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In this work we present an alternative scheme for finding a near optimal control,
which is based on the necessary and sufficient optimality conditions from [9].

The last two constraints of (1.1) can be combined into one by writing

u(t) ∈ A(y(t)),

where, for y ∈ Y ,

(1.2) A(y) := {u ∈ U(y)| f(y, u) ∈ Y }.

We say that a process (y(·), u(·)) is admissible, if it satisfies the constraints of
(1.1). Denote

G := graphA = {(y, u)| y ∈ Y, u ∈ U(y), f(y, u) ∈ Y }.
It is easy to see that G is a compact subset of Y × U0. Also denote

U(y0) := {u(·)| (y(·), u(·)) is admissible}
to be the set of admissible controls and let

(1.3) V (y0) := min
u(·)∈U

J(u, y0)

be the value function of problem (1.1).
Throughout the paper we assume that the set A(y) is not empty for any y ∈ Y .

This assumption implies that the set U(y) is not empty for any y ∈ Y . It can be
shown that under this assumption, an optimal solution of problem (1.1) exists and
the optimal value function V (·) is lower semicontinuous and bounded on Y . Also,
V (·) is a solution of the equation

(1.4) V (y) = min
u∈A(y)

{g(y, u) + αV (f(y, u))} ∀y ∈ Y,

which is the dynamic programming principle for problem (1.1) (see, e.g., [1] or [8]).
For a lower semicontinuous function ψ : Y → IR denote

Hψ(y) := min
u∈A(y)

{α(ψ(f(y, u))− ψ(y)) + g(y, u)}.

Then relation (1.4) can be written as

HV (y)− (1− α)V (y) = 0,

which resembles the Hamilton-Jacobi-Bellman equation for continuous time sys-
tems.

Let us outline some notations and results that are used further in the text. For
an admissible process (y(·), u(·)), a probability measure γu is called the discounted
occupational measure generated by u(·) if, for any Borel set Q ⊂ G,

(1.5) γu(Q) = (1− α)
∞∑
t=0

αt1Q(y(t), u(t)),

where 1Q(·) is the indicator function of Q. It can be shown that this definition is
equivalent to the validity of the relationship

(1.6)

∫
G
q(y, u)γu(dy, du) = (1− α)

∞∑
t=0

αtq(y(t), u(t))
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for any Borel measurable function q on G.
To describe convergence properties of occupational measures, we introduce the

following metric on P(G) (the space of probability measures defined on Borel subsets
of G):

ρ(γ′, γ′′) :=

∞∑
j=1

1

2j

∣∣∣∣∫
G
qj(y, u)γ

′(dy, du)−
∫
G
qj(y, u)γ

′′(dy, du)

∣∣∣∣
for γ′, γ′′ ∈ P(G), where qj(·), j = 1, 2, . . . , is a sequence of Lipschitz continuous
functions dense in the unit ball of the space of continuous functions C(G) from G
to IR. This metric is consistent with the weak∗ convergence topology on P(G), that
is, a sequence γk ∈ P(G) converges to γ ∈ P(G) in this metric if and only if

lim
k→∞

∫
G
q(y, u)γk(dy, du) =

∫
G
q(y, u)γ(dy, du)

for any q ∈ C(G).
The following lower semicontinuity property is valid (see Theorem 2.1 in [2]): if

a sequence γk ∈ P(G) converges to γ ∈ P(G) then for any open set B ⊂ G

lim inf
k→∞

γk(B) ≥ γ(B).

Let Γ(y0) denote the set of all discounted occupational measures generated by the
admissible controls, that is,

Γ(y0) :=
∪

u(·)∈U(y0)

{γu}.

Notice that Γ(y0) ̸= ∅ since U(y0) ̸= ∅. Due to (1.6), problem (1.1) can be rewritten
as

(1.7) min
γ∈Γ(y0)

∫
G
g(y, u)γ(dy, du).

Along with problem (1.7) consider the problem

(1.8) min
γ∈W (y0)

∫
G
g(y, u)γ(dy, du) =: g∗(y0),

where W (y0) is a subset of P(G) defined by

(1.9)
W (y0) :=

{
γ ∈ P(G)|

∫
G
[α(φ(f(y, u))− φ(y))

+ (1− α)(φ(y0)− φ(y))]γ(dy, du) = 0 ∀φ ∈ C(Y )
}
.

Note that (1.8) is an infinite-dimensional problem of linear programming (IDLP)
since both the objective functions and the constraints defining W (y0) are linear in
the “decision variable” γ. It can be shown that W (y0) is equal to the closure of the
convex hull of Γ(y0) (see [8], Corollary 2).
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Also consider the max-min problem

(1.10)

max
ψ∈LS

inf
y∈Y

{Hψ(y) + (1− α)(ψ(y0)− ψ(y))}

= max
ψ∈LS

inf
(y,u)∈G

{g(y, u) + α(ψ(f(y, u))− ψ(y))

+ (1− α)(ψ(y0)− ψ(y))} =: µ∗(y0),

where maximum is taken over the class of bounded lower semicontinuous functions
from Y to IR (denoted as LS). It has been established in [8], Theorem 4.1, that the
maximum in (1.10) is reached at ψ = V , the optimal values in problems (1.8) and
(1.10) coincide and are equal to the optimal value of (1.1) multiplied by (1 − α),
that is,

(1.11) µ∗(y0) = g∗(y0) = (1− α)V (y0).

Is it clear that a constant shift of a maximizer ψ in (1.10) is also a maximizer,
but, in fact, the set of maximizers in (1.10) can be much broader than the function
V or its constant shifts (see an example in Section 2 of [9]). In the next theorem
necessary and sufficient optimality conditions for problem (1.1) in terms of any such
maximizer are established.

Theorem 1.1 ([9, Theorem 2.1]). Let ψ be a solution of (1.10). Optimality of an
admissible process (y(·), u(·)) is equivalent to the relation

(1.12) (y(t), u(t)) = argmin(y,u)∈G{g(y, u) + αψ(f(y, u))− ψ(y)},

or, equivalently,

(1.13)
u(t) = argminu∈A(y){g(y(t), u) + αψ(f(y(t), u))},
y(t) = argminy∈Y {Hψ(y)− (1− α)ψ(y)}.

If a solution ψ of (1.10) is known, optimal control satisfies the first of the formulas
(1.13). However, finding exact solution of (1.10) is, in general, difficult. In [9] a
procedure of finding an approximate solution to this problem was developed. We
outline this procedure below.

Let {ϕi}∞i=1 be a sequence of functions in C(Y ) with the following properties:
(i) any finite collection of functions from this sequence is linearly independent on
any open set, (ii) for any ψ ∈ C(Y ) and any δ > 0 there exist N and scalars λNi ,

i = 1, . . . , N such that supy∈Y |ψ(y) −
∑N

i=1 λ
N
i ϕi(y)| ≤ δ. (An example of such

sequence is the sequence of monomials yi11 . . . y
im
m , i1, . . . , im = 0, 1, . . . , where yj

stands for the jth component of y.)
Define the finite dimensional space DN ⊂ C(Y ) by

DN := {ψ ∈ C(Y )|ψ(y) =
N∑
i=1

λiϕi(y), λi ∈ IR, i = 1, . . . , N}

and consider the N -approximating problem to (1.10)
(1.14)

sup
ψ∈DN

min
(y,u)∈G

{g(y, u) + α(ψ(f(y, u))− ψ(y)) + (1− α)(ψ(y0)− ψ(y))} =: µ∗N (y0).



WEIGHTED AVERAGES-BASED ALGORITHM 123

It is easy to show that

lim
N→∞

µ∗N (y0) = (1− α)V (y0).

Let Ry0 be the reachable set for system (1.1) in finite time. It can be shown (see
[9], Proposition 5) that the maximizing function ψ ∈ DN in (1.14) exists under a
simple controllability-type assumption

(1.15) int (clRy0) ̸= ∅.

Let (1.15) hold and ψN be a solution of the N -approximating problem. Motivated
by formula (1.13), define control uN by

(1.16) uN (y) = argminu∈A(y){g(y, u) + αψN (f(y, u))}

and let the corresponding trajectory yN be given by

(1.17) yN (t+ 1) = f(yN (t), uN (yN (t)))

with yN (0) = y0.
The theorem below asserts the convergence of uN (·) and yN (·) to the optimal

control and the optimal trajectory ū(·) and ȳ(·), respectively, as N → ∞.

Theorem 1.2 ([9, Theorem 4.1]). In addition to (1.15) assume that the functions
f and g are Lipschitz continuous and that the optimal solution γ∗ of problem (1.8)
is unique. Assume also that there exists an optimal admissible process (ȳ(·), ū(·))
such that:

(a) For any t ∈ T there exists an open ball Qt centered at ȳ(t) such that the
minimizer uN (y) in the right hand side of (1.16) is uniquely defined for
y ∈ Qt;

(b) uN (·) is Lipschitz continuous on Qt with Lipschitz constant independent of
N and t;

(c) yN (t) ∈ Qt ∀t ∈ T for sufficiently large N .

Then

(1.18)

lim
N→∞

uN (yN (t)) = ū(t) ∀ t ∈ T ,

lim
N→∞

yN (t) = ȳ(t) ∀ t ∈ T ,

lim
N→∞

V N (y0) = V (y0),

where V N (y0) =
∑∞

t=0 α
tg(yN (t), uN (yN (t))).

Consider the semi-infinite dimensional problem of linear programming

(1.19) min
γ∈WN (y0)

∫
G
g(y, u)γ(dy, du) =: g∗N (y0),

where

(1.20)
WN (y0) : =

{
γ ∈ P(G)|

∫
G

[
α(ϕi(f(y, u))− ϕi(y))

+ (1− α)(ϕi(y0)− ϕi(y))
]
γ(dy, du) = 0, i = 1, . . . , N

}
.
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Since WN (y0) ⊃W (y0) for all N , the set WN (y0) is not empty. It is clear that it is
compact in weak∗ topology, therefore the minimum in problem (1.19) is reached.

It can be shown that the optimal value of problem (1.19) is equal to the optimal
value of the N -approximating problem (1.14), that is, g∗N (y0) = µ∗N (y0) (see [9],
Lemma 4.1).

Proposition 1.3 ([9, Proposition 7]). Among the optimal solutions of problem
(1.19), there exists one (denoted below as γN ) that is presented as a convex com-
bination of at most N + 1 Dirac measures with concentration points in G. More
precisely,
(1.21)

γN =

KN∑
j=1

βNj δ(yNj ,uNj ), where βNj > 0, j = 1, . . . ,KN ≤ N + 1,

KN∑
j=1

βNj = 1

and where δ(yNj ,uNj ) are the Dirac measures concentrated at (yNj , u
N
j ) ∈ G. Moreover,

the concentration points (yNj , u
N
j ), j = 1, . . . ,KN satisfy the following relationships:

(1.22)
uNj = argminu∈A(yNj ){g(y

N
j , u) + αψN (f(yNj , u))},

yNj = argminy∈Y {HψN (y)− (1− α)ψN (y)},

where ψN is a solution of the N -approximating problem (1.14).

In the next proposition it is established that any point along the optimal process
is a limiting point of the set of concentration points {(yNjN , u

N
jN
)} as N → ∞.

Proposition 1.4 ([9, Proposition 8]). Let (ȳ(·), ū(·)) be an optimal process in (1.1)
such that the conditions (a),(b) and (c) of Theorem 1.2 are satisfied and let γN be
an optimal solution of (1.19) that is represented in the form (1.21). Then, for any
t, there exist points (uNjN , y

N
jN
) ∈ {(yNj , uNj ), j = 1, . . . ,KN} such that

(1.23) (ȳ(t), ū(t)) = lim
N→∞

(yNjN , u
N
jN
).

An optimal solution (1.21) of the semi-infinite LP problem (1.19), its optimal
value g∗N and an optimal solution ψN of the N -approximating problem (1.14) can
be found numerically. When ψN is found, a control uN (y) can constructed as a
minimizer in (1.16), and this uN (y) is near optimal in (1.1) for sufficiently large
N due to Theorem 1.2. This numerical approach is carried out in an example in
Section 5 of [9]. However, finding a minimizer in (1.16) may be difficult, since the
problem on the right-hand-side of (1.16) is generally not of the convex programming
class. A simple heuristic algorithm that circumvents this difficulty was suggested
in Section 6 of [9]. The latter algorithm is appealing for its simplicity, but it does
not take into account the weights {βNj }, j = 1, ...,KN , and convergence of this
algorithm cannot be, in general, asserted. In Section 3 of this paper we propose
a mathematically rigorous algorithm that accounts for the aforementioned weights
and converges to the optimal process under appropriate assumptions. To justify the
algorithm, we establish a few theoretical results that have independent significance
in Section 2. A numerical example is illustrated in Section 5.
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2. Asymptotic properties of measures

Throughout the rest of the paper we assume the following.
(A1) The optimal solution γ∗ of the IDLP problem (1.8) is unique.
(A2) For any optimal trajectory in (1.1), either all points are distinct, or it is

periodic, in which case no point is visited more than once within one period.

Proposition 2.1. Under Assumptions (A1)-(A2) the optimal process in (1.1) is
unique.

Proof. Let (y(·), u(·)) be an admissible process in (1.1) that generates occupational
measure γu. From the definition of occupational measure (1.5), it follows that when
all points of the trajectory y(·) are distinct, we have for all t

(2.1) γu({(y(t), u(t))}) = (1− α)αt,

and, for a periodic trajectory with period T , we have

(2.2) γu({(y(t), u(t))}) = (1− α)

∞∑
k=0

ατ+kT =
(1− α)ατ

1− αT
,

where τ ∈ {0, . . . , T − 1} is the first time when the trajectory enters the state y(t).
Assume that there exist two different optimal processes in (1.1): (y(·), u(·)) and

(ȳ(·), ū(·)). It is clear that both processes must generate γ∗, and the sets of points
{(y(t), u(t))}∞t=0 and {(ȳ(t), ū(t))}∞t=0 coincide (otherwise, these processes can’t gen-
erate the same occupational measure). Hence, if one of the optimal trajectories is
periodic with period T , the other also has to be periodic with the same period.
Since the processes are different, there exist τ1 and τ2, τ1 ̸= τ2, such that

(2.3) (y(τ1), u(τ1)) = (ȳ(τ2), ū(τ2)).

If the points along both the trajectories are distinct, the latter equality implies via
(2.1) that

(1− α)ατ1 = (1− α)ατ2 ,

which is not possible. If both trajectories are periodic with the same period T , then
equality (2.3) is not possible either due to (2.2). □

Denote the unique optimal process in (1.1) by (ȳ(·), ū(·)).
Let γN be an optimal solution of (1.19) that is represented in the form (1.21).

Denote

(2.4) N := {(yNj, uNj), j = 1, . . . , KN},

that is, N is the set of points from representation (1.21). Also denote

Br(ȳ, ū) := {(y, u)| |y − ȳ|+ |u− ū| < r}.

Proposition 1.4 asserts that each point along the optimal process is a limiting point
of a sequence from N as N → ∞. Propositions 2.2 and 2.3 below are related to a
converse statement; they imply that the total γN -measure of points in N outside any
neighborhood of the optimal process tends to zero as N → ∞.
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Proposition 2.2. Assume that all points of the optimal trajectory ȳ(·) are distinct.
Let δ > 0 be arbitrary and S ∈ T be such that

(2.5)

∞∑
t=S+1

γ∗{(ȳ(t), ū(t))} = αS+1 < δ/6.

Then for any r > 0 there exists N0 such that for all N ≥ N0

(2.6) γN (N\ ∪S
t=0 Br(ȳ(t), ū(t))) < δ.

Proof. Assume that the proposition is not true. Then there exist r0 > 0 and a
sequence Ni → ∞ such that

(2.7) γNi(Ni\ ∪S
t=0 Br0(ȳ(t), ū(t))) ≥ δ.

Taking into account that

(2.8) γNi(Ni\ ∪S
t=0 Br0(ȳ(t), ū(t))) = 1− γNi(∪S

t=0Br0(ȳ(t), ū(t))),

the convergence γNi → γ∗ (due to (A1)) and semicontinuity property of occupa-
tional measures
(2.9)

γNi(∪St=0Br0(ȳ(t), ū(t))) > γ∗(∪St=0Br0(ȳ(t), ū(t)))− δ/2 for sufficiently large Ni,

we obtain from (2.7)-(2.9) that

(2.10)
γ∗(∪St=0Br0(ȳ(t), ū(t))) < γNi(∪St=0Br0(ȳ(t), ū(t))) + δ/2

= (1− γNi(Ni\ ∪S
t=0 Br0(ȳ(t), ū(t)))) + δ/2 ≤ (1− δ) + δ/2 = 1− δ/2.

Therefore, taking into account (2.5), we obtain

1 =
∞∑
t=0

γ∗({(ȳ(t), ū(t))}) =
S∑
t=0

γ∗({(ȳ(t), ū(t))}) +
∞∑

t=S+1

γ∗({(ȳ(t), ū(t))})

≤ γ∗(∪St=0Br0(ȳ(t), ū(t))) +
∞∑

t=S+1

γ∗({(ȳ(t), ū(t))}) < (1− δ/2) + δ/6 < 1,

which is a contradiction. □

Proposition 2.3. Assume that the optimal trajectory ȳ(·) is periodic with period
T . Then for any δ > 0 and r > 0 there exists N0 such that for all N ≥ N0

γN (N\ ∪T−1
t=0 Br(ȳ(t), ū(t))) < δ.

Proof. Assume that the proposition is not true. Then there exist r0 > 0 and a
sequence Ni → ∞ such that (2.7)-(2.10) hold with S replaced with T − 1. Further-
more,

1 =

T−1∑
t=0

γ∗({(ȳ(t), ū(t))}) ≤ γ∗(∪T−1
t=0 Br0(ȳ(t), ū(t))) < 1− δ/2,

where the last inequality is due to (2.10). This contradiction completes the proof
of the proposition. □
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Proposition 2.4. For any δ > 0 and t ∈ T there exists ρ = ρ(δ, t) > 0 with the
property: for any r ∈ (0, ρ] there exists N0 such that for all N ≥ N0

(2.11) |γN (Br(ȳ(t), ū(t)))− γ∗({(ȳ(t), ū(t))})| ≤ δ.

This proposition can be interpreted as follows: each point along the optimal
process is surrounded by a cluster of points from N. As N → ∞, the radius of each
cluster shrinks to zero and its total γN -measure approaches γ∗({(ȳ(t), ū(t))}) (given
by (2.1) or (2.2)).

Proof. Suppose now that the proposition is violated for some δ > 0 at a point τ ∈ T .
Then for any ρ > 0 there exists r ∈ (0, ρ] and a sequence Ni → ∞ such that

(2.12) |γNi(Br(ȳ(τ), ū(τ)))− γ∗({(ȳ(τ), ū(τ))})| > δ.

Assume first that all the points of the optimal trajectory are distinct. Let S ∈ T
be such that (2.5) holds. By increasing S, if necessary, we can assume without loss
of generality that S ≥ τ . Take ρ > 0 such that

(2.13) Bρ(ȳ(t
′), ū(t′)) ∩Bρ(ȳ(t′′), ū(t′′)) = ∅ for 0 ≤ t′ < t′′ ≤ S.

Then, by construction, for any r ∈ (0, ρ],

(2.14)
γ∗(Br(ȳ(τ), ū(τ))) ≤ γ∗

(
{(ȳ(τ), ū(τ))} ∪ (∪∞

t=S+1{(ȳ(t), ū(t))})
)

≤ γ∗({(ȳ(τ), ū(τ))}) + δ/6.

From (2.12) and (2.14) we obtain

(2.15) |γNi(Br(ȳ(τ), ū(τ)))− γ∗(Br(ȳ(τ), ū(τ)))| > 5δ/6.

From the semicontinuity property of probability measures

(2.16) lim inf
N→∞

γN (Br(ȳ(t), ū(t))) ≥ γ∗(Br(ȳ(t), ū(t))) for all t

we conclude that (2.15) can only hold if

(2.17) γNi(Br(ȳ(τ), ū(τ)))− γ∗(Br(ȳ(τ), ū(τ))) > 5δ/6.

It follows from (2.5) that

(2.18)

S∑
t=0

γ∗(Br(ȳ(t), ū(t))) ≥
S∑
t=0

γ∗({(ȳ(t), ū(t))})

=

∞∑
t=0

γ∗({(ȳ(t), ū(t))})−
∞∑

t=S+1

γ∗({(ȳ(t), ū(t))})

> 1− δ/6.

Due to (2.16) we can assume that for all Ni and 0 ≤ t ≤ S we have

(2.19) γNi(Br(ȳ(t), ū(t))) ≥ γ∗(Br(ȳ(t), ū(t)))− δ/(6S).
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Taking into account (2.17)-(2.19) and that 0 ≤ τ ≤ S, we obtain

(2.20)

S∑
t=0

γNi(Br(ȳ(t), ū(t))) = γNi(Br(ȳ(τ), ū(τ)))

+

S∑
t=0, t ̸=τ

γNi(Br(ȳ(t), ū(t)))

> (γ∗(Br(ȳ(τ), ū(τ))) + 5δ/6)

+

S∑
t=0, t ̸=τ

(
γ∗(Br(ȳ(t), ū(t)))−

δ

6S

)

=
S∑
t=0

γ∗(Br(ȳ(t), ū(t))) + 5δ/6− δ/6

> (1− δ/6) + 5δ/6− δ/6

= 1 + δ/2,

which contradicts the inequality
∑S

t=0 γ
Ni(Br(ȳ(t), ū(t))) ≤ 1 and, thus, proves the

validity of (2.11).
If the optimal trajectory is periodic with period T, we take S equal to T − 1 and

the proof follows the steps above with small adjustments, which we omit. □

3. Numerical algorithm based on weighted averages

In this section we describe the construction of an approximating trajectory
(yN (t), uN (t)), t ∈ T starting with the case when all point of the optimal trajectory
are distinct.

For the initial point of the trajectory we set yN (0) = y0.
Take δ : 0 < δ < 1− α and let S be such that (2.5) holds. Take r > 0 such that

for all y ∈ Y we have

(3.1) |y − y0| < r implies that |y − ȳ(t)| ≥ r, for all t ∈ {1, . . . , S}.
Then

Br(y0, ū(0)) ∩Br(ȳ(t), ū(t)) = ∅ for all t ∈ {1, . . . , S}.
By reducing r, if necessary, we can assume that r ≤ ρ(0, δ), where ρ(·, ·) is from
Proposition 2.4. Due to the latter proposition, for sufficiently large N , relation
(2.11) holds with t = 0. Since γ∗({(y0, ū(0))}) = 1 − α, we conclude from (2.11)
that

(3.2) 1− α− δ ≤
∑
j

βNj ≤ 1− α+ δ,

where βNj are the weights from representation (1.21) and the summation is taken

with respect to the indices j such that (uNj , y
N
j ) ∈ Br(y0, ū(0)). We can also assume

that N is large enough to ensure that (2.6) holds.
Select the point (η1, ν1) from N whose first component is closest to y0, that is,

η1 = argmin{|y − y0|, (y, u) ∈N}.
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If there is a tie, take a point arbitratily. (Here and below we will not indicate
explicitly dependence of η1, etc., on N .)

Assume without loss of generality that (η1, ν1) is the first point in N, that is,
(η1, ν1) = (yN1 , u

N
1 ). Notice that we must have |η1 − y0| < r because the contrary

would mean that N ∩ Br(y0, ū(0)) = ∅, contradicting (3.2). Continuing to select
points from N closest to y0, we obtain a sequence

η2 = argmin{|y − y0|, (y, u) ∈N \{(η1, ν1)}},
. . .

ηk1 = argmin{|y − y0|, (y, u) ∈N \ ∪k1−1
j=1 {(ηj, νj)}}

and we can assume without loss of generality that (ηj , νj) = (yNj , u
N
j ), j = 1, . . . , k1.

Let us show that there exists k1 : 1 ≤ k1 ≤ KN such that

(3.3) 1− α− δ ≤
k1∑
j=1

βNj ≤ 1− α+ 2δ,

that is, the total γN -measure of the points selected in this process must fall in the
interval [1 − α − δ, 1 − α + 2δ] at some stage. Indeed, assume that this is not the
case. Then there exists k : 1 ≤ k ≤ KN for which

(3.4)
k−1∑
j=1

βNj < 1− α− δ and
k∑
j=1

βNj > 1− α+ 2δ.

Denote

ΩN := {(ηj , νj)}kj=1.

Consider the equality

ΩN =
(
ΩN ∩Br(y0, ū(0))

)
∪
(
ΩN ∩ (∪St=1Br(ȳ(t), ū(t))

)
∪
(
ΩN \ (∪St=0Br(ȳ(t), ū(t))

)
,

which follows from the fact that the right side is the union of three disjoint sets.
From the inclusion ΩN ⊂N the latter implies that

(3.5) ΩN ⊂
(
N
∩Br(y0, ū(0))

)
∪
(
ΩN∩(∪S

t=1Br(ȳ(t), ū(t))
)
∪
(
N
\(∪S

t=0Br(ȳ(t), ū(t))
)
.

Let us show that both inequalities |ηk − y0| < r and |ηk − y0| ≥ r lead to a contra-
diction, thus confirming (3.3).

If |ηk − y0| < r then, by construction, |ηj − y0| < r for all j ≤ k, therefore, due
to (3.1),

(ηj , νj) /∈ ∪St=1Br(ȳ(t), ū(t)),

or, equivalently,

(3.6) ΩN ∩ (∪St=1Br(ȳ(t), ū(t))) = ∅.

From (3.5) we obtain

k∑
j=1

βNj ≡γN (ΩN ) ≤ γN (N∩Br(y0, ū(0))) + γN
(
ΩN ∩ (∪S

t=1Br(ȳ(t), ū(t)))
)

+ γN
(
N
\ (∪S

t=0Br(ȳ(t), ū(t))
)
.
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Taking into account the second inequality in (3.2), along with (3.6) and (2.6) we
get

k∑
j=1

βNj < (1− α+ δ) + 0 + δ = 1− α+ 2δ,

which contradicts the second inequality in (3.4).
On the other hand, if |ηk − y0| ≥ r, then, by construction, there there are no

points in N ∩ Br(y0, ū(0)) other than those in the set {(ηj , νj)}k−1
j=1 , therefore, due to

the first inequality in (3.4)

(3.7) γN (Br(y0, ū(0))) ≡ γN (N∩Br(y0, ū(0))) ≤
k−1∑
j=1

βNj < 1− α− δ,

which contradicts the first inequality in (3.2). Existence of k1 satisfying (3.3) is
proved.

Let k1 be the minimum integer such that (3.3) holds. This ensures that |ηj−y0| <
r for all j : 1 ≤ j ≤ k1 (otherwise, we arrive at a contradiction to the first inequality
in (3.2)) and, consequently,

(3.8) (ηj , νj) /∈ ∪St=1Br(ȳ(t), ū(t))), j = 1, . . . , k1.

Set

(3.9) uN (0) :=

∑k1
j=1 β

N
j νj∑k1

j=1 β
N
j

,

that is, uN (0) is the weighted average of {νj}k1j=1. Note that if the mapping U(y)

does not depend on y (i.e, U(y) ≡ U0) and is convex, then uN (0) ∈ U0.

Let us estimate the distance |uN (0) − ū(0)|. In the set {(ηj , νj)}k1j=1 there must

exist at least one point (ηj , νj) that lies in Br(y0, ū(0)) (otherwise (3.2) cannot hold),
hence, for this point |νj − ū(0)| < r. Assume that for the first k∗ points from the

set {(ηj , νj)}k1j=1 we have |νj − ū(0)| < r, that is,

(3.10) |νj − ū(0)| < r, j = 1, . . . , k∗

and, for the remaining points,

(3.11) r ≤ |νj − ū(0)| ≤ dU0 , j = k∗ + 1, . . . , k1,

where dU0 := maxu′,u′′∈U0 |u′ − u′′| is the diameter of U0. From (3.9) we have

(3.12)

uN (0)− ū(0) =

∑k1
j=1 β

N
j (νj − ū(0))∑k1
j=1 β

N
j

=

∑k∗

j=1 β
N
j (νj − ū(0))∑k1
j=1 β

N
j

+

∑k1
j=k∗+1 β

N
j (νj − ū(0))∑k1
j=1 β

N
j

.

For the first sum, due to (3.10), we have the estimate

(3.13)

∑k∗

j=1 β
N
j |νj − ū(0)|∑k1
j=1 β

N
j

< r.
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Due to (3.8) and (3.11) we have

(ηj , νj) ∈N \
(
∪S
t=0Br(ȳ(t), ū(t))

)
, j = k∗ + 1, . . . , k1,

hence,
∑k1

j=k∗+1 β
N
j < δ due to (2.6). Therefore, for the second sum in (3.12) we

have the estimate ∑k1
j=k∗+1 β

N
j |νj − ū(0)|∑k1

j=1 β
N
j

<
dU0∑k1
j=1 β

N
j

δ.

Thus, from (3.12), (3.13), and (3.3), we get

(3.14) |uN (0)− ū(0)| < r +
dU0∑k1
j=1 β

N
j

δ ≤ r +
dU0

1− α− δ
δ.

(Notice that this estimate deteriorates when α+ δ close to 1.) Set

(3.15) yN (1) := f(yN (0), uN (0)).

If f is Lipschitz with constant l, we have

(3.16) |yN (1)− ȳ(1)| ≤ l(|yN (0)− ȳ(0)|+ |uN (0)− ū(0)|) ≤ l(r +
dU0

1− α− δ
δ).

Taking into account that r and δ can be taken arbitrarily small, we completed the
proof of the following proposition.

Proposition 3.1. Assume that f is Lipschitz. For any ε > 0 there exists N0

such that for all N ≥ N0 for the approximation uN (0) of the optimal control given
by formula (3.9) and the corresponding approximation of the optimal trajectory
yN (1) := f(y0, uN (0)) we have

(3.17)
|uN (0)− ū(0)| ≤ ε,

|yN (1)− ȳ(1)| ≤ ε.

Moreover, if U(y) ≡ U0 and U0 is convex, then uN (0) ∈ U0.

For the construction of uN (1) (an approximation of the optimal control at t = 1)
we use an approach similar to the one used in the construction of uN (0). However,
there is an additional factor to take into account: since yN (0) = y0, the point y0
is in the center, with respect to the y variable, of the set N ∩ Br(y0, ū(0)). At the
same time, since yN (1) ̸= ȳ(1), the point yN (1) is not the center of N∩Br(ȳ(1), ū(1))
with respect to the y variable (the error is estimated by (3.16)). Next we outline
the procedure of construction of uN (1) and yN (2).

Take δ : 0 < δ < (1− α)α and let S be such that (2.5) holds. Take ε and r > 0
such that for all y ∈ Y we have

|y − ȳ(1)| < r + ε implies that |y − ȳ(t)| ≥ r, for all t ∈ {0, 2, 3 . . . , S}.
By reducing r, if necessary, we can assume that r ≤ ρ(1, δ), where ρ(·, ·) is from
Proposition 2.4. Then, for sufficiently large N , relation (2.11) holds for t = 1 and
(3.17) is true. Since γ∗({(ȳ(1), ū(1))}) = (1− α)α, we conclude from (2.11) that

(3.18) (1− α)α− δ ≤
∑
j

βNj ≤ (1− α)α+ δ,
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where βNj are the weights from representation (1.21) and the summation is taken

with respect to the indices j such that (uNj , y
N
j ) ∈ Br(ȳ(1), ū(1)).

Select the point (ηk1+1, νk1+1) from the set N (minus the points {(ηj , νj)}k1j=1),

whose y-component is closest to yN (1), that is, let

ηk1+1 = argmin{|y − yN (1)|, (y, u) ∈N \ ∪k1
j=1 {(ηj, νj)},

where k1 satisfies (3.3). Notice that we must have |ηk1+1 − yN (1)| < r + ε because
the contrary would mean that |ηk1+1 − ȳ(1)| ≥ r, that is, N ∩ Br(ȳ(1), ū(1)) = ∅,
which contradicts (3.18). Continuing to select points in N closest to yN (1), we obtain
a sequence

ηk1+j = argmin{|y − yN (1)|, (y, u) ∈N \ ∪k1+j−1
j=k1

(ηj, νj)}}, j = 2, . . . , k2.

Assume without loss of generality that (ηk1+j , νk1+j) = (yNk1+j , u
N
k1+j

), j = 1, . . . , k2−
k1. It can be shown similarly to the proof of (3.3) that the number k2 : k1 + 1 ≤
k2 ≤ KN can be chosen as the minimum integer with the property

(1− α)α− δ ≤
k2∑

j=k1+1

βNj ≤ (1− α)α+ 2δ.

Set

uN (1) :=

∑k2
j=k1+1 β

N
j νj∑k2

j=k1+1 β
N
j

and yN (2) := f(yN (1), uN (1)).

Similarly to the estimates (3.14) and (3.16), we obtain

|uN (1)− ū(1)| < r +
dU0

(1− α)α− δ
δ

and

|yN (2)− ȳ(2)| ≤ l(|yN (1)− ȳ(1)|+ |uN (1)− ū(1)|) ≤ l(ε+ r +
dU0

(1− α)α− δ
δ), .

where l is a Lipschitz constant of f . By reducing r and δ and increasing N , if
necessary, we obtain the estimates

|uN (1)− ū(1)| ≤ ε,

|yN (2)− ȳ(2)| ≤ 2lε.

Continuing in a similar manner, we obtain a sequence (yN (t), uN (t)), t ≥ 1 such
that

|uN (t)− ū(t)| ≤ ε,

|yN (t)− ȳ(t)| ≤ (t+ 1)lε,

for which the error remains bounded on any bounded time interval. We summarize
the described procedure in a form convenient for numerical implementation below.

Summary of the algorithm of constructing an approximating optimal
process in the case if all points of the optimal trajectory are distinct.

1. Set yN (0) = y0. Select the interval 0 ≤ t ≤ S on which the optimal process
will be approximated and take δ ∈ (0, (1− α)αS).
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2. Keep selecing points {(ηj , νj)} ∈N with the corresponding weights βNj whose
first component ηj is closest to y0. Let k1 be the minimum integer such that

1− α− δ ≤
k1∑
j=1

βNj ≤ 1− α+ 2δ.

(It is shown above that for sufficiently large N such k1 is guaranteed to exists.) Set

uN (0) :=

∑k1
j=1 β

N
j νj∑k1

j=1 β
N
j

,

that is, uN (0) is the weighted average of the second components of the selected
points, and set

yN (1) := f(y0, uN (0)).

3. Continue a similar process for all natural p : 1 ≤ p ≤ S. That is, find points

{(ηj , νj)}
kp+1

j=kp+1 from N \
(
∪kp
j=1{(νj, ηj)}

)
with the corresponding weights βNj , j =

kp+1, . . . , kp+1 whose first component is closest to yN (p). Here kp+1 is the minimum
integer for which

(3.19) (1− α)αp − δ ≤
kp+1∑

j=kp+1

βNj ≤ (1− α)αp + 2δ.

Set

uN (p) :=

∑kp+1

j=kp+1 β
N
j νj∑kp+1

j=kp+1 β
N
j

,

and
yN (p+ 1) := f(yN (p), uN (p)).

If f is Lipschitz, then for any ε > 0 there exists N0 such that for N ≥ N0 the
estimate

(3.20) |uN (t)− ū(t)|+ |yN (t)− ȳ(t)| ≤ ε

holds for all 0 ≤ t ≤ S.
2

Assume now that the optimal trajectory is periodic with period T, in which case
formula (2.2) rather than (2.1) is valid. Therefore, the algorithm above can be
adjusted by setting S = T − 1 and replacing condition (3.19) with

(1− α)αp

1− αT
− δ ≤

kp+1∑
j=kp+1

βNj ≤ (1− α)αp

1− αT
+ δ,

in which case the estimate (3.20) still holds.
Of course, it is not known a priori if the optimal trajectory is periodic. However,

it is possible to determine this, as well as to find the period of a periodic trajectory,
by using the fact that if the optimal trajectory is periodic with period T , for any
sufficiently small r > 0 the γN -measure of the set N ∩ Br(y0, ū(0)) can be made
arbitrarily close to 1−α

1−αT by increasing N .
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4. Numerical Example

Consider the optimal control problem (1.1) with

y = (y1, y2), u = (u1, u2), g(y, u) = −y1(t)u2(t) + y2(t)u1(t)

and with f(y, u) = (f1(y, u), f2(y, u)), where

(4.1) fi(y, u) =
1

2
yi −

1

2
ui, i = 1, 2.

The sets U and Y are given by U(y) = U = [−1, 1] × [−1, 1] and Y := [−1, 1] ×
[−1, 1]. It is easy to see that for all u ∈ U and y ∈ Y we have f(y, u) ∈ Y , therefore,
A(y) = U (see (1.2)).

The semi-infinite LP problem (1.19) was formulated for this problem with the

monomials ϕi1,i2(y) = yi11 y
i2
2 , i1, i2 = 0, 1, ..., 7, as the functions ϕi(·) used in defining

WN (y0) in (1.20). This problem and the corresponding N -approximating problem
(1.14) were solved numerically using the algorithm similar to the one described in
[10] with the number of constraints N = (7 + 1)2 = 64. The discount factor α was
taken to be equal to 0.7, and the initial conditions were taken to be

y1(0) = −0.5, y2(0) = 0.

In particular, the optimal value of the semi-infinite LP problem was evaluated to
be approximately equal to g∗N (y0) = −0.89.

The construction of the optimal trajectory is illustrated in Figure 1, in which the
points from the set N (see formula (2.4)) and the calculated trajectory are shown.

Figure 1. The state trajectory between t = 0 and t = 10.
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At t = 0, one point from the set N happens to coincide with (yN1 (0), yN2 (0)) =
(−0.5, 0). The weight of this point is 0.296, which is very close to the value of
1 − α = 0.3 (see formula (3.2)). The values of the u-components at this point are
(uN1 (0), uN2 (0)) = (1,−1) and (yN1 (1), yN2 (1)) are evaluated as

yN1 (1) =
1

2
(−0.5− 1) = −0.75, yN2 (1) =

1

2
(0 + 1) = 0.5.

This point, again, happens to coincide with a point from N with the weight 0.204,
which is close to (1 − α)α = 0.21 (see formula (3.18)). The u-components at this
point are (uN1 (1), uN2 (1)) = (−1,−1), therefore,

yN1 (2) =
1

2
(−0.75 + 1) = 0.125, yN2 (2) =

1

2
(0.5 + 1) = 0.75.

In the vicinity of the latter point there are four points in N with the total weight
0.150, while (1 − α)α2 = 0.147. (The values of (1 − α)αt are given in Figure 1
in parentheses.) The weighted average of the u-components of these four points is
(uN1 (2), uN2 (2)) = (−1,−0.984) and we can evaluate (yN1 (3), yN2 (3)) = (0.56, 0.87).

Continuing in a similar manner we obtain a sequence of point on the trajec-
tory until t = 10, when the total weight of the remaining points in N not used in
the preceding steps becomes very small, making further calculations not possible.
Parameter N would have to be increased to calculate the trajectory for t > 10.
However, it can be conjectured that the optimal trajectory approaches a square-like
limiting cycle, similarly to the example in Section 5 of [9], where the same dynam-
ical system with different initial conditions was treated using a different numerical
approach.

It can be noticed that for t ≤ 8 the relative error of the weight of the clusters
|w − (1 − α)αt|/(1 − α)αt is small, but at t = 9 it becomes significant: (0.0121 −
0.0088)/0.0121 = 0.27. Therefore, it is not surprising that the calculated position
of the trajectory at t = 10 is noticeably off its expected location. The value of the
cost functional until time t = 9 is vN9 :=

∑9
t=0 α

tg(yN (t), uN (t)) = −2.87. Since

g∗N (y0) = µ∗N (y0) ≤ µ∗(y0) = (1− α)V (y0) ≤ (1− α)V N (y0),

we have

V N (y0)− V (y0) ≤ V N (y0)− gN (y0)(1− α)−1,

hence,

vN9 − V (y0) ≤ vN9 − gN (y0)(1− α)−1.

Taking into account that gN (y0) = −0.89, we have

vN9 − V (y0) ≤ −2.87 + 0.89/0.3 = 0.10.

Since g(y(t), u(t)) ≤ 2 for any admissible trajectory, we have

|V N (y0)− vN9 | ≤ 2
∞∑
t=10

αt = 0.19,

therefore,

vN9 − V (y0) = (vN9 − V N (y0)) + (V N (y0)− V (y0)) ≥ −0.19.
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Combining this with the estimate above, we obtain

−0.19 ≤ vN9 − V (y0) ≤ 0.10,

which shows that the value of vN9 is close to the optimal value of the cost function.
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