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f : Rn → R := R ∪ {+∞} is subdifferentially continuous and prox-regular at
(x̄, 0) ∈ dom(∂f), they showed that f gives a tilt-stable minimum at x̄ if and only
if the second order subdifferential ∂2f(x̄, 0) is positive definite. In 2000, when f
undergoes small linear perturbations, under the name of “uniform second-order
growth condition”, Bonnans and Shapiro [3] introduced the following notion: x̄ is
said to be a stable second order minimizer of f if there exist r′, δ′, L ∈ (0, +∞) and
a mapping Θ : BX∗(0, δ′) → BX(x̄, r′) such that Θ(0) = x̄ and

(1.4) L∥x−Θ(u∗)∥2 ≤ fu∗(x)− fu∗(Θ(u∗)) ∀(x, u∗) ∈ BX(x̄, r′)×BX∗(0, δ′).

In 2008, Aragón Artacho and Geoffroy [1] established the following characterization
for the stable second order minimizer:

Theorem 1.1. Let X be a Hilbert space and f : X → R∪ {+∞} be a proper lower
semicontinuous convex function. Let (x̄, 0) ∈ gph(∂f). Then x̄ is a stable second
order minimizer of f if and only if ∂f is strongly metrically regular at (x̄, 0).

Under the finite dimension assumption, Drusvyatskiy and Lewis [8] extended
Theorem 1.1 in replacing the convexity assumption by the weaker assumption that
f is prox-regular and subdifferentially continuous at (x̄, 0); moreover they added an-
other characterization: Let f : Rn → R be a proper lower semicontinuous function.
Then f gives a tilt-stable minimum at x̄ ∈ dom(f) if and only if x̄ is a stable second
order minimizer of f . Recently, the study on the tilt-stable minima and stable sec-
ond order minimizers has been pushed further through the works of Mordukhovich
and his collaborators (cf. [9, 13, 15, 16] and the references therein). In particular
the above mentioned results were extended to the infinite dimensional setting (cf.
[9, 13]).

Given two positive numbers p and q, with ∥x∗−u∗∥p and ∥x−Θ(u∗)∥q replacing
∥x∗ − u∗∥ and ∥x − Θ(u∗)∥2 in (1.3) and (1.4) respectively, Zheng and Ng [22, 23]
introduced and studied notions of tilt-stable p-order minima and stable q-order min-
imizers. Well-posedness is a fundamental notion in optimization and well studied
(cf. [7, 10, 11, 20, 21] and the references therein). Let f be a proper lower semicon-
tinuous function on a Banach space X and recall that f is well-posed at x̄ ∈ dom(f)
(in the Tykhonov sense) if every minimizing sequence {xn} of f converges to x̄. Re-
call that φ : R+ → R+ is said to be an admissible function if it is a nondecreasing
function such that φ(0) = 0 and [φ(t) → 0 ⇒ t → 0]. It is known (cf.[7, P6, Theo-
rem 12]) that f is well-posed at x̄ if and only if there exists an admissible function
φ : R+ → R+ such that

(1.5) φ(∥x− x̄∥) ≤ f(x)− f(x̄) ∀x ∈ X.

Some earlier results mentioned above were further extended to the so-called stable
well-posedness in [24]. Given two admissible functions φ,ψ : R+ → R+ and a proper
lower semicontinuous function f on a Banach space X, we say that
(i) f has stable local well-posedness at x̄ ∈ dom(f) with respect to φ (in brief, φ-
SLWP) if there exist r, δ, τ, κ ∈ (0, +∞) and a mapping Θ : BX∗(0, δ) → BX(x̄, r)
such that Θ(0) = x̄ and

(1.6) φ(κ∥x−Θ(u∗)∥) ≤ τ(fu∗(x)−fu∗(Θ(u∗))) ∀(x, u∗) ∈ BX(x̄, r)×BX∗(0, δ);



SECOND ORDER SUFFICIENT CONDITIONS FOR STABLE WELL-POSEDNESS 139

(ii) f gives a ψ-tilt-stable local minimum at x̄ (in brief, ψ-TSLM) if there exist
r, δ, τ, κ ∈ (0, +∞) and M : BX∗(0, δ) → BX(x̄, r) with M(0) = x̄ such that (1.2)
holds and

(1.7) κ∥M(u∗1)−M(u∗2)∥ ≤ ψ(τ∥u∗1 − u∗2∥) ∀u∗1, u∗2 ∈ BX∗(0, δ).

Clearly, in the case when φ(t) = t2 and ψ(t) = t (resp. φ(t) = tq and ψ(t) = tp),
φ-SLWP and ψ-TSLM reduce to the stable second order minimizer and tilt-stable
minimum (resp. stable q-order minimizer and tilt-stable p-order minimum). Under
the assumption that the admissible function φ : R+ → R+ is a differentiable and
strictly convex admissible function with φ′(0) = 0, Zheng and Zhu [24] proved
that a proper lower semicontinuous function f on a Banach space has φ-SLWP at
x̄ ∈ dom(f) if and only if f has (φ′)−1-TSLM at x̄. Moreover, related to the result
by Poliquin and Rockafellar, the following result was established in [24].

Theorem 1.2. Let ψ be a convex admissible function and f : Rn → R be a proper
lower semicontinuous convex function. Let x̄ ∈ dom(f) and 0 ∈ ∂f(x̄). Suppose
that there exist κ, r ∈ (0,+∞) such that

κ∥h∥2ψ′
+(d(x, (∂f)

−1(v − h))) ≤ ⟨z, h⟩

for all (x, v, h) ∈ (gph(∂f) × Rn) ∩ BRn(x̄, r) × BRn(0, r) × BRn(0, r))) and z ∈
∂2f(x, v)(h), where ∂2f(x, v) denotes the second order subdifferential (see Section

2 for its definition). Then, f has φ-SLWP at x̄ with φ(t) :=
∫ t
0 ψ(t)dt.

In this paper, given a convex admissible function φ, we first prove that ∂f is
locally monotone at (x̄, 0) (i.e. gph(∂f) ∩ V is monotone for some neighborhood
V of (x̄, 0)) whenever f is subdifferentially continuous and prox-regular at (x̄, 0)
and f has the φ-SLWP at x̄. As an extension of the local monotonicity, we adopt
the notion of ξ-D-hypomonotonicity of ∂f . Given a proper lower semicontinuous
function f , we prove that if ∂f is metrically φ′

+-regular and ξ-D-hypomonotone at
(x̄, 0) then f has the φ-SLWP; in particular, we extend and improve (assuming the
metric regularity rather than the strong one) the sufficiency part of Theorem 1.1.
Using the second order subdifferential ∂2f of f , we provide a sufficient condition for
the first order subdifferential ∂f to be metrically ψ-regular at some (x̄, 0) in gph(∂f)
in the case when f is subdifferentially continuous and ψ-prox-regular at (x̄, 0). As
an application, we establish second order sufficient conditions for φ-SLWP in terms
of a kind of positive definiteness of the Mordukhovich second order subdifferential
∂2f . In particular, we extend Theorem 1.2 to the φ-prox-regularity case.

2. Preliminaries.

In this section, we give some known notions and results of variational analysis
(see [4, 12] for more details).
Let X and Y be Banach spaces. The topological dual of X is denoted by X∗. We
denote by BX the closed unit ball of X. For x̄ ∈ X and δ > 0, let BX(x̄, δ) denote
the open ball centered at x̄ with radius δ in X. For a proper lower semicontinuous
function f : X → R, we denote by dom(f) and epi(f) the domain and the epigraph
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of f respectively, that is,

dom(f) := {x ∈ X : f(x) < +∞} and epi(f) := {(x, α) ∈ X × R : f(x) ≤ α}.
For x ∈ dom(f) and h ∈ X, let f↑(x, h) denote the generalized directional derivative
introduced by Rockafellar [4]; that is,

f↑(x, h) := lim
ε↓0

lim sup

u
f→x,t↓0

inf
w∈h+εBX

f(u+ tw)− f(u)

t
∀h ∈ X,

where u
f→ x means that u → x and f(u) → f(x). Let ∂f(x) denote the Clarke-

Rockafellar subdifferential of f at x; that is,

∂f(x) := {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ f↑(x, h) ∀h ∈ X}.
In the case when X is an Asplund space, the Fréchet subdifferential and Mor-
dukhovich limiting subdifferential are more suitable than Clarke’s one (for the de-
tails see [12]). Indeed, under the Asplund space framework, some results (eg. Propo-
sition 3.4) in this paper hold still with the Mordukhovich limiting subdifferential
replacing the Clarke subdifferential.

When f is convex, the Clarke-Rockafellar subdifferential reduces to the one in
the sense of convex analysis; that is, for all x ∈ dom(f), one has

(2.1)

∂f(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ f(y)− f(x) ∀y ∈ X}

= {x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ lim
t→0+

f(x+ th)− f(x)

t
∀h ∈ X}.

For (x, x∗) ∈ gph(∂f), the Mordukhovich second-order subdifferential ∂2f(x, x∗) of
f at (x, x∗) is defined as follows:

∂2f(x, x∗)(h∗∗) = {z∗ ∈ X∗ : (z∗,−h∗∗) ∈ N(gph(∂f), (x, x∗))} ∀h∗∗ ∈ X∗∗

(see [12] for more details).
Given an admissible function ψ and a closed multifunction F between two Banach

spaces X and Y . Recall that F is said to be metrically ψ-regular at (x̄, ȳ) ∈ gph(F )
if there exist κ, τ, δ ∈ (0, +∞) such that

(2.2) ψ(κd(x, F−1(y))) ≤ τd(y, F (x)) ∀(x, y) ∈ B(x̄, δ)×B(ȳ, δ),

while F is said to be strongly metrically ψ-regular at (x̄, ȳ) if F is metrically ψ-
regular at (x̄, ȳ) and there exist r, δ ∈ (0, +∞) such that F−1(y) ∩ BX(x̄, r) is a
singleton for all y ∈ BY (ȳ, δ).

We will need the following lemma on the metric ψ-regularity for a subdifferential
mapping, which was recently established in [24].

Lemma 2.1. Let φ : R → R+ be a convex admissible function and f be a proper
lower semicontinuous function on a Banach space X. Let x̄ ∈ dom(f) be a local
minimizer of f . Suppose that ∂f is strongly metrically φ′

+-regular at (x̄, 0). Then
f has φ-SLWP at x̄.

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function and recall
that f is prox-regular at (x̄, x̄∗) ∈ gph(∂f) if there exist ρ, r ∈ (0, +∞) such that

(2.3) f(y) ≥ f(x) + ⟨x∗, y − x⟩ − ρ∥y − x∥2



SECOND ORDER SUFFICIENT CONDITIONS FOR STABLE WELL-POSEDNESS 141

for all x, y ∈ BX(x̄, r) with |f(x)− f(x̄)| < r and x∗ ∈ ∂f(x)∩BX∗(x̄∗, r). Clearly,
the convexity of f implies the prox-regularity. The prox-regularity is a useful no-
tion in variational analysis and has been well studied (cf. [2, 5, 6, 18]). Given a
nondecreasing function ψ : R+ → R+, with ψ(∥y − x∥)∥y − x∥ replacing ∥y − x∥2
in (2.3), one can adopt the following notion.

Definition 2.2. Let ψ : R+ → R+ be a nondecreasing function. We say that f is
ψ-prox-regular at (x̄, x̄∗) ∈ gph(∂f) if there exist ρ, r ∈ (0,+∞) such that

f(y) ≥ f(x) + ⟨x∗, y − x⟩ − ρψ(∥y − x∥)∥y − x∥ ∀y ∈ BX(x̄, r)

whenever x ∈ BX(x̄, r), x∗ ∈ ∂f(x) ∩BX∗(x̄∗, r) and f(x) < f(x̄) + r.

In the case when ψ(t) = t, the ψ-prox-regularity reduces to the usual prox-
regularity. Clearly, the convexity of f implies the ψ-prox-regularity.

Recall that f is subdifferentially continuous at (x̄, x̄∗) ∈ gph(∂f) if

lim
(x,x∗)

gph(∂f)−→ (x̄,x̄∗)

f(x) = f(x̄).

Most of the existing results on the stable second order minimizer and tilt-stable
minimum require the subdifferential continuity (cf. [8, 9, 13, 15, 16, 19] and the
references therein). It is easy to verify that if f is subdifferentially continuous at
(x̄, x̄∗) then f is ψ-prox-regular at (x̄, x̄∗) if and only if there exist ρ, r ∈ (0,+∞)
such that

f(y) ≥ f(x) + ⟨x∗, y − x⟩ − ρψ(∥y − x∥)∥y − x∥ ∀y ∈ BX(x̄, r)

whenever x ∈ BX(x̄, r) and x∗ ∈ ∂f(x) ∩BX∗(x̄∗, r).

3. Main result

Under the assumption that f is subdifferentially continuous and prox-regular at
(x̄, 0), we first provide a necessary condition for f to have the φ-SLWP at x̄.

Proposition 3.1. Let φ : R+ → R+ be a convex admissible function. Let f be
a proper lower semicontinuous extended-real function on a Hilbert space X such
that f is subdifferentially continuous and prox-regular at (x̄, 0). Suppose that f
has the φ-SLWP at x̄. Then ∂f is locally monotone at (x̄, 0), namely there exist
r0, δ0 ∈ (0, +∞) such that

⟨x∗2 − x∗1, x2 − x1⟩ ≥ 0 ∀(x1, x∗1), (x2, x∗2) ∈ gph(∂f) ∩ (BX(x̄, r0)×BX∗(0, δ0)).

Proof. Take r, δ, τ, κ ∈ (0, +∞) and a mapping Θ : BX∗(0, δ) → BX(x̄, r) such that
Θ(0) = x̄ and (1.6) holds. Using (1.6) twice, we have that

2φ(κ∥Θ(u∗2)−Θ(u∗1)∥) ≤ τ⟨u∗2 − u∗1,Θ(u∗2)−Θ(u∗1)⟩
≤ τ∥u∗2 − u∗1∥∥Θ(u∗2)−Θ(u∗1)∥
≤ 2τr∥u∗2 − u∗1∥(3.1)

for all u∗1, u
∗
2 ∈ BX∗(0, δ). Moreover, (1.6) also implies that Θ(u∗) is a minimizer of

fu∗ = f−u∗ on BX(x̄, r) and so the conjugate function (f+δBX(x̄,r))
∗ of f+δBX(x̄,r)

satisfies

(3.2) (f + δBX(x̄,r))
∗(u∗) = ⟨u∗,Θ(u∗)⟩ − f(Θ(u∗)) ∀u∗ ∈ BX∗(0, δ).
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Let g : X → R ∪ {+∞} be defined by

(3.3) epi(g) = co(epi(f + δBX(x̄,r))).

Then g is a lower semicontinuous convex function, g∗ = (f + δBX(x̄,r))
∗ and

(3.4) g(x) ≤ f(x) + δBX(x̄,r)(x) = f(x) ∀x ∈ BX(x̄, r).

Hence, by (3.2), one has
(3.5)
g∗(u∗) = ⟨u∗,Θ(u∗)⟩ − f(Θ(u∗)) and f(Θ(u∗)) = g(Θ(u∗)) ∀u∗ ∈ BX∗(0, δ).

This implies that Θ(u∗) ∈ ∂g∗(u∗) for all u∗ ∈ BX∗(0, δ). Noting that Θ is con-
tinuous on BX(x̄, δ) (thanks to (3.1) and φ(t) → 0 ⇒ t → 0), it follows from [17,
Proposition 28] that the convex function g∗ is Fréchet differentiable on BX∗(0, δ)
and ▽g∗(u∗) = Θ(u∗) for all u∗ ∈ BX∗(0, δ). Hence

gph(∂g∗) ∩ (BX∗(0, δ)×X) = {(u∗,Θ(u∗)) : u∗ ∈ BX∗(0, δ)}.
Noting that gph(∂g∗) = {(x∗, x) : (x, x∗) ∈ gph(∂g)} (thanks to the convexity of
g), one has

(3.6) gph(∂g) ∩ (X ×BX∗(0, δ)) = {(Θ(u∗), u∗) : u∗ ∈ BX∗(0, δ)}.
Since ∂g(x) = {x∗ ∈ X : ⟨x∗, y − x⟩ ≤ g(y) − g(x) ∀y ∈ X}, it follows from (3.4)
and (3.5) that

(3.7) gph(∂g) ∩ (BX(x̄, r)×BX∗(0, δ)) ⊂ gph(∂f).

On the other hand, by the subdifferential continuity and prox-regularity of f at
(x̄, 0), there exist r1 ∈ (0, r), δ1 ∈ (0, δ) and ρ > 0 such that

f(y) ≥ f(x) + ⟨x∗, y − x⟩ − ρ∥y − x∥2

for all x, y ∈ BX(x̄, r1) and x
∗ ∈ ∂f(x) ∩BX∗(0, δ1). This implies that

⟨x∗2 − x∗1, x2 − x1⟩+ 2ρ∥x2 − x1∥2 ≥ 0

for any (x1, x
∗
1), (x2, x

∗
2) ∈ gph(∂f) ∩ (BX(x̄, r1)×BX∗(0, δ1)), and so

(3.8) gph(∂f + 2ρI) ∩ (BX(x̄, r1)×BX∗(0, δ1)) ismonotone.

Moreover, by the continuity of Θ and Θ(0) = x̄, there exists δ2 ∈ (0, δ1) such that

∥Θ(u∗) + 2ρu∗ − x̄∥ = ∥Θ(u∗)−Θ(0) + 2ρu∗∥ < r1 ∀u∗ ∈ BX∗(0, δ2).

Hence, by (3.6) and (3.7), one has
(3.9)
{(Θ(u∗)+ 2ρu∗, u∗) : u∗ ∈ BX∗(0, δ2)} ⊂ gph(∂f +2ρI)∩ (BX(x̄, r1)×BX∗(0, δ2)).

The inclusion in (3.9) can in fact be replaced by the equality as the intersection
set on the right-hand side is monotone (by (3.8)) while the set on the left-hand
side is a maximal monotone subset of BX(x̄, r1) × BX∗(0, δ2)) by [14, Lemma 2.1]
(noting that (Θ+2ρI)(BX∗(0, δ2)) ⊂ BX(x̄, r1)) and Θ is monotone and continuous
on BX∗(0, δ) (thanks to (3.1))). By the just established equality version of (3.9)
together with the continuity of Θ and Θ(0) = x̄, it follows that there exist r0 > 0
and δ0 ∈ (0, δ2) such that

gph(∂f) ∩ (BX(x̄, r0)×BX∗(0, δ0)) = {(Θ(u∗), u∗) : u∗ ∈ BX∗(0, δ0)}.
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Therefore gph(∂f) ∩ (BX(x̄, r0)×BX∗(0, δ0)) is monotone. The proof is complete.
□

Note that the φ-SLWP of f at x̄ implies 0 ∈ ∂f(x̄). Based on Proposition
3.1, to consider sufficient conditions for the φ-SLWP of f at x̄, it is reasonable to
require that ∂f is monotone on a neighborhood of (x̄, 0). This leads us to introduce
the following notion which can be regarded as generalizations of the notions of
hypomonotonicity and D-hypomonotonicity.

Definition 3.2. Given a function ξ : R+ → R+, a mapping T : X ⇒ X∗ is said
to be ξ-hypomonotone (resp. ξ-D-hypomonotone) at (x̄, x̄∗) ∈ gph(T ) if there exist
ρ > 0 and δ > 0 such that

(3.10) ⟨y∗ − x∗, y − x⟩ ≥ −ρξ(∥y − x∥)∥y − x∥(
resp. ⟨y∗ − x∗, y − x⟩ ≥ −ρξ(∥y∗ − x∗∥)∥y∗ − x∗∥

)
for all (x, x∗), (y, y∗) ∈ gph(T ) ∩ (BX(x̄, δ)×BX∗(x̄∗, δ)).

Clearly, T is ξ-D-hypomonotone at (x̄, x̄∗) if and only if T−1 is ξ-hypomonotone
at (x̄∗, x̄). Moreover, monotonicity of T implies trivially both ξ-hypomonotonicity
and ξ-D-hypomonotonicity of T . The following example shows that monotonicity
may be strictly stronger than both ξ-hypomonotonicity and ξ-D-hypomonotonicity.
Let f : Rn → R be such that f(x) := −c0∥x∥2 + ⟨u, x⟩ + c for all x ∈ Rn with
(c0, u, c) ∈ (0, +∞)× Rn × R. Then f is a nonconvex and smooth function on Rn

with ▽f(x) = −2c0x+ u for all x ∈ Rn. It follows that

⟨▽f(x2)− ▽f(x1), x2 − x1⟩ = −2c0∥x2 − x1∥2 ∀x1, x2 ∈ Rn.

This shows that ▽f is not monotone at (0, 0) but it is both ξ-hypomonotone and
ξ-D-hypomonotone at (0, 0) with ξ(t) = t for all t ≥ 0.

The following lemma is useful in our later analysis, which is a generalization of
[24, Lemma 4.2].

Lemma 3.3. Let ξ : R+ → R+ be a nondecreasing function such that limt→0+ ξ(t) =
0. Let T : X ⇒ X∗ be ξ-hypomonotone at (x̄, x̄∗) ∈ gph(T ). Suppose further that
there exist a function ψ : R+ → R+ and r, η ∈ (0,+∞) such that limt→0+ ψ(t) =
ψ(0) = 0 and

(3.11) T (x1) ∩BX∗(x̄∗, r) ⊂ T (x2) + ψ(∥x1 − x2∥)BX∗ ∀x1, x2 ∈ BX(x̄, η).

Then there exist γ, δ′ ∈ (0, +∞) such that T (x) ∩ BX∗(x̄∗, γ) is a singleton for all
x ∈ BX(x̄, δ′).

Proof. Since T : X ⇒ X∗ is ξ-hypomonotone at (x̄, x̄∗), there exist ρ, δ ∈ (0, +∞)
such that (3.10) holds for all (x, x∗), (y, y∗) ∈ gph(T )∩ (BX(x̄, δ)×BX∗(x̄∗, δ)). By
the assumption that limt→0+ ψ(t) = ψ(0) = 0, one has

r′ := sup{t ≥ 0 : ψ([0, t]) ⊂ [0, min{r, δ})} > 0.

Let δ′ := min{δ, η, r′}. We claim that T (x) ∩ BX∗(x̄∗,min{r, δ}) is a singleton for
all x ∈ BX(x̄, δ′). To do this, let x ∈ BX(x̄, δ′). Then, ∥x − x̄∥ < r′, and so
ψ(∥x− x̄∥) < min{r, δ}; moreover, by (3.11), one has x̄∗ ∈ T (x) + ψ(∥x− x̄∥)BX∗ .
Hence there exists v∗x ∈ T (x) such that

(3.12) ∥v∗x − x̄∗∥ ≤ ψ(∥x− x̄∥) < min{r, δ}.
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It suffices to show that T (x) ∩ BX∗(x̄∗,min{r, δ}) = {v∗x}. To do this, suppose to
the contrary that there exists z∗ ∈ T (x) ∩ BX∗(x̄∗,min{r, δ}) such that v∗x ̸= z∗.
Then, there exists h ∈ X such that

(3.13) ⟨v∗x − z∗, h⟩ < 0.

Since ∥x − x̄∥ < δ′, there exists a sequence {εn} ⊂ (0,+∞) converging to 0 such
that {x+ εnh} ⊂ BX(x̄, δ′). It follows from (3.11) that

v∗x ∈ T (x) ∩BX∗(x̄∗, r) ⊂ T (x+ εnh) + ψ(εn∥h∥)BX∗ ∀n ∈ N.
Hence, for any n ∈ N there exists x∗n ∈ T (x+ εnh) such that

∥x∗n − v∗x∥ ≤ ψ(εn∥h∥) → 0.

Thus, by (3.12), we can assume without loss of generality that x∗n ∈ BX∗(x̄∗, δ) for
all n ∈ N. It follows from (3.10) that

−ρξ(εn∥h∥)εn∥h∥ ≤ ⟨x∗n − z∗, εnh⟩
= εn⟨x∗n − z∗, h⟩
= εn(⟨x∗n − v∗x, h⟩+ ⟨v∗x − z∗, h⟩) ∀n ∈ N.

Hence
⟨v∗x − z∗, h⟩ ≥ lim

n→∞
(−ρξ(εn∥h∥)∥h∥ − ⟨x∗n − v∗x, h⟩) = 0,

contradicting (3.13). The proof is complete. □
In contrast to [24, Theorem 3.3], the following proposition provides a sufficient

condition for f to have φ-SLWP at x̄ in terms of the metrical φ′
+-regularity of ∂f

instead of the strongly metrical φ′
+-regularity of ∂f .

Proposition 3.4. Let φ : R+ → R+ be a strictly convex admissible function,
ξ : R+ → R+ be an increasing function such that limt→0+ ξ(t) = 0, and let f be
a proper lower semicontinuous extended-real function on a Banach space X such
that ∂f is ξ-D-hypomonotone at (x̄, 0) ∈ gph(∂f). Suppose that ∂f is metrically
φ′
+-regular at (x̄, 0). Then f has the φ-SLWP at x̄.

Proof. By the metrical φ′
+-regularity assumption on ∂f , there exist κ̃, τ̃ , r̃ ∈ (0, +∞)

such that

(3.14) φ′
+(κ̃d(u, (∂f)

−1(v∗)) ≤ τ̃ d(v∗, ∂f(u)) ∀(u, v∗) ∈ B(x̄, r̃)×B(0, r̃).

Since the admissible function φ is strictly convex, φ′
+ is an inverse function. Hence

d(u, (∂f)−1(v∗)) ≤ 1

κ̃
(φ′

+)
−1(τ̃ d(v∗, ∂f(u))) ∀(u, v∗) ∈ B(x̄, r̃)×B(0, r̃).

It follows that

(∂f)−1(u∗) ∩B(x̄, r̃) ⊂ (∂f)−1(v∗) +
1

κ̃
(φ′

+)
−1(τ̃∥v∗ − u∗∥)BRn ∀u∗, v∗ ∈ B(0, r̃).

We claim that

(3.15) lim
t→0+

(φ′
+)

−1(t) = 0.

Indeed, if this is not the case, there exist ε0 > 0 and a sequence {tn} in (0, +∞) such
that tn → 0 and (φ′

+)
−1(tn) > ε0 for all n ∈ N, that is, φ′

+(ε0) < tn. Hence φ
′
+(ε0) =
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0, and so φ′
+(t) = 0 for all t ∈ [0, ε0]. Since φ is convex and φ(0) = 0, φ(t) = 0

for all t ∈ (0, ε0], contradicting the fact that φ is an admissible function. On the
other hand, since ∂f is ξ-D-hypomonotone at (x̄, 0), (∂f)−1 is ξ-hypomonotone at
(0, x̄). Thus, by (3.14), (3.15) and Lemma 3.3, there exist γ, δ0 ∈ (0, ∞) such that
(∂f)−1(v∗) ∩ BX(x̄, γ) is a singleton for all v∗ ∈ BX∗(0, δ0). This and (3.14) imply
that ∂f is strongly metrically φ′

+-regular at (x̄, 0). Hence f has the φ-SLWP at x̄
(thanks to Lemma 2.1). The proof is complete. □

Under the ξ-D-hypomonotonicity assumption on ∂f at (x̄, 0), we can see from the
proof of Proposition 3.4 that metric φ′

+-regularity of ∂f at (x̄, 0) is equivalent to
strong metric φ′

+-regularity of ∂f at (x̄, 0) (because strong metric φ′
+-regularity of

∂f at (x̄, 0) implies trivially metric φ′
+-regularity of ∂f at (x̄, 0)). In the case when

φ(t) = t2, Drusvyatskiy, Mordukhovich and Nghia [9] considered the relationship
between the metric regularity and strong metric regularity of ∂f . In particular,
they made the following conjecture: Consider a function f : Rn → R ∪ {+∞} that
is both prox-regular and subdifferentially continuous at x̄ for x̄∗ = 0, where x̄ is a
local minimizer of f . Then ∂f is metrically regular at (x̄, 0) if and only if ∂f is
strongly metrically regular at (x̄, 0).

Next we consider the sufficient conditions for the metric ψ-regularity of ∂f . In
the remainder of this section, we mainly deal with the case when X = Rn. For
convenience, we denote the open ball of Rn with center x̄ and radius r by B(x̄, r).

Theorem 3.5. Let ψ : R+ → R+ be a convex admissible function and f : Rn → R
be a proper lower semicontinuous function such that f is subdifferentially continuous
and ψ-prox-regular at (x̄, 0) ∈ gph∂f . Suppose that there exist κ, r ∈ (0,+∞) such
that

(3.16) κ∥h∥2ψ′
+(d(x, (∂f)

−1(v − h))) ≤ ⟨z, h⟩

for all (x, v, h) ∈ (gph(∂f)×Rn)∩(B(x̄, r)×B(0, r)×B(0, r)) and z ∈ ∂2f(x, v)(h).
Then, ∂f is metrically ψ-regular at (x̄, 0).

Proof. Since f is subdifferentially continuous and ψ-prox-regular at (x̄, 0), there
exist ρ ∈ (0,+∞) and r̄ ∈ (0, r) such that

(3.17) f(y) ≥ f(x) + ⟨x∗, y − x⟩ − ρψ(∥y − x∥)∥y − x∥

for all x, y ∈ B(x̄, 2r̄) and x∗ ∈ ∂f(x) ∩B(0, 2r̄). We claim that

(3.18) Ω := gph(∂f) ∩ ((x̄+ r̄BRn)× r̄BRn)

is closed. Let (u, u∗) ∈ cl(Ω). Then there exists a sequence {(xn, x∗n)} in Ω such
that ∥xn − u∥+ ∥x∗n − u∗∥ → 0. Hence

(3.19) (u, u∗) ∈ (x̄+ r̄BRn)× r̄BRn ,

and

f(y) ≥ f(xn) + ⟨x∗n, y − xn⟩ − ρψ(∥y − xn∥)∥y − xn∥ ∀(y, n) ∈ B(x̄, 2r̄)× N

(thanks to (3.17)). Noting that lim infx→u f(x) ≥ f(u), it follows that

f(y) ≥ f(u) + ⟨u∗, y − u⟩ − ρψ(∥y − u∥)∥y − u∥ ∀y ∈ B(x̄, 2r̄).



146 XI YIN ZHENG, JIANGXING ZHU, AND KUNG FU NG

Noting that limt→0+ ψ(t) = ψ(0) = 0, for any ε > 0 there exists δ ∈ (0, r̄) such that
ψ(∥y − u∥) ≤ ε

ρ for all y ∈ B(u, δ) ⊂ B(x̄, 2r̄). Hence

f(y) ≥ f(u) + ⟨u∗, y − u⟩ − ε∥y − u∥ ∀y ∈ B(u, δ).

This implies that u∗ ∈ ∂̂f(u) ⊂ ∂f(u), and so (u, u∗) ∈ gph(∂f). It follows from
(3.19) and the definition of Ω that (u, u∗) ∈ Ω. This shows that Ω is closed.

Next we show that there exist κ̃, τ̃ , r̃ ∈ (0, +∞) such that
(3.20)
ψ(κ̃d(u, (∂f)−1(v∗))) ≤ τ̃ d(v∗, ∂f(u)) ∀(u, v∗) ∈ B(x̄, r̃)× (∂f(B(x̄, r̃)) ∩B(0, r̃)).

To do this, suppose to the contrary that there exists a sequence {(ui, xi, v∗i )} ⊂
Rn × Rn × Rn converging to (x̄, x̄, 0) such that

v∗i ∈ ∂f(ui) and ψ
(1
i
d(xi, (∂f)

−1(v∗i ))
)
> id(v∗i , ∂f(xi)) ∀i ∈ N.

Then

(3.21) 0 < d(xi, (∂f)
−1(v∗i )) ≤ ∥xi − ui∥ → 0,

and there exists y∗i ∈ ∂f(xi) such that

(3.22) ∥v∗i − y∗i ∥ <
1

i
ψ
(1
i
d(xi, (∂f)

−1(v∗i ))
)
≤ 1

i
ψ
(1
i
∥xi − ui∥) → 0.

Define

gi(u, v
∗) := ∥v∗ − v∗i ∥+ δΩ(u, v

∗) ∀(u, v∗) ∈ Rn × Rn.

Then, gi is lower semicontinuous, and

gi(xi, y
∗
i ) < inf

(u,v∗)∈Rn×Rn
gi(u, v

∗) +
1

i
ψ
(1
i
d(xi, (∂f)

−1(v∗i ))
)
.

For any j ∈ N, let

∥(u, v∗)∥j := ∥u∥+ 1

j
∥v∗∥ ∀(u, v∗) ∈ Rn × Rn.

By the Ekeland variational principle, there exists (xij , y
∗
ij) ∈ Ω such that

(3.23) ∥(xij , y∗ij)− (xi, y
∗
i )∥j <

1

i
d(xi, (∂f)

−1(v∗i )),

(3.24) ∥y∗ij − v∗i ∥ = gi(xij , y
∗
ij) ≤ gi(xi, y

∗
i ) = ∥y∗i − v∗i ∥

and

(3.25) gi(xij , y
∗
ij) ≤ gi(u, v

∗) +
ψ
(
1
i d(xi, (∂f)

−1(v∗i ))
)

d(xi, (∂f)−1(v∗i ))
∥(u, v∗)− (xij , y

∗
ij)∥j

for all (u, v∗) ∈ Rn × Rn. Since Ω is a bounded closed subset of Rn × Rn, we can
assume without loss of generality that limj→∞(xij , y

∗
ij) = (x̄i, v̄

∗
i ) ∈ Ω (passing to a

subsequence if necessary). It follows from (3.23)—(3.25) that

∥x̄i − xi∥ ≤ 1

i
d(xi, (∂f)

−1(v∗i )), ∥v̄∗i − v∗i ∥ ≤ ∥y∗i − v∗i ∥



SECOND ORDER SUFFICIENT CONDITIONS FOR STABLE WELL-POSEDNESS 147

and

(3.26) ∥v̄∗i − v∗i ∥ ≤ ∥v∗ − v∗i ∥+ δΩ(u, v
∗) +

ψ
(
1
i d(xi, (∂f)

−1(v∗i ))
)

d(xi, (∂f)−1(v∗i ))
∥u− x̄i∥

for all (u, v∗) ∈ Rn × Rn. Hence, by (3.21), (3.22) and (xi, v
∗
i ) → (x̄, 0), one has

(3.27) 0 < d(xi, (∂f)
−1(v∗i ))) ≤

i

i− 1
d(x̄i, (∂f)

−1(v∗i ))

and

v̄∗i ̸= v∗i and (x̄i, v̄
∗
i ) → (x̄, 0).

It follows from (3.27) and the convexity of ψ that

0 <
ψ
(
1
i d(xi, (∂f)

−1(v∗i ))
)

1
i d(xi, (∂f)

−1(v∗i ))
≤
ψ
(

1
i−1d(x̄i, (∂f)

−1(v∗i ))
)

1
i−1d(x̄i, (∂f)

−1(v∗i ))
≤ ψ′

+(d(x̄i, (∂f)
−1(v∗i )))

for all i > 1. This and (3.26) imply that

∥v̄∗i − v∗i ∥ ≤ ∥v∗ − v∗i ∥+ δΩ(u, v
∗) +

1

i
ψ′
+

(
d(x̄i, (∂f)

−1(v∗i ))
)
∥u− x̄i∥

for all (u, v∗) ∈ Rn × Rn. Hence,

(0, 0) ∈ {0} × ∂∥ · −v∗i ∥(v̄∗i ) + ∂δΩ(x̄i, v̄
∗
i ) +

1

i
ψ′
+

(
d(x̄i, (∂f)

−1(v∗i ))
)
BRn × {0}

= {0} ×
{ v̄∗i − v∗i
∥v̄∗i − v∗i ∥

}
+N(Ω, (x̄i, v̄

∗
i )) +

1

i
ψ′
+

(
d(x̄i, (∂f)

−1(v∗i ))
)
BRn × {0},

and so there exists x∗i ∈ BRn such that

(3.28)

(
1

i
ψ′
+

(
d(x̄i, (∂f)

−1(vi))
)
x∗i ,−

v̄∗i − v∗i
∥v̄∗i − v∗i ∥

)
∈ N(Ω, (x̄i, v̄

∗
i )).

Since (x̄i, v̄
∗
i ) → (x̄, 0), (3.18) implies that

N(Ω, (x̄i, v̄
∗
i )) = N(gph(∂f), (x̄i, v̄

∗
i ))

for all sufficiently large i. Hence, by (3.28),

1

i
ψ′
+

(
d(x̄i, (∂f)

−1(v∗i ))
)
x∗i ∈ ∂2f(x̄i, v̄

∗
i )

(
v̄∗i − v∗i

∥v̄∗i − v∗i ∥

)
for all sufficiently large i. Let h∗i := v̄∗i − v∗i . Then, v

∗
i = v̄∗i − h∗i ,

z∗i :=
1

i
∥h∗i ∥ψ′

+

(
d(x̄i, (∂f)

−1(v̄∗i − h∗i ))
)
x∗i ∈ ∂2f(x̄i, v̄

∗
i )(h

∗
i )

and so

⟨z∗i , h∗i ⟩ =
1

i
∥h∗i ∥ψ′

+

(
d(x̄i, (∂f)

−1(v̄∗i − h∗i ))
)
⟨x∗i , h∗i ⟩

≤ 1

i
∥h∗i ∥2ψ′

+

(
d(x̄i, (∂f)

−1(v̄∗i − h∗i ))
)
.

Noting that 0 < ψ′
+

(
d(x̄i, (∂f)

−1(v̄∗i − h∗i )), it follows from (3.16) that κ ≤ 1
i for all

sufficiently large i, a contradiction. Therefore, there exist κ̃, τ̃ , r̃ ∈ (0, +∞) such
that (3.20) holds for all (u, v∗) ∈ B(x̄, r̃)× (∂f(B(x̄, r̃)) ∩B(0, r̃)).
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Let r′ ∈ (0, r̃). We claim that there exists δ̃ ∈ (0, r′) such that B(0, δ̃) ⊂
∂f(B[x̄, r′]). Granting this, one has

B(x̄, δ̃)×B(0, δ̃) ⊂ B(x̄, r̃)× (∂f(B(x̄, r̃) ∩B(0, r̃)).

This and (3.20) imply that ∂f is metrically ψ-regular at (x̄, 0). It remains to show

that there exists δ̃ ∈ (0, r′) such thatB(0, δ̃) ⊂ ∂f(B[x̄, r′]). Indeed, if this is not the
case, there exists a sequence {y∗k} converging to 0 such that each y∗k ̸∈ ∂f(B[x̄, r′]).
Noting that ∂f(B[x̄, r′]) is closed (thanks to the compactness of B[x̄, r′] and the
closedness of Ω), there exists w∗

k ∈ ∂f(B[x̄, r′]) such that

(3.29) 0 < ∥y∗k − w∗
k∥ = d(y∗k, ∂f(B[x̄, r′])) ≤ ∥y∗k∥ → 0,

and so w∗
k → 0. It follow from (3.20) that

ψ(κ̃d(x̄, (∂f)−1(w∗
k))) ≤ τ̃ d(w∗

k, ∂f(x̄)) ≤ τ̃∥w∗
k∥ → 0

Hence, κ̃d(x̄, (∂f)−1(w∗
k)) → 0 and so there exists ak ∈ (∂f)−1(w∗

k) such that ak →
x̄. On the other hand, by the equality of (3.29), one has

⟨y∗k −w∗
k, y

∗−w∗
k⟩ ≤ d(y∗k, ∂f(B[x̄, r′]))∥y∗−w∗

k∥ ≤ ∥y∗−w∗
k∥2 ∀y∗ ∈ ∂f(B[x̄, r′]).

Hence
⟨(0, y∗k − w∗

k), (x, y
∗)− (ak, w

∗
k)⟩ ≤ ∥(x, y∗)− (ak, w

∗
k)∥2

for all (x, y∗) ∈ gph(∂f) ∩ (B[x̄, r′]× Rn). This implies that

(0, y∗k − w∗
k) ∈ N(gph(∂f) ∩B[x̄, r′]× Rn), (ak, w

∗
k)).

Since (ak, w
∗
k) is an interior point of B[x̄, r′]×Rn for all k large enough, (0, y∗k−w∗

k) ∈
N(gph(∂f), (ak, w

∗
k)), namely 0 ∈ ∂2f(ak, w

∗
k)(w

∗
k − y∗k). It follows from (3.16) that

κ∥y∗k − w∗
k∥2ψ′

+(d(ak, (∂f)
−1(y∗k))) ≤ ⟨0, y∗k − w∗

k⟩ = 0.

By the first inequality of (3.29), one has ψ′
+(d(ak, (∂f)

−1(y∗k))) = 0. Since ψ is
a convex admissible function, d(ak, (∂f)

−1(y∗k)) = 0, and so y∗k ∈ ∂f(ak). This
contradicts that ak → x̄ and y∗k ̸∈ ∂f(B[x̄, r′]). The proof is complete. □

The proof of Theorem 3.5 follows the line of the one of [24, Proposition 6.1] which
requires that the graph gph(∂f) is a closed set.

The following corollary is immediate from Proposition 3.4 and Theorem 3.5 and
can be regarded as an extension of Theorem 1.2 (because the convexity of f implies
trivially its ψ-prox-regularity and ξ-D-hypomonotonicity at (x̄, 0))).

Corollary 3.6. Let ψ be a convex admissible function and f : Rn → R be a proper
lower semicontinuous function such that f is ψ-prox-regular at (x̄, 0) ∈ gph(∂f).
Suppose that ∂f is ξ-D-hypomonotone at (x̄, 0), where ξ : R+ → R+ is an increasing
function with limt→0+ ξ(t) = 0. Further suppose that that there exist κ, r ∈ (0,+∞)
such that (3.16) holds for all (x, v, h) ∈ (gph(∂f)×Rn)∩B(x̄, r)×B(0, r)×B(0, r)))

and z ∈ ∂2f(x, v)(h). Then, f has φ-SLWP at x̄ with φ(t) :=
∫ t
0 ψ(t)dt.

In the case when ψ(t) = t for all t ≥ 0, some authors (cf. [9, 13, 16, 19])
considered second-order subdifferential characterizations for f to have φ-SLWP at

x̄ with φ(t) :=
∫ t
0 ψ(t)dt (under the name of tilt stable minimizer). It is worth

mentioning that (3.16) is equivalent to the positive definiteness of ∂2f(x, v) when
ψ(t) = t for all t ≥ 0.
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