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Figure 1. Decomposition of cos x into difference of two convex functions.

because

(1.1) f(x) =
[
f(x) +

1

2
α · ∥x∥2

]
−
[1
2
α · ∥x∥2

]
for x ∈ K.

For α > 0 sufficiently large, each term in the parentheses is a convex function [8].

Example 1.2 (Convex decomposition of periodic functions). Consider f(x) = cos
x on interval K = [−2π, 2π]. A decomposition is cosx = (cosx+ 1

2 · x2)− (12 · x2).
See Fig 1.

2. Zero-Derivative point

For a function in several variables denote by ∇f(x∗) the gradient of f at x∗. If f
denotes a function of the single variable the notation is f ′(x). The norm ∥x∥ used
below is Euclidean. The key theorem of the paper follows.

Theorem 2.1 (Quadratic Envelope Characterization of Zero-Derivative Points,
[8]). Consider a C1 function f(x) with Lipschitz derivative on a convex set K in
its domain. Assume that K has interior points and consider an arbitrary interior
point x∗. Then ∇f(x∗) = 0 if, and only if, there exists a number Λ ≥ 0 such that

(2.1) |f(x)− f(x∗)| ≤ Λ · ∥x− x∗∥2

for every x ∈ K.

Proof. (Outline, for details see [8]) We know that f(x) = 1
2α · ∥x∥2 +C(α, x) where

C is a convex function in x and α is some convexifier [8, Theorem 2]. By convexity
of C it follows that C(α, λx + (1 − λ)x∗) ≤ λC(α, x) + (1 − λ)C(α, x∗), for every
x ∈ K, 0 ≤ λ ≤ 1. After substitution for C, using Cauchy inequality and properties
of the norm we find

f [(x∗ + λ(x− x∗)]− f(x∗)] ≤ f(x)− f(x∗)− 1

2
α · (1− λ) · ∥x− x∗∥2.
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Figure 2. Primal necessary conditions for f(x∗) = 0.

Dividing by λ > 0 and sending λ → 0 yields [∇f(x∗)](x−x∗) ≤ f(x)− f(x∗)− 1
2α ·

∥x− x∗∥2. Suppose that ∇f(x∗) = 0. Then

f(x∗)− f(x) ≤ −1

2
α · ∥x− x∗∥2.

Similarly f(x∗)− f(x) ≥ −1
2β · ∥x− x∗∥2 with a concavifier β. Now properties of α

and β complete the necessity part of the proof. Sufficiency is easier to prove: Divide
(2.1) by ∥x− x∗∥ ̸= 0 and go to the limit x → 0. □

Remarks. For the sake of simplicity, the inequality (2.1) is also called “the for-
mula”. If (2.1) holds for some Λ ≥ 0 then it also holds for every bigger Λ. So we
can talk about a class of Λ′s. If f is a single-variable C2 function, one can specify
Λ = 1

2 max t ∈ K|f ′(t)|. Note that the pointx∗ in (2.1) is an apex (lowest point) of

the paraboloid ∥x − x∗∥2 on K. One can split Theorem 2.1 into its “primal” and
“dual” formulations. The former is also referred to as the apex property.

Corollary 2.2 (Primal Characterization of Zero-Derivative Points; Apex Prop-
erty). Consider a C1 function f(x) with Lipschitz derivative on a convex set K in
its domain. Assume that K has interior points and consider its arbitrary interior
point x∗. Then ∇f(x∗) = 0 if, and only if, x∗ is an apex of a class of paraboloids
Λ · ∥x− x∗∥2, Λ ≥ 0 over-estimating |f(x)− f(x∗)| on K.

Example 2.3. Consider f(x) = x3 on K = [−1, 1] and x∗ = 0. This point is an
apex of the class of parabolas Λ ·x2 over-estimating |f(x)|. Fig.2 depicts f(x), |f(x],
and the over-estimation with Λ = 3 and with Λ = 5. We can say, by Corollary 2.2,
that an over-estimation of |f(x) − f(x∗)| by Λ · ∥x − x∗∥2,Λ ≥ 0 is a necessary
conditions for zero-derivative point ∇f(x∗) = 0.

After dividing (2.1) by Λ ̸= 0, Theorem 2.1 assumption a “dual form” which is
given in terms of the ratio function

R(x) = |f(x)− f(x∗)|/∥x− x∗∥2
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Figure 3. Function with infinitely many isolated local optima on a
compact interval.

on K. R(x) is not defined at the point x∗ ∈ K and it is uniformly bounded (by
some Lipschitz derivative constant Λ ) on K\{x∗}. Functions with this property
were studied in [9] in connection with L’Hopital’s rule. Since R is not defined at
x = x∗ we call such points the “vacant points”. Characterization of zero-derivative
points using R(x∗) is called a vacant point property.

Corollary 2.4 (Dual Characterization of Zero-Derivative Points; Vacant Point
Property.). Consider a C1 function f(x) with Lipschitz derivative on a convex set
K in its domain. Assume that K has interior points and consider its arbitrary
interior point x∗. Then ∇f(x∗) = 0 if, and only if, the ratio function R(x) is not
defined at x∗ and it is uniformly bounded on the set x ∈ K\{x∗}.

Example 2.5 (Trivial). Consider f(x) = x3 on K = [−1, 1]. Take x∗ = 0. Since
R(x) = |x| and x∗ ∈ K, the conditions of Corollary 2.4 are trivially satisfied. This
confirms that x∗ is a zero-derivative point.

Example 2.6 (Non-trivial; non-monotonic function in every neighborhood of a

local optimum). Consider f(x) = x4 · [2 + sin
(

1
x

)
] for x ̸= x∗ = 0, f(0) = 0.

The graph of f is depicted in Fig. 2. Gelbaum and Olmsted studied this function
in their book [4] in a different context. They observed that this is a differentiable
function with an “extreme value at a point where the derivative does not make
a simple change in sign. Also that “in no interval of the form (a, 0) or (0, b) is f
monotonic. We note that the function is C1 with Lipschitz derivative on compact
intervals around x∗. Also that f is highly nonconvex being non-monotonic in every
neighborhood of x∗ = 0. The function has infinitely many isolated local optima,
including x∗ which is a global minimum. Our objective hereby is to verify that
both the apex and vacant- point properties hold at x∗ = 0. This double checks
f ′(x∗) = 0.

In Fig. 2 the primal and dual conditions at zero-derivative point of f(x) are
compared.
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Figure 4. Apex property at x∗ = 0 with Λ = 1.

Figure 5. Comparison of two conditions for zero derivative at x∗ = 0.

The above characterizations of zero-derivative points, in their necessity parts
yield, possibly new, necessary conditions for local optimality.

3. Geometry of local optima

In this section we extend previous results to the classic problem of optimizing a
function f0(x) in n variables subject to m equality constraints

(3.1) Optf0(x), s.t. f i(x) = 0, i ∈ P = 1, . . . ,m.

Take a feasible point x∗of (3.1) which is also in the interior of some convex set K,
not necessarily compact [5]. (Point x∗ may not be an interior point of the feasible set
of (3.1).) If x∗ is a local optimum of f0(x) (unconstrained version of (3.1))then we
know that x∗ has two properties: the apex property and the vacant point property.
These are necessary conditions for unconstrained local optima. Let us extend these
to (3.1). For comparison we use the “complete” Lagrange function

L(x, λ) = λ0 · f0 +
∑
i∈P

λi · fi(x), where λ = (λi) ∈ Rm+1.
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The classic theorem of Lagrange says that, at a local optimum x∗ of (3.1),
∇L(x∗, λ∗) = 0 for some (m + 1) − tupleλ∗ = (λi) ̸= 0. This implies that x∗

is a zero-derivative point of L(x, λ∗) for some λ∗ ̸= 0. Hence his theorem can be
reformulated using the “ formula”. We note that the reformulations will not require
any constraint qualification (CQ), [2, 3].

Theorem 3.1 (Apex Property: Primal Formulation of the Theorem of Lagrange).
Consider (3.1) where all functions are assumed to be C1 with Lipschitz derivatives
on some convex set K which contains a feasible point x∗. If x∗ is an interior point of
K, which is also a local optimum of (3.1), then x∗ is an apex of a class of paraboloids
Λ · ∥x− x∗∥2, Λ ≥ 0 over-estimating

|L(x, λ∗)− L(x∗, λ∗)| on K for some λ∗ ̸= 0.

Example 3.2 (Example 11.2 in [2] which illustrates the need for CQ). Consider

min f0(x) = x1, s.t. f1(x) = x21 + (x2 − 1)2 − 1 = 0, f2(x) = x21 + (x2 +1)2 − 1 = 0.

Clearly, the point x∗1 = x∗2 = 0 is optimal. Since ∇L(x∗, λ∗) = 0 only if λ∗
0 = 0,

we know that no CQ holds. In contrast, the choice of any sphere centered at
x∗ = 0 ∈ R2 for K, and any choice of λ ≥ 2, confirms that x∗ = 0 is an apex of a
class of parabolas over-estimating

|L(x, λ∗)− L(x∗, λ∗)| = 2 · (x21 + x22) on K for λ∗ = (0, 1, 1)′.

In the context of optimality this means that x∗ = 0 could be a local optimum. Let
us formulate an equivalent necessary condition for optimality.

Theorem 3.3 (Vacant Point Property: Dual Formulation of the Theorem of La-
grange). Consider (3.1) where all functions are assumed to be C1 with Lipschitz
derivatives on some convex set K. Suppose that x∗ is an interior point of K, con-
taining a feasible point x∗, which is also a local optimum of (3.1). Then x∗ is a
vacant point of

R(x) = |L(x, λ∗)− L(x∗, λ∗)|/∥x− x∗∥2

on K for some λ∗ ̸= 0 , i.e., R(x) is not defined at x∗ and R(x) is uniformly
bounded on K\x∗ , for some λ∗ ̸= 0 .

Comments. Problems with mixed inequalities, studied in nonlinear programming
[3], can be reduced to the form (3.1) if non-active constrains at a feasible point
x∗ are omitted. All above results essentially follow from the quadratic envelope
characterization of zero-derivative points, i.e., from the “formula. It is easy to see
that the assumption of compactness of K in the original proof of the formula can
be omitted, see [5] for an alternative proof in parts.

4. “Formula” in integral calculus: characterizing roots

In this section we use the “formula in integral calculus to characterize roots of a
single variable function f(x) = 0.

Theorem 4.1 (“Formula in Integral Calculus). Consider a continuous Lipschitz
function f of the single variable x on I = [a, b] in its domain and a point x∗ such
that a < x∗ < b. Denote the integral of f(t) from x∗ to x in I by

Y (x) = inf[x∗, x]f(t)dt.
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Then x∗ is a root of f , i.e., f(x∗) = 0, if and only if

|Y (x)| ≤ Λ · (x− x∗)2, x ∈ I

for some class of Λ ≥ 0.

Proof. (Outline) Suppose that f(x∗) = 0. We know that Y ′(x) = f(x) by the
fundamental theorem of calculus. Hence Y ′(x∗) = 0 and then

|Y (x)− Y (x∗)| ≤ Λ · (x− x∗)2 by the “formula”.

But Y (x∗) = 0, completing the necessity part of the proof. The implications also
hold in the reverse order. Indeed, if Y (x∗) = 0 then also |Y (x)| ≤ Λ · (x − x∗)2 ,
x ∈ I for some Λ ≥ 0. This follows by the “formula because Y ′(x∗) = 0. Hence
f(x∗) = 0. □

The above yields primal (“apex”) and dual (“vacant point”) characterizations of
roots:

Theorem 4.2 (Primal Characterization of Roots). Using the assumptions of The-
orem 4.1, an arbitrary interior point x∗ of I is a root of f(x) if, and only if, x∗ is
an apex of a class of parabolas r · x2, r ≥ 0 over-estimating the absolute value of the
function Y (x) on I.

Example 4.3. Consider f(x) = sinx on I = [−π, π]. Property of the root x∗ = 0
is depicted by the Primal characterization Y (x)| ≤ x2 ,with the choice r = 1, Fig.
4.

Figure 6. Primal characterization of a root.

We also have a “dual characterization of roots:

Theorem 4.4 (Dual Characterization of Roots). Under the assumptions of Theo-
rem 4.1, an arbitrary interior point x∗ of I is a root of f(x) if, and only if, |Y (x)|/
(x− x∗)2 is uniformly bounded on I\x∗.
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Example 4.5. Consider f(x) = sinx and x∗ = 0. Take I = [−π, π]. Is f(0) = 0?
True, by the dual result, since Y (x) = 1 − cosx and R(x) = Y (x)|/x2, x ̸= 0 is
uniformly bounded on I\0. Fig.4 depicts a difference between primal and dual
characterizations. We can say that the primal is an “apex characterization” and
the dual is a “vacant point” characterization of the root x∗.

Figure 7. Primal and dual characterizations of a root compared.

Other applications of the “formula include a study of fixed points [11], sensitivity
of the Cobb-Douglas production function in economics, and selected results from
linear and nonlinear regression [1, 9].

5. conclusion

Leonhard Euler proclaimed that “nothing at all takes place in the universe in
which some rule of maximum or minimum does not appear [3, 7]. Fermat et al.
formalized this claim by proving that, for differentiable functions f(x), the optimal
points can occur only at zero-derivative points ∇f(x∗) = 0. For C1 functions
with Lipschitz derivatives, the points where ∇f(x∗) = 0 were characterized at the
conference [13] and in its follow-up papers, e.g., [8, 9, 10]. Combining these results
with the quadratic envelope characterization of zero- derivative points, a.k.a. the
“formula [11, 12, 13], we have introduced hereby two equivalent, but geometrically
different, necessary conditions for local optima. In the final section we used both the
formula and the fundamental theorem of calculus to characterize roots of Lipschitz
functions of the single variable. Hence from now on we can talk about “primal and
電 ual necessary conditions for local optimality of functions in several variables and
菟 rimal and 電 ual characterizations of roots of functions of the single variable.
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