Pure and Applied Functional Analysis

Volume 4, Number 1, 2019, 35–43

CRITICAL POINTS AND POINT DERIVATIONS OF LIPSCHITZ FUNCTIONS

JERZY GRZYBOWSKI, DIETHARD PALLASCHKE, AND RYSZARD URBAŃSKI

ABSTRACT. For an open subset $U \subset \mathbb{R}^n$ and a point $x_0 \in U$ N. Newns and A. Walker (see [6]) stated in the appendix of their paper a coordinate free characterization of critical points of C^{∞} -functions, which can also be seen as an algebraic characterization of the algebra of all C^{∞} -functions, which are defined on U and have $x_0 \in U$ as a critical point. In this paper, we study the characterization of N. Newns and A. Walker for the Banach algebra $\operatorname{Lip}(X, d)$ of Lipschitz functions which are defined on an open subset $X \subset E$ of an real normed vector space $(E, \|\cdot\|)$. This paper is a continuation of our previous work, which was already published partially in [7].

1. INTRODUCTION

Let U be an open subset of \mathbb{R}^n , $\mathcal{C}^r(U)$ the real algebra of all C^r -functions, $r \geq 2$, defined on U and $x_0 \in U$. In 1956 N. Newns and A. Walker ([6]) gave a purely algebraic characterization of the subalgebra

$$\mathcal{C}^{\infty}_{x_0}(U) = \{ f \in \mathcal{C}^r(U) \mid \nabla f \Big|_{x_0} = 0 \} \subset \mathcal{C}^r(U)$$

for of all those functions, which have $x_0 \in U$ as a critical point, i.e. for which the gradient vanishes in x_0 . They showed that $\mathcal{C}^{\infty}_{x_0}(U)$ is the intersection of all maximal subalgebras of $\mathcal{C}^{\infty}(U)$ which contain the ideal of all functions, which vanish in x_0 of "second order".

We assume throughout our paper that every subalgebra contains the unit element. This paper is a continuation of a previously published paper [7] by the two second authors in Comentationes Mathematica.

We begin our paper with a short description of the Banach algebra $\operatorname{Lip}(X, d)$ of Lipschitz functions on a metric space (X, d). For these algebras D. R. Sherbert [8] gave an algebraic characterization of all point derivations. In particularly Sherbert proved ([8], Lemma 9.4) that all point derivations for Lipschitz functions are given by the evaluation of sequences of special slopes of a Lipschitz function by Banach limits. In the last two sections new results are presented which could be of interest for readers from analysis. The previous sections however contain a discussion of results known in the literature.

²⁰¹⁰ Mathematics Subject Classification. 49J52, 90B85, 90C46.

Key words and phrases. Lipschitz functions, point derivations, critical points.

2. The Lipschitz Algebra

We follow the presentation given in [8]. Let (X, d) be a metric space. Then a function $f: X \longrightarrow \mathbb{R}$ is *Lipschitzian* if there exists a $K \ge 0$ such that for all $x, y \in X$ the inequality $|f(x) - f(y)| \le Kd(x, y)$ holds. The set of all bounded Lipschitz functions defined on (X, d) is a real algebra and will be denoted by Lip(X, d). For $f \in \text{Lip}(X, d)$ the following two expressions exist:

$$||f||_d := \sup\{\frac{|f(x) - f(y)|}{d(x, y)} : x, y \in X, x \neq y\} \text{ and } ||f||_\infty := \sup\{|f(x)| : x \in X\}.$$

Now

$$\|\cdot\|: \operatorname{Lip}(X, d) \longrightarrow \mathbb{R}_+$$

with

$$||f|| := ||f||_d + ||f||_{\infty}$$

is a norm, and in [1] it is shown, that $(\operatorname{Lip}(X, d), \|\cdot\|)$ is always the dual space of some normed linear space and hence complete. Moreover, $(\operatorname{Lip}(X, d), \|\cdot\|)$ is also a Banach algebra, i.e, for all $f, g \in \operatorname{Lip}(X, d)$ the inequality $\|fg\| \leq \|f\| \|g\|$ holds. This can be seen as follows: For $f, g \in \operatorname{Lip}(X, d)$ and $x, y \in X, x \neq y$ the inequality

$$\frac{|(fg)(x) - (fg)(y)|}{d(x,y)} \le |f(x)| \frac{|g(x) - g(y)|}{d(x,y)} + |g(y)| \frac{|f(x) - f(y)|}{d(x,y)}$$

implies

$$||fg||_d \le ||f||_{\infty} \cdot ||g||_d + ||g||_{\infty} \cdot ||f||_d$$

and therefore

$$\begin{split} \|fg\| &= \|fg\|_{\infty} + \|fg\|_{d} \\ &\leq \|f\|_{\infty} \cdot \|g\|_{\infty} + \|f\|_{\infty} \cdot \|g\|_{d} + \|g\|_{\infty} \cdot \|f\|_{d} \\ &= \|f\|_{\infty} \cdot (\|g\|_{\infty} + \|g\|_{d}) + \|g\|_{\infty} \cdot \|f\|_{d} \\ &\leq \|f\| \cdot \|g\|. \end{split}$$

The Banach algebra $(\text{Lip}(X, d), \|\cdot\|)$ will be called the *Lipschitz algebra* on (X, d). The unit element is the characteristic function on X, which is denoted by **1**.

3. Point derivations for Lipschitz functions

A continuous linear functional which satisfies the Leibniz rule is called a point derivation.

Definition 3.1. Let (X, d) be a metric space and $x_0 \in X$. A continuous linear functional $l \in \text{Lip}(X, d)'$ is said to be a point derivation at $x_0 \in X$, if and only if for all $f, g \in \text{Lip}(X, d)$ the Leibniz rule, i.e.,

$$l(fg) = f(x_0) \cdot l(g) + g(x_0) \cdot l(f)$$

is satisfied at $x_0 \in X$.

With $\mathbf{1} \in \operatorname{Lip}(X, d)$ we denote the constant function with value one and denote furthermore with ideal $\mathbf{m}(\mathbf{x}_0) = \{f \in \operatorname{Lip}(X, d) \mid f(x_0) = 0\}$ of functions, vanishing in $x_0 \in X$ and its algebraic square by

$$\mathbf{m}^{2}(\mathbf{x_{0}}) = \{ f \in \operatorname{Lip}(X, d) \mid f = \sum_{i=1}^{k} g_{i} \cdot h_{i}, g_{i}, h_{i} \in \mathbf{m}(\mathbf{x_{0}}), i = 1, ..., k, k \ge 1 \}.$$

I. Singer and J. Wermer have shown in [9] that point derivations can indeed be characterized by their values for the unit function and their values on the latter ideal.

Proposition 3.2. Let (X, d) be a metric space and $x_0 \in X$. Then for a continuous linear functional $l \in \text{Lip}(X, d)'$ holds

i) l(1) = 0, ii) $l |\mathbf{m}^2(\mathbf{x_0})| = 0$.

if and only if for all $f, g \in \text{Lip}(X, d)$ Leibniz's rule

$$l(fg) = f(x_0) \cdot l(g) + g(x_0) \cdot l(f)$$

is satisfied at the point $x_0 \in X$.

Proof. " \Leftarrow " Let us assume, that the functional $l \in \text{Lip}(X, d)'$ satisfies Leibniz's rule.

Since $\mathbf{1}^2 = \mathbf{1}$, Leibniz's rule implies for $f = g = \mathbf{1}$ that $l(\mathbf{1}) = 2l(\mathbf{1})$, which means that $l(\mathbf{1}) = 0$.

Now assume, that $f, g \in \mathbf{m}(\mathbf{x_0})$. Then $l(fg) = f(x_0) \cdot l(g) + g(x_0) \cdot l(f) = 0$, and since the functional l is continuous, it follows that $l | \mathbf{m}^2(\mathbf{x_0}) = 0$.

" \implies " Let us assume, that the continuous linear functional l satisfies conditions i) and ii). Then for every $f, g \in \text{Lip}(X, d)$ holds

$$\begin{split} l(fg) &= l(fg - f(x_0)g(x_0)\mathbf{1}) \\ &= l((f - f(x_0)\mathbf{1}) \cdot (g - g(x_0)\mathbf{1}) \\ &+ f(x_0)(g - g(x_0)\mathbf{1}) + g(x_0)(f - f(x_0)\mathbf{1})) \\ &= l((f - f(x_0)\mathbf{1}) \cdot (g - g(x_0)\mathbf{1})) + f(x_0) \cdot l(g - g(x_0)\mathbf{1}) \\ &+ g(x_0) \cdot l(f - f(x_0)\mathbf{1}) \\ &= f(x_0) \cdot l(g - g(x_0)\mathbf{1}) + g(x_0) \cdot l(f - f(x_0)\mathbf{1}) \\ &= f(x_0) \cdot l(g) + g(x_0) \cdot l(f), \end{split}$$

since $(f - f(x_0)\mathbf{1}) \cdot (g - g(x_0)\mathbf{1}) \in \mathbf{m}^2(\mathbf{x_0})$.

The linear space of all point derivations at $x_0 \in X$ will be denoted by $\operatorname{Der}_{x_0}(\operatorname{Lip}(X,d))$ and is a weak-*-closed subspace of $\operatorname{Lip}(X,d)'$. D. R. Sherbert determines in [8] all point derivations in $\operatorname{Lip}(X,d)$. We will now repeat his construction:

Let us consider the real Banach space

 $\mathbf{l}^{\infty} := \{x := (x_n)_{n \in \mathbb{N}} \mid (x_n)_{n \in \mathbb{N}} \text{ bounded sequence } \}$ endowed with the *supremum norm* $\|x\|_{\infty} := \sup_{n \in \mathbb{N}} |x_n|$. Let $\mathbf{c} \subset \mathbf{l}^{\infty}$ denote the closed subset of all convergent sequences, and $\lim : \mathbf{c} \longrightarrow \mathbb{R}$ the continuous linear

functional which assigns to every convergent sequence its limit. We consider a norm-preserving Hahn-Banach extension "LIM" of the functional "lim" to l^{∞} as indicated:

with the following additional properties:

i) $\operatorname{LIM}_{n \to \infty} x_n = \operatorname{LIM}_{n \to \infty} x_{n+1}$,

ii) $\liminf_{n\to\infty} x_n \leq \operatorname{LIM}_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$,

where we used the notation $\operatorname{LIM}_{n\to\infty} x_n = \operatorname{LIM}(x)$ for $x := (x_n)_{n\in\mathbb{N}} \in \mathbf{l}^{\infty}$. This functionals "LIM" are called *translation invariant Banach limits*. For its construction, we refer to [4], Chapter II.4, Exercise 22.

We will denote the linear space of all translation invariant Banach limits by $\operatorname{Lim} \subset (\mathbf{l}^{\infty})'$ and for a single Banach limit $\operatorname{LIM} \in \operatorname{Lim}$.

Let $x_0 \in X$ be a nonisolated point and $w := (x_n, y_n)_{n \in \mathbb{N}} \subset \{(s, t) \in X \times X \mid s \neq t\}$ which converges to the point (x_0, x_0) . Then for the sequence of *slopes* of f given by $\left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)}\right)_{n \in \mathbb{N}}$, which is bounded, the mapping

$$T_w: \operatorname{Lip}(X, d) \longrightarrow \mathbf{l}^{\infty} \text{ with } T_w(f) := \left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)}\right)_{n \in \mathbb{N}}$$

is a continuous linear operator, since $||T_w(f)||_{\infty} \leq ||f||_d \leq ||f||$.

Now we repeat the proof of D. Sherbert, that for a translation invariant Banach limit the continuous linear functional

$$D_w : \operatorname{Lip}(X, d) \longrightarrow \mathbb{R} \text{ with } D_w(f) = \operatorname{LIM}(T_w(f))$$

is a point derivation at $x_0 \in X$ (see [8] Lemma 9.4). For abbreviation let us put $\Delta := \{(s,t) \in X \times X \mid s = t\}.$

Proposition 3.3. Let $x_0 \in X$ be a nonisolated point of a metric space (X, d) and $w := (x_n, y_n)_{n \in \mathbb{N}} \subset (X \times X) \setminus \Delta = \{(s, t) \in X \times X \mid s \neq t\}$ a sequence, which converges to the point (x_0, x_0) . Then for every translation invariant Banach limit LIM : $\mathbf{l}^{\infty} \longrightarrow \mathbb{R}$ the continuous linear functional

$$D_w : \operatorname{Lip}(X, d) \longrightarrow \mathbb{R} \text{ with } D_w(f) = \operatorname{LIM}(T_w(f))$$

is a point derivation for the Lipschitz algebra $(\text{Lip}(X, d), \|\cdot\|)$ at $x_0 \in X$.

Proof. First observe, that for every convergent sequence $(a_n)_{n\in\mathbb{N}} \in \mathbf{c}$ and every bounded sequence $(b_n)_{n\in\mathbb{N}} \in \mathbf{l}^{\infty}$ the formula $\operatorname{LIM}_{n\to\infty}(a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \operatorname{LIM}_{n\to\infty} b_n$ holds. Namely put $\alpha := \lim_{n \to \infty} a_n$. Then $\operatorname{LIM}_{n \to \infty}(a_n \cdot b_n - \alpha b_n) = 0$, since $(a_n \cdot b_n - \alpha b_n)_{n \in \mathbb{N}}$ is a sequence converging to zero and hence $\operatorname{LIM}_{n \to \infty}(a_n \cdot b_n) = \alpha \operatorname{LIM}_{n \to \infty} b_n$.

Now let $f, g \in \text{Lip}(X, d)$ be given. From the above observation follows that $D_w(fg) = \text{LIM}(T_w(fg))$

$$= \operatorname{LIM}(-w(fy)) = \operatorname{LIM}(-w(fy)) = \operatorname{LIM}(-w(fy)) = \operatorname{LIM}(-w(fy)) = \operatorname{LIM}(-w(fy)) = (fg)(y_n) - (fg)(x_n) = \operatorname{LIM}_{n \to \infty} \left(\frac{f(y_n) - g(x_n)}{d(y_n, x_n)} + g(x_n) \frac{f(y_n) - f(x_n)}{d(y_n, x_n)} \right)$$
$$= f(x_0) \operatorname{LIM}_{n \to \infty} \left(\frac{g(y_n) - g(x_n)}{d(y_n, x_n)} \right) + g(x_0) \operatorname{LIM}_{n \to \infty} \left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)} \right)$$
$$= f(x_0) \operatorname{LIM}(T_w(g)) + g(x_0) \operatorname{LIM}(T_w(f))$$
$$= f(x_0) D_w(g) + g(x_0) D_w(f).$$

Since D_w is continuous, it is a point derivation at $x_0 \in X$.

Now the following representation theorem holds (see [8], Theorem 9.5).

Proposition 3.4. Let $x_0 \in X$ be a nonisolated point of a metric space (X, d) and $\mathcal{W}_{x_0} := \{w := (x_n, y_n)_{n \in \mathbb{N}} \subset X \times X \setminus \Delta \mid \lim x_n = \lim y_n = x_0 \}$. Moreover let LIM : $\mathbf{I}^{\infty} \longrightarrow \mathbb{R}$ be a fixed translation invariant Banach limit. Then

$$\operatorname{Der}_{x_0}(\operatorname{Lip}(X,d)) = \operatorname{cl} (\operatorname{span}\{D_w = \operatorname{LIM}(T_w) \mid w \in \mathcal{W}_{x_0} \}),$$

where "cl span" denotes the weak-*-closure of the linear hull in $\operatorname{Lip}(X,d)'$.

4. CHARACTERIZATION OF NEWNS AND WALKER

Newns and Walker [6] proved in 1956 a coordinate free characterization of critical points of C^{∞} -functions intrinsically in algebraic terms :

Let $U \subseteq \mathbb{R}^n$ be an open subset and $x_0 \in U$ and let $\delta_{x_0} : C^{\infty}(U) \to \mathbb{R}$ be given by $\delta_{x_0}(f) = f(x_0)$. As above consider the ideal $\mathbf{m}(\mathbf{x_0})$ of the algebra $\mathcal{A} = C^{\infty}(U)$ given by $\mathbf{m}(\mathbf{x_0}) = \{f \in \mathcal{A} \mid \delta_{x_0}(f) = 0\}$. Let $\mathbf{m}^2(\mathbf{x_0})$ be the algebraic square of the ideal $\mathbf{m}(\mathbf{x_0})$, i.e.

$$\mathbf{m}^{2}(\mathbf{x_{0}}) = \{ f \in \mathcal{A} \mid f = \sum_{i=1}^{k} g_{i} \cdot h_{i} , g_{i}, h_{i} \in \mathbf{m}(\mathbf{x_{0}}), i = 1, ..., k , k \ge 1 \}.$$

Consider now the intersection of all maximal subalgebras $\mathbf{a} \subset \mathcal{A}$, which contain $\mathbf{m}^2(\mathbf{x_0})$, In analogy to Frattini groups, (Frattini (1885)), this set is called a *Frattini* algebra of \mathcal{A} at $x_0 \in X$ and denoted by

 $\mathfrak{F}(\mathcal{A})(x_0) = \bigcap \{ \mathbf{a} \mid \mathbf{m}^2(\mathbf{x_0}) \subset \mathbf{a} \subset \mathcal{A}, \mathbf{a} \text{ is a maximal closed subalgebra} \}$

In this notation they proved in the appendix of their paper [6]:

Theorem 4.1. Let $U \subseteq \mathbb{R}^n$ be an open subset and let $x_0 \in U$. A function $f \in \mathcal{A} = C^{\infty}(U)$ has a critical point in $x_0 \in U$ if and only if $f(x) - f(x_0) \in \mathcal{F}(\mathcal{A})(x_0)$.

Let us point out, that the proof of this Theorem is based on directional derivatives which are not in a close analogy to point derivations. This can for instance be seen in the case of the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) := x^2 \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. This function is differentiable in $x_0 = 0$, but has in $x_0 = 0$ point derivatives with values in the interval [-1, 1] (see also the remark on p. 266 in [8]).

5. CRITICAL POINTS OF LIPSCHITZ FUNCTIONS

In this section we consider the algebraic characterization of critical points for Lipschitz functions. Therefore we will consider for a metric space (X, d) the algebra $\mathcal{A} = \operatorname{Lip}(X, d)$ of all bounded Lipschitz functions defined on (X, d). Moreover we will assume that $x_0 \in X$ is a nonisolated point of a metric space (X, d) and that

$$\delta_{x_0}$$
: Lip $(X, d) \to \mathbb{R}$ is defined by $\delta_{x_0}(f) = f(x_0)$.

As previously we consider for $\mathcal{A} = \operatorname{Lip}(X, d)$ the ideal $\mathbf{m}(\mathbf{x}_0) = \{f \in \mathcal{A} \mid \delta_{x_0}(f) = 0\}$ and its algebraic square

$$\mathbf{m}^{2}(\mathbf{x_{0}}) = \{ f \in \mathcal{A} \mid f = \sum_{i=1}^{k} g_{i} \cdot h_{i} , g_{i}, h_{i} \in \mathbf{m}(\mathbf{x_{0}}), i = 1, ..., k , k \ge 1 \}.$$

Following the characterization given in Theorem 4.1 we say that an element $f \in \text{Lip}(X, d)$ has an "(algebraic) critical point" at $x_0 \in X$ if and only if $f(x) - f(x_0) \in \mathcal{F}(\mathcal{A})(x_0)$.

First we show:

Proposition 5.1. Let (X, d) be a metric space and $x_0 \in X$. Then for every proper subalgebra \mathbf{a} with $\mathbf{1} \in \mathbf{a}$ and $\mathbf{m}^2(\mathbf{x_0}) \subset \mathbf{a} \subset \mathcal{A} = \operatorname{Lip}(X, d)$ there exists a nontrivial point derivation $D \in \operatorname{Der}_{x_0}(\operatorname{Lip}(X, d)) \setminus \{0\}$ with

$$\mathbf{a} \subset \ker(D) = \{ f \in \operatorname{Lip}(X, d) \mid D(f) = 0 \}.$$

Moreover $\ker(D) = \{f \in \operatorname{Lip}(X, d) \mid D(f) = 0\}$ is a maximal subalgebra.

Proof. Let $\mathbf{a} \subset \mathcal{A} = \operatorname{Lip}(X, d)$ be a proper subalgebra. Then \mathbf{a} is also a proper linear subspace of $\operatorname{Lip}(X, d)$ and hence there exists a hyperspace F, i.e. a linear subspace of codimension 1 with $\mathbf{a} \subset F$. Since $\mathbf{1} \in \mathbf{a}$ and $\mathbf{m}^2(\mathbf{x_0}) \subset \mathbf{a} \subset \mathcal{A} = \operatorname{Lip}(X, d)$ we have by Proposition 3.2 that the canonical projection $\pi : \operatorname{Lip}(X, d) \longrightarrow \operatorname{Lip}(X, d)/_F \simeq \mathbb{R}$ is a point derivation at $x_0 \in X$.

Now change the notation and put $D = \pi$. Then we show that $\ker(D)$ is a subalgebra of $\operatorname{Lip}(X, d)$. Namely if $f, g \in \ker(D)$ then obviously $f + g \in \ker(D)$ and from the Leibniz rule follows $fg \in \ker(D)$ since $D(fg) = f(x_0)Dg + g(x_0)Df = 0$.

From the construction follows, that $\ker(D)$ is maximal.

Now we use the explicit representations of point derivations given in Proposition 3.3 and Proposition 3.4.

Let us denote by $\mathcal{F}(\operatorname{Lip}(X,d))(x_0)^0 = \bigcap_{D_w = \operatorname{LIM}(T_w), w \in W_{x_0}, \operatorname{LIM} \in \operatorname{Lim}} \ker(D_w).$ Then we have:

Proposition 5.2. Let $D \in \text{Der}_{x_0}(\text{Lip}(X, d))$ be a point derivation. Then for every $f \in \mathcal{F}(\text{Lip}(X, d))(x_0)^0$ holds D(f) = 0.

Proof. By Proposition 3.4 we have

$$\operatorname{Der}_{x_0}(\operatorname{Lip}(X,d)) = \operatorname{cl}(\operatorname{span}\{D_w = \operatorname{LIM}(T_w) \mid w \in \mathcal{W}_{x_0}\}),$$

where "cl span" denotes the weak-*-closure of the linear hull in $\operatorname{Lip}(X, d)'$.

If $D \in \text{span}\{D_w = \text{LIM}(T_w) \mid w \in \mathcal{W}_{x_0}\}$ this follows immediately from the definition of $\mathcal{F}(\text{Lip}(X, d))(x_0)^0$.

Now assume that $D \in \operatorname{Der}_{x_0}(\operatorname{Lip}(X, d))$ is a proper weak-*-accumulation point of span{ $D_w = \operatorname{LIM}(T_w) \mid w \in W_{x_0}$ }. Then for every $\varepsilon > 0$ and arbitrary points $f_1, \ldots, f_k \in \operatorname{Lip}(X, d)$ there exists a $D_w = \operatorname{LIM}(T_w)$ with $w \in W_{x_0}$ and $\operatorname{LIM} \in \operatorname{Lim}$ such that $D_w - D \in U_{f_1,\ldots,f_k,\varepsilon}$ where $U_{f_1,\ldots,f_k,\varepsilon} = \left\{ l \in \operatorname{Lip}(X, d)' \mid |l(f_i)| < \varepsilon \right\}$ is a weak-*-neighborhood of $0 \in \operatorname{Lip}(X, d)'$.

Let us now assume that our statement is not true. Then there exists an element $f^* \in \mathcal{F}(\operatorname{Lip}(X,d))(x_0)^0$ with $|D(f^*)| = c > 0$. Now let $\varepsilon = \frac{c}{2}$ and choose arbitrary elements $f_2, \ldots, f_k \in \operatorname{Lip}(X,d)$. Then for the weak-*-neighborhood of $0 \in \operatorname{Lip}(X,d)'$ given by $U_{f^*,f_2,\ldots,f_k,\varepsilon}$ there exists a $D_w = \operatorname{LIM}(T_w)$ such that $D_w - D \in U_{f^*,f_2,\ldots,f_k,\varepsilon}$. For the element $f^* \in \mathcal{F}(\operatorname{Lip}(X,d))(x_0)^0$ this implies: $c = |D(f^*)||D(f^*) - D_w(f^*)| < \varepsilon = \frac{c}{2}$ which is a contradiction.

The above two propositions imply that $\mathcal{F}(\operatorname{Lip}(X,d))(x_0) = \mathcal{F}(\operatorname{Lip}(X,d))(x_0)^0$. Finally we prove our main result:

Theorem 5.3. Let $x_0 \in X$ be a nonisolated point of a metric space (X, d). Then $f \in \operatorname{Lip}(X, d)$ has an algebraic critical point in $x_0 \in X$ if and only if for every point sequence $w := (x_n, y_n)_{n \in \mathbb{N}} \subset (X \times X) \setminus \Delta = \{(s, t) \in X \times X \mid s \neq t\}$ which converges to the point (x_0, x_0) , the corresponding sequence of slopes of f given by $T_w(f) := \left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)}\right)_{n \in \mathbb{N}} \in \mathbf{1}^{\infty}$ converges to zero.

Proof. By the above statements $f \in \operatorname{Lip}(X, d)$ has an algebraic critical point in $x_0 \in X$ if and only if D(f) = 0 for all point derivations $D \in \operatorname{Der}_{x_0}(\operatorname{Lip}(X, d)) \setminus \{0\}$.

Now by the characterization of G.G. Lorentz [5] on almost convergent sequences, that are bounded real sequence $(a_n)_{n\in\mathbb{N}}$ for which all translation invariant Banach limits have the same value $L \in \mathbb{R}$, we have that for every $\varepsilon > 0$ there exists a $p_0 \in \mathbb{N}$ so that for all $p > p_0$ and for all $n \in \mathbb{N}$ the condition

$$\left|\frac{a_n + \ldots + x_{a+p-1}}{p} - L\right| < \varepsilon$$

holds. In our case L = 0 which means that for every $\varepsilon > 0$ there exists a $p_0 \in \mathbb{N}$ so that for all $p > p_0$ and for all $n \in \mathbb{N}$ the condition

$$\left|\frac{\left(\frac{f(y_n)-f(x_n)}{d(y_n,x_n)}\right) + \ldots + \left(\frac{f(y_{n+p-1})-f(x_{n+p-1})}{d(y_{n+p-1},x_{n+p-1})}\right)}{p}\right| < \varepsilon \tag{(*)}$$

holds. Since condition (*) has to hold for every point sequence $w := (x_n, y_n)_{n \in \mathbb{N}} \subset (X \times X) \setminus \Delta = \{(s, t) \in X \times X \mid s \neq t\}$ which converges to the point (x_0, x_0) , this implies, that the corresponding sequence of slopes $\left(\frac{f(y_n)-f(x_n)}{d(y_n,x_n)}\right)_{n \in \mathbb{N}} \in \mathbb{I}^{\infty}$ converges to zero.

The converse direction is obvious, because if for every point sequence $w := (x_n, y_n)_{n \in \mathbb{N}} \subset (X \times X) \setminus \Delta = \{(s, t) \in X \times X \mid s \neq t\}$ which converges to the point (x_0, x_0) , the corresponding sequence of slopes of f given by $T_w(f) := \left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)}\right)_{n \in \mathbb{N}} \in \mathbf{I}^\infty$ converges to zero, then condition (*) is satisfied. \Box

For Lipschitz functions on open sets in normed linear spaces, this implies that the gradient is zero, as we shall prove now:

Proposition 5.4. Let $(E, \|\cdot\|_E)$ be a real normed vector space, $U \subset E$ an open subset, $x_0 \in U$, and $f \in \operatorname{Lip}(U, d)$, where the metric d on U is induced by the norm. If D(f) = 0 holds for every $D \in \operatorname{Der}_{x_0}(\operatorname{Lip}(U, d))$ then $f \in \operatorname{Lip}(U, d)$ is Fréchet differentiable at $x_0 \in X$ and its differential vanishes, i.e., $df\Big|_{x_0} = 0$.

Proof. Let us assume that the function $f \in \operatorname{Lip}(U, d)$ is not differentiable in $x_0 \in U$. Then for every $l \in E'$ there exists an $\varepsilon_l > 0$ such that for all $\delta > 0$ there exists a vector $h_{\delta} \in E$ with $||h_{\delta}||_E \leq \delta$ and

$$|f(x_0+h_{\delta})-f(x_0)-l(h_{\delta})|>\varepsilon_l||h_{\delta}||_E.$$

For the special case $l = 0 \in E'$ and $\delta = \frac{1}{n}$ we get with $h_n := h_{\delta}$ that there exists an $\varepsilon_0 > 0$ such that for $n \in \mathbb{N}$

$$\frac{|f(x_0+h_n)-f(x_0)|}{\|h_n\|_E} > \varepsilon_0.$$

Now choose a subsequence $(n_k)_{k \in \mathbb{N}}$ such that for all $k \in \mathbb{N}$ the nominator $f(x_0 + h_{n_k}) - f(x_0)$ has a constant sign, for instance $f(x_0 + h_{n_k}) - f(x_0) > 0$.

For the sequence

$$\hat{w} := (x_0, x_0 + h_{n_k})_{k \in \mathbb{N}} \in \mathcal{W}_{x_0}$$

holds then

$$D_{\hat{w}}(f) = \text{LIM}(T_{\hat{w}}(f)) > \varepsilon_0$$

since every translation invariant Banach limit of a bounded sequence is greater or equal then the lower limit of this sequence. Hence there exists a point derivation at $x_0 \in U$ with $D_{\hat{w}}(f) \neq 0$, which is a contradiction.

In the case of Lipschitz functions, the algebraic characterization of a critical is stronger than the critical point concept of Bonnisseau and Cornet [2] and of Clarke [3]. For instance the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) := x^2 \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0 is differentiable in $x_0 = 0$ with $f'(x_0) = 0$, but $x_0 = 0$ is not a critical point in the algebraic sense.

6. Conclusion

From the coordinate free characterization of Newns and Walker [6] of critical points of C^{∞} -functions, we derive for Lipschitz functions on metric space a characterization of critical points, which is stronger than the concept of Clarke [3]. According to this characterization one has for a nonisolated point $x_0 \in X$ of a metric space (X, d) the following condition: Namely, a Lipschitz function $f \in \operatorname{Lip}(X, d)$ has an algebraic critical point in $x_0 \in X$ if and only if for every point sequence $w := (x_n, y_n)_{n \in \mathbb{N}} \subset (X \times X) \setminus \Delta = \{(s, t) \in X \times X \mid s \neq t\}$ which converges to the point (x_0, x_0) , the corresponding sequence of slopes of f given by $T_w(f) := \left(\frac{f(y_n) - f(x_n)}{d(y_n, x_n)}\right)_{n \in \mathbb{N}} \in \mathbb{I}^\infty$ converges to zero.

References

- R. Arens and J. Eells, Jr. On embedding uniform and topological spaces, Pacific Journ. Math. 6 (1956), 397–403.
- [2] J.-M. Bonnisseau and B. Cornet, Fixed-point theorems and Morse's lemma for Lipschitzian functions, Journ. Math. Anal. Appl. 146 (1990), 318–332.
- [3] F. H. Clarke, Optimization and Nonsmooth Analysis, CRM, Université de Montréal, Quebec, Canada, 1989.
- [4] N. Dunford and J. T. Schwartz, *Linear Operators: Part I*, Interscience Publishers, Inc., New York, 1957.
- [5] G. G. Lorentz, A contribution to the Theory of divergent sequences, Acta Math. 80 (1948), 167–190
- [6] N. Newns and A. Walker, Tangent planes to differentiable manifolds, Journal London Math. Soc. 31 (1956), 400–407.
- [7] D. Pallaschke and R. Urbański, Critical points and point derivations for Lipschitz functions, Comment. Math. 26 (1998),165 – 172.
- [8] D. R. Sherbert, The structure of ideals and point derivations in Banach Algebras of Lipschitz functions, Trans AMS 111 (1964), 240–272.
- [9] I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.

Manuscript received August 27 2017 revised November 3 2017

J. Grzybowski

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, PL-61-614 Poznań, Poland

E-mail address: jgrz@amu.edu.pl

D. Pallaschke

Institute of Operations Research, University of Karlsruhe, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany

E-mail address: diethard.pallaschke@kit.edu

R. Urbański

Faculty of Mathematics and Computer Science, Adam Mickiewicz University , PL-61-614 Poznań, Poland

E-mail address: rich@amu.edu.pl