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1. Introduction

This is the seventh of a sequence of papers (namely, [32], [25], [28], [29], [30], [27]
and the current paper) on a newly developed subject, the geometric spectral theory
of positive linear operators (in finite dimensions), which is concerned with the study
of the classical Perron-Frobenius theory of a (square, entrywise) nonnegative matrix
and its generalizations from the geometric cone-theoretic viewpoint. For reviews on
the subject, see [26] and [31]. For a ramification of the theory in the study of
exponents of polyhedral cones, see [14], [15] and [13].

In the previous papers of the sequence, we usually fix a proper (i.e., closed,
pointed, full convex) cone K and a (square) matrix A such that A is nonnegative
on K (i.e. AK ⊆ K) and consider different aspects of A in each paper — the
Collatz-Wielandt sets, the distinguished eigenvalues, the core, the invariant faces,
linear equations over cones, and the Perron generalized eigenspace and the spectral
cone (a unified approach to several topics of interest in combinatorial spectral theory
of nonnegative matrices). In this work we change our viewpoint somewhat. We treat
the local Perron-Frobenius theory. Here we use the word “local” in the loose sense
of “pertaining to a single vector”. Given a complex matrix A, we consider closed,
pointed (or, proper) cones invariant under A with various properties. In particular,
we are interested in closures of A-cyclic cones, i.e., cones of the form clwk(A, x),
where wk(A, x) denotes the cone generated by Akx,Ak+1x, . . . in Cn. One reason
for our interest in closures of A-cyclic cones is that, such cones often appeared as
illustrative examples in previous papers of this sequence (see [32, Example 3.7],
[28, Example 5.2], [29, Example 5.3], [30, Example 4.9], [27, Example 3.10]; [25,
Example 5.5] and [29, Example 5.4]). Proper polyhedral cones K for which there
exist a K-primitive matrix A such that the digraph associated with A is given by
the Wielandt digraph or the near-Wielandt digraph have also played a major role
in the recent study of maximal exponents of polyhedral cones ([14], [15] and [13]).
As can be readily seen, such cones K are necessarily A-cyclic.

In a sense, this work can also be considered as a continuation of the work of
Schneider [20] in investigating the relation between the algebraic properties and
the geometric properties of a matrix A ∈ Mn(C). According to [20], an algebraic
property is one which can be determined from the Jordan form of A, while by a
geometric property it is meant some association between A and a geometric object,
namely a cone.

A natural question to ask is, when a given real matrix leaves invariant a proper
cone. The answer is known and is provided by the following:

Theorem A. For an n×n real matrix A, there exists a proper cone K in Rn such
that AK ⊆ K if and only if A satisfies the following set of conditions :

(a) ρ(A), the spectral radius of A, is an eigenvalue of A.
(b) For each eigenvalue λ of A with modulus ρ(A), νλ(A) ≤ νρ(A)(A), where

νλ(A) denotes the index of λ as an eigenvalue of A.

That condition (a) in Theorem A is a necessary condition for the existence of a
proper A-invariant cone K was first established by Birkhoff [4], using an elementary
argument that makes use of the Jordan basis of Cn associated with A. (Birkhoff also
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showed, in addition, that K contains an eigenvector corresponding to ρ(A).) Ex-
tending Birkhoff’s argument, Vandergraft [33] showed that condition (b) is another
necessary condition. In the same paper, Vandergraft also proved that conditions
(a) and (b) together is also a sufficient condition for the existence of K. (Elsner
[8, Satz 3.1] also established Theorem A in the setting of a compact linear operator
on a real Banach space.) Following Schneider [20], we say an n × n complex (or
real) matrix A satisfies the Perron-Schaefer condition if conditions (a) and (b) of
Theorem A hold. (Rodman et.al. [18] use the term Vandergraft matrices for real
matrices that satisfy the Perron-Schaefer condition.)

We would like to add that, with slight modifications, Vandergraft’s proof shows
that Theorem A still holds if A is an n× n complex matrix and Rn is replaced by
Cn.

In order to characterize the Perron-Schaefer condition on a complex matrix A
by a geometric property directly associated with A, Schneider introduced, for each
nonnegative integer k, the intrinsic cone wk(A) of A, which is the cone generated
by Ak, Ak+1, . . ., and obtained the following result ([20, Theorem 1.4]) :

Theorem B. Let A ∈ Mn(C), and let k be a nonnegative integer. Then the cone
clwk(A) is pointed if and only if A satisfies the Perron-Schaefer condition.

Schneider [20, p.255] refers to the above result as an intrinsic Perron-Frobenius
theorem and attributes one direction of the result to Schaefer [19]. In [20, the
first and second paragraphs on p.265] Schneider also remarked that since π(K) is a
proper cone in Mn(C) whenever K is a proper cone in Cn, if AK ⊆ K then clw0(A)
is pointed. As a consequence, the “only” if part of Theorem A and the “only if”
of Theorem B (for k = 0) are “equivalent”, and the “if” part of Theorem A, which
is due to Vandergraft, implies the “if” part of Theorem B. He also asked whether
there is a simple argument to derive the “if” part of Theorem A from the “if”
part of Theorem B. We believe the answer to the latter question is in the negative.
However, if we use a local version of Theorem B and the concept of cyclic cones (see
Theorem 3.6, (a1)⇔(b1)), then there is a natural simple way to construct invariant
proper cones for a matrix that satisfies the Perron-Schaefer condition.

Denoting by LA the linear map on Mn(C) given by LA(X) = AX, one read-
ily shows that w0(LA, A) = w1(A). Conceivably, the intrinsic Perron-Frobenius
theorems obtained by Schnieder [20] can be recovered by proving the correspond-
ing results involving the cones wk(A, x) first. This is another reason why we are
interested in such cones.

We now describe the contents of this paper in some detail. Some necessary defini-
tions, notations, known or preliminary results are given in Section 2. In particular,
we provide an equivalent condition for the Perron-Schaefer condition on a complex
matrix, given in terms of the roots of the minimal polynomial of the matrix. It
is proved that A satisfies the local Perron-Schaefer condition at x if and only if
the restriction map A|Wx (or, equivalently, A|WR

x
), where Wx (respectively, WR

x )

denotes the subspace (respectively, the real subspace) of Cn generated by Aix for
i = 0, 1, . . ., satisfies the Perron-Schaefer condition. (The definition of the local
Perron-Schaefer condition will be given in Section 2.) We offer a direct proof for
the known result that if K is a closed, pointed A-invariant cone, then A satisfies
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the local Perron-Schaefer condition at x for every x ∈ K. In the course of proof,
we also take note of the connection between the minimal polynomial of A|Wx and
that of A|WR

x
and show that they either both satisfy or both do not satisfy the local

Perron-Schaefer condition at x.
In [20] Schneider gave geometric conditions (given in terms of the cones wk(A) or

their closures) for a complex matrix A to satisfy the Perron-Schaefer condition or to
have a positive (or nonnegative) eigenvalue. In Section 3 we provide local versions of
these results. We examine the connections between spectral conditions on A|Wx or
A|WR

x
(such as the Perron-Schaefer condition, or having a positive (or nonnegative)

eigenvalue) and geometric conditions involving the cones wk(A, x) or their closures
(such as being a real subspace, or being a pointed cone). In particular, we prove that
A satisfies the local Perron-Schaefer condition at x if and only if the cone clw0(A, x)
is pointed. The connection between wk(A, x) (or their closures) for different k’s
is also noted. We recover the intrinsic Perron-Frobenius theorems obtained by
Schneider. Necessary conditions for clw0(A, x) to be a pointed polyhedral cone are
found. An equivalent condition for w0(A, x) to be a pointed polyhedral cone (or a
simplicial cone) is also given.

In Section 4, under the assumption that the cone clw0(A, x) is pointed, we exam-

ine the following conditions: (α) the cone w0(A, x) is closed; (β) E
(νρx(A)−1)

ρx(A) (A|WR
x
)x ∈

w0(A, x), where ρx(A) is the local spectral radius of A at x and E
(k)
λ (A) is the kth

principal component of A corrresponding to λ; and (γ)
∑

λ∈ΛE
(νλ−1)
λ (A|WR

x
)x ∈

w0(A, x), where Λ denotes the set of peripheral eigenvalues λ of A|WR
x

for which

νλ(A|WR
x
) = νρx(A)(A|WR

x
). According to some known results, we always have the

implications (α) ⇒ (β) and (α) ⇒ (γ). Here we provide two sets of spectral con-
ditions on A|Wx that are equivalent to conditions (β) and (γ) respectively, and as
a consequence we have (γ)⇒(β). In the special case when the eigenvalues of A|WR

x

are all of the same modulus, we also provide a spectral characterization of condition
(α). As applications, we characterize when A|WR

x
is irreducible, primitive or strictly

positive with respect to clw0(A, x).
In Section 5 we settle the question of when there exists a closed pointed A-

invariant cone that contains some given vectors x1, . . . , xk. We also show that if
A ∈ Mn(R) satisfies the Perron-Schaefer condition, then we can always construct a
proper A-invariant cone K in Rn which is the sum of the closures of finitely many
A-cyclic cones. Indeed, we show that the least possible number of A-cyclic cones we
need ism, wherem is the maximum of the geometric multiplicities of the eigenvalues
of A. A complex version of the result is also derived.

In Section 6 we treat the questions of the existence of various kinds of cone
automorphisms. For A ∈ Mn(C) and 0 ̸= x ∈ Cn, it is shown that there exists
a proper cone C in WR

x containing x such that A|WR
x

∈ Aut(C) if and only if

A|WR
x
is nonsingular and the cone cl(pos{(A|WR

x
)ix : 0,±1,±2, . . . , } is pointed. It

is found that the condition that A|WR
x

is nonsingular, and A|WR
x

and its inverse
both satisfy the Perron-Schaefer condition is weaker than the preceding equivalent
conditions. We also prove that A|WR

x
∈ Aut(clw0(A, x)) if and only if A|WR

x
is

nonzero, diagonalizable, all eigenvalues of A|WR
x
are of the same modulus and ρx(A)
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is an eigenvalue of A|WR
x
. We give some conditions that are either equivalent to or

are weaker than the condition that A is nonzero, diagonalizable and all eigenvalues
of A are of the same modulus; and when A satisfies the Perron-Schaefer condition,
all these conditions are equivalent and are also equivalent to the condition that there
exists a proper cone K such that A ∈ Aut(K) and A has an eigenvector in intK.
Finally, we characterize when there exists an (indecomposable) proper polyhedral
cone K such that A ∈ Aut(K).

A matrix A ∈ Mn(C) is cross-positive on a proper cone K in Cn if for all x ∈
K, z ∈ K∗, where K∗ denotes the dual cone of K, Re(z∗x) = 0 implies Re(z∗Ax) ≥
0. It is readily shown that the class of matrices cross-positive on K includes the
extension, by multiples of the identity matrix, of the class of matrices nonnegative
on K.

In Section 7 we treat the local Perron-Frobenius theory for cross-positive matrices
and derive the parallel results. Instead of the A-cyclic cones wk(A, x) (respectively,

the principal component E
(νρx(A)−1)

ρx(A) ) we work with the cones pos{etAx : t ≥ 0}

(respectively, the principal component E
(νξx(A)−1)

ξx(A) ), where ξx(A) is the local spectral

abscissa of A at x. Also, we introduce the new concept of the real spectral pair of a
matrix relative to a vector, the ESV (Elsner-Schneider-Vidyasagar) condition and
the local ESV condition.

To motivate further work, a number of open questions are posed in Section 8, the
final section.

In previous papers of this sequence, we usually formulate our results in the setting
of a real matrix acting on a cone in a (finite-dimensional) real vector space, because
“cone” is a real concept. It is explained in [28, Section 8] how one can obtain the
corresponding results for a complex matrix acting on a cone in a complex vector
space. However, for a complex matrix, sometimes it is more natural to give results
directly in the complex setting. So in this paper we formulate our results mostly
in the setting when the underlying matrix is a complex matrix. The results in the
real setting either follow from the corresponding results in the complex setting or
have a parallel proof.

This research work began more than twenty eight years ago and was carried out
off and on. The forthcoming of this paper was announced in the reference list of [28]
under the tentative title “On matrices with invariant closed pointed cones”, and a
few results in this paper have appeared, without proofs, in the review papers [26]
and [31]. Due to a shift of research interest and other reasons, this research work
was suspended about fifteen years ago. Most of the results in the present paper
were obtained and some new ideas were found when the research work was resumed
in the past few months.

2. Preliminaries

A familiarity with convex cones, convex sets and cone-preserving maps is as-
sumed. For references, see [1], [3], [17], [24], [26], [31]. For convenience and to
fix notation, we collect in this section some of the necessary definitions, notations
and known results that are used throughout the paper. A few more definitions and
notations will be introduced in later sections.
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A (convex) cone K is a nonempty subset of a finite-dimensional real or complex
vector space V such that K +K ⊆ K and αK ⊆ K for all α ≥ 0. The cone K is
said to be pointed if K ∩ (−K) = {0}; K is closed if K is closed relative to the usual
topology of V and full if intK ̸= ∅ or, equivalently, K −K(= real spanK) = V . A
cone is proper if it is pointed, closed and full.

We give our definitions and formulate our results in the setting when the under-
lying space is Rn or Cn. As can be seen, our definitions or results can also be stated
in the slightly more general setting of a finite-dimensional real or complex vector
space.

The following notation will be adopted.
Mn(F): the set of all n× n matrices with entries from the field F .
Rn
+: the nonnegative orthant of Rn.

F [t]: the set of all polynomials with coefficients from the field F .
R+[t]: the set of all polynomials with nonnegative coefficients.
Jk(λ): the k × k upper triangular elementary Jordan block associated with the

eigenvalue λ.
pos(S): the positive hull of S, i.e., the set of all nonnegative linear combinations

of vectors taken from S.
σ(A): the spectrum of the (square) matrix A, i.e., the set of eigenvalues of A.
ρ(A): the spectral radius of the matrix A.
νλ(A) (or νλ): the index of λ relative to A, i.e., the least nonnegative integer k

such that rank(A− λI)k+1 = rank(A− λI)k.
N (A): the null space of the matrix A.
nullity(A): the nullity of the matrix A, i.e., dimN (A).
Nk

λ (A) = {x ∈ Cn : (A− λI)kx = 0}.
N

νλ(A)
λ (A) (or Nνλ

λ ): generalized eigenspace of A corresponding to the eigenvalue
λ.

span(S): (linear) subspace of Cn spanned by the subset S.
spanR(S): real subspace of Cn spanned by the subset S.
riC: relative interior of the convex set C.
E

(0)
λ (A) (or E

(0)
λ ): the projection of Cn onto the generalized eigenspace N

νλ(A)
λ (A)

along the direct sum of other generalized eigenspaces of A.

E
(k)
λ (A) (or E

(k)
λ ): kth principal component of A corresponding to λ, i.e., (A −

λI)kE
(0)
λ (A).

A cone K is said to be polyhedral if K = pos(S) for some nonempty set S; if, in
addition, S is a set of linearly independent vectors, then K is said to be simplicial.

A (not necessarily closed, pointed) cone K is said to be the direct sum of cones
K1, . . . ,Kp, and we write K = K1 ⊕ · · · ⊕Kp, if each vector in K can be expressed
uniquely as x1 + · · · + xp, where xi ∈ Ki, 1 ≤ i ≤ p. K is called decomposable if it
is the direct sum of two nonzero cones; otherwise, it is said to be indecomposable.

A linear transformation T on an n-dimensional vector space U is said to be a cyclic
transformation if there exists a vector b ∈ U for which {b, T b, . . . , Tn−1b} is a basis
for U . A matrix A ∈ Mn(C) is said to be nonderogatory if every eigenvalue of A has
geometric multilplicity 1. It is known that a matrix A ∈ Mn(C) is nonderogratory
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if and only if A acts as a cyclic linear transformation on Cn. For references, see [10,
Chapter 6] or [11, Section 3.3].

Let A ∈ Mn(C) and let x ∈ Cn. We denote by Wx (respectively, WR
x ), or Wx(A)

(respectively, WR
x (A)) if there is the need to indicate the dependence on A, the

A-cyclic subspace (respectively, the real A-cyclic subspace) of Cn generated by x,
i.e. Wx = {p(A)x : p(t) ∈ C[t]} (respectively, WR

x = {p(A)x : p(t) ∈ R[t]}). When
A ∈ Mn(R) and x ∈ Rn, to follow the notation of our earlier papers, sometimes we
write WR

x simply as Wx.
Let A ∈ Mn(C) and let 0 ̸= x ∈ W , where W is an A-invariant subspace of Cn.

Since the representation of x as a sum of generalized eigenvectors of A|W and as a
sum of generalized eigenvectors of A are the same, for any eigenvalue λ of A|W and

any nonnegative integer k, we have E
(k)
λ (A|W ) = E

(k)
λ (A)|W . As a consequence, we

may write E
(k)
λ (A|Wx)x simply as E

(k
λ (A)x.

For A ∈ Mn(C), by the peripheral spectrum of A we mean the set {λ ∈ σ(A) :
|λ| = ρ(A)}. We also use terms peripheral eigenvalues and non-peripheral eigenval-
ues with the obvious meanings.

For A ∈ Mn(C) and x ∈ Cn, ρx(A) (or simply ρx), the local spectral radius of

A at x is given by ρx(A) = lim supm→∞ ∥Amx∥1/m, where ∥ · ∥ is any norm of Cn

or, equivalently, ρx(A) = ρ(A|Wx). If x is nonzero and x = x1 + · · · + xk is the
representation of x as a sum of generalized eigenvectors of A corresponding, respec-
tively, to distinct eigenvalues λ1, . . . , λk, then ρx(A) is also equal to max1≤i≤k|λi|.
(See, for instance, [32, Theorem 2.3].) We also define and denote the order of x
relative to A by ordA(x) = max{ordA(xi) : |λi| = ρx(A)}, where ordA(xi) is the
order of the generalized eigenvector xi, i.e., the least positive integer l such that
(A − λiI)

lxi = 0. The ordered pair (ρx(A), ordA(x)), denoted by spA(x), is called
the spectral pair of x relative to A. It was first introduced in [29] and has proved to
be a useful concept.

Let A be an n × n complex (or real) matrix. A set K is said to be invariant
under A, (or A leaves invariant K or A is K-nonnegative) if AK ⊆ K. When K is
a proper cone, we denote by π(K) the set of all such matrices A. Matrices in π(K)
are often referred to as cone-preserving maps or as positive operators on K.

A matrix A ∈ π(K) is said to be irreducible with respect to K or K-irreducible
if A has no eigenvectors in the boundary of K or, equivalently, the only faces of K
that A leaves invariant are {0} and K itself; A is strictly positive with respect to
K or strictly K-positive if A(K \ {0}) ⊆ intK; A is primitive with respect to K or
K-primitive if Ap is strictly K-positive for some positive integer p.

If A ∈ π(K) and x ∈ K is an eigenvector (respectively, generalized eigenvector),
then x is called a distinguished eigenvector (respectively, distinguished generalized
eigenvector) of A for K, and the corresponding eigenvalue is known as a distin-
guished eigenvalue of A for K. When there is no danger of confusion, we simply
use the terms distinguished eigenvector, distinguished generalized eigenvector and
distinguished eigenvalue (of A).

Let K be a proper cone in Cn (or Rn). A matrix A ∈ π(K) is said to be an
automorphism of K if its inverse A−1 exists and belongs to π(K). The set of all
automorphisms of K forms a group under matrix multiplication and is denoted by
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Aut(K). It is clear that for any A ∈ Mn(C) (or Mn(R)), A ∈ Aut(K) if and only
if AK = K.

An n × n complex matrix A is said to satisfy the Perron-Schaefer condition if
ρ(A) ∈ σ(A) and νλ(A) ≤ νρ(A)(A) for any peripheral eigenvalue λ of A.

To follow the common practice, by the spectrum of an n × n real matrix A
we mean its spectrum as a complex matrix or the spectrum of the extension of
A (as a linear operator) in the complexification Cn of Rn. To say a real matrix
(respectively, a linear transformation on a finite-dimensional real vector space V )
satisfies the Perron-Schaefer condition, we really mean the real matrix, regarded as
a complex matrix (respectively, the complex extension of the linear transformation
to the complexification of V ), satisfies the Perron-Schaefer condition. One can also
formulate an equivalent definition for the Perron-Schaefer condition on a real matrix
that corresponds to its real Jordan form, but in this paper we do not pursue such
approach.

It is well-known that for a complex matrix A, σ(A) equals the set of roots of the
minimal polynomial of A, and for any λ ∈ σ(A), νλ(A) equals the multiplicity of
λ as a root of the minimal polynomial of A. So the Perron-Schaefer condition on
a complex matrix (or a complex linear transformation) can also be restated in an
equivalent form in terms of its minimal polynomial.

Remark 2.1. Let A ∈ Mn(C) (or T ∈ L(V ), where V is a finite-dimensional
complex vector space). Then A (or T ) satisfies the Perron-Schaefer condition if and
only if ρ(A) (or, ρ(T )) is a root of the minimal polynomial of A (or, of T ) and with
multiplicity not less than that of any other root with the same modulus.

If A is an n × n real matrix (or a linear transformation on a finite-dimensional
real vector space), then the minimal polynomial of A over C and the minimal
polynomial of A over R are the same. However, if A is complex, then the said
minimal polynomials are usually different but are closely related.

Lemma 2.2. Let A ∈ Mn(C). Denote the minimal polynomial of A over C and
the minimal polynomial of A over R by ϕ(t) and ϕR(t) respectively.

(i) ϕR(t) is the unique monic polynomial determined from ϕ(t) by the following
properties : ϕR(t) has the same real roots as ϕ(t) and with the same multi-
plicities; the set of non-real complex roots of ϕR(t) equals the set of non-real
complex roots of ϕ(t) together with their complex conjugates; and for each
non-real complex root λ of ϕ(t), the multiplicities of λ and λ̄ as roots of ϕR(t)
are both equal to the maximum of the multiplicities of λ and λ̄ as roots of
ϕ(t). (If λ̄ is not a root of ϕ(t), its multiplicity is taken to be zero.)

(ii) ϕR(t) equals the minimal polynomial (over R) of A when treated as a real
linear transformation acting on Cn (as a real vector space).

Proof. (i) Let ψ(t) denote the monic polynomial with the described properties.
Clearly, ψ(t) is a real polynomial, divisible by ϕ(t). As ϕ(t) annihilates A, so does
ψ(t). If f(t) is a real annihilating polynomial for A, then f(t) is divisible by ϕ(t).
So each real root of ϕ(t) is a root of f(t) and with multiplicity not less, and the non-
real complex roots of f(t) occur in conjugate pair and with a common multiplicity
not less than the maximum of the corresponding multiplicities of these numbers as
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roots of ϕ(t). Thus f(t) is divisible by ψ(t). This proves that ψ(t) is the minimal
polynomial of A over R, as desired.

(ii) By [28, Lemma 8.1] when A is treated as a real linear transformation acting
on Cn, it can be represented by a matrix similar to diag(A, Ā), where Ā denotes
the conjugate matrix of A. So its minimal polynomial (over R) is equal to the
polynomial ψ(t), which, in turn, is ϕR(t). □

Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. We say A satisfies the local Perron-Schaefer
condition at x if in the representation of x as a sum of generalized eigenvectors of
A, there is a generalized eigenvector corresponding to ρx(A) and the order of this
generalized eigenvector is not less than that of any other generalized eigenvector
that appears in the representation and corresponds to an eigenvalue with modulus
ρx(A). The local Perron-Schaefer condition was first introduced in [30] in the setting
when A ∈ Mn(R) and x ∈ Rn. Here we extend the concept to the complex case.
(Certainly, we can also formulate the concept in the slightly more general setting
when A ∈ L(V ), where V is a finite dimensional real or complex vector space.)
For convenience, we adopt the convention that A satisfies the local Perron-Schaefer
condition at the zero vector.

It is clear that A satisfies the local Perron-Schaefer condition at x if and only if
spA(x) = (ρx(A), νρx(A)(A|Wx)).

We denote by ⪯ the lexicographic ordering between ordered pairs of real numbers
given by: (ξ1, ξ2) ⪯ (η1, η2) if either ξ1 < η1 or ξ1 = η1 and ξ2 ≤ η2. We also write
(ξ1, ξ2) ≺ (η1, η2) if (ξ1, ξ2) ⪯ (η1, η2) but the equality (in the usual sense) does not
hold.

In [29, Theorem 4.7], using the concept of the spectral pair of a vector relative
to a matrix, it is proved that if A ∈ π(K), where K is a proper cone in Rn, then for
every x ∈ K, A satisfies the local Perron-Schaefer condition at x. The latter result
has been applied in the work of [30] and [27]. We will give a direct proof for the
complex version (and hence also the real version) of the latter result.

Lemma 2.3. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that x = x1 + · · ·+ xk,
where x1, . . . , xk are generalized eigenvectors of A corresponding respectively to dis-
tinct eigenvalues λ1, . . . , λk. For j = 1, . . . , k, let nj be the order of the general-

ized eigenvector xj. Then β =
∪k

j=1{(A − λjI)
nj−1xj , (A − λjI)

nj−2xj , . . . , (A −
λjI)xj , xj} is an ordered basis for Wx, the matrix of A|Wx relative to β is Jn1(λ1)⊕
· · · Jnk

(λk), and the minimal polynomial of A|Wx is
∏k

j=1(t− λj)
nj .

Proof. As can be readily checked, for each j = 1, . . . , k, βj = {(A−λjI)nj−1xj , (A−
λjI)

nj−2xj , . . . , (A − λjI)xj , xj} is an ordered basis for A|Wxj
and the matrix of

A|Wxj
relative to βj equals Jnj (λj). Since λ1, . . . , λk are distinct eigenvalues of A,

the sum Wx1 + · · · +Wxk
is a direct sum and the matrix of the restriction of A

to this direct sum relative to the ordered basis β1 ∪ · · · ∪ βk is
⊕k

j=1 Jnj (λj). We
are going to show that Wx = Wx1 ⊕ · · · ⊕Wxk

. Once this is proved, the matrix

of A|Wx relative to β is clearly
⊕k

j=1 Jnj (λj) and the assertion about the minimal

polynomial of A|Wx will also follow. (We would like to add that the assertion about
the minimal polynomial of A|Wx can also be established directly by showing that
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j=1(t−λj)nj is an annihilating polynomial for A|Wx but none of its proper divisor

annihilates A|Wx .)

The inclusion Wx ⊆
⊕k

j=1Wxj is obvious because Wx and
⊕k

j=1Wxj are both

A-invariant and x ∈
⊕k

j=1Wxj . For the polynomial p(t) :=
∏k

j=1(t−λj)nj , we have

p(A)x = 0, but f(A)x ̸= 0 for any proper divisor f(t) of p(t). So p(t) is the minimal
polynomial of A|Wx . Hence we have

dimWx = deg p(t) = n1 + · · ·+ nk = dim(Wx1 ⊕ · · · ⊕Wxk
).

This establishes the equality relation Wx =
⊕k

j=1Wxj and completes the proof. □

Corollary 2.4. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. The following conditions are
equivalent :

(a) A satisfies the local Perron-Schaefer condition at x.
(b) A|Wx satisfies the Perron-Schaefer condition.
(c) A|WR

x
satisfies the Perron-Schaefer condition.

Proof. The equivalence of (a) and (b) clearly follows from Lemma 2.3.
(b)⇔(c): It is readily checked that the minimal polynomial of A|Wx over C (re-

spectively, of A|WR
x

over R) equals the minimal polynomial of A with respect to

x over C (respectively, over R), i.e. the unique monic complex (respectively, real)
polynomial ψA,x(t) (respectively, ψR

A,x(t) of least degree such that ψA,x(A)x = 0

(respectively, ψR
A,x(A)x = 0). So ψA,x(t) divides ψR

A,x(t) and, in fact, ψR
A,x(t) is

the unique (necessarily real) monic polynomial obtained from ψA,x(t) as follows:

ψR
A,x(t) has the same real roots as ψA,x(t) and with the same multiplicities; the

set of non-real complex roots of ϕR(t) equals the set of non-real complex roots of
ψA,x(t) together with their complex conjugates; and for each non-real complex root

λ of ψA,x(t), the multiplicities of λ and λ̄ as roots of ψR
A,x(t) are both equal to the

maximum of the multiplicities of λ and λ̄ as roots of ψA,x(t). (If λ̄ is not a root
of ψA,x(t), its multiplicity is taken to be zero.) Hence ρ(A|Wx) equals ρ(A|WR

x
) and

ρ(A|Wx) is a root of ψA,x(t) if and only if ρ(A|WR
x
is a root of ϕR(t) and when it

happens, the multiplicity of ρ(A|Wx) as a root of ψA,x(t) is equal to that of ρ(A|WR
x
)

as a root of ψR
A,x(t).

Now by Remark 2.1 A|Wx satisfies the Perron-Schaefer condition if and only if
ρ(A|Wx) is a root of ψA,x(t) and with multiplicity not less than that of other root with
the same modulus. In view of what we have done above, the latter is equivalent to
the condition that ρ(A|WR

x
) is a root of ψR

A,x(t) and with multiplicity not less than

that of other root with the same modulus. On the other hand, since A|WR
x

is a

real linear transformation, by Lemma 2.2(i) (or rather by its linear transformation
version), its minimal polynomials over C and over R are the same. By Remark
2.1 again it follows that A|WR

x
satisfies the Perron-Schaefer condition if and only if

ρ(A|WR
x
) is a root of the minimal polynomial of A|WR

x
over R, i.e., the polynomial

ψR
A,x(t), and with multiplicity not less than that of any other root with the same

modulus. We can now conclude that A|Wx satisfies the Perron-Schaefer condition if
and only if A|WR

x
satisfies the Perron-Schaefer condition. □
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In the course of the proof of Corollary 2.4, (b)⇔(c), we also establish the follow-
ing:

Remark 2.5. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. The minimal polynomial of
A|Wx over C (respectively, of A|WR

x
over R) equals ψA,x(t) (respectively, ψ

R
A,x(t)), the

minimal polynomial of A with respect to x over C (respectively, over R). Moreover,
ψR
A,x(t) has the same real roots as ψA,x(t) and with the same multiplicities; the

set of non-real complex roots of ψR
A,x(t) equals the set of non-real complex roots of

ψA,x(t) together with their complex conjugates; and for each non-real complex root

λ of ψA,x(t), the multiplicities of λ and λ̄ as roots of ψR
A,x(t) are both equal to the

maximum of the multiplicities of λ and λ̄ as roots of ψA,x(t). (If λ̄ is not a root of
ψA,x(t), its multiplicity is taken to be zero.)

Corollary 2.6. Let A ∈ Mn(C), and let K be a closed pointed cone in Cn. If
AK ⊆ K, then A satisfies the local Perron-Schaefer condition at x for every x ∈ K.

Proof. For any 0 ̸= x ∈ K, WR
x ∩K is an A-invariant proper cone in WR

x and we
have A|WR

x
∈ π(WR

x ∩K). So by the “only if” part of Theorem A, A|WR
x
satisfies the

Perron-Schaefer condition, and by Corollary 2.4 A satisfies the local Perron-Schaefer
condition at x. □
Remark 2.7. Let K be a proper cone in Cn and let A ∈ π(K). Then every
distinguished eigenvalue of A for K is a nonnegative real number.

Proof. Let λ be a distinguished eigenvalue of A for K and let x ∈ K be a corre-
sponding eigenvector. In view of Corollary 2.6, A satisfies the local Perron-Schaefer
condition at x; so λ equals ρx(A) and is a nonnegative real number. □
Example 2.8. Let A = diag(1, i) and let x = (1, 1)T . We have Ax = (1, i)T , A2x =
(1,−1)T , A3x = (1,−i)T and A4x = x. Let p(t) = t2−(1+ i)t+ i. Then, p(A)x = 0,
but no monic polynomial with smaller degree has the same property. So p(t) is the
minimal polynomial of A|Wx over C. As p(t) = (t − 1)(t − i), it is clear that
A|Wx satisfies the Perron-Schaefer condition. Since the representation of x as a
sum of generalized eigenvectors of A is given by: (1, 1)T = (1, 0)T + (0, 1)T , where
(1, 0)T , (0, 1)T are respectively eigenvectors of A corresponding to 1 and i, it is clear
that A satisfies the local Perron-Schaefer condition at x.

Now note that pR(t) := (t − 1)(t − i)(t + i) = t3 − t2 + t − 1 is the real monic
polynomial of least degree that satisfies pR(A)x = 0. So the minimal polynomial of
A|WR

x
is pR(t) and it is clear that A|WR

x
also satisfies the Perron-Schaefer condition.

In this case, w0(A, x) is the 3-dimensional pointed polyhedral cone with dis-
tinct extreme vectors x,Ax,A2x,A3x. The real A-cyclic subspace WR

x is the 3-
dimensional real subspace spanned by x,Ax and A2x. The complex A-cyclic sub-
space Wx is C2. Note also that the complex space Wx is not equal to a complexifi-
cation of the real space WR

x , as dimCWx = 2 ̸= 3 = dimRW
R
x .

We will need the following elementary lemma (cf. [3, Lemma 1.3.4] and [20,
Lemma 4.2]):

Lemma 2.9. Let Λ be a finite nonempty set of complex numbers such that each
λ ∈ Λ is off the nonnegative real axis. Then there exists a polynomial v(t) with
positive coefficients such that v(0) = 1 and v(λ) = 0 for all λ ∈ Λ.
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Lemma 2.10. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A|Wx has no
positive eigenvalue. Then there exists a polynomial v(t) with positive coefficients
such that v(0) = 1 and Aν0v(A)x = 0, where ν0 = ν0(A|Wx).

Proof. If A|Wx is nilpotent, take p(t) to be the constant polynomial 1. So we assume
that A|Wx is non-nilpotent. Then A|Wx can be represented by a matrix of the form
B⊕N , where B is a nonsingular matrix, each of whose eigenvalues is either complex
non-real or negative real, and N is a nilpotent matrix with index of nilpotency
equal to ν0. Note that the summand B must exist, but the summand N may or
may not exist, depending on whether or not 0 is an eigenvalue of A|Wx . Since B
does not have a nonnegative eigenvalue, by Lemma 2.9 there exists a polynomial
u(t) ∈ R+[t] of positive degree such that u(0) = 1 and u(λ) = 0 for all eigenvalues
λ of B. Then u(B) is a nilpotent matrix and we can find a positive integer l such
that u(B)l = 0. Let v(t) be the polynomial u(t)l. Then v(t) is a polynomial with
positive coefficients such that v(0) = 1 and v(B) = 0. Now it should be clear that
we have (A|Wx)

ν0v(A|Wx) = 0 or, in other words, Aν0v(A)x = 0. □

3. Characterizations of the local Perron-Schaefer conditions and
related conditions

Following [20], for any A ∈ Mn(C) and any nonnegative integer k, we denote by
wk(A) the cone pos{Ai : i = k, k+1, . . .}. When x is a vector of Cn, we also denote
by wk(A, x) the cone pos{Aix : i = k, k + 1, . . .}.

Remark 3.1. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Then A satisfies the local
Perron-Schaefer condition at x if and only if A satisfies the local Perron-Schaefer
condition at Akx for some (or, for every) positive integer k.

Proof. It suffices to show that A satisfies the local Perron-Schaefer condition at
x if and only if A satisfies the local Perron-Schaefer condition at Ax. Let x =
x1 + · · · + xk, where x1, . . . , xk are generalized eigenvectors of A corresponding to
distinct eigenvalues λ1, . . . , λk. Then Ax = Ax1+ · · ·+Axk is the representation of
Ax as a sum of generalized eigenvectors of A and, moreover, for each i = 1, . . . , k,
Axi is a generalized eigenvector of A corresponding to λi and with the same order
as xi, except that when λi = 0, Axi is a generalized eigenvector of order one less
than that of xi (or does not appear if the order of xi is 1). So from the definition
of the local Perron-Schaefer condition, it is clear that A satisfies the local Perron-
Schaefer condition at x if and only if A satisfies the local Perron-Schaefer condition
at Ax. □

Remark 3.2. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Let k be a nonnegative integer.

(i) wk(A, x) is a real subspace if and only if −Akx ∈ wk(A, x).
(ii) The cones wk(A, x), wk(A|Wx), wk(A|WR

x
) are either all zero (respectively,

pointed, closed) or all nonzero (respectively, not pointed, not closed).
(iii) The cones clwk(A, x), clwk(A|Wx), clwk(A|WR

x
) are either all zero (respec-

tively, pointed) or are all nonzero (respectively, not pointed, not closed).
(iv) If A is non-nilpotent, then wk(A, x) is nonzero. If A is nilpotent, then

wk(A, x) is nonzero if and only if k ≤ ν0(A|Wx)− 1.
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Proof. (i) It suffices to prove the “if” part. Suppose −Akx ∈ wk(A, x).
Then −Akx = Akv(A)x for some v(t) ∈ R+[t]. So for any p(t) ∈ R+[t], we
have −Akp(A)x = Akp(A)v(A)x ∈ wk(A, x). So wk(A, x) is a cone and we have
−wk(A, x) ⊆ wk(A, x); hence wk(A, x) is a real subspace.

(ii) and (iii): We are going to show that the cones clwk(A, x), clwk(A|Wx),
clwk(A|WR

x
) are either all pointed or all not pointed. The proofs for the remaining

parts are similar.
Suppose that the cone cl wk(A|Wx) is not pointed. Then there exist polynomials

pj(t), qj(t) ∈ tkR+[t], for j = 1, 2, . . ., such that lim
j→∞

pj(A|Wx) and lim
j→∞

qj(A|Wx)

both exist, are nonzero, and lim
j→∞

pj(A|Wx) = − lim
j→∞

qj(A|Wx). Then the limits

lim
j→∞

pj(A)x and lim
j→∞

qj(A)x both exist, are nonzero, and are the negative of each

other. So the cone clwk(A, x) is not pointed.
Conversely, suppose that the cone clwk(A, x) is not pointed. Then there exist

polynomials pj(t), qj(t) ∈ tkR+[t], for j = 1, 2, . . ., such that the limits lim
j→∞

pj(A)x

and lim
j→∞

qj(A)x both exist, are nonzero, and are the negative of each other. Then

lim
j→∞

pj(A)v(A)x = − lim
j→∞

qj(A)v(A)x for every v(t) ∈ tkR+[t]; hence we have 0 ̸=

lim
j→∞

pj(A|Wx) = − lim
j→∞

qj(A|Wx), and so the cone cl wk(A|Wx) is not pointed.

By replacing A|Wx by A|WR
x
in the above argument, we also show that the cones

clwk(A, x), clwk(A|WR
x
) are either both pointed or both not pointed.

(iv) Obvious. □

Remark 3.3. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Let ν0 denote the order of the
generalized eigenvector corresponding to 0 that appears in the representation of x as
a sum of generalized eigenvectors of A. (If there is no such generalized eigenvector,
ν0 is taken to be zero.) Then wj(A, x) is (linearly) isomorphic to wν0(A, x) for any
integer j > ν0, and for any nonnegative integer j ≤ ν0 − 1, wj(A, x) is the direct
sum of wν0(A, x) and the simplicial cone pos{Ajx, . . . , Aν0−1x}.

Proof. Note that ν0 = ν0(A|WR
x
). When j > ν0, we have, Aj−ν0wν0(A, x) =

wj(A, x), and since the restriction of A to spanR{Aix : i = ν0, ν0 + 1, . . .} is an
isomorphism, wj(A, x) is isomorphic to wν0(A, x).

Now suppose 0 ≤ j ≤ ν0 − 1. Clearly, we have
wj(A, x) = pos{Ajx,Aj+1x, . . . , Aν0−1x}+ wν0(A, x).

To show that the sum is in fact a direct sum, let ai, j ≤ i ≤ ν0 − 1, be real scalars
such that

∑ν0−1
i=j aiA

ix = w, where w ∈ spanRwν0(A, x). Write x as y + z, where y
is a generalized eigenvector of A corresponding to 0 of order ν0 and z belongs to the
direct sum of generalized eigenspaces of A corresponding to nonzero eigenvalues.
(If 0 is not an eigenvalue of A then ν0 = 0, and we are done.) Upon rewriting, the

above equality relation becomes
∑ν0−1

i=j aiA
iy = w −

∑ν0−1
i=j Aiz. Now the vector

on the left side of the equality belongs to the generalized nullspace of A, whereas
the vector on the right side belongs to the direct sum of generalized eigenspaces of
A corresponding to nonzero eigenvalues because

∑ν0−1
i=j Aiz is one such vector and

so is w (as w ∈ spanRwν0(A, x) = spanRwν0(A, z)). So this common vector must
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be the zero vector. As y is a generalized eigenvector corresponding to 0 of order
ν0, the vectors y,Ay, . . . , Aν0−1y are linearly independent; thus we have ai = 0 for
j ≤ i ≤ ν0 − 1, and hence

∑ν0−1
i=j aiA

ix = 0. This shows that the sum is indeed a
direct sum.

Note that the linear independence of {y,Ay, . . . , Aν0−1y} also implies that of
{x,Ax, . . . , Aν0−1x}; hence pos{x,Ax, . . . , Aν0−1x} is a simplicial cone. □

It is not difficult to obtain the following analogous result :

Remark 3.4. Let A ∈ Mn(C). let WA be the LA-cyclic subspace generated by A
and denote ν0(A) by ν0. Then :

(i) WA = span{A, . . . , Aν0−1}⊕ span{Aν0 , . . . , Am−1}, where m is the degree of
the minimal polynomial of A ;

(ii) wj(A) = pos{Aj , Aj+1, . . . , Aν0−1} ⊕ wν0(A) for j = 0, . . . , ν0 − 1, and the
cones wj(A), for j = ν0, ν0 + 1, . . ., are pairwise isomorphic.

If A is nilpotent, the second summand in (i) does not appear. If A is nonsingular,
the first summands in (i) and (ii) both do not appear.

Using Remark 3.3, we readily obtain the following:

Remark 3.5. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn.

(i) The following conditions are equivalent:
(a) For every nonnegative integer k, the cone w0(A, k) is pointed (respec-

tively, closed, pointed and closed).
(b) For some nonnegative integer k, the cone w0(A, k) is pointed (respec-

tively, closed, pointed and closed).
(c) The cone w0(A, x) is pointed (respectively, closed, pointed and closed).

(ii) The following conditions are equivalent:
(a) For every nonnegative integer k, the cone clw0(A, k) is pointed.
(b) For some nonnegative integer k, the cone clw0(A, k) is pointed.
(c) The cone clw0(A, x) is pointed.

Theorem 3.6. For any A ∈ Mn(C) and let 0 ̸= x ∈ Cn. The following conditions
are equivalent :

(a1) A satisfies the local Perron-Schaefer condition at x.
(a2) A|WR

x
satisfies the Perron-Schaefer condition.

(a3) A|Wx satisfies the Perron-Schaefer condition.
(b1) For every nonnegative integer k, the cone clwk(A, x) is pointed.
(b2) The cone clw0(A, x) is pointed.
(b3) For some nonnegative integer k, the cone clwk(A, x) is pointed.
(c1) There is an A-invariant closed, pointed, cone that contains x.
(c2) There is an A-invariant proper cone in WR

x that contains x.
(c3) There is an A-invariant proper cone in WR

x .

Proof. The equivalence of (a1), (a2) and (a3) holds by Corollary 2.4. The equiva-
lence of (b1), (b2) and (b3) follows from Remark 3.5.

(b2)⇒ (c2): clw0(A, x) is the desired proper cone in WR
x .

The implications (c2)⇒ (c1) and (c2)⇒ (c3) are both obvious.
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(c1)⇒ (b2): Let C be an A-invariant closed pointed cone that contains x. Then
we have clw0(A, x) ⊆ C, and as C is pointed, so is clw0(A, x).

(c3)⇒ (a2): Follows from the “only if” part of Theorem A.
We complete the proof by establishing the implication (a1)⇒ (b2) as follows:
Suppose that A satisfies the Perron-Schaefer condition at x, but clw0(A, x)

is not pointed. Then there exist pm(t), qm(t) ∈ R+[t],m = 1, 2, . . ., such that
limm→∞ pm(A)x, limm→∞ qm(A)x both exist, are nonzero, and are the negative of
each other. Let x = x1 + · · ·+ xk, where x1, . . . , xk are generalized eigenvectors of
A corresponding to distinct eigenvalues λ1, . . . , λk respectively, with λ1 = ρx(A).
We have limm→∞(pm + qm)(A)x = 0 and hence limm→∞(pm + qm)(A)xi = 0 for
i = 1, . . . , k; in particular, limm→∞(pm + qm)(A)x1 = 0. By the theory of functions
of matrices and, in particular, a formula for f(Jk(λ)) (see, for instance, [12, Chapter
9]), we have

(pm + qm)(A)x1 =
∑νρx−1

j=0
(p

(j)
m +q

(j)
m )(ρx)
j! (A− ρxI)

jx1,

where νρx = νρx(A)(A|Wx) and a similar equality relation holds for (pm + qm)(A)xi
for i = 2, . . . , k. So we have

limm→∞(p
(j)
m + q

(j)
m )(ρx) = 0 for j = 0, . . . , νρx .

Consider any λi with modulus ρx. By the local Perron-Schaefer condition of A at
x, νλi

≤ νρx . For j = 0, . . . , νλi
− 1, we have

0 ≤ |p(j)m (λi)| ≤ p
(j)
m (ρx) ≤ (p

(j)
m + q

(j)
m )(ρx);

so limm→∞ p
(j)
m (λi) = 0. Hence limm→∞ pm(A)xi = 0 whenever |λi| = ρx. Now

consider any λi with |λi| < ρx. Let C denote the circle |z − λi| = ρx − |λi|
in the complex plane. Noting that maxw∈C |pm(w)| ≤ pm(ρx), by Cauchy’s in-
equality ([6, p. 125]) or the Cauchy integral formula for derivatives, we have 0 ≤
|p(j)m (λi)| ≤ j!

(ρx−|λi|)j pm(ρx), which implies limm→∞ p
(j)
m (λi) = 0 for j = 0, . . . , νλi

.

So limm→∞ pm(A)x = 0, which is a contradiction. □

Note that in the proof of Theorem 3.6 we are assuming the “only if” part of
Theorem A, but not its “if” part. In Section 5, we will establish the “if” part of
Theorem A by showing that if A satisfies the Perron-Schaefer condition then there
is a proper A-invariant cone which can be expressed as a finite sum of the closures
of A-cyclic cones. Our argument will rely on Theorem 3.6, (a2)⇒(b2), which says
that if A|WR

x
satisfies the Perron-Schaefer condition, then there is a proper cone in

WR
x which is invariant under A (namely, clw0(A, x)).
Next, we are going to deduce Theorem B, the intrinsic Perron-Frobenius theorem,

from Theorem 3.6. We need the following lemma.

Lemma 3.7. Let 0 ̸= A ∈ Mn(C). Let LA be the linear operator on Mn(C) given
by LA(X) = AX, and let WA (respectively, WR

A ) denote the LA-cyclic subspace
(respectively, real subspace) of Mn(C) generated by A. Also let m be the degree of
the minimal polynomial of A over C (respectively, over R).

(i) If A is nonsingular, then {In, A, . . . , Am−1} forms a basis forWA (respectively,
for WR

A ), and the minimal polynomial of LA|WA
(respectively, of LA|WR

A
) equals the

minimal polynomial of A over C (respectively, over R).
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(ii) If A is singular, then {A, . . . , Am−1} forms a basis for WA (respectively, for
WR

A ), and the minimal polynomial of LA|WA
(respectively, of LA|WR

A
) is equal to the

minimal polynomial of A over C (respectively, over R) divided by t.

Proof. Let q(t) = tm+ am−1t
m−1+ · · ·+ a1t+ a0 denote the minimal polynomial of

A over C (or over R).
(i) Since q(t) is the minimal polynomial for A and A is nonsingular, we have

a0 ̸= 0, In ∈ WA (respectively, WR
A ) and {In, A, . . . , Am−1} is a spanning set for

WA (respectively, for WR
A ). Indeed, the latter set forms an ordered basis for WA

(respectively, forWR
A ), else we would obtain a nonzero annihilating polynomial for A

of degress less than that of q(t). Straightforward calculation shows that, relative to
the said ordered basis for WA (respectively, for WR

A ), LA|WA
(respectively, LA|WR

A
)

is represented by the companion matrix of q(t), that is, the matrix Cq given by

Cq =


0 −a0
1 0

1
. . .

...
. . . 0 −am−2

1 −am−1

 .
As q(t) is the minimal polynomial of Cq (see, for instance, [11, Theorem 3.3.14]), it
follows that q(t) is also the common minimal polynomial for A and LA|WA

(respec-
tively, for A and LA|WR

A
) .

(ii) When A is singular, by modifying the argument given in the proof for part
(i), one can show that the set {A,A2, . . . , Am−1} forms an ordered basis for WA

(respectively, forWR
A ) and relative to this ordered basis LA|WA

(respectively, LA|WR
A
)

is represented by the companion matrix of the polynomial q(t)/t. So, in this case,
the minimal polynomial of LA|WA

(respectively, of LA|WR
A
) is equal to the minimal

polynomial of A divided by t. □
The following alternative proof for the complex version of Lemma 3.7 may be of

interest:
First, take note of the following: (1) For any λ ∈ σ(A) \ {0}, λE(0)

λ + E
(1)
λ is

a generalized eigenvector of LA corresponding to λ of order νλ(:= νλ(C); (2) if

0 ∈ σ(A), then E
(1)
0 is a generalized eigenvector of LA corresponding to 0 of order

ν0 − 1, provided that ν0 ≥ 2, but E
(1)
0 = 0 when ν0 = 1. So the spectral resolution

of A in terms of its components (see, for instance, [12, p.315, Exercise 1(b)]), i.e.,

A =
∑

λ∈σ(A)

(λE
(0)
λ + E

(1)
λ ),

where the (nonzero) term E
(0)
0 + E

(1)
0 does not appear when 0 ∈ σ(A) and ν0 = 1,

is in fact the representation of A as a sum of generalization eigenvectors of LA.

But the minimal polynomial of a matrix C equals
∏k

i=1(t−λi)
νλi , where λ1, . . . , λk

are the distinct eigenvalues of C ([11, Theorem 3.3.6]), it follows that the minimal
polynomial of LA|WA

equals the minimal polynomial of A when A is nonsingular,
and equals the minimal polynomial of A divided by t when A is singular.
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Corollary 3.8. Let 0 ̸= A ∈ Mn(C). The following conditions are equivalent :

(a) A satisfies the Perron-Schaefer condition.
(b) LA|WA

satisfies the Perron-Schaefer condition.
(c) A, treated as a real linear transformation on Cn, satisfies the Perron-Schaefer

condition.
(d) LA|WR

A
satisfies the Perron-Schaefer condition.

Proof. Let ϕ(t) (respectively, ϕR(t)) denote the minimal polynomial of A over C
(respectively, over R). For brevity, denote by T when A is treated as a real linear
transformation on Cn.

According to Lemma 2.2, ϕR(t) is the minimal polynomial of T , ϕ(t) and ϕR(t)
share the same real eigenvalues and with the same multiplicities, the non-real com-
plex eigenvalues of ϕR(t) are precisely the non-real complex eigenvalues of ϕ(t)
together with their complex conjugates, and for each non-real complex eigenvalue
λ, νλ(T ) = max{νλ(A), νλ̄(A)}. Now it should be clear that A satisfies the Perron-
Schaefer condition if and only if T satisfies the Perron-Schaefer condition, i.e., con-
ditions (a) and (c) are equivalent.

By Lemma 3.7 the minimal polynomial of LA|WA
(respectively, of LA|WR

A
)) is

equal to ϕ(t) (respectively, ϕR(t)) or ϕ(t) (respectively, ϕR(t)) divided by t, de-
pending on whether A is nonsingular or singular. So the nonzero part of the spec-
trum of A (respectively, of T ) and that of LA|WA

(respectively, of LA|WR
A
) are the

same. Moreover, for each nonzero eigenvalue λ, νλ(A) = νλ(LA|WA
) (respectively,

νλ(T ) = νλ(LA|WR
A
)). Hence, A satisfies the Perron-Schaefer condition if and only if

LA|WA
satisfies the Perron-Schaefer condition (respectively, T satisfies the Perron-

Schaefer condition if and only if LA|WR
A
satisfies the Perron-Schaefer condition), i.e.,

conditions (a) and (b) (respectively, (c) and (d)) are equivalent. □

The equivalence of conditions (a) and (b) in Corollary 3.8 is implicit in [20,
p.265, 2nd paragraph], where it was pointed out that the “only if” part of Theorem
A implies the “only if” part of Theorem B. Here we are elaborating and extending
the observation.

Proof of Theorem B. First, by Corollary 3.8 A satisfies the Perron-Schaefer condi-
tion if and only if LA|WA

satisfies the Perron-Schaefer condition. Next, by Theorem
3.6, (a3)⇔(b1)⇔(b3), (with LA and A playing the roles of A and x respectively), the
condition that LA|WA

satisfies the Perron-Schaefer condition is equivalent to that
for some (or, for every) nonnegative integer k, the cone clwk(LA, A) is pointed. As
we have wk(LA, A) = wk+1(A) for every nonnegative integer k, the latter condition,
in turn, is equivalent to the condition that for some (or, for every) positive integer
k, the cone clwk(A) is pointed. Finally, by Remark 3.4(ii), for any positive integer
k, clwk(A) is pointed if and only if clw0(A) is pointed. So A satisfies the Perron-
Schaefer condition if and only if for some (or, for every) nonnegative integer k, the
cone clwk(A) is pointed. □

Theorem 3.9. Let A ∈ Mn(C) and let 0 ̸= x ∈ Rn. Let ν0 be the order of the
generalized eigenvector corresponding to 0 that appears in the representation of x
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as a sum of generalized eigenvectors of A. (If such vector does not appear in the
representation, ν0 is taken to be 0.) Then the following conditions are equivalent :

(a1) In the representation of x as a sum of generalized eigenvectors of A, there
is a generalized eigenvector corresponding to a positive eigenvalue.

(a2) The linear map A|Wx has a positive eigenvalue.
(a3) The linear map A|WR

x
has a positive eigenvalue.

(b1) For every nonnegative integer k, the cone wk(A, x) is nonzero, pointed.
(b2) For every integer k ≥ ν0, the cone wk(A, x) is nonzero, pointed.
(b3) The cone wν0(A, x) is nonzero pointed.
(b4) For some integer k ≥ ν0, the cone wk(A, x) is nonzero, pointed.
(c1) For every integer k ≥ ν0, the cone wk(A, x) is not a real subspace of Cn.
(c2) wν0(A, x) is not a real subspace of Cn.
(c3) For some integer k ≥ ν0, the cone wk(A, x) is not a real subspace of Cn.

Proof. The equivalence of (a1) and (a2) follows from Lemma 2.3. By Remark 2.5
A|Wx and A|WR

x
share the same real eigenvalues, so the equivalence of (a2) and (a3)

follows.
Since an isomorphism preserves the property of being nonzero, pointed (as well as

being a real subspace), by Remark 3.3, the equivalence of (b1)–(b4) (and (c1)–(c3))
follows.

(a1)⇒ (b1): Condition (a1) clearly implies that x is not a generalized eigenvector
of A corresponding to 0. So, for every nonnegative integer k, wk(A, x) is a nonzero
cone. Since w0(A, x) ⊇ wk(A, x) for all positive integers k, it suffices to show
that the cone w0(A, x) is pointed. Assume that the contrary holds. By Remark
3.2(ii), the cone w0(A|Wx) is also not pointed. So there exist nonzero polynomials
p(t), q(t) ∈ R+[t] such that p(A|Wx) equals −q(A|Wx) and is nonzero. Then we
have p(A)y = −q(A)y for every vector y ∈ Wx. Let α be a positive eigenvalue
of A|Wx and let y be a corresponding eigenvector. We have p(α)y = −q(α)y, and
hence p(α) + q(α) = 0. But p(t) + q(t) is a nonzero polynomial with nonnegative
coefficients, so we arrive at a contradiction.

Clearly we have the implication (b2)⇒ (c1). To complete the proof, it remains
to establish the implication (c3)⇒ (a2).

(c3)⇒ (a2): Suppose that for some integer k ≥ ν0, wk(A, x) is not a real subspace.
Clearly, A|Wx is non-nilpotent. Assume to the contrary that condition (a2) does
not hold. Then by Lemma 2.10, there exists a polynomial v(t) of positive degree
r and with positive coefficients such that v(0) = 1 and Aν0v(A)x = 0, where ν0 =
ν0(A|Wx). Say, v(t) =

∑r
i=0 art

r. Since k ≥ ν0, we have A
kv(A)x = 0, which implies

that
−Akx = Ak+1(arA

r−1 + ar−2A
r−2 + · · ·+ a1)x ∈ wk+1(A, x) ⊆ wk(A, x).

By Remark 3.2(i), wk(A, x) is a real subspace, which contradicts our assumption on
k. □

Using the kind of arguments given in the proof of Theorem 3.9, it is not difficult
to show the following:

Remark 3.10. When x ̸= 0, the condition that w0(A, x) is a nonzero pointed cone
is equivalent to the condition that either A|WR

x
(or, A|Wx) is nilpotent or A|WR

x
(or,

A|Wx) has a positive eigenvalue. Thus, the condition is weaker than the equivalent
conditions of Theorem 3.9.
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In view of Remark 3.2, to the list of equivalent conditions in Theorem 3.9, one
can add further conditions given in terms of the cones wk(A|Wx) or wk(A|WR

x
).

Theorem 3.11. Let A ∈ Mn(C), and let 0 ̸= x ∈ Cn. Then A|Wx has a nonnega-
tive eigenvalue if and only if the cone w0(A, x) is not a real subspace.

Proof. “Only if” part: Assume to the contrary that w0(A, x) is a real subspace.
Then −x ∈ w0(A, x) and so for some p(t) ∈ R+[t], we have −x = p(A)x and hence
−y = p(A)y for all y ∈Wx. Let α be a nonnegative eigenvalue of A|Wx ane let y be
a corresponding eigenvector. Then we have −y = p(A)y = p(α)y and so −1 = p(α),
which is a contradiction.

“If” part: Suppose that A|Wx does not have a nonnegative eigenvalue. Then
A|Wx is nonsingular and by Lemma 2.10 there exists a polynomial v(t) ∈ R+[t] of
positive degree m such that v(0) = 1 and v(A)x = 0. From the latter, we readily
obtain −x ∈ pos{Ax, . . . , Amx} ⊆ w0(A, x) and hence w0(A, x) is a real subspace,
which is a contradiction. □

Using Theorem 3.9, we are going to re-derive the following known result ([20,
Theorem 1.6 and Theorem 6.4]):

Corollary 3.12. Let A ∈ Mn(C). The following conditions are equivalent :
(a) A has a positive eigenvalue.
(b) For every (or, for some) integer k ≥ ν0(A), the cone wk(A) is nonzero,

pointed.
(c) For every (or, for some) integer k ≥ ν0(A), the set wk(A) is not a real

subspace of Mn(C).
If, in addition, A is non-nilpotent, the following is also an equivalent condition :

(d) For every (or, for some) nonnegative integer k, the cone wk(A) is nonzero,
pointed.

Proof. Denote by LA the linear operator on Mn(C) defined by: LA(X) = AX. By
Lemma 3.7, A and LA|WA

share the same nonzero eigenvalues; so condition (a) is
equivalent to the condition that LA|WA

has a positive eigenvalue. By Theorem 3.9
(with LA and A playing the roles of A and x respectively), the latter condition is
equivalent to the following:

(b)′ For every (or, for some) integer k ≥ ν0(LA|WA
), the cone wk(LA, A) is

nonzero pointed.
Note that we always have wk(LA|WA

, A) = wk+1(A). If A is singular, by Lemma
3.7 we have ν0(LA|WA

) = ν0(A)− 1; hence condition (b)′ is equivalent to condition
(b). If A is nonsingular, then so is LA and hence also is LA|WA

. In this case,
ν0(LA|WA

) = ν0(A) and condition (b)′ is equivalent to the condition that wk+1(A)
is a nonzero pointed cone for every (or, for some) integer k ≥ ν0(A) = 0. Now by
Remark 3.4(ii), the cones w0(A), w1(A), . . . are all isomorphic. So condition (b)′ is
also equivalent to condition (b).

In the above, we have established the equivalence of conditions (a) and (b). In a
similar way (and also making use of Theorem 3.9), we can show that conditions (a)
and (c) are equivalent.

When A is non-nilpotent, wν0(A, x) is nonzero, and again by Remark 3.4(ii),
condition (d) is another equivalent condition. □
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Condition (c) of Corollary 3.12 can also be replaced by the following (which is
the condition that appears in [20, Theorem 1.6]):

(c)′ For every (or, for some) integer k ≥ ν0(A), the set clwk(A) is not a real
subspace of Mn(C).

The point is, a convex set C in a finite dimensional (real or complex) vector space is
a real subspace if and only if its closure is a real subspace. The latter, in turn, is a
consequence of the following basic property for a convex set C in a finite-dimensional
vector space: riC = ri (clC).

By applying Theorem 3.11 (with A and x replaced by LA and A respectively)
and Lemma 3.7, one can obtain the following:

Corollary 3.13. Let A ∈ Mn(C). The following conditions are equivalent :
(a) Either A has a positive eigenvalue, or 0 is an eigenvalue of A with index ≥ 2.
(b) w1(A) is not a real subspace.

The following result has appeared in [20, Theorem 6.3]. We give another proof
here.

Theorem 3.14. Let A ∈ Mn(C). The following conditions are equivalent :
(a) A has a nonnegative eigenvalue.
(b) w0(A) is not a real subspace.

Proof. (a)⇒ (b): Suppose that condition (a) holds. If A is nonsingular, then nec-
essarily A has a positive eigenvalue and by Corollary 3.12, (a)⇒ (c), condition (b)
follows. If A is singular then, by part(ii) of Remark 3.4, w0(A) is the direct sum of

the cones pos{In, A, . . . , Aν0(A)−1} and wν0(A)(A). But the former cone is pointed,
so w0(A) is not a real subspace.

(b)⇒ (a): If A is singular, then 0 is an eigenvalue of A and condition (a) clearly
holds. If A is nonsingular, then by Corollary 3.12, (c)⇒(a), A has a positive eigen-
value. □
Lemma 3.15. Let A ∈ Mn(C). If x is a generalized eigenvector of A corresponding
to a positive eigenvalue λ, then clw0(A, x) is a pointed polyhedral cone if and only
if νλ(A|Wx) ≤ 2.

Proof. Clearly, A satisfies the local Perron-Schaefer condition at x. So the cone
clw0(A, x) is always pointed.

“If” part: If νλ(A|Wx) = 1, clw0(A, x) is simply the ray generated by x. If
νλ(A|Wx) = 2, then clw0(A, x) is the pointed polyhedral cone generated by the

extreme vectors x and E
(1)
λ (A)x.

“Only if” part: Without loss of generality, we may assume that A = Jk(λ) and x
is the standard unit vector ek. Then
w0(A, x) = pos{

(
i

m−1

)
λi−m+1, . . . ,

(
i
2

)
λi−2,

(
i
1

)
λi−1, λi)T : i ≥ 0}.

Now assume to the contrary that k(= νλ(A|Wx) ≥ 3. Since clw0(A, x) is polyhedral,

so is the cone clC, where C = pos{
(
i
2

)
λi−2,

(
i
1

)
λi−1, λi)T : i ≥ 0}. Now C is the

same as pos{
(
i
2

)
λ−2,

(
i
1

)
λ−1, 1)T : i ≥ 0} and is linearly isomorphic with the cone

pos{i(i − 1)/2, i, 1)T : i ≥ 0} under the nonsingular matrix diag(λ2, λ, 1)T . But
the latter cone is clearly a non-polyhedral closed pointed cone, so we arrive at a
contradiction. □
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According to [28, Theorem 7.9], for any A ∈ Mn(R), there exists a proper poly-
hedral cone K in Rn such that A ∈ π(K) if and only if each peripheral eigenvalue
of A equals ρ(A) times a root of unity. For the local version, we have the following
partial result:

Theorem 3.16. Let A ∈ Mn(C). If clw0(A, x) is a pointed polyhedral cone, then
each of the following conditions is satisfied :

(a) A satisfies the local Perron-Schaefer condition at x.
(b) Each peripheral eigenvalue of A|Wx equals ρx(A) times a root of unity.
(c) For each positive eigenvalue λ of A|Wx, νλ(A|Wx) ≤ 2.

Proof. Condition (a) follows from Theorem 3.6, (b2) ⇔ (a1).
Since A|WR

x
∈ π(clw0(A, x)), by [28, Theorem 7.9] each peripheral eigenvalue of

A|WR
x
equals ρx(A) times a root of unity. By Remark 2.5 the same can be said for

the peripheral eigenvalues of A|Wx .
Now we show condition (c). Let x = x1 + · · · + xk be the representation of x

as a sum of generalized eigenvectors of A, with xi corresponding to λi for each i.
Consider any y ∈ clw0(A, x). We have y = limm→∞ pm(A)x and some pm(t) ∈
R+[t],m = 1, 2, . . .. For each i, clearly limm→∞ pm(A)x exists, say, equals yi. Then
yi ∈ clw0(A, xi). The assumption that clw0(A, x) is a pointed polyhedral cone
implies that if λi is a positive eigenvalue then clw0(A, x) is also a pointed polyhedral
cone, and so by Lemma 3.15 we have νλ(A|Wx) = νλ(A|Wxi

) ≤ 2. □

We end this section by noting the following observations, which are not difficult
to prove:

Remark 3.17. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Then :

(i) w0(A, x) is a simplicial cone if and only if the minimal polynomial of A|WR
x

is of the form tm − a1t
m−1 − · · · − am, where m = dimWR

x and a1, . . . , am
are all nonnegative real numbers.

(ii) w0(A, x) is a pointed polyhedral cone if and only if A satisfies the local
Perron-Schaefer condition at x and A|WR

x
(or, A|Wx) has an annihilating

polynomial of the form tp − a1t
p−1 − · · · − ap, where p is a positive integer

and a1, . . . , ap are nonnegative real numbers.

4. When the cone w0(A, x) is closed and pointed

Lemma 4.1. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the
local Perron-Schaefer condition at x. Then :

(i) For any 0 ̸= y ∈ clw0(A, x), we have ρy(A) = ρx(A) and spA(y) ⪯ spA(x).
(ii) If ρx(A) > 0 then spA(y) = spA(x) for every 0 ̸= y ∈ w0(A, x).

Proof. (i) First, we show that ρy(A) ≤ ρx(A). Since y ∈ clw0(A, x), there ex-
ist pm(t) ∈ R+[t], m = 1, 2, . . ., such that y = limm→∞ pm(A)x. Let x = x1 +
· · · + xk, where x1, . . . , xk are generalized eigenvectorsof A corresponding to dis-
tinct eigenvalues λ1, . . . , λk respectively, and with λ1 = ρx(A). The existence of
limm→∞ pm(A)x guarantees the existence of limm→∞ pm(A)xi for i = 1, . . . , k. De-

note limm→∞ pm(A)xi by yi. For each i, since xi ∈ N
νλi
λi

(A|Wx), where νλi
=
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νλi
(A|Wx) and N

νλi
λi

(A|Wx) is A-invariant, pm(A)xi ∈ N
νλi
λi

(A|Wx) for every m. So

we have y = y1 + · · ·+ yk with yi ∈ N
νλi
λi

(A|Wx) for each i, and hence

ρy(A) = max{|λi| : 1 ≤ i ≤ k, yi ̸= 0} ≤ max1≤i≤k |λi| ≤ ρx(A).
Suppose ρy(A) ̸= ρx(A). Then we must have ρy(A) < ρx(A) and hence yi = 0
whenever |λi| = ρx(A). In particular, we have, y1 = 0, i.e., limm→∞ pm(A)x1 =

0. As pm(A)x1 =
∑νρx−1

j=0
p
(j)
m (ρx)
j! (A − ρxI)

jx1, where νρx = νρx(A|Wx), it follows

that we also have limm→∞ p
(j)
m (ρx) = 0 for j = 0, . . . , νρx − 1. Then using an

argument given in the proof for Theorem 3.6,(a1)⇒(b2), we can show that for each
i = 2, . . . , k,

limm→∞ p
(j)
m (λi) = 0 for j = 0, . . . , νλi

− 1.
So we have limm→∞ pm(A)x = 0, which is a contradiction. This proves that ρy(A) =
ρx(A). Now, by definition, we have

ordA(y) = max{ordA(yi) : |λi| = ρx(A)} ≤ max{νλi
: |λi| = ρx(A)} = ordA(x),

where the inequality holds as yi ∈ N
νλi
λi

(A|Wx). Therefore, spA(y) ⪯ spA(x).

(ii) If 0 ̸= y ∈ w0(A, x), then y can be written as
∑p

i=0 aiA
ix for some non-

negative integer p and some nonnegative real numbers a0, . . . , ap with at least one
positive. By [29, Theorem 4.9(ii)(c)] we have spA(y) = max{spA(Aix) : ai > 0},
where the maximum is taken in the sense of lexicographic ordering. Since A|WR

x
∈

π(clw0(A, x)) and ρx(A) > 0, by [29, Remark 4.1(ii)] we have spA(Ax) = spA(x)
and hence spA(A

ix) = spA(x) for every positive integer x. It follows that spA(y) =
spA(x). □
Remark 4.2. In Lemma 4.1, if we drop the assumption that A satisfies the local
Perron-Schaefer condition at x, then the result, in its full strength, no longer holds.
However, by a slight modification of the original argument, one can show that
spA(y) ⪯ spA(x) for any 0 ̸= y ∈ clw0(A, x).

To see this, take A = diag(−1, 12) and x = (1, 1)T . Then A does not satisfy
the local Perron-Schaefer condition at x, as ρx(A) = 1 /∈ σ(A|Wx). For p(t) =
1 + t, p(A)x = (0, 32)

T ; so spA(p(A)x) = (12 , 1) ≺ (1, 1) = spA(x).

Remark 4.3. In part(i) of Lemma 4.1, we cannot replace ⪯ by the equality.

To see this, let A = J2(1) and x = (0, 1)T . Then, as can be readily shown,
w0(A, x) = R2

+ \ {λ(1, 0)T : λ > 0}, so clw0(A, x) = R2
+. Take y = (1, 0)T . Then

spA(y) = (1, 1) ≺ (1, 2) = spA(x).
If K is an A-invariant closed pointed cone, then the set

∩∞
i=0A

iK, denoted by
coreK(A), is called the core of A relative to K. By [28, Theorem 2.2] coreK(A) is
always a closed, pointed cone (and usually its dimension is less than that of K) and
A|spanR(coreK(A)) is an automorphism of coreK(A).

Lemma 4.4. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the
local Perron-Schaefer condition at x. Let Λ denote the set of peripheral eigenvalues
λ of A|Wx for which νλ(A|WR

x
) = νρx(A|WR

x
).

(i) If ρx(A) > 0 then E
(νρx−1)
ρx (A)x and

∑
λ∈ΛE

(νρx−1)
λ (A)x both belong to∩∞

i=0 clwi(A, x).
(ii) coreclw0(A,x)(A|WR

x
) =

∩∞
i=0 clwi(A, x).
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(iii) ρx(A) is the only distinguished eigenvalue of A|WR
x
for clw0(A, x) and (up

to positive multiples) E
(νρx−1)
ρx(A) (A)x is the unique corresponding eigenvector

in clw0(A, x).

Proof. For brevity, denote A|spanRwk(A,x) simply as Ak,x.
(i) For each nonnegative integer k, since A satisfies the local Perron-Schaefer

condition at x, by Theorem 3.6, clwk(A, x) is a proper cone in its own real linear
span, so Ak,x ∈ π(clwk(A, x)). When ρx(A) > 0, by [27, the proof of Theorem 3.1],
we have

E(ν−1)
ρ (Ak,x) = lim

j→∞
((ν − 1)!)j−(ν−1)ρ−k(ρ+ 1)−(j−ν+1)(Ak,x + I)jAk

k,x

∈ clwk(Ak,x),

where ρ = ρx(A), ν = νρx(A)(A|Wx), and hence

E
(νρx(A)−1)

ρx(A) (A)x = E
(νρx(A)−1)

ρx(A) (Ak,x)x ∈ clwk(A, x). Since this is true for each non-

negative integer k, we have, E
(νρx(A)−1)

ρx(A) x ∈
∩∞

k=0 clwk(A, x).

To prove that (
∑

λE
(νρx(A)−1)

λ )x ∈
∩∞

k=0 clwk(A, x), we use a similar argument,
except that now we apply instead [28, the proof of Theorem 7.1(i)], which says

that if A ∈ π(K), then
∑

λE
(νρ(A)(A)−1)

λ ∈ π(K), where the sum is taken over all
eigenvalues λ with |λ| = ρ(A) and νλ(A) = νρ(A)(A).

(ii) Let y ∈ coreclw0(A,x)(A|WR
x
). For each nonnegative integer i, there exist poly-

nomials pk(t) ∈ R+[t], k = 1, 2, . . . (depending on i), such that limk→∞ pk(A)x exists
and y = Ai(limk→∞ pk(A)x). As Aipk(A)x ∈ wi(A, x) for each k, it follows that
y ∈ clwi(A, x). This establishes the inclusion coreclw0(A,x)(A|Wx) ⊆

∩∞
i=0 clwi(A, x).

To show the reverse inclusion, consider any y ∈
∩∞

i=0 clwi(A, x). For each positive
integer i, since y ∈ clwi(A, x), we can find a vector yi ∈ wi(A, x)(= Aiw0(A, x))
such that ∥yi − y∥ ≤ 1

i , where ∥ · ∥ denotes any norm in Cn. Then the sequence

(yi)i∈Z+ converges to y and as yi ∈ Aiclw0(A, x) for each i, by [28, Remark 3.10] it
follows that y ∈ coreclw0(A,x)(A|Wx), as desired.

(iii) Since A|WR
x
∈ π(clw0(A, x)), by [25, Theorem 2.4], every distinguished eigen-

value of A|WR
x

for clw0(A, x) equals ρy(A) for some nonzero y ∈ clw0(A, x). By

Lemma 4.1(i), for any 0 ̸= y ∈ clw0(A, x), ρy(A) = ρx(A). Hence ρx(A) is the
only distinguished eigenvalue of A|WR

x
for clw0(A, x). Since A|WR

x
is a cyclic lin-

ear transformation, each of its eigenvalues has geometric multiplicity 1, and as

E
(νρx(A)−1)

ρx(A) x ∈ clw0(A, x), by part (i) our assertion follows. □

We would like to add that the fact if A ∈ Mn(C) satisfies the Perron-Schaefer

condition then E
(νρ(A)−1)

ρ(A) (A) ∈
∩∞

i=0 clωi(A) is known (see Schneider [20, Theorem

5.2(iii)]; a short direct proof can also be found in [27, the proof of Theorem 3.1]).
In part(i) of Lemma 4.4 we give a local version of the latter result.

Remark 4.5. If ρx(A) = 0, then Lemma 4.4(i) no longer holds. Instead, we have

E
(νρx−1)
ρx(A) (A)x =

∑
λ∈ΛE

(νρx−1)
λ (A)x ∈ w0(A, x).
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This is because, when ρx(A) = 0, wi(A, x) = 0 for i ≥ ν0(A|Wx), and E
(νρx−1)
ρx(A) (A)

and
∑

λ∈ΛE
(νρx−1)
λ (A) are both equal to Aνρx−1.

Lemma 4.6. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the

local Perron-Schaefer condition at x. Then E
(νρx(A)−1)

ρx(A) (A)x ∈ w0(A, x) if and only

if either ρx(A) = 0 or ρx(A) > 0, ordA(x) = 1 and A|Wx (or A|WR
x
) has no positive

eigenvalue other than ρx(A).

Proof. Let x = x1+ · · ·+xk, where x1, . . . , xk are generalized eigenvectors of A cor-
responding to the distinct eigenvalue λ1, . . . , λk respectively and with λ1 = ρx(A).

“Only if” part: Assume that ρx(A) > 0. Since E
(νρx(A)−1)

ρx(A) (A)x ∈ w0(A, x), by

Lemma 4.1(ii), spA(x) = spA(E
(νρx(A)−1)

ρx(A) (A)x) = (ρx(A), 1), and so ordA(x) = 1.

On the other hand, we also have, E
(νρx(A)−1)

ρx(A) (A)x = p(A)x for some p(t) ∈ R+[t]. As

E
(νρx(A)−1)

ρx(A) (A)x = E
(νρx(A)−1)

ρx(A) (A)x1, p(A)x1 is an eigenvector of A corresponding to

ρx(A) and for i = 2, . . . , k, we have p(A)xi = 0 or, equivalently, p(A)|Wxi
is the zero

operator. Now for i = 1, . . . , k, the matrix of A|Wxi
relative to the ordered basis

{(A − λiI)
ni−1xi, (A − λiI)

ni−2xi, . . . , (A − λiI)xi, xi)} is the elementary Jordan
block Jni(λi), where ni is the order of the generalized eigenvector xi. So the matrix
of p(A)|Wxi

relative to the said ordered basis is an upper triangular matrix with

diagonal entries all equal to p(λi) (see [12, p.311, Theorem 4]). Thus we have
p(λi) = 0 for i = 2, . . . , k. Since the coefficients of the nonzero polynomisl p(t)
are all nonnegative, none of the numbers λ2, . . . , λk can be a positive real number.
This shows that A|Wx (and hence also A|WR

x
) has no positive eigenvalue other than

ρx(A).
“If” part: There is no problem if ρx(A) = 0. Hereafter, we assume that ρx(A) > 0.

Since ordA(x) = 1, x1 is an eigenvector of A corresponding to ρx(A). As A|Wx has no
positive eigenvalue other than ρx(A), by applying Lemma 2.10 (with x = x2+ · · ·+
xk), we can find a nonzero p(t) ∈ R+[t] such that Aν0p(A)(x2+ · · ·+xk) = 0, where
ν0 = ν0(A|Wx2+···+xk

). Then we have Aν0p(A)x = Aν0p(A)x1 = ρx(A)
ν0p(ρx(A))x1.

It follows that x1 belongs to w0(A, x). Now, sine νρx(A) = ordA(x) = 1, we have,

E
(νρx(A)−1)

ρx(A) x = E
(0)
ρx(A)x = x1. So E

(νρx(A)−1)

ρx(A) x ∈ w0(A, x). □

Lemma 4.7. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the

local Perron-Schaefer condition at x. Then
∑

λ∈ΛE
(νλ(A|Wx )−1)
λ x ∈ w0(A, x), where

Λ has the same meaning as given in Lemma 4.4 if and only if either ρx(A) = 0 or
ρx(A) > 0, ordA(x) = 1 and the following condition is satisfied : if the eigenvalues
of A|Wx are not all of the same modulus then every peripheral eigenvalue of A|Wx

equals ρx(A) times a root of unity and for each non-peripheral eigenvalue µ of A|Wx,
µm is not a positive real number, where m denotes the least positive integer such
that ( λ

|λ|)
m = 1 for every peripheral eigenvalue λ of A.

Proof. Let x = x1 + · · · + xk, where x1, . . . , xk are generalized eigenvectors of A
corresponding to the distinct eigenvalue λ1, . . . , λk respectively. Without loss of
generality, assume that Λ = {λ1, . . . , λl} and λ1 = ρx(A).
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“Only if” part: Suppose ρx(A) > 0. Since
∑

λ∈ΛE
(νλ(A|Wx )−1)
λ x ∈ w0(A, x), by

Lemma 4.1(ii), spA(x) = spA(
∑l

i=1E
(νλi−1)

λi
x) = (ρx(A), 1), and so ordA(x) = 1.

On the other hand, we have
∑l

i=1E
(νλi−1)

λi
x = p(A)x for some nonzero p(t) ∈ R+[t].

The latter equality relation implies that for i = 1, . . . , l, p(A)xi equals E
(νλi−1)

λi
xi

and so is an eigenvector of A corresponding to λi and, for l+1 ≤ i ≤ k, p(A)xi = 0.
As A satisfies the local Perron-Schaefer condition at x, for i = 1, . . . , l, xi is an

eigenvector of λi and p(A)xi = E
(νλi−1)

λi
xi = xi.

Now suppose that l < k, i.e., A|Wx has an eigenvalue with modulus less than
ρx(A). In this case the polynomial p(t), considered above, must be of positive
degree. Normalizing A, we may assume that ρx(A) = 1. Assume to the contrary

that there exists r, 2 ≤ r ≤ l, such that λr = e
√
−1 θ, where θ is a real number that

is not a rational multiple of π. Say, p(t) =
∑s

j=0 ajt
j . Note that the condition that

p(A)x1 = x1 and x1 is an eigenvector of A corresponding to 1 implies that
∑s

i=0 ai =
1. So the corresponding condition for xr implies that 1 is a convex combination of

the extreme points e
√
−1 jθ, j = 0, . . . , s, of the unit circle in the complex plane. As

θ is not a rational multiple of π, none of the numbers e
√
−1 jθ, j = 1, . . . , s, equals

1. It follows that we must have a0 = 1 and aj = 0 for j = 1, . . . , s; hence p(t) is a
constant polynomial, which is a contradiction. This proves that every unimodular
eigenvalue of A is a root of unity.

A slight modification of the above argument also shows that the condition p(A)xi =
xi, for i = 1, . . . , l, implies that for each j, 0 ≤ j ≤ s, aj is nonzero only if j is a
multiple of m. So the polynomial p(t) is of the form q(tm) for some q(t) ∈ R+[t]
with positive degree. Then the conditions p(A)xi = 0 for i = l + 1, . . . , k become
q(Am)xi = 0 or, equivalently, q(A)|Wxi

= 0 for i = l + 1, . . . , k. For each such i,

since q(λmi ) is the only eigenvalue of q(Am)|Wxi
, we must have q(λmi ) = 0. As q(t)

belongs to R+[t] and has positive degree, this implies that λmi is not a positive real
number for i = l + 1, . . . , k.

“If” part: If ρx(A) = 0 then we have
∑

λ∈ΛE
(νλ−1)
λ x = Aν0(A|Wx )−1x ∈ w0(A, x).

Hereafter we assume that ρx(A) > 0.
First, consider the case when the eigenvalues of A|Wx are all of the same modulus.

Then k = l and since ordA(x) = 1, we have, E
(νλi−1)

λi
x = E

(0)
λi
x = xi for each i;

hence
∑

λ∈ΛE
(νλi−1)

λ x =
∑k

i=1 xi = x ∈ w0(A, x).
Now consider the case when A|Wx has an eigenvalue with modulus less than ρx(A).

Since none of the numbers λml+1, . . . , λ
m
k is a positive real number, by Lemma 2.10

there exists a nonzero q(t) ∈ R+[t] with positive degree such that q(1) = 1 and

Acq(Am)
∑l

i=1 xi = 0, where c is any common positive integral multiple of m and
ν0(A|Wxl+1+···+xk

). Let p(t) = tcq(tm). Then p(t) ∈ R+[t]. For i = 1, . . . , l, since xi
is an eigenvector, p(A)xi = Acq(Am)xi = λciq(λ

m
i )xi = q(1)xi = xi. So we have

p(A)x =
∑l

i=1 p(A)xi + p(A)(
∑k

i=l+1 xi) =
∑l

i=1 xi =
∑

λ∈ΛE
(νλ−1)
λ x.

This shows that
∑

λ∈ΛE
(νλ−1)
λ x ∈ w0(A, x). □

By Lemma 4.6 and Lemma 4.7 we readily obtain the following:
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Corollary 4.8. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the

local Perron-Schaefer condition at x. If
∑

λ∈ΛE
(νλ−1)
λ x ∈ w0(A, x), where Λ has

the same meaning as given in Lemma 4.4, then E
(νρx(A)−1)

ρx(A) (A)x ∈ w0(A, x).

When A satisfies the local Perron-Schaefer condition at x, by Lemma 4.4(i), we

have
∑

λ∈ΛE
(νρx−1)
λ x ∈ clw0(A, x). So

∑
λ∈ΛE

(νλ−1)
λ (A)x ∈ w0(A, x) is a necessary

condition for w0(A, x) to be closed. However, it is not a sufficient condition, as
illustrated by the following example.

Example 4.9. Let A =

[
cos θ − sin θ
sin θ cos θ

]
⊕ [1], where θ is not a rational multiple

of π, and take x = (1, 0, 1)T . Then WR
x = R3, A is diagonalizable (over C), σ(A) =

{1, eiθ, e−iθ} = Λ, ρx(A) = ρ(A) = 1, A satisfies the local Perron-Schaefer conditon

at x, and
∑

λ∈ΛE
(νλ−1)
λ = I. Thus

∑
λ∈ΛE

(ν−1)
λ x = x ∈ w0(A, x). In this case,

clw0(A, x) is the ice-cream cone K3 := {(ξ1, ξ2, ξ3)T : ξ3 ≥ (ξ21 + ξ22)
1/2}. Also,

for any 0 ̸= y ∈ K3, spA(y) = (1, 1) = spA(x). However, w0(A, x) is not closed,
as all extreme vectors of K3, except those of the form λ(cos kθ, sin kθ, 1)T with
k = 0, 1, 2, . . . , λ > 0, do not belong to w0(A, x).

Lemma 4.10. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that the eigenvalues
of A|Wx are all of the same modulus and ρx(A) is an eigenvalue of A|Wx. Then the
cone w0(A, x) is closed if and only if either ρx(A) = 0 or ρx(A) > 0, ordA(x) = 1,
and every eigenvalue of A|Wx equals ρx(A) times a root of unity.

Proof. Let x = x1 + · · · + xk, where x1, . . . , xk are generalized eigenvectors of A
corresponding to distinct eigenvalues λ1, . . . , λk respectively.

“Only if” part: Suppose that ρx(A) > 0. Since w0(A, x) is closed, by Lemma

4.4(i)
∑

λ∈ΛE
(νλ(A|Wx )−1)
λ x ∈ w0(A, x), where Λ has the same meaning as before.

Then by the “only if” part of Lemma 4.7, ordA(x) = 1. Assume that A|Wx has
an eigenvalue which is not equal to ρx(A) times a root of unity. Without loss of

generality, assume that λ1 = ρx(A) = 1 and λ2 = e
√
−1θ, where θ is not a rational

multiple of π. Choose an increasing sequence of positive integers (mj)j∈N such that

limj→∞ e
√
−1mj exists and equals e

√
−1ϕ, where ϕ is a real number such that e

√
−1ϕ

is not a nonnegative integral power of e
√
−1θ and limj→∞ λ

mj

i exists for i = 1, . . . , k.
Then limj→∞Amjx exists. Since w0(A, x) is a closed cone, limj→∞Amjx = p(A)x
for some p(t) ∈ R+[t]. Now we have p(1)x1 = p(A)x1 = limj→∞Amjx1 = x1, so

p(1) = 1. Also p(eiθ)x2 = p(A)x2 = limj→∞Amjx2 = e
√
−1ϕx2. So we have e

√
−1ϕ =

p(e
√
−1θ), i.e., e

√
−1ϕ is a finite convex combination of nonnegative integral powers

of e
√
−1θ. But e

√
−1ϕ is an extreme point of the unit circle in the complex plane and

is not a nonnegative integral power of e
√
−1θ, so we arrive at a contradiction.

“If” part: In this case, we can find a positive integer m such that λmi = ρx(A)
m

for i = 1, . . . , k. Then Amx = ρx(A)
mx; so w0(A, x) is a pointed polyhedral cone

generated by x,Ax, . . . , Am−1x. As such it must be a closed cone. □

Corollary 4.11. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A|WR

x
is irreducible with respect to
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clw0(A, x) if and only if either Ax = 0 or A|WR
x
is nonsingular, ordA(x) = 1 and

A|WR
x
has no positive eigenvalue other than ρx(A).

Proof. Let x = x1 + · · · + xk, where x1, . . . , xk are generalized eigenvectors of A
corresponding to distinct eigenvalues λ1, . . . , λk respectively, and with λ1 = ρx(A).

“Only if” part: Since A|WR
x
is irreducible with respect to clw0(A, x), E

(νρx−1)x,

the unique distinguished eigenvector of A|WR
x

for clw0(A, x), belongs to

ri(clw0(A, x)) = riw0(A, x). By Lemma 4.6, either ρx(A) = 0 or ρx(A) > 0,
ordA(x) = 1 and A|WR

x
has no positive eigenvalue other than ρx(A). If ρx(A) = 0

then clw0(A, x) equals the simplicial cone with distinct extreme vectors

x, . . . , Aνρx−1x. But E
(νρx−1)
ρx x equals Aνρx−1x and in order that it belongs to

ri (clw0(A, x)), we must have νρx = 1 and clw0(A, x) = pos{x}, i.e., Ax = 0.
Now consider the case when ρx(A) > 0. Since A|WR

x
has no positive eigen-

value other than ρx(A), by Lemma 2.10 there exists a polynomial v(t) with positive
coefficients such that Aν0v(A)(x2 + · · · + xk) = 0, where ν0 = ν0(A|WR

x
). Then

Aν0v(A)x = Aν0v(A)x1 = ρx(A)
ν0v(ρx(A))x1, where the second equality holds as

x1 is an eigenvector of A corresponding to ρx(A). Since ρx(A)
ν0v(ρx(A)) > 0,

Av0v(A)x is a positive multiple of the eigenvector x1. Suppose that A|WR
x
is singular.

Then ν0 ≥ 1. Note that since 0 ̸= v(t) ∈ R+[t], A
ν0v(A)x ∈ wν0(A, x). According to

Remark 3.3, clw0(A, x) is the direct sum of the simplicial cone pos {x, . . . , Aν0−1x}
and clwν0(A, x). So the eigenvector of A|WR

x
in clw0(A, x) belongs to the relative

boundary of clw0(A, x). This contradicts the irreducibility of A|WR
x
.

“If” part: If Ax = 0, then clw0(A, x) equals the ray generated by x. As x ∈
ri pos{λ : λ ≥ 0}, A|WR

x
is irreducible with respect to clw0(A, x).

Consider the case when A|WR
x
is nonsingular. By Lemma 2.10 there exists a poly-

nomial v(t) with positive coefficients such that v(A)(x2 + · · ·+ xk) = 0. Note that
the degree of v(t) can be chosen as large as we please. So we may assume that
deg v(t) ≥ dimWR

x . This guarantees that v(A)x ∈ ri (clw0(A, x)). According to the
argument given in the proof for the “only if” part for the case ρx(A) > 0, v(A)x

is a positive multiple of the eigenvector x1 which, in turn, equals E
(νρx(A)−1)

ρx(A) x as

νρx(A) = ordA(x) = 1. By Lemma 4.4(iii), (up to positive multiples) E
(νρx(A)−1)

ρx(A) x is

the unique distinguished eigenvector of A|WR
x
for clw0(A, x). So A|WR

x
has no eigen-

vector in the relative boundary of clw0(A, x); hence it is irreducible with respect to
clw0(A, x). □

Corollary 4.12. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A|WR

x
is primitive with respect to

clw0(A, x) if and only if A|WR
x

is nonsingular, ordA(x) = 1, ρx(A) is the only

peripheral eigenvalue of A|WR
x

, and A|WR
x

has no positive eigenvalue other than

ρx(A).

Proof. “Only if” part: The condition thatA|WR
x
is primitive with respect to clw0(A, x)

implies that A|WR
x
is irreducible with respect to clw0(A, x). So by Corollary 4.11,

either Ax = 0 or A|WR
x
is nonsingular, ordA(x) = 1 and A|WR

x
has no positive eigen-

value other than ρx(A). Clearly, we can rule out the possibility that Ax = 0. As
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A|WR
x
is primitive with respect to clw0(A, x), by [3, Theorem 1.4.10] ρx(A) is the

only peripheral eigenvalue of A|WR
x
.

“If” part: Let x = x1+· · ·+xk, where x1, . . . , xk are generalized eigenvectors of A
corresponding to distinct eigenvalues λ1, . . . , λk respectively, and with λ1 = ρx(A).
By the proof for the “if” part of Corollary 4.11, there exists a polynomial v(t) with

positive coefficients such that v(A)x is a positive multiple of E
(νρx(A)−1)

ρx(A) x(= x1),

the unique eigenvector of A|WR
x
in clw0(A, x) and, moreover, deg v(t) ≥ dimWR

x .

so that v(A)x ∈ ri clw0(A, x). Replacing A by A/ρx(A), if necessary, we may
assume that ρx(A) = 1. Since 1 is the only peripheral eigenvalue of A|WR

x
, we

have, limm→∞Am(x2 + · · · + xk) = 0 and hence limm→∞Amx = x1. As x1 ∈
ri (clw0(A, x)), it follows that there exists a positive integer m such that Amx ∈
riw0(A, x) and hence (A|WR

x
)m is strictly positive with respect to clw0(A, x). Thus

A|WR
x
is primitive with respect to clw0(A, x). □

Corollary 4.13. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies
the local Perron-Schaefer condition at x. Then A|WR

x
is strictly positive with respect

to clw0(A, x) if and only if x is an eigenvector of A corresponding to a positive
eigenvalue.

Proof. “If” part: Obvious.
“Only if” part: Since A|WR

x
is strictly positive with respect to clw0(A, x), A|WR

x

is also primitive with respect to clw0(A, x). By the proof for the “only if” part of
Corollary 4.12, clw0(A, x) is a pointed polyhedral cone generated by x,Ax, . . . , Alx
for some nonnegative integer l. As A is strictly positive with respect to
clw0(A, x), A

ix ∈ ri (clw0(A, x)) for i = 1, 2, . . .. So we must have l = 0 and
clw0(A, x) = pos{x}, i.e, x is an eigenvector of A corresponding to a positive eigen-
value. □

5. Construction of closed, pointed invariant cones

For brevity, we relax our usage of the terms distinguished eigenvalues and distin-
guished eigenvectors. For A ∈ Mn(C) and any closed, pointed A-invariant cone C,
if x is an eigenvector of A in C corresponding to the eigenvalue λ, we say x (respec-
tively, λ) is a distinguished eigenvector (respectively, distinguished eigenvale) of A
(instead of A|spanRC) for C.

It is straightfoward to prove the following:

Lemma 5.1. Let C1, C2 be pointed cones in Cn. Then C1 +C2 is a pointed cone if
and only if C1 ∩ (−C2) = {0}.

Lemma 5.2. Let C1, C2 be closed, pointed cones in Cn. The following conditions
are equivalent :

(a) C1 ∩ (−C2) = {0}.
(b) C1 + C2 is pointed.
(c) C1 + C2 is closed and pointed.

Suppose, in addition, that C1, C2 are invariant under a matrix A ∈ Mn(C). For
i = 1, 2, let Di denote the cone generated by the distinguished eigenvectors of A for
Ci. Then the following conditions are also equivalent to conditions (a)—(c).
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(d) C1 ∩ (−C2) does not contain an eigenvector of A.
(e) The cone D1 +D2 is pointed.

Proof. The equivalence of (a) and (b) follows from Lemma 5.1.
(a) and (b) implies (c): Since C1, C2 are closed cones and C1 ∩ (−C2) = {0}, the

closedness of C1 + C2 is guaranteed by a standard result in the theory of convex
sets (see, for instance, [17, Corollary 9.1.2]).

So conditions (a), (b) and (c) are equivalent.
Last Part: The implication (a)⇒(d) is obvious.
(d)⇒(a): If C1 ∩ (−C2) ̸= {0}, then C1 ∩ (−C2) is a nonzero closed pointed cone

invariant under A, and by the Perron-Frobenius theorem for cone-preserving maps,
A has an eigenvector in C1 ∩ (−C2).

Note that for i = 1, 2, Di is a closed pointed cone, as Ci is a closed pointed
cone and Di equals ⊕λ[N (λI − A) ∩ Ci], where the direct sum is taken over all
distinguished eigenvalues λ of A for Ci. In view of Lemma 5.1, condition (e) is
equivalent to the following:

(e)′ D1 ∩ −(D2) = {0}.
As the implications (a)⇒(e)′ and ∼(d)⇒∼(e)′ are both obvious, (e) is clearly also
an additional equivalent condition. □
Lemma 5.3. Let A ∈ Mn(C), and let K1,K2 be closed, pointed cones in Cn in-
variant under A. Suppose that K1 + K2 is pointed. Then for every distinguished
eigenvalue λ of A for K1 +K2, we have

(K1 +K2) ∩N (A− λI) = (K1 ∩N (A− λI)) + (K2 ∩N (A− λI)).
Thus the distinguished eigenvalues of A for K1 +K2 are precisely the distinguished
eigenvalues of A for K1 or for K2.

Proof. It is clear that we have the inclusion

(K1 ∩N (A− λI)) + (K1 ∩N (A− λI)) ⊆ (K1 +K2) ∩N (A− λI).

To prove the reverse inclusion, let x = x1 + x2, with x1 ∈ K1, x2 ∈ K2, be an
eigenvector of A corresponding to λ. Write each xi (i = 1, 2) as ui + vi, where
ui ∈ Nν

λ and vi ∈ ⊕µ̸=λN
ν
µ . Clearly v1 + v2 = 0. It suffices to show that u1, u2

are each either the zero vector or an eigenvector corresponding to λ. Suppose not.
Then necessarily u1, u2 are both nonzero generalized eigenvectors of A corresponding
to λ and with a common order m ≥ 2. Without loss of generality, assume that
ρx1(A) ≥ ρx2(A). In view of the representation x2 = u2 + v2 and an equivalent
definition of the local spectral radius, we have ρx2(A) ≥ ρu2(A) = λ. We contend
that ρx1(A) = λ. Once this is proved, we will have ρx1(A) = ρx2(A) = λ. Assume
to the contrary that ρx1(A) > λ. Then in the representation of v1 as a sum of
generalized eigenvectors of A, there must be a generalized eigenvector, say y, that
corresponds to ρx1(A), and as v1+v2 = 0, −y also appears in the representation of v2
as a sum of generalized eigenvectors of A; hence ρx2(A) = ρv2(A) ≥ ρx1(A). As we
are assuming ρx1(A) ≥ ρx2(A), we obtain ρx1(A) = ρx2(A). Clearly, y (respectively,
−y) is also the generalized eigenvector that appears in the representation of x1
(respectively, of x2) as a sum of generalized eigenvectors of A that corresponds to
the eigenvalue ρx1(A). Let p denote the order of y. Since xi ∈ Ki, A|spanRKi ∈ π(K)

and ordA(xi) = p (i = 1, 2), by Lemma 4.4(i) we have E
(p−1)
ρxi

xi ∈ Ki for i = 1, 2.
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But E
(0)
ρx1
x1 = y, E

(0)
ρx2
x2 = −y and E

(p−1)
ρxi

xi = (A− ρx1I)
p−1E

(0)
ρxi
xi, it follows that

0 ̸= E
ρ
(p−1)
x1

x1 ∈ K1∩(−K2). In view of Lemma 5.1, this contradicts the assumption

that K1 +K2 is pointed.
By what we have done above, ρx1(A) = ρx2(A) = λ and it is also clear that

we have ordA(x1) = ordA(x2) = m, where m (≥ 2) is the common order of u1

and u2. Now for i = 1, 2, we have, 0 ̸= E
(m−1)
ρxi

xi = (A − λI)m−1ui and also

E
(m−1)
λ x1 = −E(m−1)

λ x2 as
(A−λI)m−1(u1+u2) = (A−λI)m−2[(A−λI)(u1+u2)] = (A−λI)m−2(A−λI)x =

0.
So we obtain 0 ̸= E

(m−1)
ρx1

x1 ∈ K1 ∩ (−K2), which again contradicts the pointedness
assumption on K1 +K2. □

Corollary 5.4. Let A ∈ Mn(C) and let x1, . . . xk, k ≥ 1, be vectors of Cn and sup-
pose that A satisfies the local Perron-Schaefer conditions at x1, . . . , xk respectively.
Then the following conditions are equivalent :

(a) The cone clw0(A, x1) + · · ·+ clw0(A, xk) is closed and pointed.
(b) There exists a closed, pointed A-invarnat cone in Cn that contains x1, . . . , xk.

(c) The cone pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , k} is pointed.

When the equivalent conditions are satisfied, the set of distinguished eigenvalues
of A for clw0(A, x1) + · · · + clw0(A, xk) is {ρxi(A) : i = 1, . . . , k} and the cone
generated by the distinguished eigenvectors of A for clw0(A, x1) + · · ·+clw0(A, xk)

is pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , k}.

Proof. (a)⇒(b): When (a) is satisfied, clw0(A, x1)+ · · ·+clw0(A, xk) is the desired
closed, pointed A-invariant cone.

(b)⇒(c): Suppose that there exists a closed, pointed A-invariant cone C that

contains x1, . . . , xk. For each i = 1, . . . , k, by Lemma 4.4 (i) we have E
(νρxi−1)
ρxi

xi ∈

clw0(A, xi) ⊆ C, and hence pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , k} ⊆ C. As C is pointed,

so is pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , k}.
(c)⇒(a) and the last part: We proceed by induction on k. When k = 1,

conditions (a)—(c) are always satisfied and the last part of our result holds by
Lemma 4.4 (iii). Consider k = p ≥ 2, and assume that our assertion holds for
k = p − 1. By our induction assumption, the set of distinguished eigenvalues
of A for clw0(A, x1) + · · · + clw0(A, xp−1) is {ρxi(A) : i = 1, . . . , p − 1}, and
as ρxp(A) is the only distinguished eigenvalue of A for clwp(A, xp), by Lemma
5.3 the set of distinguished eigenvalues of A for clw0(A, x1) + · · · + clw0(A, xp)
is {ρxi(A) : i = 1, . . . , p}. Our induction assumption also guarantees that the
cone clw0(A, x1) + · · · + clw0(A, xp−1) is closed and pointed, and the cone gener-

ated by the distinguished eigenvectors of A for the latter cone is pos{E
(νρxi−1)
ρxi

xi :

i = 1, . . . , p − 1}. Since pos{E
(νρxp−1)
ρxp xp} + pos{E

(νρxi−1)
ρxi

xi : i = 1, . . . , p − 1}

equals pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , p} and is pointed, by Lemma 5.2, (e)⇒(c),
the cone clw0(A, x1) + · · · + clw0(A, xp) is also closed and pointed. It remains
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to show that D, the cone generated by the distinguished eigenvectors of A for

clw0(A, x1) + · · · + clw0(A, xp), is precisely pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , p}. It is

clear that we have the inclusion pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , p} ⊆ D. To prove
the reverse inclusion, let y ∈ D and suppose that y corresponding to the distin-
guished eigenvalue λ. By Lemma 5.3 we can write y as y1 + y2, where y1 lies
in [clw0(A, x1) + · · · + clw0(A, xp−1)] ∩ N (A − λI) and hence, by the induction

assumption, belongs to pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , p − 1}, and y2 belongs to

clw0(A, xp)∩N (A−λI), which is included in pos {E
(νρxp−1)
ρxp xp}, in view of Lemma

4.4(iii); hence y ∈ pos{E
(νρxi−1)
ρxi

xi : i = 1, . . . , p+ 1}, as desired. □

Note that the real version of Lemma 5.4 (i.e., the version where Mn(C),Cn are
replaced respectively by Mn(R),Rn) also holds. With slight modification, the same
proof applies.

The following is clearly a necessary condition for the existence of an A-invariant
closed pointed cone that contains a given pair of vectors x, y:

For every pair of nonnegative real numbers α, β, A satisfies the local
Perron-Schaefer conditions at αx + βy and, moreover, we have, spA(αx + βy) =
max{spA(x), spA(y)}, provided that α, β are both positive.
However, the condition is not sufficient as can be illustrated by the following exam-
ple:

Example 5.5. Let A = J3(1), x = (0, 0, 1)T and y = (0,−1, 0)T . Clearly, A satisfies
the local Perron-Schaefer conditions at x and y respectively, and we have spA(x) =
(1, 3) ≻ (1, 2) = spA(y). It is readily shown that the above-mentioned necessary con-

dition is satisfied. Now pos {E(νρx−1)
ρx x,E

(νρy−1)
ρy y} = pos {(1, 0, 0)T , (−1, 0, 0)T } =

span{(1, 0, 0)T } and is not pointed. By Corollary 5.4, there does not exist a closed
pointed A-invariant cone that contains both x and y.

Next, for a matrix A that satisfies the Perron-Schaefer condition, we consider the
problem of constructing a proper A-invariant cone which is the sum of the closures
of finitely many A-cyclic cones.

Lemma 5.6. Let A ∈ Mn(C) be a nonzero nilpotent matrix. For any A-invariant
subspaces W1, . . . ,Wk of Cn, we have,

nullity(A|W1+···+Wk
) ≤ nullity(A|W1) + · · ·+ nullity(A|Wk

).

Proof. It is clear that we need only prove our assertion for the case k = 2, and
since every nilpotent operator on a finite-dimensional space can be written as a
direct sum of nilpotent operators, each with nullity one, we may also assume that
nullity(A|W1) = 1.

There is no problem if we have N (A|W1+W2) ⊆ N (A|W1) + N (A|W2). So we
assume that there exists w ∈ (W1+W2)∩N (A) such that w /∈ N (A|W1)+N (A|W2).
(Note that w /∈W1∪W2.) We can express w as w1+w2 with wi ∈Wi, i = 1, 2. Since
W1,W2 are both A-invariant and w ∈ N (A), we have Aiw1 = −Aiw2 ∈W1∩W2 for
all positive integers i and, moreover, w1, w2 are generalized null vectors of A with
a common order p > 1, and Ap−1w1 = −Ap−1w2 is a (nonzero) null vector of A, so
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N (A|W1) ⊆ N (A|W2). We contend that (W1+W2)∩N (A) = span{w}+(N (A)∩W2).
Once this is proved, our assertion for the case k = 2 and nullity(A|W1) = 1 will
follow, and we are done. It is clear that we have span{w} + (N (A) ∩ W2) ⊆
(W1 +W2) ∩ N (A). To prove the reverse inclusion, let w′ ∈ [(W1 +W2) ∩ N (A)].
As there is no problem if w′ ∈W2, hereafter we assume that w′ /∈W2. By what we
have done for w, we can write w′ as w′

1+w
′
2, where w

′
i ∈Wi, i = 1, 2, and w′

1, w
′
2 are

generalized null vectors of A with a common order p′ ≥ 2. Let ν0 denote ν0(A|W1).
Recall that w1 belongs to W1 and is a generalized null vector of A of order p. Since
A|W1 is a nilpotent operator with nullity 1, every vector in W1 of order less than
ν0 has a pre-image under A in W1. So we can find a vector x ∈ W1 such that
Aν0−px = w1 and {x,Ax, . . . , Aν0−1x} is a basis for W1. As w

′
1 ∈W1, we can write

w′
1 as

∑ν0−1
i=0 aiA

ix; say, r = min{i : ai ̸= 0}. We are going to show that we must
have r = ν0 − p.

First, suppose r < ν0−p. We haveAν0−p−rw′
1=A

ν0−p−r(w′−w′
2)=−Aν0−p−rw′

2 ∈
W2. On the other hand, by applying Aν0−p−r to both sides of the equality re-
lation w′

1 =
∑ν0−1

i=r aiA
ix and using the fact that Aν0−px = w1, we also obtain

Av0−p−rw′
1 = arw1 + ar+1Aw1 + · · · + ar+p−1A

p−1w1. But ar ̸= 0 and we have
ar+1Aw1 + · · · + ar+p−1A

p−1w1 ∈ W2 as Aiw ∈ W2 for all positive integers i, it
follows that w1, and hence also w, belongs to W2, which is a contradiction.

Now suppose r > ν0 − p. By applying Ar−ν0+p to both sides of the equality
relation Aν0−px = w1 and using the fact that in this case we have w′

1 = arA
rx +

ar+1A
r−ν0+p+1w1 + · · ·+ aν0−1A

p−1w1, we obtain

arA
r−ν0+pw1 = arA

rx = w′
1 − ar+1A

r−ν0+p+1w1 − · · · − aν0−1A
p−1w1.

But Aiw1 ∈ W2 for all positive integer i, it follows that w′
1, and hence also w′,

belongs to W2, which is a contradiction.
So we must have r = ν0 − p. In view of w2 = w − w1 and w′

2 = w′ − w′
1 =

w′ −
∑p−1

i=0 ar+iA
iw1, a little calculation yields

w′ = arw + (w′
2 − arw2 +

∑p−1
i=1 ar+iA

iw1) ∈ span{w}+ (N (A) ∩W2),
as desired. □
Theorem 5.7. Let A ∈ Mn(R) (respectively, Mn(C)) satisfy the Perron-Schaefer
condition. Let m = max{nullity(A − λI) : λ ∈ σ(A)} (respectively, m′ =
max{2 nullity(A − αI),nullity(A − λI) + nullity(A − λ̄I) : α ∈ R, λ ∈ C \ R}).
Then there exists a proper A-invariant cone K in Rn (respectively, in Cn), which
is the sum of the closures of m (respectively, m′) A-cyclic cones, but there is no
A-invariant proper cone in Rn (respectively, in Cn) that is the sum of the closures
of less than m (respectively, m′) A-cyclic cones.

Proof. We will treat the real case first and then deduce the complex case as a
consequence.

Let A ∈ Mn(R), and let λ1 = ρ(A), λ2, . . . , λk be the distinct eigenvalues of A.
For each i = 1, . . . , k, let mi denote nullity(λiI −A) or, equivalently, the number of
Jordan blocks in the Jordan form of A corresponding to λi, and let the sizes of the

Jordan blocks associated with λi, arranged in nonincreasing order, be l
(i)
1 , . . . , l

(i)
mi .

(Clearly l
(1)
1 = νρ(A).) Choose a Jordan basis β for Cn associated with A such that

the generalized eigenvectors in β corresponding to real eigenvalues are real and the
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generalized eigenvectors corresponding to conjugate complex eigenvalues occur in
conjugate pairs. Suppose the Jordan chain corresponding to the jth (1 ≤ j ≤ mi)

Jordan block for λi (i = 1, . . . , k) is x
(j)
i1 , x

(j)
i2 , . . . , x

(j)

il
(i)
j

(x
(j)
i1 being a generalized

eigenvector of order l
(i)
j and x

(j)

il
(i)
j

being an eigenvector).

For i = 1, . . . , k, choose the “top vector” of the first Jordan chain for λi, and

denote the sum of the “top vectors” by y1, i.e., y1 = x
(1)
11 + x

(1)
21 + · · · + x

(1)
k1 . Let

K1 = clw0(A, y1). Note that by our choice of β, if xr1 (1 ≤ r ≤ k) is a non-real
complex vector then x̄r1 = xs1 for some s, 1 ≤ s ≤ k; so y1 ∈ Rn and K1 ⊆ Rn. For

k = 2, . . . ,m, let Kj = clw0(A, yj), where yj = x
(1)
11 + x

(j)
11 + x

(j)
21 + x

(j)
31 + · · ·+ x

(j)
k1 .

Here we adopt the convention that x
(j)
i1 is taken to be the zero vector if j > mi.

Note that we also have Kj ⊆ Rn for 2 ≤ j ≤ k, and for j = 1, . . . ,m, ρyj (A) = ρ(A),
ordA(yj) = νρ(A) and A satisfies the local Perron-Schaefer condition at yj . Moreover,

E
(νρyj −1)

ρyj
yj equals x

(1)
1νρ(A)

+x
(j)
1νρ(A)

if l
(1)
j = νρ(A) and 2 ≤ j ≤ m1, and equals x

(1)
1νρ(A)

,

otherwise. So the cone pos{E
(νρyj −1)

ρyj
yj : j = 1, . . . ,m} is included in the simplicial

cone pos{x(j)1νρ(A)
: l

(1)
j = νρ(A)} and hence is pointed. By the real version of Corollary

5.4 it follows that K1 + · · ·+Km is a closed, pointed A-invariant cone in Rn.
It remains to show that the cone K1 + · · ·+Km is full in Rn. For j = 1, . . . ,m,

since x
(j)
i1 (i = 2, . . . , k) appears in the representation of yj as a sum of generalized

eigenvectors of A, all vectors in the Jordan chain x
(j)
i1 , x

(j)
i2 , . . . , x

(j)

il
(i)
j

lies in the A-

invariant subspace spanCw0(A, yj)( = spanCKj) of Cn. (If j > mi, ignore the

argument.) Similarly, all vectors in the Jordan chain x
(1)
11 , x

(1)
12 , . . . , x

(1)
1νρ(A)

also lie

in spanCK1. For j = 2, . . . ,m1, since x
(1)
11 + x

(j)
11 ∈ spanCKj and x

(1)
11 ∈ spanCK1,

x
(j)
11 ∈ spanC(K1+Kj); hence, all vectors in the Jordan chain x

(j)
11 , x

(j)
12 , . . . , x

(j)

1l
(1)
j

lie

in spanC(K1 +Kj). Thus, all vectors in β belong to spanC(K1 + · · ·+Km); or, in
other words, spanC(K1 + · · ·+Km) = Cn. But the cone K1 + · · ·+Km is included
in Rn, so it is a full cone in Rn.

Last Part. Let K be an A-invariant proper cone in Rn which is the sum of the
closures of p A-cyclic cones; say, K = clw0(A, u1)+ · · ·+clw0(A, up). Then we have
Rn = spanRK = spanRw0(A, u1) + · · · + spanRw0(A, up), which, in turn, implies
that Cn = spanCw0(A, u1)+ · · ·+spanCw0(A, up). Now let µ be an eigenvalue of A
for which nullity(A− µI) = m. Then
N

νµ
µ (A) = (spanCw0(A, u1) ∩N

νµ
µ (A)) + · · ·+ (spanCw0(A, up) ∩N

νµ
µ (A)).

For each i = 1, . . . , p, if the subspace spanCw0(A, up) ∩N
νµ
µ (A) is nonzero then the

restriction of A − µI to this subspace is a nilpotent operator with nullity 1. By
Lemma 5.6 it follows that m = nullity(A− µI) ≤ p, as desired.

Now suppose A ∈ Mn(C). We treat A as a linear transformation acting on Cn

as a real vector space. As such, by [28, Lemma 8.1], A is similar to the matrix
diag(A, Ā). It is readily shown that the maximum geometric multiplicity of the
eigenvalues of diag(A, Ā) equals m′. So our assertion follows from what we have
done for the real case. □
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Note that Theorem 5.7 does not say that if A satisfies the Perron-Schaefer condi-
tion, then every proper A-invariant cone can be written as the sum of the closures of
finitely many A-cyclic cones. Indeed, the latter is far from being true. For instance,
consider the case when A equals the identity matrix In. Clearly, every proper cone
in Rn is In-invariant. However, every non-polyhedral proper cone cannot be written
as the sum of the closures of finitely many I-cyclic cones, as every I-cyclic cone,
and hence also its closure, is a single ray.

For a closed pointed cone K in Rn (respectively, in Cn), by the dual cone of
K, denoted by K∗, we mean the (closed) cone {z ∈ Rn : zTx ≥ 0} (respectively,
{z ∈ Cn : Re(z∗x) ≥ 0}).

Corollary 5.8. Let A ∈ Mn(R) (respectively, Mn(C)) satisfy the Perron-Schaefer
condition. For any closed pointed A-invariant cone C in Rn (respectively, Cn), there
exists a proper A-invariant cone K in Rn (respectively, Cn) which includes C.

Proof. We give the proof only for the real case, as the complex case will follow as a
consequence.

Let C be a closed pointed A-invariant cone in Rn. Choose any nonzero vector
z in the interior of the dual cone of C in spanC. Then C \ {0} is included in

the open half-space {x ∈ Rn : zTx > 0}. Choose a basis {x(1)1ν , . . . , x
(r)
1ν } for (A −

ρ(A)I)ν−1Eν
ρ(A), where ν = νρ(A)(A) and r = dim(A − ρ(A)I)ν−1Eν

ρ(A), in such a

way that {x(1)1ν , . . . , x
(r)
1ν } is included in the closed half-space {x ∈ Rn : zTx ≥ 0}

and extend it to a Jordan basis β for Cn associated with A in the standard way so
that the generalized eigenvectors corresponding to real eigenvalues are real and the
generalized eigenvectors corresponding to conjugate complex eigenvalues occur in
conjugate pairs. Now construct a proper A-invariant cone C ′ in Rn (as the sum of
the closures of m A-cyclic cones, where m is the maximum geometric multiplicity
of the eigenvalues of A) in the way as described in the proof of Theorem 5.7. Note
that by construction ρ(A) is the only distinguished eigenvalue of A for C ′ and
the cone generated by the distinguished eigenvectors of A for C ′ is included in

pos{x(1)1ν , . . . , x
(r)
1ν } and hence in the closed half-space {x ∈ Rn : zTx ≥ 0}. But

C \ {0} is included in the open half-space {x ∈ Rn : zTx > 0}. So C ∩ (−C ′) does
not contain an eigenvector of A and by Lemma 5.2 K = C+C ′ is the desired proper
A-invariant cone. □

Corollary 5.9. When A ∈ Mn(C) satisfies the Perron-Schaefer condition, to the
list of equivalent conditions in Corollary 5.4, we can add the following condition :

(d) There exists a proper A-invariant cone in Cn that contains x1, . . . , xk.

6. Automorphisms

Theorem 6.1. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Consider the following
conditions :

(a) A|WR
x

is nonsingular and the cone cl pos{(A|WR
x
)ix : i = 0,±1,±2, . . .} is

pointed (and A|WR
x
is an automorphism of the cone).

(b) There exists a proper cone C in WR
x containing x such that A|WR

x
∈ Aut(C).
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(c) There exists a closed, pointed cone C in Cn containing x such that A|spanR C ∈
Aut(C).

(d) A|WR
x
is nonsingular, A|WR

x
and (A|WR

x
)−1 both satisfy the Perron-Schaefer

condition.
(e) Let x = x1 + . . . + xk be the representation of A as a sum of general-

ized eigenvectors of A corresponding to distinct eigenvalues λ1, . . . , λk re-
spectively. Then λ1, . . . , λk are all nonzero, and there exist i, j such that
λi = ρx(A), ordA(xi) = ordA(x) and λj = min{|λi| : 1 ≤ i ≤ k}, ordA(xj) =
max{ordA(xl) : |λl| = λj}.

Then (a), (b) and (c) are equivalent, and so are (d) and (e). Furthermore, we have
(a)⇒ (d).

Proof. (a)⇒(b): The cone cl pos{(A|Wx)
ix : i = 0,±1,±2, . . .}, which is mapped

onto itself by A, is the desired proper cone in WR
x .

(b)⇒(c): Obvious.
(c)⇒(a): Since A maps spanRC onto spanRC and WR

x is an A-invariant subspace
of spanRC, A mapsWR

x onto itself, i.e., A|WR
x
is nonsingular. As A|spanRC ∈ Aut(C)

and x ∈ C, we have, (A|spanRC)
ix ∈ C for i = 0,±1,±2, . . .. Note that we have

(A|spanRC)
−1x = (A|WR

x
)−1x as the pre-image of x under A|spanRC must lie in WR

x .

Thus we have (A|spanRC)
ix = (A|WR

x
)ix for all integers i. So cl pos{(A|WR

x
)ix : i =

0,±1,±2, . . .}, as a subset of C, is necessarily pointed.
By Theorem 3.6, (a1)⇔(a2), condition (d) is equivalent to the following:
(d)′ A|WR

x
is nonsingular, and A|WR

x
and (A|WR

x
)−1 both satisfy the local Perron-

Schaefer condition at x.
Condition (d)′, in turn, can be rewritten as condition (e).

(a)⇒(d): Note that condition (a) implies that the cones cl pos{Aix : i ≥ 0}
and cl pos{((A|WR

x
)−1)ix : i ≥ 0} are both pointed. The former cone is the same

as clw0(A, x), and by Theorem 3.6, that clw0(A, x) is pointed is equivalent to
the condition that A|WR

x
satisfies the Perron-Schaefer condition. By applying (a

more general version of) Theoem 3.6 to (A|WR
x
)−1, we also conclude that (A|WR

x
)−1

satisfies the Perron-Schaefer condition. □

For the conditions (a)–(e) of Theorem 6.1, we do not have (e)⇒ (a). For instance,
let A = Jn(1) with n even, and take x to be the nth standard unit vector en. Clearly,
condition (e) is satisfied. In this case, we have WR

x = Rn and so A|WR
x
= A. If the

cone cl pos{Jn(1)ien : i = 0,±1,±2, . . .} is pointed, then Jn(1) is its automorphism.
On the other hand, according to [28, Theorem 7.13], when n is even, there does not
exist a proper coneK in Rn such that Jn(1) ∈ Aut(K). So the cone cl pos {Jn(1)ien :
i = 0,±1,±2, . . .} is not pointed, i.e., condition (a) is not fulfilled.

Condition (a) of Theorem 6.1 suggests the following observation:

Remark 6.2. If λ1, . . . , λn are distinct positive real numbers, then there exists a
proper cone K in Rn such that diag(λ1, . . . , λn) ∈ Aut(K).

To see this, denote diag(λ1, . . . , λn) byA and letK=cl pos {Aix : i=0,±1,±2, . . .},
where x = (1, 1, . . . , 1)T ∈ Rn. Then WR

x = Rn. As K ⊆ Rn
+, K is pointed; so K is

a proper cone in Rn. It is clear that we have A ∈ Aut(K).
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Theorem 6.3. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Then clw0(A, x) is pointed
and A|WR

x
∈ Aut(clw0(A, x)) if and only if A|WR

x
is nonzero, diagonalizable (over

C), all eigenvalues of A|WR
x
are of the same modulus and ρx(A) is an eigenvalue of

A|WR
x
.

Proof. “Only if ” part: Since clw0(A, x) is pointed, A must satisfy the local Perron-
Schaefer condition at x. So ρx(A) is an eigenvalue of A|WR

x
.

As A|WR
x

∈ Aut(clw0(A, x)), (A|WR
x
)−1 ∈ π(clw0(A, x)). So A|WR

x
is nonzero,

and ρ((A|WR
x
)−1) is a distinguished eigenvalue of (A|WR

x
)−1 for clw0(A, x). The

latter, in turn, implies that (ρ((A|WR
x
)−1))−1 is a distinguished eigenvalue of A|WR

x

for clw0(A, x). Now according to Lemma 4.4(iii), ρx(A)(= ρ(A|WR
x
) is the only

distinguished eigenvalue of A|WR
x

for clw0(A, x). So we have (ρ((A|WR
x
)−1))−1 =

ρx(A). But (ρ((A|WR
x
)−1))−1 is the least modulus of the eigenvalues of A|WR

x
, it

follows that all eigenvalues of A|WR
x

have the same modulus. It remains to show

that νρx(A)(A|WR
x
= 1.

Since A|WR
x

∈ Aut(clw0(A, x)), there exists y ∈ clw0(A, x) such that Ay = x.

Then Ay1 = x1, where x1 (respectively, y1) is the generalized eigenvector of A
corresponding to ρx(A) that appears in the representation of x (respectively, of y)
as a sum of generalized eigenvectors of A. So x1, y1 both belong to WR

x1
; indeed, y1

equals (−1)ν−1

ρν (A−ρI)ν−1x1+
(−1)ν−2

ρν−1 (A−ρI)ν−2x1+· · ·+ (−1)
ρ2

(A−ρI)x1+ 1
ρx1, where

for brevity we denote ρx(A) and νρx(A)(A|WR
x
) respectively by ρ and ν, because the

latter vector is the unique pre-image of x1 under A in WR
x1
. Note that if ν > 1

then in the preceding representation of y1 as a linear combination of the generalized
eigenvectors x1, (A − ρI)x1, . . . , (A − ρI)ν−1x1 of A, some of the coefficients are
negative. On the other hand, since y ∈ clw0(A, x), for some pm(t) ∈ R+[t],m =
0, 1, 2, . . ., we have y = limm→∞ pm(A)x, and hence y1 = limm→∞ pm(A)x1. Then
a little calculation shows that each pm(A)x1, and hence also y1, is a nonnegative
linear combination of the generalized eigenvectors x1, (A−ρI)x1, . . . , (A−ρI)ν−1x1.
So we arrive at a contradiction. Therefore, we must have ν = 1, as desired.

“If ” part: Under the given assumptions, clearly A satisfies the local Perron-
Schaefer condition at x; so A|WR

x
∈ π(clw0(A, x)) and as A|WR

x
is nonzero, diago-

nalizable, and with all eigenvalues of the same modulus and ρx(A) ∈ σ(A|WR
x
), by

[28, Theorem 5.9,(a)⇔(c)] we have A|WR
x
∈ Aut(clw0(A, x)). □

Theorem 6.4. Let A ∈ Mn(C). Consider the following conditions :

(a) A is nonzero, diagonalizable (over C), and all eigenvalues of A are of the
same modulus.

(b) There is a subsequence of (( 1
ρ(A)A)

k)k∈N that converges to I.

(c) A is nonsingular and there is a subsequence of (( 1
ρ(A)A)

k)k∈N that converges

to ρ(A)A−1.
(d) A is nonsingular and A−1 ∈ clw0(A).
(e) I ∈ clw1(A).
(f) LA maps clw0(A) onto itself.
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We always have (a)⇔(b)⇔(c), (d)⇔(e)⇔(f), and (a)⇒(d). When A satisfies the
Perron-Schaefer condition, conditions (a)—(f) are all equivalent.

Proof. (a)⇒(b): Modify the proof of [28, Theorem 3,9(i)] or prove it directly.
(b)⇒(c): Suppose that ((A/ρ(A))ki)i∈N converges to I. As I is nonsingular,

(A/ρ(A))ki is nonsingular for i sufficiently large; hence A is nonsingular, and(
Aki−1

ρ(A)ki−1

)
i∈N

converges to ρ(A)A−1.

Retracing the above argument backward, we readily obtain (c)⇒(b).
(b)⇒(a): Clearly, condition (b) guaranteeds that ρ(A) > 0. Suppose that

((A/ρ(A))ki)i∈N converges to I. Then the said sequence is bounded, and so for any
peripheral eigenvalue λ of A, necessarily, νλ(A) = 1. On the other hand, for any
eigenvalue λ of A, we also have, limi→∞( λ

ρ(A))
ki = 1, which implies that |λ| = ρ(A).

Thus, the eigenvalues of A are all of the same modulus, and condition (a) follows.
(c)⇒(d): Obvious.
(d)⇒(e): Since A−1 ∈ clw0(A), there exist pm(t) ∈ R+[t],m = 1, 2, . . ., such that

limm→∞ pm(A) = A−1. Then we have limm→∞Apm(A) = I and hence I ∈ clw1(A).
(e)⇒(d): Since I ∈ clw1(A), there exist pm(t) ∈ R+[t],m = 1, 2, . . ., such that

limm→∞Apm(A) = I. Then A is necessarily nonsingular and we have A−1 =
limm→∞ pm(A). So A−1 ∈ clw0(A).

(d) and (e) ⇒ (f): Since A is nonsingular, so is LA. Clearly, we have w0(A) =
pos {I}+w1(A) = w0(A). On the other hand, we also have I ∈ clw1(A), so w0(A) ⊆
clw1(A) and hence clw0(A) = clw1(A). Now since LAw0(A) = w1(A) and LA is
nonsingular, we have LAclw0(A) = clw1(A) = clw0(A).

(f)⇒(d): Since I ∈ w0(A), by condition (f) there exists B ∈ clw0(A) such that
AB = I. So A−1 exists, equals B, and belongs to clw0(A).

(d) and (e)⇒(a) (assuming that A satisfies the Perron-Schaefer condition): Since
A is nonsingular, ρ(A) > 0. Replacing A by 1

ρ(A)A, hereafter, we assume that

ρ(A) = 1. As I ∈ clw1(A), there exist pm(t) ∈ R+[t], t = 1, 2, . . ., such that
I = limm→∞Apm(A). Then limm→∞ λpm(λ) = 1 for every eigenvalue λ of A. In
particular, since 1 ∈ σ(A), we have limm→∞ pm(1) = 1. Assume to the contrary
that A has an eigenvalue λ with modulus less than 1. For each m ∈ Z+, since
pm(t) ∈ R+[t] and |λ| < 1, we have, |λpm(λ)| ≤ |λ|pm(|λ|) ≤ |λ|pm(1). Letting
m→ ∞, we obtain limm→∞ |λpm(λ)| ≤ |λ| < 1, which is a contradiction.

Next, we show that νρ(A)(A) = 1. Assume to the contrary that the Jordan form
of A contains a Jordan block Jr(1) with r ≥ 2. Since limm→∞Apm(A) = I, we
have limm→∞ Jr(1)pm(Jr(1)) = I. By considering the (1, 1) and (1, 2) entries of
both sides, we obtain, limm→∞ pm(1) = 1 and limm→∞(p′m(1) + pm(1)) = 0; hence
limm→∞ p′m(1) = −1, and so p′m(1) < 0 for m sufficiently large, which violates the
assumption that pm(t) ∈ R+[t]. So νρ(A)(A) = 1, and since A satisfies the Perron-
Schafer condition, we also have νλ(A) = 1 for all peripheral eigenvalues, and hence
for all eigenvalues, λ of A. This establishes condition (a). □
Remark 6.5. The following conditions are also equivalent to the equivalent condi-
tions (d)—(f) of Theorem 6.4 :

(e1) I ∈ clwk(A) for every positive integer k.
(e2) I ∈ clwk(A) for some positive integer k.
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Proof. Clearly we have the implications (e1)⇒(e) and (e)⇒(e2).
(e2)⇒(d): Suppose that I ∈ clwk(A) for some positive integer k. Then I =

limm→∞Akpm(A), where pm(t) ∈ R+[t],m = 1, 2, . . .. The latter condition implies
that A is nonsingular and we have A−1 = limm→∞Ak−1pm(A) ∈ clwk−1(A) ⊆
clw0(A), so condition (d) holds.

(d)⇒(e1): Suppose A−1 = limm→∞ pm(A), where pm(t) ∈ R+[t],m = 1, 2, . . .
For any positive integer k, we have (A−1)k = limm→∞ pm(A)k ∈ clw0(A). So
I = limm→∞Akpm(A)k ∈ clwk(A). □

Remark 6.6. According to [28, the complex version of Theorem 5.9], the condition
ρ(A) ∈ σ(A), together with condition (a) of Theorem 6.4, is equivalent to the
condition that there exists a proper cone K in Cn such that A ∈ Aut(K) and A has
an eigenvector in intK. Four other equivalent conditions can also be found in the
same theorem.

Before we conclude this section, we provide the proofs for two results which were
announced but not proved in the review paper [26, Theorem 6.10 and Theorem
6.11]. We prove a lemma first.

For a closed pointed cone K, we denote by ExtK the set of nonzero extreme
vectors of K.

Lemma 6.7. Let K1,K2 be closed pointed cones in Rn, both of dimension at least
2. Suppose that spanK1∩spanK2 = span{u}, where u ∈ ri (K1)∩ri (K2). If, at least
one of the cones K1,K2 is indecomposable or K1 and K2 are both 2-dimensional,
then K1 +K2 is an indecomposable closed, pointed cone and u ∈ ri (K1 +K2).

Proof. The assumption spanK1 ∩ spanK2 = span{u} clearly implies that K1 ∩
(−K2) = {0}, so K1+K2 is a closed pointed cone. As u ∈ ri(K1)∩ri(K2), using the
known fact that for a convex cone K, y ∈ riK if and only if for any 0 ̸= x ∈ spanK
there exists ε > 0 such that y ± εx ∈ K, one readily shows that u ∈ ri (K1 +K2).
It remains to prove that K1 +K2 is indecomposable.

IfK1,K2 are both 2-dimensional, then clearlyK1+K2 is a 3-dimensional indecom-
posable polyhedral cone with 4 extreme rays. So assume that one of the conesK1,K2

is indecomposable, say, K1. Assume to the contrary that K1+K2 is decomposable.
Then there exist nonzero closed pointed cones C1, C2 such that K1+K2 = C1⊕C2.
Clearly, Ext(K1 +K2) ⊆ ExtK1 ∪ ExtK2. To prove the reverse inclusion, consider
any x1 ∈ ExtK1, and suppose we have x1 = (y1 + y2) + (z1 + z2), where y1, z1 ∈ K1

and y2, z2 ∈ K2. After rewriting, we obtain x1 − y1 − z1 = y2 + z2 = αu for some
α ≥ 0. Hence x1 = y1 + z1 + αu, and as x1 ∈ Ext(K1), u ∈ riK1 and dimK1 ̸= 1
it follows that y1, z1 are both nonnegative multiples of x1. Then from the relation
y2+ z2 = 0 and the pointedness assumption of K2 we also obtain y2 = z2 = 0. This
shows that x1 is an extreme vector of K1+K2; so we have ExtK1 ⊆ Ext(K1+K2).
Similarly, we also have ExtK2 ⊆ Ext(K1 +K2). This establishes the equality rela-
tion Ext(K1 +K2) = ExtK1 ∪ ExtK2. Now since Ext(C1 ⊕ C2) = ExtC1 ∪ ExtC2

and K1 is indecomposable, we have either ExtK1 ⊆ ExtC1 or ExtK1 ⊆ ExtC2; say,
the former holds. Then K1 ⊆ C1, and as u ∈ K1 and C1 is included in the relative
boundary of C1⊕C2(= K1+K2), u /∈ ri (K1+K2). This contradicts what we have
obtained at the beginning of the proof. □
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Theorem 6.8. For an n × n real matrix A, with n ≥ 3, there exists an indecom-
posable proper polyhedral cone K such that A ∈ Aut(K) if and only if A is nonzero,
diagonalizable, ρ(A) is an eigenvalue of A, and every eigenvalue of A equals ρ(A)
times a root of unity.

Proof. “Only if” part: Here we adapt an argument, due to Pullman [16], given in
some detail in [28, Section 3]. Since A ∈ Aut(K), A permutes the extreme rays of
K. Let τA denote the induced permutation. As a permutation τA can be written as
a composition of unique (up to the ordering) disjoint cycles. By abuse of language,
τA distributes the extreme rays of K into various (disjoint) cycles. Suppose that σ
is one such cycle and is of length d. Choose a nonzero vector, say x, from one of
the extreme rays in the cycle. Then there exists a positive real number λ such that

Adx = λdx. Let vσ =
∑d−1

i=0 λ
−iAix. Then a little calculcation reveals that vσ is,

in fact, a distinguished eigenvector of A for K corresponding to the distinguished
eigenvalue λ. Since coreK(A)(= K) is polyhedral and indecomposable, by [28,
Corollary 3.3], ρ(A) is the only distinguished eigenvalue of A for K. So, necessarily,
we have λ = ρ(A). Let m be the order of the permutation τA or, in other words,
the least common multiple of the length of the cycles associated with τA. Then
we have Am = ρ(A)m. So A is nonzero, diagonalizable and every eigenvalue of A
equals ρ(A) times a root of unity, and certainly ρ(A) is an eigenvalue of A.

“If” part: By [28, Theorem 7.9 and Theorem 5.9] we can find a proper polyhedral
cone K such that A ∈ Aut(K). The difficult part of the proof is to show that there
is one such K which is indecomposable. This is achieved by taking the sum of some
closed, pointed cones, on each of which (a restriction of) A is an automorphism,
and applying Lemma 6.7 repeatedly (cf. the argument given in the proof of [28,
Lemma 7.6 and 7.8]).

Normalizing A, we may assume that ρ(A) = 1. Then Rn is a direct sum of
the following A-invariant subspaces: N (A − I), N (A + I) (provided that −1 ∈
σ(A)) and certain 2-dimensional A-invariant subspaces with basis {x, y} for which
Ax = cos θ x + sin θ y and Ay = − sin θ x + cos θ y, where θ is a p th root of unity
for some positive integer p (provided that A has non-real complex eigenvalues).
Choose any nonzero vector u ∈ N (A− I). If dimN (A− I) = r > 1, choose a basis
{u, u1, . . . , ur−1} for N (A − I) and let K1 denote the polyhedral cone generated
by the (extreme) vectors u1, . . . , ud−1, 2u− u1, . . . , 2u− ur−1. Then K1 is a proper
polyhedral cone in N (A − I) such that u ∈ riK1 and A|spanK1 ∈ Aut(K1). If
dimN (A+ I) = s > 0, choose a basis {v1, . . . , vs} for N (A+ I) and let K2 be the
polyhedral cone generated by the (extreme) vectors v1, . . . , vs, 2u− v1, . . . , 2u− vs.
Then K2 is a pointed polyhedral cone such that u ∈ riK2 and A|spanK2 ∈ Aut(K2).
Corresponding to a 2-dimensional A-invariant subspace span{x, y} described above,
we can also construct a 3-dimensional indecomposable pointed polyhedral cone K3

with extreme vectors cos 2kπ
p x + sin 2kπ

p y + u, k = 0, . . . , p − 1 (and in case p = 3,

we may have to replace it by pos{cos 2kπ
6 x+ sin 2kπ

6 y + u : 0 ≤ k ≤ 5} in order to
guarantee indecomposability).

The desired indecomposable proper polyhedral cone can be constructed by taking
the sum of suitable pointed polyhedral cones on which A is an automorphsim. We
illustrate the argument by considering the case dimN (A− I) > 1. If 1 is the only
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eigenvalue of A, then since n ≥ 3, it is readily shown thatK1 is indecomposable (see,
for instance,[23, proof of Theorem 2]), and so it is the desired proper polyhedral
cone. If K2 exists, then by Lemma 6.7 K1 + K2 is an indecomposable pointed
polyhedral cone such that u ∈ ri(K1 + K2). As A permutes the extreme rays of
Ki, i = 1, 2, A also permutes the extreme rays of K1 +K2; hence A|span(K1+K2) ∈
Aut(K1+K2). IfK1+K2 is a proper cone in Rn, we are done. Otherwise, there exists
a K3, and by Lemma 6.7 K1 +K2 +K3 is an indecomposable pointed polyhedral
cone such that u ∈ ri(K1 +K2 +K3) and A|span(K1+K2+K3) ∈ Aut(K1 +K2 +K3).
If K1 +K2 +K3 is a proper cone in Rn, then we are done. Otherwise, we can add
a different K3 and continue the process until we obtain the desired proper cone.
Similarly, we can also treat the case when only K1 and some K3s exist. □

For completeness and for possible future use, we would like to add that with a
little more work Lemma 6.7 can be strengthened as follows:

Remark 6.9. Let K1,K2 be closed pointed cones in Rn, both of dimension at least
2. Suppose that spanK1 ∩ spanK2 = span{u}, where u ∈ ri (K1) ∩ ri (K2). Then
K1 +K2 is an indecomposable closed, pointed cone and u ∈ ri (K1 +K2).

Theorem 6.10. For an n×n real matrix A, there exists a proper polyhedral cone K
in Rn such that A ∈ Aut(K) if and only if A is nonsingular, and for any eigenvalue
λ of A, λ equals |λ| times a root of unity and |λ| is also an eigenvalue of A.

Proof. “Only if” part: Since A ∈ Aut(K), A is clearly nonsingular. Let τA denote
the permmutation induced by A on the set of extreme rays of K, and let m be the
order of τA. By an argument given in the proof for the “only if” part of Theorem
6.8, we find that each nonzero extreme vector of K is a distinguished eigenvector of
Am (for K) or, more precisely, we have ExtK ⊆

⊕
λ∈σd(A)[N (Am − λmI) ∩ ExtK],

where σd(A) is the set all nonzero distinguished eigenvalues λ of A. From the
latter inclusion relation we obtain K =

⊕
λ∈σd(A)Kλ, where Kλ denotes the closed

pointed cone N (Am − λmI)∩K; hence σ(A) = ∪λ∈σd(A)σ(A|spanKλ
). Now for each

λ ∈ σd(A), since t
m − λm is an annihilating polynomial for A|spanKλ

, the spectrum
of A|spanKλ

consists of λ together with λ times some mth roots of unity. So our
assertion follows.

“If” part: In this case Rn admits a direct decomposition Rn = W1 ⊕ · · ·Wk,
where each Wi is A-invariant and σ(A|Wi) consists of ρ(A|Wi) (different from zero),
together with ρ(A|Wi) times some roots of unity. By the “if” part of Theorem 6.8,
for each i, there exists an (indecomposable) proper polyhedral cone in Wi such that
A|Wi ∈ Aut(K). Let K = K1 ⊕ · · · ⊕Kk. Clearly, K is a proper cone in Rn and we
have A ∈ Aut(K). □

7. Local Perron-Frobenius theory for cross-positive matrices

Let K be a proper cone in Cn and let A ∈ Mn(C). A is said to be cross-positive
on K if for all x ∈ K, z ∈ K∗, Re(z∗x) = 0 implies Re(z∗Ax) ≥ 0; A is said to
be exponentially K-nonnegative if etA ∈ π(K) for all nonnegative integers t. It is
known that A is cross-positive on K if and only if A is exponentially K-nonnegative.
(For other equivalent definitions and the Perron-Frobenius type theorems for the
class of cross-positive matrices, see [9], [21], [22] and [2].)
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By the spectral abscissa of a matrix A, denoted by ξ(A), we mean the maximum
of the real part of the eigenvalues of A. By the local spectral abscissa of A at x,
denoted by ξx(A), we mean the quantity ξ(A|Wx).

The following result is stated, without proof, by Elsner ([8, Satz 4.1]) :

Theorem C. For an n× n real matrix A, the following conditions are equivalent :
(a) ξ(A) ∈ σ(A) and νξ(A)(A) ≥ νλ(A) for all λ ∈ σ(A) with Reλ = ξ(A).
(b) There exists a proper cone K in Rn such that A is exponentially K-nonnegative.

Whereas the implication (b)⇒(a) follows readily from the fact that aK-nonnegative
matrix satisfies the Perron-Schaefer condition, the reverse implication seems not ob-
vious. One purpose of this section is to supply a proof for the reverse implication.

For A ∈ Mn(C), we refer to condition (a) of the preceding theorem as the Elsner-
Schneider-Vidyasagar condition or, in short, the ESV condition.

We also say A ∈ Mn(C) satisfies the local ESV condition at x if in the rep-
resentation of x as a sum of generalized eigenvectors of A there is a generalized
eigenvectors y corresponding to ξx(A), and moreover the order of y is not less than
that of any other generalized eigenvector in the representation that corresponds to
an eigenvalue with real part equal to ξx(A).

Lemma 7.1. Let K be a proper cone in Cn. If A is cross-positive on K then A
satisfies the local ESV condition at x for every x ∈ K.

Proof. Consider any 0 ̸= x ∈ K. Let λ1, . . . , λk be the distinct eigenvalues of
A|Wx . According to Lemma 2.3, the Jordan canonical form of A|Wx is Jn1(λ1) ⊕
· · · ⊕ Jnk

(λk), where, for each i, ni = νλi
(A|Wx). Consider any t0 > 0. As the

derivative of the analytic function f(z) = et0z has no zeros in the complex plane,
by a known result concerning the elementary divisors of functions of matrices (see,

for instance, [12, p.313, Theorem 7(a)]), the Jordan canonical form of et0A|Wx is

Jn1(e
t0λ1) ⊕ · · · ⊕ Jnk

(et0λk). Note that ρ(et0A|Wx ) = et0ξx(A). Since et0A is K-

nonnegative (as A is cross-positive), et0A|Wx , which is the same as et0A|Wx satisfies

the Perron-Schaefer condition. So ρ(et0A|Wx ) is an eigenvalue of et0A|Wx with index

not less than that of any other eigenvalue of et0A|Wx with the same modulus. To be
specific, say, et0λ1 = ρ(et0A|Wx ). Then, we have, n1 ≥ nj whenever |et0λj | = |et0λ1 |
or, equivalently, whenever Reλj = Reλ1. Now choose a positive real number t0 such

that t0 /∈ {t : t > 0, t = 2πp
Imλj

, p an integer,Reλj = ξx(A)}. With such choice of

t0, the condition et0λ1 = et0ξx(A) guarantees that λ1 = ξx(A). This proves that A
satisfies the local ESV condition at x. □

Lemma 7.2. Let K be a proper cone in Cn (or Rn). If A is cross-positive on K
then A satisfies the ESV condition.

Proof. We modify the argument given in the proof of Lemma 7.1. Now let λ1, . . . , λk
be the distinct eigenvalues of A, and choose a positive real number t0 such that
t0 /∈ {t : t > 0, t = 2πp

Imλj
, p an integer,Reλj = ξ(A)}. Since A is cross-positive on K,

et0A is K-nonnegative and hence satisfies the Perron-Schaefer condition. With our
choice of t0, the latter condition implies that A satisfies the ESV condition. □
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For convenience, hereafter, we extend the usage of the terms distinguished eigen-
values and distinguished eigenvectors to the class of cross-positive matrices. That
is, when A is cross-positive on K, if 0 ̸= x ∈ K and λ ∈ C satisfy Ax = λx,
we say x (respectively, λ) is a distinguished eigenvector (respectively, distinguished
eigenvalue) of A for K.

By Lemma 7.1 we readily obtain the following analogous result of Remark 2.7.

Remark 7.3. Let K be a proper cone in Cn. If A is cross-positive on K, then
every distinguished eigenvalue of A for K is a real number.

Theorem 7.4. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. The following conditions are
equivalent :

(a) A satisfies the local ESV condition at x.
(b) A|WR

x
(or A|Wx) satisfies the ESV condition.

(c) The cone cl(pos{etAx : t ≥ 0}) is pointed.
(d) There exists a proper cone K in WR

x containing x such that A|WR
x
is cross-

positive on K.
(e) There exists a closed pointed cone K that contains x such that A|spanRK is

cross-positive on K.
(f) There exists a proper cone K in WR

x such that A|WR
x
is cross-positive on K.

Proof. In view of Remark 2.5 and an equivalent formulation of the ESV condition
given in terms of the minimal polynomial (cf. Remark 2.1), it is clear that A|WR

x

satisfies the ESV condition if and only if A|Wx satisfies the ESV condition.
The equivalence of (a) and (b) follows from Lemma 2.3. The implications (d)⇒

(e) and (d)⇒ (f) are both obvious.
(f)⇒ (b): Apply Lemma 7.2 to A|WR

x
.

(e)⇒ (c): Since A is cross-positive on K and x ∈ K, we have etAx ∈ K for all
t ≥ 0; thus cl pos{etAx : t ≥ 0} ⊆ K. But K is pointed, hence so is cl pos{etAx :
t ≥ 0}.

(c)⇒ (d): Note that for any t ≥ 0, etA ∈ clw0(A). So we have
spanR{etAx : t ≥ 0} ⊆ spanRclw0(A, x) = spanRw0(A, x) =WR

x .

Since A = limt→0+
etA−I

t for all nonnegative integers k, we also have,

Akx = limt→0+

(
etA−I

t

)k
x ∈ spanR{etAx : t ≥ 0};

hence spanRw0(A, x) ⊆ spanR{etAx : t ≥ 0}. This shows that spanR{etAx : t ≥ 0}
equals the A-invariant subspace WR

x . If the cone cl pos {etAx : t ≥ 0} is pointed,
then it is a proper cone in WR

x that contains x. Clearly the cone is invariant under
esA for all nonnegative integers s. So it is the desired proper cone in WR

x .
(a)⇒ (c): Let x = x1 + · · · + xk, where x1, . . . , xk are generalized eigenvec-

tors of A corresponding to distinct eigenvalues λ1, . . . , λk respectively and with
λ1 = max1≤i≤k Reλi. If the cone cl (pos {etAx : t ≥ 0}) is not pointed, we
can find convergent sequences (ym)m∈Z+ , (zm)m∈Z+ in pos {etAx, t ≥ 0} such that

limm→∞ ym = − limm→∞ zm ̸= 0. For each m, we have, ym =
∑km

l=1 a
(m)
l es

(m)
l Ax

for some km ∈ Z+ and some nonnegative real numbers a
(m)
l , s

(m)
l ,m = 1, . . . , km,
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and zm =
∑im

l=1 b
(m)
l er

(m)
l Ax for some im ∈ Z+ and some nonnegative real num-

bers b
(m)
l , r

(m)
l , l = 1, . . . , im. For each m, let pm(t) =

∑km
l=1 a

(m)
l es

(m)
l t and qm(t) =∑im

l=1 b
(m)
l er

(m)
l t. Then ym = pm(A)x and zm = qm(A)x. A little calculation yields

p
(j)
m (t) =

∑km
l=1 a

(m)
l (s

(m)
l )jes

(m)
l t for all j ∈ Z+,

and a similar expression for q
(j)
m (t). From the equality relation limm→∞ ym =

− limm→∞ zm we obtain limm→∞(pm + qm)(A)xi = 0 for i = 1, . . . , k. Now we
have

(pm + qm)(A)x1 =
∑νλ1−1

j=0
(p

(j)
m +q

(j)
m )(λ1)
j! (A− λ1I)

jx1
and hence

limm→∞(p
(j)
m + q

(j)
m )(λ1) = 0 for j = 0, . . . , νλ1 − 1.

Similarly, for i = 2, . . . , k, we also have

limm→∞(p
(j)
m + q

(j)
m )(λi) = 0 for j = 0, νλi

− 1.
For j = 0, . . . , µλ1 − 1, we have

0 ≤ |p(j)m (λ1)| =
∑km

l=1 a
(m)
l (s

(m)
l )jes

(m)
l λ1 ≤ (p

(j)
m + q

(j)
m )(λ1),

which implies limm→∞ p
(j)
m (λ1) = 0.

Consider λi, 2 ≤ i ≤ k with Reλi = λ1. By the local ESV condition at x,
νλi

≤ νλ1 . For j = 0, . . . , νλi
− 1, we have

0 ≤ |p(j)m (λi)| ≤
∑km

l=1 a
(m)
l (s

(m)
l )j |es

(m)
l λi | =

∑km
l=1 a

(m)
l (s

(m)
l )jes

(m)
l λ1 = p

(j)
m (λ1);

thus, limm→∞ p
(j)
m (λi) = 0.

Now consider λi with Reλi < λ1. Let C denote the circle |z − λi| = λ1 −
Reλi in the complex plane. Noting that maxw∈C |pm(w)| ≤ pm(λ1), by Cauchy’s

inequality, we have 0 ≤ |p(j)m (λi)| ≤ j!
(λ1−Reλi)j+1 pm(λ1); thus, limm→∞ p

(j)
m (λi) = 0.

We have shown that limm→∞ p
(j)
m (λi) = 0 for i = 1, . . . , k and j = 1, . . . , νλi

−
1. Since pm(A) =

∑k
i=1

∑νλi−1

j=0
p
(j)
m (λi)
j! (A − λiI)

jxi and ym = pm(A), we obtain

limm→∞ ym = 0, which is a contradiction. □
Before proceeding further, we need to introduce the concept of real spectral pair

of a vector relative to a matrix.
Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Let x = x1 + · · · + xk be the repre-

sentation of x as a sum of generalized eigenvectors of A corresponding to distinct
eigenvalues λ1, . . . , λk respectively. By the real order of x relative to A, denoted by
ordRA(x), we mean max{ordA(xi) : Re(λi) = ξx(A)}. We denote the ordered pair

(ξx(A), ord
R
A(x)) by spRA(x) and refer to it as the real spectral pair of x relative to

A. We also adopt the convention spRA(0) = (0, 0).
Using the definition of real spectral pair of a vector and the fact that if xi is a

generalized eigenvector of A corresponding to λi then for any t ≥ 0, etAxi is also a
generalized eigenvector of A corresponding to λi and with the same order as xi, then
one can readily establish the following (cf. the corresponding properties for spectral
pairs as given in [29, Remark 4.1]):

Remark 7.5. For any A ∈ Mn(C), x, y ∈ Cn, 0 ̸= λ ∈ C, we have

(i) spRA(λx) = spRA(x).

(ii) spRA(e
tAx) = spRA(x) for any nonnegative integer t.
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(iii) spRA(x + y) ⪯ max{spRA(x), spRA(x)}, where the maximum is taken in the
sense of lexicographic ordering.

Borrowing the argument given in the proofs for Lemma 4.1 and Theorem 7.4, (a)
⇒ (c), one can obtain the following:

Lemma 7.6. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the
local ESV condition at x. Then :

(i) For any 0 ̸= y ∈ cl pos {etAx : t ≥ 0}, we have, ξy(A) = ξx(A) and spRA(y) ⪯
spRA(x).

(ii) For any 0 ̸= y ∈ pos {etAx : t ≥ 0}, we have, spRA(y) = spRA(x).

We will make use of the following known result ([27, Theorem 3.2]): If A is

cross-positive on K, then E
(νξ−1)

ξ(A) (A) ∈ π(K), where νξ = νξ(A)(A).

Lemma 7.7. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Suppose that A satisfies the
local ESV condition at x. Then ξx(A) is the only distinguished eigenvalue of A for

cl pos {etAx : t ≥ 0} and (up to multiples) E
(νξx(A)−1)

ξx(A) (A)x is the unique distinguished

eigenvector of A for cl pos {etAx : t ≥ 0}.

Proof. Since A satisfies the local ESV condition at x, by Theorem 7.4 (and its proof),
spanRcl pos {etAx : t ≥ 0} =WR

x and A|WR
x
is cross-positive on cl pos {etAx : t ≥ 0}.

By applying [27, Theorem 3.2] to A|WR
x
, we find that the eigenvector E

(νξx(A)−1)

ξx(A) (A)x

of A belongs to cl pos {etAx : t ≥ 0}. Since A|WR
x
is a cyclic operator, each of its

eigenvalues and, in particular, the eigenvalue ξx(A), has geometric multiplicity 1.
Now let α be a distinguished eigenvalue of A|WR

x
for cl pos {etAx : t ≥ 0} and let w

be a corresponding distinguished eigenvector. By Lemma 7.6 we have α = ξw(A) =
ξyj (A). So we can draw the desired conclusions. □
Lemma 7.8. Let A ∈ Mn(C). Let K1,K2 be closed, pointed cones in Cn and
assume that A|spanRKi is cross-positive on Ki for i = 1, 2. Suppose that K1 +K2 is
pointed. Then for every distinguished eigenvalue λ of A for K1 +K2, we have

(K1 +K2) ∩N (A− λI) = (K1 ∩N (A− λI)) + (K1 ∩N (A− λI)).
Thus the distinguished eigenvalues of A for K1 +K2 are precisely the distinguished
eigenvalues of A for K1 or for K2.

Proof. Let λj = σj +
√
−1ωj (σj , ωj ∈ R), j = 1, . . . , n, be the eigenvalues of A.

Choose a positive real number t0 such that
t0 /∈ {t : t > 0, t = 2πp

ωj−ωk
, p an integer, σj = σk, ωj ̸= ωk}.

According to the proof of [21, Lemma 8], et0λj ̸= et0λk whenever λj ̸= λk, and for

each j, we have N (A− λjI) = N (et0A − et0λjI). So λ is a distinguished eigenvalue

of A for K1 (respectively, for K2,K1 + K2) if and only if et0λ is a distinguished
eigenvalue of et0A for K1 (respectively, for K2,K1 +K2), and a similar remark can
be said for the distinguished eigenvectors. By applying Lemma 5.3 to et0A, we can
draw the desired conclusions. □
Lemma 7.9. Let A ∈ Mn(C). Let x1, . . . xk, k ≥ 2, be vectors of Cn and suppose
that A satisfies the local ESV condition at x1, . . . , xk respectively. Let K denote
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the cone cl pos{etAx1 : t ≥ 0} + · · · + cl pos{etAxk : t ≥ 0}. Then the following
conditions are equivalent :

(a) The cone K is closed and pointed.
(b) There exists a closed, pointed cone C in Cn such that C contains x1, . . . , xk

and A|spanRC is cross-positive on C.

(c) The cone pos{E
(νξxi (A)−1)

ξxi (A) (A)xi : i = 1, . . . , k} is pointed.

When the equivalent conditions are satisfied, the set of distinguished eigenvalues
of A for K is {ξxi(A) : i = 1, . . . , k} and the cone generated by the distinguished

eigenvectors of A for K is pos{E
(νξxi (A)−1)

ξxi (A) (A)xi : i = 1, . . . , k}.

Proof. (a)⇒(b): For i = 1, . . . , k, since A satisfies the local ESV condition at xi,
A|WR

xi
is cross-positive, and hence exponentially nonnegative, on cl pos{etAxi : t ≥

0}. Thus, A|WR
x
is exponentially nonnegative, and hence cross-positive, on K.

(b)⇒(c): The argument is similar to that given in the proof for Corollary 5.4,
(b)⇒(c), except that now we apply Lemma 7.7 instead of Lemma 4.4.

(c)⇒(a) and the last part: The argument is again similar to that given in the proof
for the corresponding part of Corollary 5.4. Here instead of invoking Lemma 4.4(iii)
and Lemma 5.3, we invoke Lemma 7.7 and Lemma 7.8 (and its proof) respectively.
Also, instead of applying Lemma 5.2, (a)⇒(c) to A, we apply it to et0A, where t0 is
a positive real number, as chosen in the proof of Lemma 7.8. □

Theorem 7.10. Let A ∈ Mn(R) (respectively, Mn(C)) satisfy the ESV condition.
Let m = max{nullity(A − λI) : λ ∈ σ(A)} (respectively, m′ = max{2 nullity(A −
αI), nullity(A − λI) + nullity(A − λ̄I) : α ∈ R, λ ∈ C \ R}). Then there exists a
proper cone K in Rn (respectively, in Cn), which is the sum of m (respectively, m′)
cones of the form cl pos {etAx : x ≥ 0}, such that A is cross-positive on K, but
there is no proper cone in Rn (respectively, in Cn), which is the sum of less than m
(respectively, less than m′) cones of the form cl pos {etAx : x ≥ 0}, on which A is
cross-positive.

Proof. We modify the argument given in the proof of Theorem 5.7. As before, we
deal with the real case of our result first.

Let λ1 = ξ(A), λ2, . . . , λk be the distinct eigenvalues of A. For i = 1, . . . , k, let

mi = nullity(λiI − A), and let l
(i)
1 , . . . , l

(i)
mi denote the sizes of the Jordan blocks

in the Jordan form of A associated with λi, arranged in nonincreasing order. As
before, choose a Jordan basis β for Cn associated with A such that the gener-
alized eigenvectors corresponding to real eigenvalues are real and the generalized
eigenvectors corresponding to non-real eigenvalues occur in conjugate pairs. For
i = 1, . . . , k, let the Jordan chain in β corresponding to the jth Jordan block for

λi be x
(j)
i1 , x

(j)
i2 , . . . , x

(j)

il
(i)
j

. Define the vectors y1, . . . , ym in the same way as before,

and set Kj = cl pos {etAyj : t ≥ 0} for j = 1, . . . ,m. Note that A satisfies the
local ESV condition at each yj . So by Theorem 7.4 (and its proof), for each j,
spanRKj = WR

yj (A), Kj is a closed pointed cone and A|spanRKj is cross-positive on

Kj . By Lemma 7.7, ξyj (A) is the only distinguished eigenvalue of A for Kj and
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(up to multiples) E
(νξyj (A)−1)

ξyj (A) (A)yj is the unique distinguished eigenvector of A for

Kj . Using the argument given in the proof of Theorem 5.7, we can show that

the cone pos{E
(νξyj (A)−1)

ξyj (A) (A)yj : j = 1, . . . ,m} is included in the simplicial cone

pos{x(j)1νξ(A)
: l

(1)
j = νξ(A)} and hence is pointed. Then by Lemma 7.9 we conclude

that the cone K := K1 + · · ·+Km is closed and pointed. With slight modification,
the argument given in the proof of Theorem 5.7 can also be used to show that K
is full in Rn; so K is a proper cone in Rn. Since A is exponentially nonnegative on
each Kj , A is exponentially nonnegative on their sum; hence A is cross-positive on
K. Likewise, by the argument given in the proof of Theorem 5.7 we also show that
there is no proper cone in Rn, which is the sum of less than m cones of the form
cl pos {etAx : x ≥ 0}, on which A is cross-positive. Finally, we can also deduce the
complex case of our result from its real case. □

By modifying the proof of Corollary 5.8, we obtain the following:

Corollary 7.11. Let A ∈ Mn(R) (respectively, Mn(C)) satisfy the ESV condition.
If C is a closed pointed cone in Rn (respectively, Cn) such that A|spanRC is cross-
positive on C, then there exists a proper cone K in Rn (respectively, Cn) which
includes C such that A is cross-positive on C.

Similarly, we also have the following result:

Corollary 7.12. When A satisfies the ESV condition, to the list of equivalent
conditions in Corollary 7.9, we can add the following condition :

(d) There exists a proper cone in Cn that contains x1, . . . , xk such that A is
cross-positive on C.

According to Corollary 3.8, A satisfies the Perron-Schaefer condition if and only
if LA|WA

satisfies the Perron-Schaefer condition. However, the corresponding result
for the ESV condition does not hold.

Remark 7.13. When A satisfies the ESV condition, LA|WA
need not satisfy the

ESV condition.

As a counter-example, consider A = diag(1, i). Clearly A satisfies the ESV
condition. Since the minimal polynomial of A is t(t− i), by Lemma 3.7 the minimal
polynomial of LA|WA

is t− i. So LA|WA
does not satisfy the ESV condition.

Nevertheless, we have the following counterpart for Theorem B.

Theorem 7.14. Let A ∈ Mn(C). Then A is cross-positive on K for some proper
cone K in Cn if and only if the cone cl pos {etA : t ≥ 0} is pointed.

Proof. “Only if” part: If A is cross-positive on a proper cone K, then A is expo-
nentially K-nonnegative; hence cl pos {etA : t ≥ 0} is included in the proper cone
π(K) and so it is pointed.

“If” part: Suppose that the cone cl pos {etA : t ≥ 0} is not pointed. Then there
exist convergent sequences (Ym)m∈Z+ , (Zm)m∈Z+ in cl pos {etA : t ≥ 0} such that

limm→∞ Ym = − limm→∞ Zm ̸= 0. For each m, we have, Ym =
∑km

l=1 a
(m)
l es

(m)
l A
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for some km ∈ Z+ and some nonnegative real numbers a
(m)
l , s

(m)
l ,m = 1, . . . , km,

and Zm =
∑im

l=1 b
(m)
l er

(m)
l A for some im ∈ Z+ and some nonnegative real numbers

b
(m)
l , r

(m)
l , l = 1, . . . , im. For each m, let pm(t) =

∑km
l=1 a

(m)
l es

(m)
l t and qm(t) =∑im

l=1 b
(m)
l er

(m)
l t. Then Ym = pm(A) and Zm = qm(A). Let λ1, . . . , λk be the dis-

tinct eigenvalues of A. As A satisfies the ESV condition, we may assume that
λ1 = ξ(A). By a standard result in the theory of functions of matrices, for each

positive integer m, we have pm(A) =
∑k

i=1

∑νλi−1

j=0
p
(j)
m (λi)
j! E

(j)
λi

(A), and similar ex-

pressions for qm(A) and (pm + qm)(A). The fact that limm→∞(Ym + Zm) = 0

implies that limm→∞(p
(j)
m + q

(j)
m )(λi) = 0 for i = 1, . . . , k, j = 0, . . . , νλi

− 1. Then
using an argument similar to the one given in the proof of Theorem 7.4, (a)⇒(c),

one can show that limm→∞ p
(j)
m (λi) = 0 for i = 1, . . . , k, j = 0, . . . , νλi

− 1; hence
limm→∞ Ym = limm→∞ pm(A) = 0, which is a contradiction. □

8. Open problems

Inspite of this work, many natural questions remain unanswered. In below we
collect some of them.

In Remark 3.17(ii) we have provided an equivalent condition for w0(A, x) to be
a pointed polyhedral cone. The result is unsatisfactory in that the condition is not
spectral nor is it readily checkable.

Question 8.1. Let A ∈ Mn(C) and let 0 ̸= x ∈ Cn. Find a spectral or a readily
checkable equivalent condition for w0(A, x) to be a pointed polyhedral cone.

Question 8.2. Find an equivalent condition for clw0(A, x) to be a pointed polyhe-
dral cone.

We do not know whether the set of necessary conditions given in Theorem 3.16
for clw0(A, x) to pointed, polyhedral is also sufficient.

Question 8.3. Find an equivalent condition for w0(A, x) (or clw0(A, x)) to be an
indecomposable closed pointed cone.

For x ̸= 0, in view of Remark 3.3, a necessary condition for clw0(A, x) to be
indecomposable is that either A|Wx is nonsingular or x is a null vector of A. However,
the condition is not sufficient. For a counter-example, consider clw0(A, x), where
A = J2(1) and x = (0, 1)T .

Question 8.4. Find an equivalent condition for w0(A, x) to be a closed, pointed
cone.

Clearly, a necessary condition for w0(A, x) to be closed, pointed is that A satisfies

the local Perron-Schaefer condition at x and
∑

λ∈ΛE
(νλ(A|Wx )−1)
λ x ∈ w0(A, x) and,

as a consequence, the spectral conditions given in Lemma 4.7 are fulfilled. For
an equivalent condition for w0(A, x) closed, pointed in the special case when the
eigenvalues of A|Wx are all of the same modulus and ρx(A) is one of the eigenvalues,
see Lemma 4.10.
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Question 8.5. Given A ∈ Mn(C) and 0 ̸= x ∈ Cn, when does there exist a proper
cone C in WR

x containing x such that A|WR
x
∈ Aut(C) ?

Question 8.6. Find an equivalent condition on a given n×n real matrix A so that
A ∈ Aut(K) for some proper cone K.

Question 8.7. Is it true that when ρ(A) ∈ σ(A), conditions (a)—(f) of Theorem
6.4 are all equivalent ?

According to the proof of Theorem 6.4, the problem is reduced to proving that
we have (d) and (e) ⇒ (a) when ρ(A) ∈ σ(A). By modifying the argument given
in the last part of the proof of Theorem 6.4, we can show that the answer to the
preceding question is in the negative if one can find a nonzero complex number λ
for which there exist pm(t) ∈ R+[t],m = 1, 2, . . . , such that limm→∞ pm(λ) = 1

λ and

limm→∞ p′m(λ) = − 1
λ2 .

In Section 5, for an n×n complex matrixA, we consider the question of when there
exists a proper A-invariant cone in Cn that contains certain given vectors x1, . . . , xk.
Recently, motivated by applications in Glass networks and joint spectral radius [5,
Theorem 1 and Theorem 3], the dual question of the existence and construction of
common proper invariant cones for families of real matrices has also been treated by
several authors ([7], [18]) and complete solutions have been offered for some special
cases. We take this opportunity to point out that it is not difficult to prove the
following modest result:

Lemma 8.8. Let A,B ∈ Mn(R). A necessary condition for the existence of a
proper cone K in Rn such that A,B ∈ π(K) is that the cone cl pos{p(A,B) : p(r, s)
is a monomial in the noncommuting indeterminates r, s} is pointed.

It is clear that this necessary condition implies the condition that clw0(A) +
clw0(B) is pointed or, equivalently, clw0(A) ∩ (−clw0(B)) = {0}. However, we do
not know whether this necessary condition is a sufficient condition.

Example 8.9. Let A1 = diag(1,−1,−1), A2 = diag(−1,−1, 1). Then A2
1 = A2

2 =
I3 and A1A2 = diag(−1, 1,−1). In this case,

cl pos {p(A1, A2) : p(r, s) amonomial in the noncommuting indeterminates r, s}
equals pos{A1, A2, A1A2, I3} and is not pointed, as A1 + A2 + I3 + A1A2 = 0. By
Theorem 8.8 there is no {A1, A2}-invariant proper cone.

The above pair of matrices A1, A2 has been considered in [18, Example 5], where
the nonexistence of an {A1, A2}-invariant proper cone is obtained by applying The-
orem 12 of the paper.
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