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CRITICAL POINTS AND POINT DERIVATIONS OF LIPSCHITZ
FUNCTIONS

JERZY GRZYBOWSKI, DIETHARD PALLASCHKE, AND RYSZARD URBANSKI

ABSTRACT. For an open subset U C R™ and a point 9 € U N. Newns and A.
Walker (see [6]) stated in the appendix of their paper a coordinate free character-
ization of critical points of C°°-functions, which can also be seen as an algebraic
characterization of the algebra of all C°°-functions, which are defined on U and
have xop € U as a critical point. In this paper, we study the characterization of
N. Newns and A. Walker for the Banach algebra Lip(X, d) of Lipschitz functions
which are defined on an open subset X C E of an real normed vector space
(E, || - |)- This paper is a continuation of our previous work, which was already
published partially in [7].

1. INTRODUCTION

Let U be an open subset of R™, €"(U) the real algebra of all C"-functions, r > 2,
defined on U and zp € U. In 1956 N. Newns and A. Walker ([6]) gave a purely
algebraic characterization of the subalgebra

Cooll)={f€C(U) | Vf| =0}cC(U)

for of all those functions, which have g € U as a critical point, i.e. for which the
gradient vanishes in xg. They showed that C2° (U) is the intersection of all maximal
subalgebras of C*°(U) which contain the ideal of all functions, which vanish in xg
of “second order”.

We assume throughout our paper that every subalgebra contains the unit element.
This paper is a continuation of a previously published paper [7] by the two second
authors in Comentationes Mathematica.

We begin our paper with a short description of the Banach algebra Lip(X,d) of
Lipschitz functions on a metric space (X, d). For these algebras D. R. Sherbert [8]
gave an algebraic characterization of all point derivations . In particularly Sherbert
proved ([8], Lemma 9.4) that all point derivations for Lipschitz functions are given
by the evaluation of sequences of special slopes of a Lipschitz function by Banach
limits. In the last two sections new results are presented which could be of interest
for readers from analysis. The previous sections however contain a discussion of
results known in the literature.
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2. THE LIPSCHITZ ALGEBRA

We follow the presentation given in [8]. Let (X,d) be a metric space. Then a
function f : X — R is Lipschitzian if there exists a K > 0 such that for all z,y € X
the inequality |f(z) — f(y)| < Kd(z,y) holds. The set of all bounded Lipschitz
functions defined on (X, d) is a real algebra and will be denoted by Lip(X,d). For
f € Lip(X, d) the following two expressions exist:

151 = sup{ T TNy X, 2y} and [l = sup(lF@)] < 2 € X
Now

|1+ Lip(X, d) — Ry
with

1A= 1flla + Il
is a norm, and in [1] it is shown, that (Lip(X,d), | -||) is always the dual space of
some normed linear space and hence complete. Moreover, (Lip(X,d), || - ||) is also

a Banach algebra, i.e, for all f, g € Lip(X,d) the inequality || fg| < || f|l llg| holds.
This can be seen as follows: For f,g € Lip(X,d) and z,y € X, = # y the inequality

[(f9)(x) — (f9)(y)] l9(x) — g(y)| |f(x) = f(y)]
d(z,y) <1f@) d(z,y) | d(z,y)

+ 1g(y)

implies
1fglla < [[fllec - llglla + llglloc - I flla

and therefore

Ifgll = Nfgllec + [l fglla

< flleo - Nglloe + 1 lloo - llglla + llglloo - [[flla
= | flloo - Clglloc + liglla) + liglloc - [[flla
< [IFIF-Tgll-

The Banach algebra (Lip(X,d), || - ||) will be called the Lipschitz algebra on (X,d).
The unit element is the characteristic function on X, which is denoted by 1.

3. POINT DERIVATIONS FOR LIPSCHITZ FUNCTIONS

A continuous linear functional which satisfies the Leibniz rule is called a point
derivation.

Definition 3.1. Let (X,d) be a metric space and xyp € X. A continuous linear

functional [ € Lip(X, d)/ is said to be a point derivation at zg € X, if and only if
for all f,g € Lip(X,d) the Leibniz rule, i.e.,

I(f9) = [flxo)-Ug) + gl(xo)-U([)

is satisfied at xg € X.



CRITICAL POINTS OF LIPSCHITZ FUNCTIONS 37

With 1 € Lip(X,d) we denote the constant function with value one and de-
note furthermore with ideal m(xg) = {f € Lip(X,d) | f(xzo) = 0} of functions,
vanishing in zg € X and its algebraic square by

k
m?(xo) = {f € Lip(X,d) | f= gi-hi gihi €m(xq), i=1,...k, k>1}
i=1

I. Singer and J. Wermer have shown in [9] that point derivations can indeed be
characterized by their values for the unit function and their values on the latter
ideal.
Proposition 3.2. Let (X,d) be a metric space and xg € X.
Then for a continuous linear functional | € Lip(X,d) holds

i) (1) = 0,

i) l‘mQ(xo) = 0.
if and only if for all f,g € Lip(X,d) Leibniz’s rule

I(fg) = flzo)-Ulg) + g(xo)-1(f)
is satisfied at the point xog € X.

Proof. “ <=7 Let us assume, that the functional [ € Lip(X, d)/ satisfies Leibniz’s
rule.
Since 12 = 1, Leibniz’s rule implies for f = g = 1 that [(1) = 2I(1), which means

that [(1) = 0.
Now assume, that f,g € m(xg). Then I(fg) = f(xo)-1(g9) + g(zo)-I(f) =0, and
since the functional [ is continuous, it follows that I/m?(x¢) = 0.

“ =" Let us assume, that the continuous linear functional [ satisfies conditions
i) and ii). Then for every f, g € Lip(X, d) holds

I(fg) = U(fg— f(xo)g(zo)1)
= U(f = f(@0)1) - (g — g(z0)1)
+/f(x0)(g — 9(x0)1) + g(x0)(f — f(z0)1))
= U((f = f(z0)1) - (9 — 9(z0)1)) + f(z0) - U9 — g(z0)1)
+g(zo) - 1(f = f(20)1)
= [f(@o) - U(g — g(x0)1) + g(xo) - I(f — f(x0)1)
= flzo) - Ug) + g(xo) - 1(f),
since (f — f(x0)1) - (9 — g(w0)1) € m*(xo). O
The linear space of all point derivations at xp € X will be denoted by
Der,, (Lip(X,d)) and is a weak-*-closed subspace of Lip(X, d)/. D. R. Sherbert
determines in [8] all point derivations in Lip(X,d). We will now repeat his con-
struction:
Let us consider the real Banach space
1°:= {2 := (Tn)peny | (#n),eny bounded sequence }

endowed with the supremum norm ||z||ec := sup,cy |Zn|. Let ¢ C 1°° denote the
closed subset of all convergent sequences, and lim : ¢ — R the continuous linear
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functional which assigns to every convergent sequence its limit. We consider a
norm-preserving Hahn-Banach extension “LIM” of the functional “lim” to 1*° as
indicated:

c ———— [®

lim
LIM

with the following additional properties:
i) LIM;, 00y = LIMy s 00Tn1,
i) liminf,, oo zn < LIM,, 00y, < limsup,,_, . Zn,
where we used the notation LIM, .., = LIM(z) for z := (2,),cy € 1°°. This
functionals “LIM” are called translation invariant Banach limits. For its construc-
tion , we refer to [4], Chapter 11.4, Exercise 22.
We will denote the linear space of all translation invariant Banach limits by
Lim C (1°°)" and for a single Banach limit LIM € Lim.
Let 29 € X be a nonisolated point and w := (2, Yn) ey C {(5,1) € X x X | s #
t } which converges to the point (z¢, o). Then for the sequence of slopes of f given

by (%)neN7 which is bounded, the mapping

is a continuous linear operator, since || Ty (f)|lco < 1 flla < [ f]]-

Now we repeat the proof of D. Sherbert, that for a translation invariant Banach
limit the continuous linear functional

Dy : Lip(X, d) — R with Dy(f) = LIM(Tw(f))
is a point derivation at zp € X (see [8] Lemma 9.4). For abbreviation let us put
A:={(s,t) e X x X | s=t}.

Proposition 3.3. Let 29 € X be a nonisolated point of a metric space (X,d) and
W = (Tn, Yn)peny € (X x X)\A = {(s,t) € X x X | s# 1} a sequence, which
converges to the point (xg,xg). Then for every translation invariant Banach limit
LIM : I*®* — R the continuous linear functional

Dy, : Lip(X,d) — R with Dy(f) = LIM(T,(f))
is a point derivation for the Lipschitz algebra (Lip(X,d),| -||) at zp € X.

Proof. First observe, that for every convergent sequence (an),.y € ¢ and
every bounded sequence (b,),.ny € 1% the formula LIM, .oo(an - bn)
= limy, 00 @y, - LIM,, 5000, holds.
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Namely put «:=lim, o a,. Then LIM,o(ay-b, —ab,) = 0, since
(an - by — ab”)nEN is a sequence converging to zero and hence LIM,,_oo(ay - by)
= aLIM,,00bn.

Now let f, g € Lip(X,d) be given. From the above observation follows that

Dy(fg) = LIM(Tw(f9))

_ (f9)(yn) — (fg)(@n)

e G e

_ 9(Yn) — g9(xn) T fyn) — flzn)

= LIM, 00 (f(yn)d(ymxn + 9( ”)—d(yn,xn) )

_ 9(yn) — f(yn) — f(xn)
B f(-rO)LIMn—)oo ynawn ) - g o LIMn—>OO ( d(ynvxn) )

= f(x0)LIM(To(g)) + g (o) LIM(To (f
= f(@0)Duw(g) + 9(x0) Du(f)-

Since D,, is continuous, it is a point derivation at zg € X. O
Now the following representation theorem holds (see [8], Theorem 9.5).

Proposition 3.4. Let g € X be a nonisolated point of a metric space (X,d) and
Weo = A{w := (Zn:Yn)pey € X x X\ A | limz, = limy, = xo }. Moreover let
LIM : I*® — R be a fized translation invariant Banach limit . Then

Der,, (Lip(X,d)) = cl (span{D,, = LIM(Ty,) | w € Wy, }),

where ”cl span” denotes the weak-*-closure of the linear hull in Lip(X, d)l.

4. CHARACTERIZATION OF NEWNS AND WALKER

Newns and Walker [6] proved in 1956 a coordinate free characterization of critical
points of C'*°-functions intrinsically in algebraic terms :

Let U C R™ be an open subset and zp € U and let 05, : C>°(U) — R be given by
320 (f) = f(x0). As above consider the ideal m(xg) of the algebra A = C*°(U) given
by m(xg) = {f € A | 64,(f) = 0}. Let m?(xq) be the algebraic square of the ideal
m(xg), i.e.

k
m2<X0) = {f €A ’ f - Zgz ) hz 7gi7hi € m(X0)7 L= 17"'7k ’ k > 1}
i=1
Consider now the intersection of all maximal subalgebras a C A, which contain
m?(xg), In analogy to Frattini groups, (Frattini (1885)), this set is called a Frattini
algebra of A at xg € X and denoted by

ﬂ{ a | m?%(xg) C aC A, aisamazimal closed subalgebra}

In this notation they proved in the appendix of their paper [6]:

Theorem 4.1. Let U C R”™ be an open subset and let xg € U. A function f €
A = C®(U) has a critical point in xo € U if and only if f(x) — f(xo) € F(A)(zo).
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Let us point out, that the proof of this Theorem is based on directional derivatives
which are not in a close analogy to point derivations. This can for instance be seen
in the case of the function f : R — R defined by f(z) := 2?sini for z # 0
and f(0) = 0. This function is differentiable in xyp = 0, but has in zp = 0 point
derivatives with values in the interval [—1,1] (see also the remark on p. 266 in [8]).

5. CRITICAL POINTS OF LIPSCHITZ FUNCTIONS

In this section we consider the algebraic characterization of critical points for
Lipschitz functions. Therefore we will consider for a metric space (X, d) the algebra
A = Lip(X,d) of all bounded Lipschitz functions defined on (X, d). Moreover we
will assume that zyp € X is a nonisolated point of a metric space (X, d) and that

0z : Lip(X,d) = R is defined by d,,(f) = f(xo).

As previously we consider for A = Lip(X,d) the ideal m(xo) = {f € A | 5, (f) =
0} and its algebraic square

k
m’(xo) ={f €A | f=) gi-hi,gihicm(xo), i=1,.k, k>1}.
i=1
Following the characterization given in Theorem 4.1 we say that an element f €
Lip(X,d) has an "(algebraic) critical point” at xo € X if and only if f(z) — f(zo) €
F(A)(xo)-
First we show:

Proposition 5.1. Let (X,d) be a metric space and xo € X. Then for every proper
subalgebra a with 1 € a and m?(xg) C a C A = Lip(X,d) there exists a nontrivial
point derivation D € Der,, (Lip(X,d)) \ {0} with

a C ker(D) = {f € Lip(X,d) | D(f) = 0}.

Moreover ker(D) = {f € Lip(X,d) | D(f) =0} is a mazimal subalgebra.

Proof. Let a C A = Lip(X, d) be a proper subalgebra. Then a is also a proper linear
subspace of Lip(X, d) and hence there exists a hyperspace F, i.e. a linear subspace of
codimension 1 with a C F. Since 1 € a and m?(x¢) C a C A = Lip(X, d) we have
by Proposition 3.2 that the canonical projection 7 : Lip(X,d) — Lip(X,d)/. ~ R
is a point derivation at xzg € X.

Now change the notation and put D = 7. Then we show that ker(D) is a subal-
gebra of Lip(X, d). Namely if f, g € ker(D) then obviously f+ g € ker(D) and from
the Leibniz rule follows fg € ker(D) since D(fg) = f(x0)Dg + g(xo)Df = 0.

From the construction follows, that ker(D) is maximal. O

Now we use the explicit representations of point derivations given in Proposition
3.3 and Proposition 3.4.

Let us denote by F(Lip(X, d))(z0)® = Np, = LIM(Tw), w € Wq, LIM € Lim ker(Dy).
Then we have:

Proposition 5.2. Let D € Der,, (Lip(X,d)) be a point derivation. Then for every
f € F(Lip(X,d))(x0)? holds D(f) = 0.
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Proof. By Proposition 3.4 we have
Der,, (Lip(X,d)) = cl (span{D,, = LIM(Ty,) | w € Wy, }),

where ”cl span” denotes the weak-*-closure of the linear hull in Lip(X,d)".

If D € span{D,, = LIM(T,,) | w € Wy, } this follows immediately from the
definition of F(Lip(X,d))(x0)".

Now assume that D € Der,,(Lip(X,d)) is a proper weak-*-accumulation point
of span{D,, = LIM(T,y) | w € Wy, }. Then for every ¢ > 0 and arbitrary points
fi, .oy f € Lip(X, d) there exists a D,, = LIM(T,,) with w € Wy, and LIM € Lim

such that Dy, — D € Uy, j, . where Uy, ;. = {z e Lip(X,d) | |I(f;)| < 5} is

a weak-*-neighborhood of 0 € Lip(X,d)".

Let us now assume that our statement is not true. Then there exists an element
f* € F(Lip(X,d))(xo)° with |[D(f*)] = ¢ > 0. Now let ¢ = £ and choose arbitrary
elements fa, ..., fx € Lip(X,d). Then for the weak-*-neighborhood of 0 € Lip(X, d)
given by Ug« ¢, ¢, - there exists a D,, = LIM(T,,) such that Dy,—D € U= ¢, ¢, c-
For the element f* € F(Lip(X,d))(wo)" this implies: ¢ = |D(f*)||D(f*)—Dw(f*)| <
€ = 5 which is a contradiction. O

The above two propositions imply that F(Lip(X,d))(zo) = F(Lip(X,d))(zo)°.
Finally we prove our main result:

Theorem 5.3. Let xg € X be a nonisolated point of a metric space (X,d). Then
f € Lip(X,d) has an algebraic critical point in o € X if and only if for every point
sequence W := (Tp,Yn)peny C (X X X)\A = {(s,t) € X x X | s #t } which
converges to the point (xg,zg), the corresponding sequence of slopes of f given by

Tw(f) = (%)ng\le 1°° converges to zero.

Proof. By the above statements f € Lip(X,d) has an algebraic critical point in
xo € X if and only if D(f) = 0 for all point derivations D € Der,,(Lip(X,d)) \ {0}.

Now by the characterization of G.G. Lorentz [5] on almost convergent sequences,
that are bounded real sequence (ay,),cy for which all translation invariant Banach
limits have the same value L € R, we have that for every € > 0 there exists a pg € N
so that for all p > py and for all n € N the condition

ap + ...+ Tayp-1
p

holds. In our case L = 0 which means that for every £ > 0 there exists a pg € N so
that for all p > pg and for all n € N the condition

(f(yn)—f(xn)) .+ (f(yn+p—1)—f(wn+p—1))

d(ynra;H) d(yn+p717$n+p71)

—Li<e

» <€ ()

holds. Since condition (*) has to hold for every point sequence w := (Zpn, Yn),eny C
(X xX)\A={(s,t) e X x X | s+#t} which converges to the point (x¢,zo), this

(yn)—f(2n)

implies, that the corresponding sequence of slopes (f Z(y ) ) Ne 1°° converges
nyn ne

to zero.
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The converse direction is obvious, because if for every point sequence
W = (T Yn)pey € (X X X)\A = {(s,t) € X x X | s # t } which con-
verges to the point (zg,zp), the corresponding sequence of slopes of f given by

Tw(f) = (%)%NE 1°° converges to zero, then condition (x) is satisfied. [

For Lipschitz functions on open sets in normed linear spaces, this implies that
the gradient is zero, as we shall prove now:

Proposition 5.4. Let (E,| - ||g) be a real normed vector space, U C E an open
subset, xg € U, and f € Lip(U,d), where the metric d on U is induced by the norm.
If D(f) = 0 holds for every D € Derg,(Lip(U,d)) then f € Lip(U,d) is Fréchet

differentiable at vy € X and its differential vanishes, i.e., df’ =0.
o

Proof. Let us assume that the function f € Lip(U, d) is not differentiable in o € U.
Then for every | € E' there exists an &; > 0 such that for all § > 0 there exists a
vector hs € E with ||hs||p < 0 and

|f(zo + hs) — f(xo) — U(hs)| > eillhs]| -

For the special case [ =0 € F and 6 =
go > 0 such that for n € N

% we get with h, := hs that there exists an
|f (@0 + hn) — f(0)]
1|
Now choose a subsequence (ny);cy such that for all & € N the nominator f(zg +
hn, ) — f(zo) has a constant sign, for instance f(zo + hy, ) — f(zo) > 0.

> £9.

For the sequence
w = (xg,x0 + h”k)k;eN € Wy,
holds then
Dy (f) = LIM(T3(f)) > o,
since every translation invariant Banach limit of a bounded sequence is greater or

equal then the lower limit of this sequence. Hence there exists a point derivation at
xo € U with Dy (f) # 0, which is a contradiction. O

In the case of Lipschitz functions, the algebraic characterization of a critical is
stronger than the critical point concept of Bonnisseau and Cornet [2] and of Clarke
[3]. For instance the function f : R — R defined by f(z) := z%sin 2 for = # 0 and
f(0) = 0 is differentiable in g = 0 with f’(xz¢) = 0, but xg = 0 is not a critical
point in the algebraic sense.

6. CONCLUSION

From the coordinate free characterization of Newns and Walker [6] of critical
points of C*°-functions, we derive for Lipschitz functions on metric space a char-
acterization of critical points, which is stronger than the concept of Clarke [3].
According to this charaterization one has for a nonisolated point xg € X of a metric
space (X, d) the following condition:
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Namely, a Lipschitz function f € Lip(X, d) has an algebraic critical point in xy € X
if and only if for every point sequence w := (Tpn, yn),eny C (X x X)\ A = {(s,1) €
X x X | s#t } which converges to the point (zg, ), the corresponding sequence

of slopes of f given by T, (f) := (%) NG 1°° converges to zero.
TS ne
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