set of nonzero extreme
vectors of K.

Lemma 6.7. Let K1, Ko be closed pointed cones in R™, both of dimension at least
2. Suppose that spanK; NspanKy = span{u}, where u € ri (K1)Nri (K3). If, at least
one of the cones K1, Ky is indecomposable or K1 and Ky are both 2-dimensional,
then K1 + Ko is an indecomposable closed, pointed cone and u € ri (K1 + K3).

Proof. The assumption spanK; N spanK, = span{u} clearly implies that Kj N
(—K3) = {0}, so K1+ K> is a closed pointed cone. As u € ri(Ky)Nri(K2), using the
known fact that for a convex cone K, y € riK if and only if for any 0 # z € spanK
there exists ¢ > 0 such that y £ ex € K, one readily shows that u € ri (K + K3).
It remains to prove that K; + K5 is indecomposable.

If K1, K5 are both 2-dimensional, then clearly K1+ K> is a 3-dimensional indecom-
posable polyhedral cone with 4 extreme rays. So assume that one of the cones K1, K»
is indecomposable, say, K. Assume to the contrary that K 4+ K> is decomposable.
Then there exist nonzero closed pointed cones C, Cy such that K1 + Ko = C1 @ Cs.
Clearly, Ext(K; + K2) C ExtK; U ExtKs. To prove the reverse inclusion, consider
any x1 € ExtK, and suppose we have z1 = (y1 +y2) + (21 + 22), where y1,2; € K3
and s, 20 € K. After rewriting, we obtain x1 — y; — 21 = y2 + 22 = au for some
a > 0. Hence 1 = y1 + 21 + au, and as 21 € Ext(K1), u € riK; and dim K # 1
it follows that y1, z; are both nonnegative multiples of x1. Then from the relation
Yo + 2o = 0 and the pointedness assumption of Ko we also obtain yo = 25 = 0. This
shows that x; is an extreme vector of K + Ks; so we have ExtK; C Ext(K; + K3).
Similarly, we also have ExtKy C Ext(K; + K3). This establishes the equality rela-
tion Ext(K; + K3) = ExtK; U ExtKy. Now since Ext(C @ C2) = ExtC) U ExtCy
and K is indecomposable, we have either ExtK; C Ext(C or Ext K1 C ExtCs; say,
the former holds. Then K7 C C1, and as u € Ky and C is included in the relative
boundary of C; @ Co(= K1 + K3), u ¢ ri (K1 + K2). This contradicts what we have
obtained at the beginning of the proof. O
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Theorem 6.8. For an n X n real matriz A, with n > 3, there exists an indecom-
posable proper polyhedral cone K such that A € Aut(K) if and only if A is nonzero,
diagonalizable, p(A) is an eigenvalue of A, and every eigenvalue of A equals p(A)
times a root of unity.

Proof. “Only if” part: Here we adapt an argument, due to Pullman [16], given in
some detail in [28, Section 3]. Since A € Aut(K), A permutes the extreme rays of
K. Let 74 denote the induced permutation. As a permutation 74 can be written as
a composition of unique (up to the ordering) disjoint cycles. By abuse of language,
74 distributes the extreme rays of K into various (disjoint) cycles. Suppose that o
is one such cycle and is of length d. Choose a nonzero vector, say z, from one of
the extreme rays in the cycle. Then there exists a positive real number A such that
Ady = Xz, Let v, = Z?:_ol A"'Alz. Then a little calculcation reveals that v, is,
in fact, a distinguished eigenvector of A for K corresponding to the distinguished
eigenvalue \. Since coreg(A)(= K) is polyhedral and indecomposable, by [28,
Corollary 3.3], p(A) is the only distinguished eigenvalue of A for K. So, necessarily,
we have A = p(A). Let m be the order of the permutation 74 or, in other words,
the least common multiple of the length of the cycles associated with 74. Then
we have A™ = p(A)™. So A is nonzero, diagonalizable and every eigenvalue of A
equals p(A) times a root of unity, and certainly p(A) is an eigenvalue of A.

“If” part: By [28, Theorem 7.9 and Theorem 5.9] we can find a proper polyhedral
cone K such that A € Aut(K). The difficult part of the proof is to show that there
is one such K which is indecomposable. This is achieved by taking the sum of some
closed, pointed cones, on each of which (a restriction of) A is an automorphism,
and applying Lemma 6.7 repeatedly (cf. the argument given in the proof of [28,
Lemma 7.6 and 7.8]).

Normalizing A, we may assume that p(A) = 1. Then R" is a direct sum of
the following A-invariant subspaces: N(A — I), N(A + I) (provided that —1 €
o(A)) and certain 2-dimensional A-invariant subspaces with basis {z,y} for which
Az = cosfx +sinfy and Ay = —sinfx + cosfy, where 6 is a pth root of unity
for some positive integer p (provided that A has non-real complex eigenvalues).
Choose any nonzero vector u € N (A —1I). If dimN(A —I) =r > 1, choose a basis
{u,ui,...,up—1} for N(A — I) and let K; denote the polyhedral cone generated
by the (extreme) vectors uy,...,uq—1,2u — u1,...,2u —u,—1. Then K is a proper
polyhedral cone in N (A — I) such that u € riK; and Alspank, € Aut(Ky). If
dimN(A+1I)=s > 0, choose a basis {v1,...,vs} for N(A + I) and let K5 be the
polyhedral cone generated by the (extreme) vectors vy, ..., vs, 2u — vy, ..., 2u — vs.
Then K> is a pointed polyhedral cone such that u € riKy and Alspank, € Aut(K>).
Corresponding to a 2-dimensional A-invariant subspace span{z,y} described above,
we can also construct a 3-2(]i€imension%lkindecomposable pointed polyhedral cone K3

s s

with extreme vectors cos =TT sin > yTu, k=0,....,p—1 (and in case p = 3,

we may have to replace it by pos{cos %Tﬂ x + sin 2’% y+u:0<k<5}in order to
guarantee indecomposability).

The desired indecomposable proper polyhedral cone can be constructed by taking
the sum of suitable pointed polyhedral cones on which A is an automorphsim. We
illustrate the argument by considering the case dimN(A — I) > 1. If 1 is the only
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eigenvalue of A, then since n > 3, it is readily shown that K7 is indecomposable (see,
for instance,[23, proof of Theorem 2]), and so it is the desired proper polyhedral
cone. If Ky exists, then by Lemma 6.7 K; + K> is an indecomposable pointed
polyhedral cone such that u € ri(K; + K3). As A permutes the extreme rays of
Ki,i = 1,2, A also permutes the extreme rays of K1 + Kz; hence Algpan(i,+K,) €
Aut(K +Ks). If K1+ K5 is a proper cone in R", we are done. Otherwise, there exists
a K3, and by Lemma 6.7 K7 + Ko + K3 is an indecomposable pointed polyhedral
cone such that u € ri(K7 + K2 + K3) and Algpan(k, 4+ Ko+ K3) € Aut(K1 + Ko + K3).
If K1 + K9 + K3 is a proper cone in R, then we are done. Otherwise, we can add
a different K3 and continue the process until we obtain the desired proper cone.
Similarly, we can also treat the case when only K; and some K3s exist. O

For completeness and for possible future use, we would like to add that with a
little more work Lemma 6.7 can be strengthened as follows:

Remark 6.9. Let K7, K5 be closed pointed cones in R", both of dimension at least
2. Suppose that spanK; N spanKy = span{u}, where u € ri (K1) Nri(K2). Then
K; + K3 is an indecomposable closed, pointed cone and u € ri (K; + K3).

Theorem 6.10. For an nxn real matriz A, there exists a proper polyhedral cone K
in R™ such that A € Aut(K) if and only if A is nonsingular, and for any eigenvalue
A of A, X equals |\| times a root of unity and |\| is also an eigenvalue of A.

Proof. “Only if” part: Since A € Aut(K), A is clearly nonsingular. Let 74 denote
the permmutation induced by A on the set of extreme rays of K, and let m be the
order of 74. By an argument given in the proof for the “only if” part of Theorem
6.8, we find that each nonzero extreme vector of K is a distinguished eigenvector of
A™ (for K) or, more precisely, we have ExtK C @), 4N (A™ — A1) N ExtK],
where o4(A) is the set all nonzero distinguished eigenvalues A of A. From the
latter inclusion relation we obtain K = €p Aeoq(A) Ky, where K denotes the closed
pointed cone N'(A™ — A"I) N K; hence 0(A) = Uxey,(4)0(Alspank, ). Now for each
X € 0g(A), since t™ — X™ is an annihilating polynomial for Alspank,, the spectrum
of Alspank, consists of A together with A times some mth roots of unity. So our
assertion follows.

“If” part: In this case R™ admits a direct decomposition R = W7 @ --- Wy,
where each W; is A-invariant and o(Alyw,) consists of p(A|w,) (different from zero),
together with p(Alw,) times some roots of unity. By the “if” part of Theorem 6.8,
for each i, there exists an (indecomposable) proper polyhedral cone in W; such that
Alw, € Aut(K). Let K = K1 & --- @ Kj. Clearly, K is a proper cone in R” and we
have A € Aut(K). O

7. LOoCAL PERRON-FROBENIUS THEORY FOR CROSS-POSITIVE MATRICES

Let K be a proper cone in C" and let A € M,,(C). A is said to be cross-positive
on K if for all x € K,z € K*, Re(z*z) = 0 implies Re(z*Az) > 0; A is said to
be exponentially K-nonnegative if e € 7(K) for all nonnegative integers t. It is
known that A is cross-positive on K if and only if A is exponentially K-nonnegative.
(For other equivalent definitions and the Perron-Frobenius type theorems for the
class of cross-positive matrices, see [9], [21], [22] and [2].)
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By the spectral abscissa of a matrix A, denoted by £(A), we mean the maximum
of the real part of the eigenvalues of A. By the local spectral abscissa of A at =z,
denoted by &,(A), we mean the quantity &(Alw, ).

The following result is stated, without proof, by Elsner ([8, Satz 4.1]):

Theorem C. For an n X n real matriz A, the following conditions are equivalent:
(a) £(A) € 0(A) and ve(a)(A) = va(A) for all X € o(A) with Rel = §(A).
(b) There exists a proper cone K in R™ such that A is exponentially K -nonnegative.

Whereas the implication (b)=>(a) follows readily from the fact that a K-nonnegative
matrix satisfies the Perron-Schaefer condition, the reverse implication seems not ob-
vious. One purpose of this section is to supply a proof for the reverse implication.

For A € M,,(C), we refer to condition (a) of the preceding theorem as the Elsner-
Schneider-Vidyasagar condition or, in short, the ESV condition.

We also say A € M, (C) satisfies the local ESV condition at x if in the rep-
resentation of x as a sum of generalized eigenvectors of A there is a generalized
eigenvectors y corresponding to &, (A), and moreover the order of y is not less than
that of any other generalized eigenvector in the representation that corresponds to
an eigenvalue with real part equal to &, (A).

Lemma 7.1. Let K be a proper cone in C". If A is cross-positive on K then A
satisfies the local ESV condition at x for every x € K.

Proof. Consider any 0 # x € K. Let A1,..., A\ be the distinct eigenvalues of
Alw,. According to Lemma 2.3, the Jordan canonical form of Alw, is J,, (A1) ®
o+ @ Jyp, (Ag), where, for each i, n; = vy, (Alw,). Consider any to > 0. As the
derivative of the analytic function f(z) = e!°* has no zeros in the complex plane,
by a known result concerning the elementary divisors of functions of matrices (see,
for instance, [12, p.313, Theorem 7(a)]), the Jordan canonical form of el04Iwz is
Ty (e10M) @ - @ T, (€M), Note that p(efodiwe) = elo&(A) Since efo4 is K-
nonnegative (as A is cross-positive), 4|y, which is the same as ef04Wz satisfies
the Perron-Schaefer condition. So p(e'o4ws) is an eigenvalue of e®04IWz= with index
not less than that of any other eigenvalue of 04wz with the same modulus. To be
specific, say, e’ = p(efo4lws). Then, we have, n1 > n; whenever |ef0Ai| = |efo]
or, equivalently, whenever Re\; = ReA;. Now choose a positive real number ¢y such
that to ¢ {t : t > 0,t = %ﬁ'j,p an integer, Rel; = £;(A)}. With such choice of

to, the condition e'oM = efo&+(4) guarantees that A\; = &,(A). This proves that A
satisfies the local ESV condition at x. g

Lemma 7.2. Let K be a proper cone in C" (or R™). If A is cross-positive on K
then A satisfies the ESV condition.

Proof. We modify the argument given in the proof of Lemma 7.1. Now let A1, ..., Ax
be the distinct eigenvalues of A, and choose a positive real number ¢y such that
to & {t:t>0,t= 2 pan integer, Re); = £(A)}. Since A is cross-positive on K,

Irn)\j ’
e'04 is K-nonnegative and hence satisfies the Perron-Schaefer condition. With our

choice of tg, the latter condition implies that A satisfies the ESV condition. O
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For convenience, hereafter, we extend the usage of the terms distinguished eigen-
values and distinguished eigenvectors to the class of cross-positive matrices. That
is, when A is cross-positive on K, if 0 # & € K and A € C satisfy Az = Ax,
we say x (respectively, \) is a distinguished eigenvector (respectively, distinguished
eigenvalue) of A for K.

By Lemma 7.1 we readily obtain the following analogous result of Remark 2.7.

Remark 7.3. Let K be a proper cone in C". If A is cross-positive on K, then
every distinguished eigenvalue of A for K is a real number.

Theorem 7.4. Let A € M,(C) and let 0 # x € C". The following conditions are
equivalent :

(a) A satisfies the local ESV condition at x.

(b) Alwz (or Alw,) satisfies the ESV condition.

(c) The cone cl(pos{etdz : t > 0}) is pointed.

(d) There exists a proper cone K in WX containing x such that Alwe is cross-
positive on K.

(e) There exists a closed pointed cone K that contains x such that Alspan,r 15
cross-positive on K.

(f) There exists a proper cone K in W such that A\Wg is cross-positive on K.

Proof. In view of Remark 2.5 and an equivalent formulation of the ESV condition
given in terms of the minimal polynomial (cf. Remark 2.1), it is clear that Alyz
satisfies the ESV condition if and only if A|y, satisfies the ESV condition.

The equivalence of (a) and (b) follows from Lemma 2.3. The implications (d) =
(e) and (d) = (f) are both obvious.

(f)= (b): Apply Lemma 7.2 to Alye.

(e) = (c): Since A is cross-positive on K and z € K, we have !4z € K for all
t > 0; thus clpos{e’dz : t > 0} C K. But K is pomted hence so is clpos{edx :
Z 0}.

(c)=(d ) Note that for any ¢ > 0,4 € clwy(A). So we have
spang{etdx : t > 0} C spangclwg(A, ) = spangwy (A, z) = WE.

. . tA_ o
Since A = lim;_,o+ “ L for all nonnegative integers k, we also have,

7
hence spangwg(A, z) C spang{e!4z : t > 0}. This shows that spang{e!4z : t > 0}
equals the A-invariant subspace WQI:R. If the cone clpos {etAx : t > 0} is pointed,
then it is a proper cone in W;:R that contains z. Clearly the cone is invariant under
e*4 for all nonnegative integers s. So it is the desired proper cone in WX,
(a)=(c): Let x = x; + --- + x, where z1,...,x; are generalized eigenvec-
tors of A corresponding to distinct eigenvalues Aq,..., A; respectively and with
A1 = maxj<;<x Re);. If the cone cl(pos{e!tz : ¢ > 0}) is not pointed, we
can find convergent sequences (Ym)mez, » (2m)mez, in pos{edz,t > 0} such that

(m)
liMy, oo Y = — liMy, o0 2 # 0. For each m, we have, y,, = Zl lal( )e LAy

for some k,, € Z, and some nonnegative real numbers al( ), sl(m),m =1,...,kn,

k
AFx = lim,_,g+ (etA;I> x € spang{ettz : t > 0};
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and z, = Zlizl bl(m)e"l(m)Ax for some i,, € Z; and some nonnegative real num-

bers b(m) rl(m),l =1,...,imy. For each m, let p,,(t) = Zf;”l al(m)esgm)t and g, (t) =
i b(m) "¢, Then Ym = pm(A)z and 2, = g (A)z. A little calculation yields
PR (1) = S af™ (s e for all j € Zy.,

and a similar expression for q(j )(t). From the equality relation limg,, oo ¥m =

—lim, 00 2 We obtain limy, oo (Pm + gm)(A)z; = 0fori = 1,... k. Now we
have o)
(b + a) () = S0 BRHED00 (4 3, 1)y
and hence '
limm%oo(p%) + q,(ﬂb))()\l) =0forj=0,...,vy — L
Similarly, for ¢ = 2,...,k, we also have

Tt o0 (P + qﬁ,%))(Az) =0 forj=0,vy —1
For j =0,...,u\ — 1 We have

0 < [pf) ()| = 7 af™ (5™ et™ ™ < (o) 4+ ¢i) (M),
which implies lim,, o0 pgn)(/\l) =0.

Consider \;,2 < i < k with Re); = A1. By the local ESV condition at x,
vy, < V)\l For j =0,. —1, we have

m s m) m m m 'S(T”) j
0< [P (A >r<zl o ( Yles " ) = pm al™ (s™)est M = pd) (h);
thus, limym—e0 pi (A;) = 0.

Now consider \; with Re\; < A;. Let C denote the circle |z — \j| = A —
Re \; in the complex plane Noting that maxyec [pm(w)| < pm(A1), by Cauchy’s

inequality, we have 0 < |10m )] < mpm()\l) thus, lim,;, 00 pgn)()\i) =0.
We have shown that llmmﬁoopﬁn)()\i) =0fori=1,....,kand j = 1,...,v), —

7

1. Since pp(4) = S8 DI P _1 pm e i) (A — \;T)iz; and ym = pm(A), We obtain
limy, 00 Ym = 0, which is a contradlctlon O

Before proceeding further, we need to introduce the concept of real spectral pair
of a vector relative to a matrix.

Let A € My,(C) and let 0 # = € C". Let z = x1 + --- + x} be the repre-
sentation of x as a sum of generalized eigenvectors of A corresponding to distinct
eigenvalues A1,..., \; respectively. By the real order of x relative to A, denoted by
ord% (), we mean max{ord4(z;) : Re(\;) = £+(A)}. We denote the ordered pair
(€2(A),ord5 () by spf(z) and refer to it as the real spectral pair of x relative to
A. We also adopt the convention sp% (0) = (0,0).

Using the definition of real spectral pair of a vector and the fact that if x; is a
generalized eigenvector of A corresponding to A; then for any ¢t > 0, e*4z; is also a
generalized eigenvector of A corresponding to A\; and with the same order as x;, then
one can readily establish the following (cf. the corresponding properties for spectral
pairs as given in [29, Remark 4.1]):

Remark 7.5. For any A € M,,(C), z,y € C", 0 # X € C, we have

(i) sp(\z) = sp%(z).
(ii) sp%(e!tx) = sph () for any nonnegative integer t.
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(iii) sp% (2 + y) = max{sp%(x),sp%(z)}, where the maximum is taken in the
sense of lexicographic ordering.

Borrowing the argument given in the proofs for Lemma 4.1 and Theorem 7.4, (a)
= (c), one can obtain the following:

Lemma 7.6. Let A € M, (C) and let 0 # = € C™. Suppose that A satisfies the
local ESV condition at x. Then:
(i) For any 0 # y € clpos {e!dx : t > 0}, we have, &,(A) = &,(A) and sp% (y) <
sp ().
(ii) For any 0 # y € pos {e!z : t > 0}, we have, sp%(y) = sp ().
We will make use of the following known result ([27, Theorem 3.2]): If A is

s ve—1
cross-positive on K, then Eé(j) )(A) € m(K), where ve = vg(4)(4).

Lemma 7.7. Let A € M, (C) and let 0 # x € C". Suppose that A satisfies the
local ESV condition at x. Then &, (A) is the only distinguished eigenvalue of A for

clpos {etdx : t > 0} and (up to multiples) Eé:ii;;‘)_l)(A)m is the unique distinguished

eigenvector of A for clpos {e!dz : t > 0}.

Proof. Since A satisfies the local ESV condition at x, by Theorem 7.4 (and its proof),
spangcl pos {ef4z : t > 0} = WE and Al is cross-positive on cl pos {et42 : t > 0}.

By applying [27, Theorem 3.2] to Alyyr, we find that the eigenvector E(:”EX)A)*D (A)x

of A belongs to clpos {e!4z : t > 0}. Since Al is a cyclic operator, each of its
eigenvalues and, in particular, the eigenvalue £, (A), has geometric multiplicity 1.
Now let v be a distinguished eigenvalue of Alyr for clpos {et42 1 t > 0} and let w
be a corresponding distinguished eigenvector. By Lemma 7.6 we have a = §,,(A4) =
£y, (A). So we can draw the desired conclusions. O

Lemma 7.8. Let A € M,(C). Let Ky,Ky be closed, pointed cones in C" and
assume that Alspany; 95 cross-positive on K; for i =1,2. Suppose that K1 + K is
pointed. Then for every distinguished eigenvalue A of A for K1 + Ks, we have

(K1 4+ K) NNA—-XM) = (EK1NN(A—= X)) + (K1 NN(A—XI)).
Thus the distinguished eigenvalues of A for K1 + Ko are precisely the distinguished
eigenvalues of A for Ky or for Ks.

Proof. Let \j = 0; + vV—1w; (0j,w; € R), j = 1,...,n, be the eigenvalues of A.
Choose a positive real number ¢y such that
to g {t:t>0,t= 2P an integer, 0; = 0%, wj # Wi}

wj—wy’
According to the proof of [21, Lemma 8], e'0% £ e!o* whenever Aj # A\, and for
each j, we have V(A — \;I) = N (el — eoAi ). So A is a distinguished eigenvalue
of A for K (respectively, for Ky, K1 + K3) if and only if e is a distinguished
eigenvalue of e'04 for K (respectively, for Ko, K1 4+ K>), and a similar remark can
be said for the distinguished eigenvectors. By applying Lemma 5.3 to e04, we can
draw the desired conclusions. O

Lemma 7.9. Let A € M, (C). Let z1,...x5,k > 2, be vectors of C" and suppose
that A satisfies the local ESV condition at x1, ...,z respectively. Let K denote
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the cone clpos{etdzy : t > 0} + --- + clpos{etdxy, : t > 0}. Then the following
conditions are equivalent:

(a) The cone K is closed and pointed.
(b) There exists a closed, pointed cone C' in C™ such that C' contains x1, ..., Xk
and Alspan,c 15 cross -positive on C.

(¢) The cone pos{E ng()m )(A)xi ci=1,...,k} is pointed.

When the equivalent conditions are satisfied, the set of distinguished eigenvalues
of A for K is {&:,(A) :i =1,...,k} and the cone generated by the distinguished
eigenvectors of A for K is pos{E( sy ()A) )(A)l‘i ci=1,...,k}.

Proof. (a)=(b): For i = 1,...,k, since A satisfies the local ESV condition at z;,
A\W]R is cross-positive, and hence exponentially nonnegative, on clpos{e*4z; : t >

0}. Thus A\Wuze is exponentially nonnegative, and hence cross-positive, on K

(b)=(c): The argument is similar to that given in the proof for Corollary 5.4,
(b)=(c), except that now we apply Lemma 7.7 instead of Lemma 4.4.

(c)=(a) and the last part: The argument is again similar to that given in the proof
for the corresponding part of Corollary 5.4. Here instead of invoking Lemma 4.4(iii)
and Lemma 5.3, we invoke Lemma 7.7 and Lemma 7.8 (and its proof) respectively.
Also, instead of applying Lemma 5.2, (a)=-(c) to A, we apply it to ef04, where tg is
a positive real number, as chosen in the proof of Lemma 7.8. U

Theorem 7.10. Let A € M, (R) (respectively, M,,(C)) satisfy the ESV condition.
Let m = max{nullity(A — A\I) : A\ € 0(A)} (respectively, m’ = max{2nullity (4 —
al), nullity(A — AI) + nullity(A — M) : « € R,A € C\ R}). Then there exists a
proper cone K in R™ (respectively, in C™), which is the sum of m (respectively, m’)
cones of the form clpos {etAac :x > 0}, such that A is cross-positive on K, but
there is no proper cone in R™ (respectively, in C™), which is the sum of less than m
(respectively, less than m') cones of the form clpos {etAx : & > 0}, on which A is
cross-positive.

Proof. We modify the argument given in the proof of Theorem 5.7. As before, we
deal with the real case of our result first.

Let A\ = £(A), Mg, ..., Ak be the distinct eigenvalues of A. For i = 1,...,k, let
m; = nullity(\;I — A), and let lgz), . .,l%)i denote the sizes of the Jordan blocks
in the Jordan form of A associated with );, arranged in nonincreasing order. As
before, choose a Jordan basis S for C" associated with A such that the gener-
alized eigenvectors corresponding to real eigenvalues are real and the generalized
eigenvectors corresponding to non-real eigenvalues occur in conjugate pairs. For
i =1,...,k, let the Jordan chain in 8 corresponding to the jth Jordan block for

A; be xl({),xg), .. a:( ()2 Define the vectors y1, ..., ¥y, in the same way as before,

and set K; = clpos {e yj :t > 0} for j = 1,...,m. Note that A satisfies the
local ESV condition at each y;. So by Theorem 7.4 (and its proof), for each j,
spang K; = W?E(A), Kj is a closed pointed cone and Alspang i, is cross-positive on
Kj. By Lemma 7.7, §,.(A) is the only distinguished eigenvalue of A for K; and
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(vey . (a)—1)
(up to multiples) ng&(;‘ ) (A)y; is the unique distinguished eigenvector of A for
K;. Using the argu;nent given in the proof of Theorem 5.7, we can show that

(Vey (a)—1)
the cone pos{Egyézi;‘ ) (A)y; : 5 = 1,...,m} is included in the simplicial cone
J

e

pos{xgjy)s(A) 2l =g 4y} and hence is pointed. Then by Lemma 7.9 we conclude
that the cone K := Kj + - -+ + K, is closed and pointed. With slight modification,
the argument given in the proof of Theorem 5.7 can also be used to show that K
is full in R™; so K is a proper cone in R”. Since A is exponentially nonnegative on
each K, A is exponentially nonnegative on their sum; hence A is cross-positive on
K. Likewise, by the argument given in the proof of Theorem 5.7 we also show that
there is no proper cone in R”, which is the sum of less than m cones of the form
clpos {e!4z : & > 0}, on which A is cross-positive. Finally, we can also deduce the
complex case of our result from its real case. U

By modifying the proof of Corollary 5.8, we obtain the following:

Corollary 7.11. Let A € M, (R) (respectively, M,,(C)) satisfy the ESV condition.
If C is a closed pointed cone in R™ (respectively, C") such that Alspangc 5 cross-
positive on C, then there exists a proper cone K in R™ (respectively, C™) which
includes C' such that A is cross-positive on C.

Similarly, we also have the following result:

Corollary 7.12. When A satisfies the ESV condition, to the list of equivalent
conditions in Corollary 7.9, we can add the following condition :

(d) There exists a proper cone in C" that contains x1,...,x such that A is
cross-positive on C'.

According to Corollary 3.8, A satisfies the Perron-Schaefer condition if and only
if £4|w, satisfies the Perron-Schaefer condition. However, the corresponding result
for the ESV condition does not hold.

Remark 7.13. When A satisfies the ESV condition, £4|w, need not satisfy the
ESV condition.

As a counter-example, consider A = diag(1,7). Clearly A satisfies the ESV
condition. Since the minimal polynomial of A is ¢(¢ — i), by Lemma 3.7 the minimal
polynomial of La|w, is t —i. So La|w, does not satisfy the ESV condition.

Nevertheless, we have the following counterpart for Theorem B.

Theorem 7.14. Let A € M, (C). Then A is cross-positive on K for some proper
cone K in C" if and only if the cone clpos {e!4 : t > 0} is pointed.

Proof. “Only if” part: If A is cross-positive on a proper cone K, then A is expo-
nentially K-nonnegative; hence clpos {etA : t > 0} is included in the proper cone
7m(K) and so it is pointed.

“If” part: Suppose that the cone clpos {e!4 : t > 0} is not pointed. Then there
exist convergent sequences (Y, )mez, , (Zm)mez, in clpos{e! : ¢t > 0} such that

. . (m)
limy, oo Yy = —limy, o0 Zy # 0. For each m, we have, Y,, = Zf;”l al(m)esl A
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for some k,,, € Z, and some nonnegative real numbers al(m), sl(m),m =1,...,kn,

(m . .
and Z,, = Z;m b(m) T ‘A for some i, € Z4+ and some nonnegatlve real numbers

bl(m) (m) 0 =1,...,im. For each m, let p,(t) = Zl 1a el tand g (t) =

Sim, b(m ™t Then Y, = pm(A) and Zm = gm(A). Let Ai,..., \x be the dis-
tinct elgenvalues of A. As A satisfies the ESV condition, we may assume that
A1 = £(A). By a standard result in the theory of functions of matrices, for each

positive integer m, we have p,,(A) = ZZ 1 Z 1 i)Egi)(A), and similar ex-

pressions for ¢, (A) and (pm + gm)(A). The fact that limy, o0 (Yo + Zm) = 0
implies that limmﬁoo(p%) + qg))()\i) =0fori=1,...,k,7=0,...,vy, — 1. Then
using an argument similar to the one given in the proof of Theorem 7.4, (a)=(c),
one can show that limmﬁoop%)()\i) =0fori=1,...,k,j =0,...,v\, — 1; hence
limy, 00 Yo = limy, 00 pm(A) = 0, which is a contradiction. O

8. OPEN PROBLEMS

Inspite of this work, many natural questions remain unanswered. In below we
collect some of them.

In Remark 3.17(ii) we have provided an equivalent condition for wg(A,z) to be
a pointed polyhedral cone. The result is unsatisfactory in that the condition is not
spectral nor is it readily checkable.

Question 8.1. Let A € M,(C) and let 0 # x € C™. Find a spectral or a readily
checkable equivalent condition for wy(A,x) to be a pointed polyhedral cone.

Question 8.2. Find an equivalent condition for clwy(A,x) to be a pointed polyhe-
dral cone.

We do not know whether the set of necessary conditions given in Theorem 3.16
for clwy(A, x) to pointed, polyhedral is also sufficient.

Question 8.3. Find an equivalent condition for wo(A,x) (or clwy(A,x)) to be an
indecomposable closed pointed cone.

For  # 0, in view of Remark 3.3, a necessary condition for clwy(A,z) to be
indecomposable is that either Ay, is nonsingular or z is a null vector of A. However,
the condition is not sufficient. For a counter-example, consider clwg(A,x), where
A= Jy(1) and x = (0,1)7.

Question 8.4. Find an equivalent condition for wo(A,x) to be a closed, pointed
cone.

Clearly, a necessary condition for wy(A4, ) to be closed, pointed is that A satisfies

the local Perron-Schaefer condition at = and ZAeA E(VA(AMZ) Yy e wo(A, z) and,
as a consequence, the spectral conditions given in Lemma 4.7 are fulfilled. For
an equivalent condition for wg(A4,z) closed, pointed in the special case when the
eigenvalues of A|yy, are all of the same modulus and p,(A) is one of the eigenvalues,
see Lemma 4.10.
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Question 8.5. Given A € M,,(C) and 0 # x € C", when does there exist a proper
cone C in WE containing x such that Alwe € Aut(C) ¢

Question 8.6. Find an equivalent condition on a given n x n real matrix A so that
A € Aut(K) for some proper cone K.

Question 8.7. Is it true that when p(A) € o(A), conditions (a)—(f) of Theorem
6.4 are all equivalent ¢

According to the proof of Theorem 6.4, the problem is reduced to proving that
we have (d) and (e) = (a) when p(A) € o(A). By modifying the argument given
in the last part of the proof of Theorem 6.4, we can show that the answer to the
preceding question is in the negative if one can find a nonzero complex number A
for which there exist p,(t) € Ry [t],m = 1,2,..., such that lim, oo pm(A) = 3 and

: / 1
limyy, 00 P (A) = =3z

In Section 5, for an nxn complex matrix A, we consider the question of when there
exists a proper A-invariant cone in C™ that contains certain given vectors z1, . .., k.

Recently, motivated by applications in Glass networks and joint spectral radius [5,
Theorem 1 and Theorem 3], the dual question of the existence and construction of
common proper invariant cones for families of real matrices has also been treated by
several authors ([7], [18]) and complete solutions have been offered for some special
cases. We take this opportunity to point out that it is not difficult to prove the
following modest result:

Lemma 8.8. Let A,B € M,(R). A necessary condition for the existence of a
proper cone K in R™ such that A, B € w(K) is that the cone clpos{p(A4, B) : p(r, s)
is a monomial in the noncommuting indeterminates r, s} is pointed.

It is clear that this necessary condition implies the condition that clwy(A) +
clwy(B) is pointed or, equivalently, clwg(A) N (—clwy(B)) = {0}. However, we do
not know whether this necessary condition is a sufficient condition.

Example 8.9. Let A; = diag(1,—1,—1), Ay = diag(—1,—1,1). Then A? = A2 =
I3 and A; Ay = diag(—1,1,—1). In this case,

clpos{p(A4i, A2) : p(r, s) amonomial in the noncommuting indeterminatesr, s}

equals pos{ A1, Aa, A1 Ay, I3} and is not pointed, as A1 + Az + I3 + A1 A2 = 0. By
Theorem 8.8 there is no {Aj, A }-invariant proper cone.

The above pair of matrices Aj, Ao has been considered in [18, Example 5], where
the nonexistence of an { Ay, Ay }-invariant proper cone is obtained by applying The-
orem 12 of the paper.
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