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than last three decades and still continue to be so, and historically many authors
such as Brezis, Kato, Kazenave, Weissler, Merle, Nakamura, Ozaua, Nawa, Ogawa,
Tsutsumi, Rodnianski, Schlag, Strichartz and many others have made significant
contributions in this field by either giving a new result or giving a simpler proof of
old results or presenting new perspectives, [9, 12–15,17–20,22,24–27].

The objective of this paper is to consider control problems of nonlinear Schrodinger
equation where we use some of these results. Several authors have considered the
question of controllability of the Schrödinger equation such as Zuazua [28] and Ill-
ner, Lange and Teismann [11]. It is well known that Schrödinger equation is not
globally controllable. So given any desired state, by using optimal control theory,
one can expect to reach a state as close as possible to the desired state subject to
control constraints. Several authors have also considered optimal control problems
of Quantum mechanical systems such as Atabek and Dion [6], Bandrauk and Lègarè
[7], Batista and Brumer [8], Bris et all [10], Lefebvre-Brion [16], Ohtsuki and Ra-
bitz [21], Rabitz and Shi [23]. These papers consider optimal control problems of
linear Schrödinger equation with quadratic cost and present necessary conditions
of optimality using Lagrange multiplier rule ignoring the question of existence of
such multipliers. Also the fundamental question of existence of optimal control is
not addressed. In this paper we consider optimal control problems for Nonlinear
Schrödinger equation. We prove the existence of optimal controls and also present
the necessary conditions of optimality.

The rest of the paper is organized as follows. In section 2, we present the system
model with controls which is obtained by transforming the nonlinear Schrödinger
equation defined on a complex Hilbert space to a Nonlinear Evolution equation
defined on the Cartesian product of two real Hilbert spaces. In section 3, we present
briefly some well known results on the questions of existence and uniqueness of
solutions of basic nonlinear Schrödinger equation in the L2 and Hs spaces including
the blow up phenomenon. In section 4, we consider the control system introduced
in section 2 and prove existence and uniqueness of mild solutions. In section 5, we
introduce the class of admissible controls and consider the question of existence of
optimal controls. In the last section, we develop necessary conditions of optimality
whereby one can determine the optimal (or extremal) control polices. The paper is
concluded with a convergence theorem asserting monotone convergence of the cost
functional (possibly) to its local optimum.

2. Basic formulation of the system model

The system is governed by the nonlinear Schrödinger equation of the form

i∂tψ = (−∆+ V0(ξ))ψ + Vc(t, ξ)ψ + λf(|ψ|)ψ,
ψ(0, ξ) = ψ0, ξ ∈ Ω ≡ Rd, t ∈ I ≡ (0, T ],(2.1)

where V0 is the ground state (natural coulomb) potential independent of time and
Vc is the control potential induced by the interaction of laser with the nonlinear
medium. We assume that these potentials are real valued measurable functions on
Ω. The equation is written in the atomic unit. The symbol ∂t denotes the partial
derivative with respect to time. The operator ∆ stands for the standard Laplacian
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in dimension d (d=1,2,3) with Ω ≡ Rd, and f is a nonnegative function of the
amplitude of the complex wave function ψ and λ is a real parameter. The initial
state ψ0 is given and I is a finite time interval. This is the basic dynamic system
arising in the study of nonlinear optics and the so called wave function ψ takes
values in the field of complex numbers and given by ψ = ψ1 + iψ2. We prefer to
formulate this as a pair of coupled partial differential equations for ψ1 and ψ2.

Let us introduce the multiplication operators on L2(Ω) arising from the static
and dynamic potentials V0 ≡ {V0(ξ), ξ ∈ Ω}, Vc(t) ≡ {Vc(t, ξ), ξ ∈ Ω} respectively.
The function V0 denotes the ground state potential and Vc is the dynamic potential
induced by the action of a laser source. Define the operator A0 ≡ (−∆ + V0) and
introduce the matrix of operators as follows:

A ≡
(

0 A0

−A0 0

)
, B(t) ≡

(
0 Vc(t)

−Vc(t) 0

)
Using the above notations the Schrödinger equation (2.1) can be written as a

system of two coupled partial differential equations in ψ1 and ψ2. Defining the
vector x = (x1, x2)

′ ≡ (ψ1, ψ2)
′
we can rewrite the system as follows

(d/dt)x = Ax+B(t)x+ F (x), x(0) = x0,(2.2)

where the nonlinear operator is given by

F (x) =
(
λf(|x|)x2,−λf(|x|)x1

)′
(2.3)

with |z| denoting the Euclidean norm in R2. The function f is nonnegative given by
f(|z|) = |z|p−1 for any nonnegative p ∈ [1,∞). Thus the nonlinear R2-valued func-
tion F also satisfies the polynomial growth |F (v)|R2 ≤ |λ||v|p

R2 . Later we continue to
use the same notation F for the Nemytski operator on various function spaces. The
original equation (2.1) is defined on a complex Hilbert space. With the transforma-
tion introduced above, we can consider the equivalent system (2.2) defined on a real
Hilbert space given by the product space L2(Ω) × L2(Ω) ≡ L2(Ω, R

2). We denote
this space by H and consider this as the state space for the system (2.2). Thus
the system (2.2) is considered as an abstract differential equation on the Hilbert
space H with F considered as a nonlinear operator on H. Later in section 4, we
will see that it is the nonlinearity of F that determines the appropriate choice of
the function spaces for its domain and range. In fact the domain space may be
continuously embedded in H while H is embedded in the range space.

3. Well known results on NLS in Rd

Here we present some well known results on the Cauchy problems of Nonlinear
Schrödinger equation defined on the whole space Ω = Rd. There are very important
interesting results due to many authors such as Kazeneve and Weissler [15], Kato
[12-14], Tsutsumi [27], Merle [17] Nakamura and Ozawa [18], Nawa [19], Ogawa
and Tsutsumi [20], Rodnianski and Schlag [24], Schlag [25] and many others (as
indicated in the reference list). These papers also consider blowup solutions in Hs

spaces for s ≥ 1. We reproduce some of these results here for convenience of the
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reader. Let C denote the field of complex numbers and H ≡ L2(R
d, C) the complex

Hilbert space. Consider the Schrödinger equation

i∂tψ = −∆ψ +G(ψ), t ≥ 0, ψ(0) = φ.(3.1)

where the function G is given by G(z) = λ|z|p−1z, z ∈ C for any λ ∈ R.

Theorem 3.1 (L2-Solution). Consider the nonlinear Schrödinger equation (NLS)
(3.1) on the whole space Ω ≡ Rd and suppose 1 < p < 1 + 4/d. Then for every
φ ∈ H, equation (3.1) has a unique global solution ψ ∈ C(I,H)∩Lr(I, Lp+1(Ω, C)),
for (d/2− d/(1 + p)) = 2/r, satisfying the Duhammel’s formula

(3.2) ψ(t) = S(t)φ− i

∫ t

0
S(t− θ)G(ψ(θ))dθ, t ∈ I ≡ [0, T ],

where S(t), t ∈ R, denotes the unitary (Schrödinger) group of operators S(t) = eit∆.
Further, the solution satisfies the mass conservation law, ∥ ψ(t) ∥H=∥ φ ∥H for all
t ∈ I. In fact the interval can be any subset of the real line.

Proof. For detailed proof see Tsutsumi [27], Ogawa & Tsutsumi [20], Kazenave &
Weissler [15], Kato [12-14], Pavlovic & Tzirakis [22]. □
Theorem 3.2 (H1-Solution). Consider the NLS (3.1) and suppose d ≥ 2 and
1 ≤ p < 1+ (4/d− 2). Then, for each φ ∈ H1, there exists a T > 0 (depending only
on the norm |φ|H1) and a unique solution ψ ∈ C(IT ,H

1), IT = [0, T ). Further, the
solution ψ is continuously dependent on the initial data over any compact subinterval
[0, T0] ⊂ IT . If [0, T ∗) is the maximal interval of existence of H1 solution and
T ∗ <∞, the solution blows up leading to limt→T ∗ ∥ ψ(t) ∥H1= ∞.

Theorem 3.3 (H2-Solution). Consider the (NLS) (3.1) and suppose 1 ≤ p <
1 + (4/(d− 4)) if d ≥ 4, (for d < 4, no condition required). Then for each φ ∈ H2,
there is a T > 0 depending only on |φ|H2, and a unique solution ψ ∈ C(IT ,H

2) with
ψ(0) = φ and ∂tψ ∈ C(IT , L2(R

d, C)) ∩ Lr(I, Lp(R
d, C)). If [0, T ∗) is the maximal

interval of existence of H2 solution and T ∗ < ∞, the solution blows up leading to
limt→T ∗ ∥ ψ(t) ∥H1= ∞.

Corresponding to H1 and H2 solutions there exists another conservation law
known as the conservation of energy. This is given by

E(ψ(t)) = (1/2)

∫
Rd

|▽ψ(t, x)|2dx− λ/(p+ 1)

∫
Rd

|ψ(t, x)|1+pdx = E(ψ(0)).

If λ is negative the energy is a positive constant. Therefore blowup can not occur.
This is the de-focussing case, and if λ > 0, the energy can be negative and blowup
may occur. For detailed proof of the above results the reader is referred to the
papers [9,12-14,15,17,18-20,22,24-25,27]. In fact there is a huge literature on NLS,
for example, see the Lecture Notes of Pavlovic̀ and Tzirakis [22] and the extensive
references therein.

It is clear from the above results that the L2 solution exists globally while the
H1 and H2 solutions exist only locally and may blow up at the end point of the
maximal interval of existence. Here in this paper we are mainly interested in L2

and L1+p (for some p ≥ 1) solutions which exist globally.
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4. Existence and uniqueness of solutions

In this section we study the question of existence and uniqueness of solution of
the evolution equation (2.2) arising from the initial value problem (2.1). We assume
that the potential V0 is sufficiently smooth and bounded away from below. Thus by
adding a sufficiently large positive number to V0 and subtracting the same number
from the other potentials, we can consider V0 to be strictly positive bounded away
from below by a positive number. So without loss of generality we consider A0 ≡
(−∆+V0) to be a positive self adjoint operator on the Hilbert space L2(Ω). Next we
consider the operator A, as defined in section 2, and note that its domain is given
by D(A) = D(A0)×D(A0) ⊂ H and range R(A) ⊂ H, and that D(A) is dense in H.
It is not difficult to verify that the operator A is skew adjoint, that is, (iA)∗ = iA.
Thus it follows from Stones theorem [ 2, Theorem 3.1.4, p71] that A generates a
unitary group of bounded linear operators {U(t), t ∈ R} on H with the property
that, as t → 0, U(t) converges to the identity operator IH in the strong operator
topology. For simplicity we assume that the potential Vc ∈ B∞(I×Ω) ⊂ L∞(I×Ω)
where B∞(I × Ω) denotes the Banach space of bounded measurable functions on
I × Ω with respect to the standard supnorm topology. Under this assumption,
the operator B(t) ∈ L(H) for all t ∈ I. We may assume that the operator valued
function B = B(·) is Borel measurable in the strong operator topology. Using
the unitary group U(t), t ∈ I, we can reformulate the system (2.2) as an integral
equation on the Hilbert space H as follows:

x(t) = U(t)x0 +

∫ t

0
U(t− s)B(s)x(s)ds+

∫ t

0
U(t− s)F (x(s))ds.(4.1)

For the time being let us assume that equation (2.2) has an H valued mild solu-
tion x(t), t ∈ I, given by the solution of the above integral equation. Then scalar
multiplying the equation (2.2) by x(t) in H and integrating we find that

(4.2)

|x(t)|2H = |x0|2H + 2

∫ t

0
(Ax(s), x(s))ds+ 2

∫ t

0
(B(s)x(s), x(s))ds

+ 2

∫ t

0
(F (x(s)), x(s))ds

Since the scalar products (Ax, x) = 0, (B(t)x, x) = 0, (F (x), x) = 0, it follows from
the identity (4.2) that |x(t)|2H = |x0|2H for all t ≥ 0. This is easily justified rigorously
by replacing the operator A0 by its Yosida approximation A0,n = nA0R(n,A0), n ∈
ρ(A0), the resolvent set of the operator A0. Then the operator A is replaced by An

where

An ≡
(

0 A0,n

−A0,n 0

)
and the unitary group U(t), t ≥ 0, by the corresponding unitary group Un(t), t ≥ 0.
It follows from Trotter-Kato approximations [2, Theorem 4.5.4, Remark 4.5.5 ] that
Un(t) −→ U(t) in the strong operator topology on L(H) uniformly on compact

intervals of R. The initial state x0 is replaced by x0,n = (Rnx0,1, Rnx0,2)
′
, where

Rn ≡ nR(n,A0), for n ∈ ρ(A0), is the Yosida approximation of the identity operator
in the Hilbert space L2(Ω). Note that x0,n ∈ D(A) and that it converges to x0
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strongly in H. In this case the operator A of system (2.2) is replaced by its Yosida
approximation An and the initial state by x0,n with the corresponding solution
denoted by xn. Again scalar multiplying (in H) on both sides of the following
equation

ẋn = Anxn +B(t)xn + F (xn), xn(0) = x0,n

with xn and integrating over the interval [0, t] we obtain the following identity,

|xn(t)|2H = |x0,n|2H , for all t ∈ I.

So the approximated system is also conservative. Now as n → ∞, x0,n
s−→ x0

in H and so for each t ∈ I, xn(t)
s−→ x(t) in H, where x is the mild solution of

equation (2.2) or simply the solution of the integral equation (4.1). From these
facts it is easy to verify that |x(t)|2H = |x0|2H for all t ∈ I (the interval of existence
of solution). Therefore we conclude that if equation (2.2) has a mild solution with
values in H, the H norm of x(t) remains invariant with respect to t ∈ I, that is,
|x(t)|2H = |x(0)|2H = |x0|2H . In quantum physics this is known as the conservation of
mass. As seen above, there is another conservation law called the law of conservation
of energy. This involves the H1 solutions of the Schrödinger equation (2.1). There
is an extensive literature on the blowup solutions in Hs spaces for s ≥ 1. Here we
are not interested in this. For details the reader is referred to [2,3,4,5,6].

We are interested in the control of the system (2.2) equivalent to the nonlinear
Schrödinger equation (2.1). For nonlinear analysis we introduce the following Ba-
nach spaces. First, we have the Hilbert space H ≡ L2(Ω, R

2) as already introduced
before. Next, for p ≥ 1, let X ≡ L1+p(Ω, R

2) with dual X∗ ≡ L1+1/p(Ω, R
2).

Using Hölder inequality it is easy to verify that the injection X ∩X∗ ↪→ H is con-
tinuous. Further, if the space X ∩ X∗ is given the norm topology ∥ z ∥X∩X∗≡
max{∥ z ∥X , ∥ z ∥X∗}, its topological dual is given by (X ∩X∗)∗ = X∗ ⊕X.

In the following theorem we present existence, uniqueness and regularity prop-
erties of solutions of the evolution equation (2.2). First let us recall that the free
Schrödinger group S0(t), t ∈ R, satisfies the following estimate

∥ S0(t)h ∥L∞(Ω)≤ (α/td/2) ∥ h ∥L1(Ω), t ∈ R \ {0}

for some α > 0 finite. The infinitesimal generator of this semigroup (actually unitary
group) is perturbed by a bounded linear operator, represented by the multiplication
operator B0h ≡ V0h giving the perturbed operator (−∆ + V0). Strichartz, in his
paper [26, p.712], states that similar decay property may also hold for the semigroup
corresponding to the perturbed generator (−∆+ V0). In fact, under certain decay
properties of the potential V0, Rodnianski and Schlag [24, Theorem 1.1, Theorem
1.2, Theorem 2.6] gave a proof of this estimate for the perturbed group for dimension
d = 3. Schlag also presents the same L1 −→ L∞ estimate in his paper [25, Theorem
2.3]. In other words, the perturbed group S(t) satisfies the following estimate

∥ S(t)h ∥L∞(Ω)≤ (c0/t
d/2) ∥ h ∥L1(Ω), t ∈ R \ {0}

for some constant c0 > 0 possibly depending on α and d. This estimate can be ob-
tained easily from the general theory of perturbation of C0-semigroups [2, Theorem
4.2.1, p111].
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Theorem 4.1. Consider the evolution equation (2) and suppose the assumptions
of Theorem 3.1 hold and that the operator valued function B ∈ B∞(I,L(X,X∗))
is measurable in the strong operator topology and uniformly bounded (in operator
norm) on I and the nonlinear operator F is given by (2.3) satisfying the polynomial
growth as described above. Then, for any x0 ∈ X ∩X∗, the integral equation (4.1)
has a unique solution x ∈ C(I,X).

Proof. The proof is based on Banach fixed point theorem. For any τ ∈ I, define the
interval [0, τ) ⊂ I and introduce the operator Φ as follows

(4.3) Φ(x)(t) ≡ U(t)x0 +

∫ t

0
U(t− s)B(s)x(s)ds+

∫ t

0
U(t− s)F (x(s))ds, t ∈ Iτ .

Recall that for each t ∈ Iτ ≡ [0, τ), τ ∈ [0,∞), the operator U(t) is a unitary group
on H and hence ∥ U(t)h ∥H=∥ h ∥H for every h ∈ H and ∥ U(t) ∥L(H)= 1. In fact
the operator U(t) is much more smooth and it follows from the basic properties
of the Schrödinger group as discussed above that there exists a positive constant c
such that

∥ U(t)h ∥L∞(Ω,R2)≤ c/td/2 ∥ h ∥L1(Ω,R2), t ̸= 0.

Based on the unitary property of the group of operators U(t), t ∈ R, and the above
inequality, it follows from Riesz-Thorin interpolation theorem [22] that for every
t ̸= 0,

∥ U(t)f ∥Lq′ (Ω,R2)≤ (c/td(1/2−1/q)) ∥ f ∥Lq(Ω,R2), ∀ f ∈ Lq(Ω, R
2),(4.4)

for any pair 1 ≤ q′, q ≤ ∞ satisfying 1/q′ + 1/q = 1. It follows from the definition
of the nonlinear operator F (see (2.3)) that

|F (u(t, ξ))|R2 = |λ| |u(t, ξ)|p
R2 , t ∈ R, ξ ∈ Ω.

From this identity, it is easy to verify that F maps L1+p(Ω, R
2) to L((1+p)/p)(Ω, R

2)
and it satisfies the estimate

∥ F (u) ∥L(1+p)/p(Ω,R2)≤ |λ| ∥ u ∥p
L1+p(Ω,R2)

.

In terms of the dual pair of Banach spaces {X,X∗}, this is equivalent to saying that
the nonlinear operator F : X −→ X∗ and that

∥ F (u) ∥X∗≤ |λ| ∥ u ∥pX(4.5)

for all u ∈ X. Since the function f, arising in the definition of the operator F, is
purely a homogeneous polynomial of degree (p − 1), it is easy to verify that F is
locally Lipschitz satisfying

∥ F (u)− F (v) ∥X∗≤ |λ|κ(∥ u ∥p−1
X , ∥ v ∥p−1

X ) ∥ u− v ∥X ,(4.6)

where κ is a nonnegative, continuous and monotone increasing function of it’s argu-
ments and bounded on bounded sets. For any arbitrary r > 0 (to be chosen later),
let

C(r) ≡ sup{κ(∥ u ∥p−1
X , ∥ v ∥p−1

X ), u, v ∈ Br(X)}
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where Br(X) is the closed ball in X of radius r centered at the origin. Consider the
nonlinear part of the operator Φ given by

z(t) ≡ (LF )(x)(t) ≡
∫ t

0
U(t− s)F (x(s))ds, t ∈ Iτ .(4.7)

Using Hölder inequality and the estimate (4.4) for q = (1 + p)/p and its conjugate
q′ = 1 + p one can easily verify that

∥ U(t) ∥L(X∗,X)≤ (c/td(1−p)/2(1+p)), for all t ∈ R,(4.8)

and not only for t ∈ Iτ . Since by assumption p ≥ 1, it is clear from the above
estimate that U(t) ∈ L(X∗, X) for all t ∈ R and also it is uniformly bounded in
operator norm on any bounded subset of R. Further, t −→ U(t) is continuous on
R with respect to the strong operator topology on L(X∗, X). We have already seen
that F : X −→ X∗ satisfying the estimate (4.5). Thus the composition map LF is
a continuous nonlinear operator from X to itself and bounded on bounded sets. So
the function z defined by the expression (4.7) is an element of L∞(Iτ , X). Since, by
assumption, B ∈ B∞(Iτ ,L(X,X∗)) there exists a positive constant b such that

sup{∥ B(t) ∥L(X,X∗), t ∈ Iτ} ≤ b.(4.9)

Now taking the X-norm of Φ(x)(t) it follows from the expression (4.3) and the
above estimates that there exists a positive constant C0 such that

(4.10)

∥ Φ(x)(t) ∥X ≤ C0 ∥ x0 ∥X +C0b

∫ t

0
∥ x(s) ∥X ds

+ C0|λ|
∫ t

0
∥ x(s) ∥pX ds, t ∈ Iτ .

Consider the restriction of the operator Φ on the closed ball

Br ≡
{
x ∈ L∞(Iτ , X) : ess− sup{∥ x(t) ∥X , t ∈ Iτ} ≤ r

}
.

Then it follows from (4.10) that, for any x ∈ Br, we have

∥ Φ(x) ∥L∞(Iτ ,X)≤ C0 ∥ x0 ∥X +τ(C0br + C0|λ|rp).(4.11)

We choose r > 0 large enough so that r = 2C0 ∥ x0 ∥X and then we choose
τ sufficiently small so that τ(C0br + C0|λ|rp) ≤ r/2. This leads to the inequality
∥ Φ(x) ∥L∞(Iτ ,X)≤ r for all x ∈ Br and hence we conclude that Φ maps Br into itself.
Now we show that Φ is a contraction on Br. For any pair {x, y} ∈ Br, subtracting
Φ(y) from Φ(x) and taking X-norm, one can easily arrive at the following inequality

∥ Φ(x)− Φ(y) ∥L∞(Iτ ,X)≤ (C0b+ C0|λ|C(r))τ ∥ x− y ∥L∞(Iτ ,X) .(4.12)

Again, for τ sufficiently small, Φ is a contraction on Br ⊂ L∞(Iτ , X). Hence by
Banach fixed point theorem, Φ has a unique fixed point in Br and therefore we
conclude that the integral equation (4.1) has a unique solution in L∞(Iτ , X) for τ
sufficiently small. In other words the evolution equation (2.2) has a unique mild
solution x ∈ L∞(Iτ , X). Since the operator valued function t −→ U(t) ∈ L(X∗, X)
is continuous in the strong operator topology, as seen above, the solution actually
belongs to C(Iτ , X), the Banach space (with respect to the usual supnorm topology)
of continuous functions on Iτ with values in X. Hence the solution can be extended
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step by step, [0, τ ], [τ, 2τ ],[2τ, 3τ ], and so on to any finite interval I = [0, T ] ⊂
R whereby we can conclude that the solution x ∈ C(I,X). This completes the
proof. □
Remark 4.2. Since U(t), t ∈ R, is a unitary group on H, the H-norm of x(t)
remains conserved, that is, ∥ x(t) ∥H=∥ x0 ∥H for all t ∈ R. Thus the mass conser-
vation law holds for the control system (2.2) but the energy conservation law does
not.

5. Optimal control

Recall that our primary objective is to control the evolution equation (2.2) or
equivalently the integral equation (4.1). The control here is the operator valued
function B constructed from the dynamic (electro-magnetic) potential Vc(t, ξ), t ∈
I, ξ ∈ Ω, induced by the action of the laser beam on target materials. In other
words, the controls are operator valued functions taking values B(t) ∈ L(X,X∗).
Using Hölder inequality it is easy to verify that if, Vc(t) ∈ L((p+1)/p)(Ω), 1 ≤ p <∞,
for each t ∈ R, then B(t) ∈ L(X,X∗) for each t ∈ R. The space L(X,X∗) is
equipped with the strong operator topology. We denote this topological space by
(L(X,X∗), τso) ≡ Lso(X,X

∗). Consider the set

Γ ≡
{
L ∈ L(X,X∗) : Li,j ∈ L(L1+p(Ω), L1+1/p(Ω)),

& Li,j = 0 for i = j, & Li,j = −Lj,i

}
,

and suppose that it is equipped with the relative strong operator topology. Later
in the sequel, for proof of existence of optimal control policies, we use compact
subsets of the topological space Lso(X,X

∗). In the following proposition we present
necessary and sufficient conditions characterizing compact subsets of Lso(X,X

∗).

Proposition 5.1. Let {en} ⊂ X be a normalized Schauder orthogonal basis with
{e∗n} ⊂ X∗ being the dual basis. A set Γ ⊂ L(X,X∗) is conditionally compact in
the strong operator topology τso if, and only if, the following conditions hold:

(i): Γ is a (norm) bounded subset of L(X,X∗),
(ii): For each x ∈ X, and any ε > 0, there exists an integer Nε ∈ N such that

supT∈Γ{
∑∞

i=n |(Tx, ei)X∗,X |} < ε for all n ≥ Nε.

Proof. (Outline) Since both X and X∗ are Banach spaces, the space L(X,X∗) en-
dowed with the strong operator topology is a locally convex sequentially complete
Hausdorff topological vector space. Thus by the uniform boundedness principle the
limit of any sequence in the strong operator topology is an element of L(X,X∗).
Reflexivity of the Banach spaces (X,X∗) also imply that any bounded subset of
L(X,X∗) is conditionally compact in the weak operator topology. Using this fact
one can show that the conditions (i) and (ii) are necessary and sufficient for condi-
tional compactness in the strong operator topology. This completes the outline of
our proof. □

Since the above result has wider and independent interest, a detailed proof will
appear in another paper.

Let Γb ⊂ Γ ⊂ L(X,X∗) be a set compact in the strong operator topology with
the operator norms being bounded from above by a finite positive number b. For
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admissible controls, we choose the class of Γb-valued functions defined on I and mea-
surable in the strong operator topology. We denote this class by Bad ≡ B∞(I,Γb).
Furnished with the Tychonoff product topology τπ, the set Bad is compact.

For proof of existence of optimal controls we shall need results asserting continu-
ous dependence of solutions with respect to controls. This is stated in the following
theorem.

Theorem 5.2. Consider the System (2.2) and suppose the assumptions of theorem
4.1 hold. Then, the (mild) solution of equation (2.2) is continuously dependent on
the controls in the sense that whenever a generalized sequence {Bn} ∈ Bad converges
in the Tychonoff product topology to Bo, the sequence of solutions {xn} of equation
(2.2), corresponding to the sequence {Bn}, converges in the sup-norm topology of
C(I,X) to the solution xo of equation (2.2) corresponding to the control Bo.

Proof. Let x(B) ∈ C(I,X) denote the solution of the integral equation (4.1) corre-
sponding to the control operator B ∈ Bad and let X ≡ {x(B), B ∈ Bad} denote the
set of solutions corresponding to the admissible set of controls Bad. Since the set
Γb is contained in the ball Bb(L(X,X∗)), for the given T > 0 finite, there exists a
sufficiently large positive number r so that the set of solutions X (corresponding to
the set of admissible controls) is contained in the ball

Br(C(I,X)) ≡ {x ∈ C(I,X) : ∥ x ∥C(I,X)≤ r}.

Let {Bn} be a generalized sequence from the admissible set Bad and let Bo ∈ Bad

to which Bn converges in the Tychonoff’s product topology τπ. Let {xn} and xo
denote respectively the corresponding solutions of the integral equation (4.1). We

show that xn
s−→ xo in C(I,X) where

s−→ denotes convergence in the usual sup-
norm topology. Subtracting xo from xn it follows from the integral equation (4.1)
that

(5.1)

xn(t)− xo(t) =

∫ t

0
U(t− s)[Bn(s)xn(s)−Bo(s)xo(s)]ds

+

∫ t

0
U(t− s)[F (xn(s))− F (xo(s))]ds, t ∈ I.

Define the function en by

en(t) ≡
∫ t

0
U(t− s)

(
Bn(s)−Bo(s)

)
xo(s)ds, t ∈ I.(5.2)

Using the expression (5.2) we can rewrite equation (5.1) as follows:

(5.3)

xn(t)− xo(t) = en(t) +

∫ t

0
U(t− s)Bn(s)(xn(s)− xo(s))ds

+

∫ t

0
U(t− s)[F (xn(s))− F (xo(s))]ds, t ∈ I.

Taking the X-norm of either side of the expression (5.3) and using (4.6) and (4.8)
and the fact that for all t ∈ I, xn(t), xo(t) ∈ Br(X) (the closed ball in X of radius
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r centered at the origin) for all n ∈ N, we obtain

∥ xn(t)− xo(t) ∥X ≤∥ en(t) ∥X +bc

∫ t

0
(t− s)d(p−1)/2(p+1) ∥ xn(s)− xo(s) ∥X ds

+ C(r)|λ|c
∫ t

0
(t− s)d(p−1)/2(p+1) ∥ xn(s)− xo(s) ∥X ds.(5.4)

Since by our assumption the exponent p, related to the nonlinear operator F ( see
(2.3)), is equal or greater than 1 (p ≥ 1) the above inequality reduces to

∥ xn(t)− xo(t) ∥X≤ ∥ en(t) ∥X +β

∫ t

0
∥ xn(s)− xo(s) ∥X ds, t ∈ IT ≡ I.(5.5)

where β ≡ (b+C(r)|λ|)cT d(p−1)/2(p+1) <∞. Now by virtue of Gronwall inequality,
it follows from (5.5) that

∥ xn(t)− xo(t) ∥X≤ ∥ en(t) ∥X +β

∫ t

0
eβ(t−s) ∥ en(s) ∥X ds, t ∈ I.(5.6)

Returning to the expression (5.2) and using the estimate (4.8) we arrive at the
following inequality

(5.7) ∥ en(t) ∥X≤ cT d(p−1)/2(p+1)

∫ t

0
∥ [Bn(s)−Bo(s)]xo(s) ∥X∗ ds, t ∈ I.

Clearly, this implies that

(5.8) sup{∥ en(t) ∥X , t ∈ I} ≤ cT d(p−1)/2(p+1)

∫ T

0
∥ [Bn(s)−Bo(s)]xo(s) ∥X∗ ds.

Since Bn converges to Bo in the Tychonoff product topology, Bn(t)
τso−→ Bo(t) for

each t ∈ I, and since xo(s) ∈ X for each s ∈ I, it is clear that the integrand in the
expression (5.8) converges to zero for each t ∈ I, and further, it is bounded from
above by 2br. Thus, it follows from Lebesgue bounded convergence theorem that
the integral converges to zero implying

lim
n→∞

sup{∥ en(t) ∥X , t ∈ I} = 0.(5.9)

Hence it follows from (5.6) and (5.9) that

lim
n→∞

sup{∥ xn(t)− xo(t) ∥X , t ∈ I} = 0.

This shows that the (mild) solution x(B) of the evolution equation (2.2) is contin-
uously dependent on the control B . This completes the proof. □

Now we are prepared to consider control problems. The objective functional is
given by

J(B) ≡
∫ T

0
ℓ(t, x(t)) dt+Ψ(x(T )),(5.10)

where x ∈ C(I,X) (I = IT ) is the mild solution of equation (2.2) corresponding to
the control policy (operator valued function) B ∈ Bad. The integral term represents
the running cost and Ψ denotes the terminal cost. The objective is to find an
operator valued function B ∈ Bad that minimizes the functional J(B) subject to
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the dynamic constraint (2.2). In this section we consider the question of existence
of optimal control. In section 6, we develop the necessary conditions of optimality
characterizing optimal policies.

Theorem 5.3. Consider the dynamic system (2.2) and suppose the assumptions
of Theorem 5.2 hold and that the set of admissible controls Bad is compact in the
Tychonoff product topology τπ. Let ℓ : I×X −→ R+∪+∞ be measurable in the first
argument and lower semicontinuous in the second satisfying

|ℓ(t, x)| ≤ α(t) + k ∥ x ∥qX ,

with k ≥ 0 and α ∈ L+
1 (I) and ∞ > q ≥ 1. The function Ψ : X −→ R ∪ {+∞} is

lower semicontinuous and |Ψ(x)| ≤ γ + δ ∥ x ∥qX , with γ, δ ≥ 0. Then, there exists
an optimal policy Bo ∈ Bad at which J attains its minimum.

Proof. Since the solution set X ⊂ C(I,X) is bounded and the functions {ℓ,Ψ}
satisfy the inequalities as stated in the theorem and α ∈ L+

1 (I), it is clear that
inf{J(B), B ∈ Bad} > −∞. We prove that J is lower semicontinuous on Bad in the
product topology τπ. Let {Bn} be any sequence from Bad and let {xn} ∈ C(I,X)
be the corresponding sequence of mild solutions of equation (2.2). Since Bad is
compact in the Tychonoff product topology, there exists a subsequence {Bnk

} of

the sequence {Bn}, relabeled as Bn, and a Bo ∈ Bad such that Bn
τπ−→ Bo. Then it

follows from Theorem 5.1 that the corresponding sequence of solutions {xn}, along
the subsequence if necessary, converges to xo in the usual norm topology of C(I,X).
As the function ℓ is lower semicontinuous in its second argument, it is clear that

ℓ(t, xo(t)) ≤ lim ℓ(t, xn(t)), a.e t ∈ I.

Hence it follows from generalized Fatou’s lemma that∫
I
ℓ(t, xo(t))dt ≤ lim

∫
I
ℓ(t, xn(t))dt.

Since {xn, xo} ∈ C(I,X) and, by our assumption Ψ is lower semicontinuous on X,
it is obvious that

Ψ(xo(T )) ≤ limΨ(xn(T )).

As the sum of a finite number of lower semicontinuous functions is a lower semicon-
tinuous function, we conclude that B −→ J(B) is a lower semicontinuous functional
on Bad in the Tychonoff product topology τπ. Thus J attains its minimum on Bad

proving the existence of an optimal control. □
Remark 5.4. Since there is hard constraint on controls through the set Γb, it is not
essential to introduce control cost. However, if it is necessary to impose an extra
Levy on the usage of controls one may extend the cost functional (5.10) by adding
the following control cost

J3(B) ≡
∫ T

0

∞∑
i=1

γi (⟨B(t)ei, ei⟩X∗,X)2dt,

where γi ≥ 0, {γi} ∈ ℓ1, and {ei} is a normalized Schauder basis of the Banach
space X. Since the admissible set Bad is bounded, the infinite series is well defined
and bounded above by β2 ∥ γ ∥ℓ1 .
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Remark 5.5. In the field of photonics, laser pulses of the order of femto seconds
(10−15 seconds) or even shorter ( 10−18 seconds) are used to interact with molecules
and atoms. Such controls can be regarded as impulsive controls. In this case the
admissible controls can be chosen as operator valued measures which contain impul-
sive controls as special case. That is, the set Bad is now a proper subset of the space
of operator valued measures Mcasbsv(Σ,L(X,X∗)) which are countably additive in
the strong operator topology having bounded semivariation. For characterization
of weakly compact sets in such spaces see Ahmed [3,4,5]. In view of the application
mentioned above, it would be interesting to prove existence of optimal controls in
this broader class. We leave this as an open problem for future consideration.

6. Necessary conditions of optimality

In this section we develop the necessary conditions of optimality whereby one
can construct a computational algorithm to determine the optimal control policy.
For this we need additional regularity of the functions ℓ and Ψ and the nonlinear
operator F. We denote the Gâteaux differential of F at the point ξ ∈ X and in the
direction η ∈ X by DF (ξ; η) ≡ DF (ξ)η. Clearly, since the operator F originates
purely from a polynomial f, its Gâteaux derivatives do exist and they are also
continuous.

Theorem 6.1. Consider the system (2.2) and suppose the assumptions of Theorem
5.3 hold. Further suppose the set Γb, determining the admissible controls Bad, is
closed and convex, and that Ψ is once continuously Gâteaux differentiable on X
with the Gâteax derivative belonging to X∗, and ℓ is also once continuously Gâteaux
differentiable on X with respect to its second argument with the Gâteaux derivative
belonging to L1(I,X

∗). Then, for a pair (Bo, xo) ∈ Bad × X to be optimal, it is
necessary that there exists a ψ ∈ C(I,X) such that the triple {Bo, xo, ψ} satisfies
the following inequality and the evolution equations:

(6.1)

∫ T

0
⟨(B(s)−Bo(s))xo(s), ψ(s)⟩X∗,Xds ≥ 0, ∀ B ∈ Bad,

(6.2)
−(d/dt)ψ = A∗ψ + (Bo(t))∗ψ + (DF (xo(t)))∗ψ

+ ℓx(t, x
o(t)), ψ(T ) = Ψ(xo(T )),

(6.3) (d/dt)xo = Axo +Bo(t)xo + F (xo(t)), xo(0) = x0.

Proof. Let Bo ∈ Bad be the optimal policy and B ∈ Bad any other element. Since
Bad is closed and convex, it is clear that Bo+ε(B−Bo) ∈ Bad and J(B

o+ε(B−Bo) ≥
J(Bo) for all ε ∈ [0, 1]. Thus

(1/ε)
(
J(Bo + ε(B −Bo))− J(Bo)

)
≥ 0 ∀ ε ∈ [0, 1], B ∈ Bad.

Let {xo, xε} ∈ C(I,X) denote the (mild) solutions of the evolution equation (2.2)
corresponding to the control operators {Bo, Bε} respectively where Bε ≡ Bo+ε(B−
B0). Let DF (xo(t)) denote the Gâteaux differential of the nonlinear operator F and
ℓx(t, x

o(t)) and Ψx(x
o(T )) the Gâteaux differentials of ℓ and Ψ respectively. Since

the entries of the operator F are homogeneous polynomials of degree p > 1, it is
clear that it has well defined Gâteaux differentials. Since, by our assumption, both ℓ
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and Ψ are continuously Gâteaux differentiable, it follows from the above inequality
that the Gâteaux differential of J at Bo in the direction (B − Bo) satisfies the
following inequality

(6.4)
dJ(Bo, B −Bo) =

∫ T

0
⟨ℓx(t, xo(t)), y(t)⟩X∗,Xdt

+ ⟨Ψx(x
o(T )), y(T )⟩X∗,X ≥ 0,

for all B ∈ Bad where y ∈ C(I,X) is the (mild) solution of the following variational
equation

(6.5) (d/dt)y = Ay +Bo(t)y +DF (xo(t))y + (B −Bo)xo, y(0) = 0,

driven by the process (B−Bo)xo with DF (xo(t)) satisfying the following inequality

∥ DF (xo(t)) ∥L(X,X∗)≤ C ∥ xo(t) ∥p−1
X .

Since equation (6.5) is a linear evolution equation, in particular a special case of the
original nonlinear equation (2.2), it follows from Theorem 4.1, with minor variation
in the steps, that this variational equation has a unique solution y ∈ C(I,X) and
that it is given by the limn→∞(1/ε)(xε − xo) uniformly on I. Clearly, if B = Bo,
the solution y of equation (6.5) is identically zero, y(t) ≡ 0 for t ∈ I. It follows from
the properties of the admissible set Bad that (B −Bo)xo ∈ L∞(I,X∗) ⊂ L1(I,X

∗).
Thus the map

(B −Bo)xo −→ y

is a continuous linear (bounded) map from L1(I,X
∗) to C(I,X). Define the func-

tional L by

(6.6) L(y) ≡
∫ T

0
⟨ℓx(t, xo(t)), y(t)⟩X∗,Xdt+ ⟨Ψx(x

o(T )), y(T )⟩X∗,X .

By our assumption, ℓ and Ψ are continuously Gâteaux differentiable on X and
ℓx(·, xo(·)) ∈ L1(I,X

∗) and Ψx(x
o(T ))) ∈ X∗. Thus the map y −→ L(y) is a

continuous linear functional on C(I,X) ⊂ L∞(I,X). Combining the above results,
we conclude that the composition map

(6.7) (B −Bo)xo −→ y −→ L(y) ≡ L̃((B −Bo)xo)

is a continuous linear functional on L1(I,X
∗). Hence by Riesz representation theo-

rem and the fact that X is a reflexive Banach space, there exists a ψ ∈ L∞(I,X) ≡
L∞(I,X∗∗) so that

(6.8) L̃((B −Bo)xo) =

∫ T

0
⟨B −Bo)xo, ψ⟩X∗,Xdt.

Now it follows from (6.4), (6.6),(6.7) and (6.8) that

(6.9) dJ(Bo, B −Bo) =

∫ T

0
⟨B −Bo)xo, ψ⟩X∗,Xdt ≥ 0, ∀ B ∈ Bad.

This proves the necessary condition (6.1). To prove the necessary condition (6.2),
formally we substitute the variational equation (6.5) into the righthand side of the
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expression (6.9) to obtain

(6.10) RHS(36) =

∫ T

0
⟨(d/dt)y −Ay −Boy −DF (xo)y, ψ(t)⟩X∗,Xdt.

Integrating by parts, it follows from (6.10) that

(6.11)

RHS(36) = ⟨y(T ), ψ(T )⟩X,X∗

+

∫ T

0
< y,−ψ̇ −A∗ψ − (Bo)∗ψ − (DF (xo))∗ψ >X,X∗ dt.

This is justified by use of the well known Yosida approximation An of A and then
letting n go to infinity. Now setting

(6.12) −ψ̇ = A∗ψ + (Bo)∗ψ + (DF (xo))∗ψ + ℓx(t, x
o(t)), ψ(T ) = Ψx(x

o(T )),

it follows from (6.9) and (6.11) that

(6.13)
dJ(Bo, B −Bo) =

∫ T

0
⟨y(t), ℓx(t, xo(t))⟩X,X∗dt

+ ⟨y(T ),Ψx(x
o(T ))⟩X,X∗ ,

where the expression on the right hand side of (6.13) coincides with L(y) as required.
This proves that, for {Bo, xo} to be an optimal control-state pair, it is necessary
that ψ satisfies the adjoint equation (6.12) which is the same as (6.2). The necessary
condition (6.3) is the system equation (2.2) corresponding to the control operator
Bo and so is natural. This completes the proof. □

Remark 6.2. The solution of the adjoint equation (6.12) (or (6.2)) is given by the
solution of the following (backward) integral equation

(6.14)

ψ(t) = U∗(T − t)Ψx(x
o(T )) +

∫ T

t
U∗(θ − t)(Bo(θ))∗ψ(θ)dθ

+

∫ T

t
U∗(θ − t)(DF (xo(θ)))∗ψ(θ)dθ +

∫ T

t
U∗(θ − t)ℓx(θ, x

o(θ))dθ.

Since U(t) is a unitary group, U∗(t) = U(−t). The proof of existence of solution of
this equation again follows from Banach fixed point theorem as in Theorem 4.1.

Computing Optimal Policy: Using the above result one can develop an algo-
rithm for computing the optimal policy. First we need some preliminaries. An
element C ∈ L(X∗, X) is said to be nuclear if there exists a sequence {xn, yn} ⊂ X
such that for every x∗ ∈ X∗

C(x∗) =
∞∑
n=1

x∗(xn)yn.

Using the notation for tensor products, a nuclear operator can be written as C ≡∑
xn ⊗ yn. Since the Banach space X is reflexive x∗(xn) = x̂n(x

∗) defines a contin-
uous linear functional on X∗ where x̂n denotes the canonical embedding of xn ∈ X
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to x̂n ∈ X∗∗. Let L1(X
∗, X) denote the class of nuclear operators from X∗ to X.

The nuclear norm of C is given by

∥ C ∥L1(X∗,X)= inf{
∞∑
n=1

∥ xn ∥X∥ yn ∥X}

where the infimum is taken over all pairs {xn, yn} ⊂ X such that C(x∗) =∑
n=1 x

∗(xn)yn for all x∗ ∈ X∗. With respect to this norm topology, L1(X
∗, X)

is a Banach space and hence it follows from Hahn-Banach theorem that it has a
nonempty dual and its topological dual is given by the space of bounded linear
operators L(X,X∗). In symbol (L1(X

∗, X))∗ = L(X,X∗). For any L ∈ L(X,X∗)
and C ∈ L1(X

∗, X), the duality pairing of L and C is given by

⟨L,C⟩ =
∞∑
n=1

(Lxn, yn)X∗,X .

It is clear that |⟨L,C⟩L(X,X∗),L1(X∗,X)| ≤ ∥ L ∥L(X,X∗)∥ C ∥L1(X∗,X) . Now we can
state the following corollary asserting convergence of any computational algorithm
based on the necessary conditions of optimality.

Corollary 6.3 (A convergence theorem). Suppose the assumptions of Theorem 6.1
hold. Then there exists a sequence of operators {Bn} ∈ Bad such that the cost
functional J is monotone decreasing along the sequence {Bn} and convergent to a
(possibly local) minimum.

Proof. Let B1 ∈ Bad be any element. Let x1 ∈ C(I,X) be the (mild) solution of
the state equation (2.2) corresponding to the (control) operator B1. Considering
the adjoint equation (6.2) and using the pair {B1, x1} in place of the pair {Bo, xo},
we solve this equation and denote the solution by ψ1 ∈ C(I,X). Using the tensor
product notation we define an operator valued function C1 by C1(t) ≡ x1(t) ⊗
ψ1(t), t ∈ I. Since the solutions of the state equation and the adjoint equations
are unique, the operator is uniquely defined. Clearly, this operator takes values in
the space of nuclear operators L1(X

∗, X) and C1(t)x
∗ = x∗(x1(t))ψ1(t) ∈ X for all

t ∈ I. For each t ∈ I, the nuclear norm of this operator valued function is given
by ∥ C1(t) ∥L1(X∗,X)= (∥ x1(t) ∥X)(∥ ψ1(t) ∥X). Using the triple {B1, x1, ψ1}, we
can compute the Gâteaux differential of J at B1 in any direction (B −B1) for any
B ∈ Bad giving

(6.15) dJ(B1, B −B1) =

∫ T

0
⟨B(t)−B1(t), C1(t)⟩L(X,X∗),L1(X∗,X)dt.

Here we need the duality map Γ mapping L1(X
∗, X) to its dual L(X,X∗) given by

Γ (C) ≡ {L ∈ L(X,X∗) : ⟨L,C⟩ =∥ L ∥2L(X,X∗)=∥ C ∥2L1(X∗,X)}.(6.16)

In general, Γ is a multivalued map and demicontinuous in the sense that, whenever
Cn converges strongly to C0, the multivalued map Γ (Cn) converges to Γ (C0) in the
weak star topology. For any ε > 0, let us define the operator B2 as

B2 = B1 − εL1 for any L1 ∈ Γ (C1).
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Choosing ε > 0 sufficiently small so that B2 ∈ Bad and substituting this in equation
(6.15) and using the property of the duality map Γ we obtain

(6.17)

dJ(B1, B2 −B1) =

∫ T

0
⟨B2(t)−B1(t), C1(t)⟩L(X,X∗),L1(X∗,X)dt

= −ε
∫ T

0
∥ L1 ∥2L(X,X∗) dt = −ε

∫ T

0
∥ C1 ∥2L1(X∗,X) dt.

Using classical Lagrange formula and evaluating the cost functional J at B2 we
arrive at the following expression,

(6.18)

J(B2) = J(B1) + dJ(B1, B2 −B1) + o(∥ B2 −B1 ∥)

= J(B1)− ε

∫ T

0
∥ C1 ∥2L1(X∗,X) dt+ o(ε).

Clearly, for sufficiently small ε > 0, we have J(B2) < J(B1). Starting with B2

and repeating the above procedure we obtain B3 ∈ Bad satisfying the inequality
J(B3) < J(B2). Thus repeating this process add infinitum we construct a sequence
{Bn} ∈ Bad satisfying

J(Bn+1) < J(Bn) < · · · J(B2) < J(B1).

This shows that the sequence of cost functionals {J(Bn)}n is monotone decreasing
and since J(B) is bounded away from −∞, it is clear that J(Bn) converges to
(possibly) a local minimum. This completes the proof. □

Remark 6.4 A question of significant interest is whether or not it is possible to find
a global minimum. Since the problem is nonlinear and the functional B −→ J(B)
is not necessarily convex, the answer to the above question is generally negative.
However, using any heuristic technique such as Random recursive search technique,
Simulated annealing, Threshold accepting, Genetic algorithm, etc, one can cover a
large region of Bad which is satisfactory in many scientific applications. One can
easily find these techniques well described in Wikipedia.

An Open Problem Extension of the results presented here to stochastic Nonlinear
Schrödinger equation is of significant theoretical interest. This will require stochas-
tic integration on Banach spaces with respect to cylindrical Brownian motion on
Hilbert spaces.
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