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2. The Lipschitz algebra

We follow the presentation given in [8]. Let (X, d) be a metric space. Then a
function f : X −→ R is Lipschitzian if there exists a K ≥ 0 such that for all x, y ∈ X
the inequality |f(x) − f(y)| ≤ Kd(x, y) holds. The set of all bounded Lipschitz
functions defined on (X, d) is a real algebra and will be denoted by Lip(X, d). For
f ∈ Lip(X, d) the following two expressions exist:

∥f∥d := sup{|f(x)− f(y)|
d(x, y)

: x, y ∈ X, x ̸= y } and ∥f∥∞ := sup{|f(x)| : x ∈ X }.

Now

∥ · ∥ : Lip(X, d) −→ R+

with

∥f∥ := ∥f∥d + ∥f∥∞
is a norm, and in [1] it is shown, that (Lip(X, d), ∥ · ∥) is always the dual space of
some normed linear space and hence complete. Moreover, (Lip(X, d), ∥ · ∥) is also
a Banach algebra, i.e, for all f, g ∈ Lip(X, d) the inequality ∥fg∥ ≤ ∥f∥ ∥g∥ holds.
This can be seen as follows: For f, g ∈ Lip(X, d) and x, y ∈ X, x ̸= y the inequality

|(fg)(x)− (fg)(y)|
d(x, y)

≤ |f(x)| |g(x)− g(y)|
d(x, y)

+ |g(y)| |f(x)− f(y)|
d(x, y)

implies

∥fg∥d ≤ ∥f∥∞ · ∥g∥d + ∥g∥∞ · ∥f∥d
and therefore

∥fg∥ = ∥fg∥∞ + ∥fg∥d
≤ ∥f∥∞ · ∥g∥∞ + ∥f∥∞ · ∥g∥d + ∥g∥∞ · ∥f∥d
= ∥f∥∞ · (∥g∥∞ + ∥g∥d) + ∥g∥∞ · ∥f∥d
≤ ∥f∥ · ∥g∥.

The Banach algebra (Lip(X, d), ∥ · ∥) will be called the Lipschitz algebra on (X, d).
The unit element is the characteristic function on X, which is denoted by 1.

3. Point derivations for Lipschitz functions

A continuous linear functional which satisfies the Leibniz rule is called a point
derivation.

Definition 3.1. Let (X, d) be a metric space and x0 ∈ X. A continuous linear

functional l ∈ Lip(X, d)
′
is said to be a point derivation at x0 ∈ X, if and only if

for all f, g ∈ Lip(X, d) the Leibniz rule, i.e.,

l(fg) = f(x0) · l(g) + g(x0) · l(f)

is satisfied at x0 ∈ X.
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With 1 ∈ Lip(X, d) we denote the constant function with value one and de-
note furthermore with ideal m(x0) = {f ∈ Lip(X, d) | f(x0) = 0} of functions,
vanishing in x0 ∈ X and its algebraic square by

m2(x0) = {f ∈ Lip(X, d) | f =

k∑
i=1

gi · hi , gi, hi ∈ m(x0), i = 1, ..., k , k ≥ 1}.

I. Singer and J. Wermer have shown in [9] that point derivations can indeed be
characterized by their values for the unit function and their values on the latter
ideal.

Proposition 3.2. Let (X, d) be a metric space and x0 ∈ X.

Then for a continuous linear functional l ∈ Lip(X, d)
′
holds

i) l(1) = 0,

ii) l
∣∣∣m2(x0) = 0.

if and only if for all f, g ∈ Lip(X, d) Leibniz’s rule

l(fg) = f(x0) · l(g) + g(x0) · l(f)
is satisfied at the point x0 ∈ X.

Proof. “ ⇐= ” Let us assume, that the functional l ∈ Lip(X, d)
′
satisfies Leibniz’s

rule.
Since 12 = 1, Leibniz’s rule implies for f = g = 1 that l(1) = 2l(1), which means

that l(1) = 0.
Now assume, that f, g ∈ m(x0). Then l(fg) = f(x0) · l(g) + g(x0) · l(f) = 0, and
since the functional l is continuous, it follows that l|m2(x0) = 0.

“ =⇒ ” Let us assume, that the continuous linear functional l satisfies conditions
i) and ii). Then for every f, g ∈ Lip(X, d) holds

l(fg) = l(fg − f(x0)g(x0)1)

= l((f − f(x0)1) · (g − g(x0)1)

+f(x0)(g − g(x0)1) + g(x0)(f − f(x0)1))

= l((f − f(x0)1) · (g − g(x0)1)) + f(x0) · l(g − g(x0)1)

+g(x0) · l(f − f(x0)1)

= f(x0) · l(g − g(x0)1) + g(x0) · l(f − f(x0)1)

= f(x0) · l(g) + g(x0) · l(f),
since (f − f(x0)1) · (g − g(x0)1) ∈ m2(x0). □

The linear space of all point derivations at x0 ∈ X will be denoted by

Derx0(Lip(X, d)) and is a weak-*-closed subspace of Lip(X, d)
′
. D. R. Sherbert

determines in [8] all point derivations in Lip(X, d). We will now repeat his con-
struction:

Let us consider the real Banach space
l∞ := {x := (xn)n∈N | (xn)n∈N bounded sequence }

endowed with the supremum norm ∥x∥∞ := supn∈N |xn|. Let c ⊂ l∞ denote the
closed subset of all convergent sequences, and lim : c −→ R the continuous linear
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functional which assigns to every convergent sequence its limit. We consider a
norm-preserving Hahn-Banach extension “LIM” of the functional “lim” to l∞ as
indicated:

c -
⊂

l∞

?

LIM

R

Q
Q
Q
Q
Q
Q
Q
Qs

lim

with the following additional properties:

i) LIMn→∞xn = LIMn→∞xn+1,
ii) lim infn→∞ xn ≤ LIMn→∞xn ≤ lim supn→∞ xn,

where we used the notation LIMn→∞xn = LIM(x) for x := (xn)n∈N ∈ l∞. This
functionals “LIM” are called translation invariant Banach limits. For its construc-
tion , we refer to [4], Chapter II.4, Exercise 22.

We will denote the linear space of all translation invariant Banach limits by
Lim ⊂ (l∞)

′
and for a single Banach limit LIM ∈ Lim.

Let x0 ∈ X be a nonisolated point and w := (xn, yn)n∈N ⊂ {(s, t) ∈ X×X | s ̸=
t } which converges to the point (x0, x0). Then for the sequence of slopes of f given

by
(
f(yn)−f(xn)

d(yn,xn)

)
n∈N

, which is bounded, the mapping

Tw : Lip(X, d) −→ l∞ with Tw(f) :=

(
f(yn)− f(xn)

d(yn, xn)

)
n∈N

is a continuous linear operator, since ∥Tw(f)∥∞ ≤ ∥f∥d ≤ ∥f∥.
Now we repeat the proof of D. Sherbert, that for a translation invariant Banach

limit the continuous linear functional

Dw : Lip(X, d) −→ R with Dw(f) = LIM(Tw(f))

is a point derivation at x0 ∈ X (see [8] Lemma 9.4). For abbreviation let us put
∆ := {(s, t) ∈ X ×X | s = t}.

Proposition 3.3. Let x0 ∈ X be a nonisolated point of a metric space (X, d) and
w := (xn, yn)n∈N ⊂ (X × X) \ ∆ = {(s, t) ∈ X × X | s ̸= t } a sequence, which
converges to the point (x0, x0). Then for every translation invariant Banach limit
LIM : l∞ −→ R the continuous linear functional

Dw : Lip(X, d) −→ R with Dw(f) = LIM(Tw(f))

is a point derivation for the Lipschitz algebra (Lip(X, d), ∥ · ∥) at x0 ∈ X.

Proof. First observe, that for every convergent sequence (an)n∈N ∈ c and
every bounded sequence (bn)n∈N ∈ l∞ the formula LIMn→∞(an · bn)
= limn→∞ an · LIMn→∞bn holds.
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Namely put α := limn→∞ an. Then LIMn→∞(an · bn − αbn) = 0, since
(an · bn − αbn)n∈N is a sequence converging to zero and hence LIMn→∞(an · bn)
= αLIMn→∞bn.

Now let f, g ∈ Lip(X, d) be given. From the above observation follows that

Dw(fg) = LIM(Tw(fg))

= LIMn→∞

(
(fg)(yn)− (fg)(xn)

d(yn, xn)

)
= LIMn→∞

(
f(yn)

g(yn)− g(xn)

d(yn, xn)
+ g(xn)

f(yn)− f(xn)

d(yn, xn)

)
= f(x0)LIMn→∞

(
g(yn)− g(xn)

d(yn, xn)

)
+ g(x0)LIMn→∞

(
f(yn)− f(xn)

d(yn, xn)

)
= f(x0)LIM(Tw(g)) + g(x0)LIM(Tw(f))

= f(x0)Dw(g) + g(x0)Dw(f).

Since Dw is continuous, it is a point derivation at x0 ∈ X. □
Now the following representation theorem holds (see [8], Theorem 9.5).

Proposition 3.4. Let x0 ∈ X be a nonisolated point of a metric space (X, d) and
Wx0 := {w := (xn, yn)n∈N ⊂ X × X \ ∆ | limxn = lim yn = x0 }. Moreover let
LIM : l∞ −→ R be a fixed translation invariant Banach limit . Then

Derx0(Lip(X, d)) = cl (span{Dw = LIM(Tw) | w ∈ Wx0 }),

where ”cl span” denotes the weak-*-closure of the linear hull in Lip(X, d)
′
.

4. Characterization of Newns and Walker

Newns and Walker [6] proved in 1956 a coordinate free characterization of critical
points of C∞-functions intrinsically in algebraic terms :

Let U ⊆ Rn be an open subset and x0 ∈ U and let δx0 : C∞(U) → R be given by
δx0(f) = f(x0). As above consider the ideal m(x0) of the algebra A = C∞(U) given
by m(x0) = {f ∈ A | δx0(f) = 0}. Let m2(x0) be the algebraic square of the ideal
m(x0), i.e.

m2(x0) = {f ∈ A | f =

k∑
i=1

gi · hi , gi, hi ∈ m(x0), i = 1, ..., k , k ≥ 1}.

Consider now the intersection of all maximal subalgebras a ⊂ A, which contain
m2(x0), In analogy to Frattini groups, (Frattini (1885)), this set is called a Frattini
algebra of A at x0 ∈ X and denoted by

F(A)(x0) =
∩

{ a | m2(x0) ⊂ a ⊂ A, a is a maximal closed subalgebra}

In this notation they proved in the appendix of their paper [6]:

Theorem 4.1. Let U ⊆ Rn be an open subset and let x0 ∈ U. A function f ∈
A = C∞(U) has a critical point in x0 ∈ U if and only if f(x)− f(x0) ∈ F(A)(x0).
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Let us point out, that the proof of this Theorem is based on directional derivatives
which are not in a close analogy to point derivations. This can for instance be seen
in the case of the function f : R −→ R defined by f(x) := x2 sin 1

x for x ̸= 0
and f(0) = 0. This function is differentiable in x0 = 0, but has in x0 = 0 point
derivatives with values in the interval [−1, 1] (see also the remark on p. 266 in [8]).

5. Critical points of Lipschitz functions

In this section we consider the algebraic characterization of critical points for
Lipschitz functions. Therefore we will consider for a metric space (X, d) the algebra
A = Lip(X, d) of all bounded Lipschitz functions defined on (X, d). Moreover we
will assume that x0 ∈ X is a nonisolated point of a metric space (X, d) and that

δx0 : Lip(X, d) → R is defined by δx0(f) = f(x0).

As previously we consider for A = Lip(X, d) the ideal m(x0) = {f ∈ A | δx0(f) =
0} and its algebraic square

m2(x0) = {f ∈ A | f =

k∑
i=1

gi · hi , gi, hi ∈ m(x0), i = 1, ..., k , k ≥ 1}.

Following the characterization given in Theorem 4.1 we say that an element f ∈
Lip(X, d) has an ”(algebraic) critical point” at x0 ∈ X if and only if f(x)− f(x0) ∈
F(A)(x0).

First we show:

Proposition 5.1. Let (X, d) be a metric space and x0 ∈ X. Then for every proper
subalgebra a with 1 ∈ a and m2(x0) ⊂ a ⊂ A = Lip(X, d) there exists a nontrivial
point derivation D ∈ Derx0(Lip(X, d)) \ {0} with

a ⊂ ker(D) = {f ∈ Lip(X, d) | D(f) = 0}.

Moreover ker(D) = {f ∈ Lip(X, d) | D(f) = 0} is a maximal subalgebra.

Proof. Let a ⊂ A = Lip(X, d) be a proper subalgebra. Then a is also a proper linear
subspace of Lip(X, d) and hence there exists a hyperspace F , i.e. a linear subspace of
codimension 1 with a ⊂ F. Since 1 ∈ a and m2(x0) ⊂ a ⊂ A = Lip(X, d) we have
by Proposition 3.2 that the canonical projection π : Lip(X, d) −→ Lip(X, d)

/
F
≃ R

is a point derivation at x0 ∈ X.
Now change the notation and put D = π. Then we show that ker(D) is a subal-

gebra of Lip(X, d). Namely if f, g ∈ ker(D) then obviously f + g ∈ ker(D) and from
the Leibniz rule follows fg ∈ ker(D) since D(fg) = f(x0)Dg + g(x0)Df = 0.

From the construction follows, that ker(D) is maximal. □
Now we use the explicit representations of point derivations given in Proposition

3.3 and Proposition 3.4.
Let us denote by F(Lip(X, d))(x0)

0 =
∩

Dw =LIM(Tw), w∈Wx0 ,LIM∈Lim ker(Dw).

Then we have:

Proposition 5.2. Let D ∈ Derx0(Lip(X, d)) be a point derivation. Then for every
f ∈ F(Lip(X, d))(x0)

0 holds D(f) = 0.
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Proof. By Proposition 3.4 we have

Derx0(Lip(X, d)) = cl (span{Dw = LIM(Tw) | w ∈ Wx0 }),

where ”cl span” denotes the weak-*-closure of the linear hull in Lip(X, d)
′
.

If D ∈ span{Dw = LIM(Tw) | w ∈ Wx0 } this follows immediately from the
definition of F(Lip(X, d))(x0)

0.
Now assume that D ∈ Derx0(Lip(X, d)) is a proper weak-*-accumulation point

of span{Dw = LIM(Tw) | w ∈ Wx0 }. Then for every ε > 0 and arbitrary points
f1, ...., fk ∈ Lip(X, d) there exists a Dw = LIM(Tw) with w ∈ Wx0 and LIM ∈ Lim

such that Dw −D ∈ Uf1,....,fk,ε where Uf1,....,fk,ε =
{
l ∈ Lip(X, d)

′ | |l(fi)| < ε
}

is

a weak-*-neighborhood of 0 ∈ Lip(X, d)
′
.

Let us now assume that our statement is not true. Then there exists an element
f∗ ∈ F(Lip(X, d))(x0)

0 with |D(f∗)| = c > 0. Now let ε = c
2 and choose arbitrary

elements f2, ..., fk ∈ Lip(X, d). Then for the weak-*-neighborhood of 0 ∈ Lip(X, d)
′

given by Uf∗,f2,....,fk,ε there exists aDw = LIM(Tw) such thatDw−D ∈ Uf∗,f2,....,fk,ε.
For the element f∗ ∈ F(Lip(X, d))(x0)

0 this implies: c = |D(f∗)||D(f∗)−Dw(f
∗)| <

ε = c
2 which is a contradiction. □

The above two propositions imply that F(Lip(X, d))(x0) = F(Lip(X, d))(x0)
0.

Finally we prove our main result:

Theorem 5.3. Let x0 ∈ X be a nonisolated point of a metric space (X, d). Then
f ∈ Lip(X, d) has an algebraic critical point in x0 ∈ X if and only if for every point
sequence w := (xn, yn)n∈N ⊂ (X × X) \ ∆ = {(s, t) ∈ X × X | s ̸= t } which
converges to the point (x0, x0), the corresponding sequence of slopes of f given by

Tw(f) :=
(
f(yn)−f(xn)

d(yn,xn)

)
n∈N

∈ l∞ converges to zero.

Proof. By the above statements f ∈ Lip(X, d) has an algebraic critical point in
x0 ∈ X if and only if D(f) = 0 for all point derivations D ∈ Derx0(Lip(X, d)) \ {0}.

Now by the characterization of G.G. Lorentz [5] on almost convergent sequences,
that are bounded real sequence (an)n∈N for which all translation invariant Banach
limits have the same value L ∈ R, we have that for every ε > 0 there exists a p0 ∈ N
so that for all p > p0 and for all n ∈ N the condition∣∣∣∣an + . . .+ xa+p−1

p
− L

∣∣∣∣ < ε

holds. In our case L = 0 which means that for every ε > 0 there exists a p0 ∈ N so
that for all p > p0 and for all n ∈ N the condition∣∣∣∣∣∣

(
f(yn)−f(xn)

d(yn,xn)

)
+ . . .+

(
f(yn+p−1)−f(xn+p−1)

d(yn+p−1,xn+p−1)

)
p

∣∣∣∣∣∣ < ε (∗)

holds. Since condition (∗) has to hold for every point sequence w := (xn, yn)n∈N ⊂
(X×X) \∆ = {(s, t) ∈ X×X | s ̸= t } which converges to the point (x0, x0), this

implies, that the corresponding sequence of slopes
(
f(yn)−f(xn)

d(yn,xn)

)
n∈N

∈ l∞ converges

to zero.
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The converse direction is obvious, because if for every point sequence
w := (xn, yn)n∈N ⊂ (X × X) \ ∆ = {(s, t) ∈ X × X | s ̸= t } which con-
verges to the point (x0, x0), the corresponding sequence of slopes of f given by

Tw(f) :=
(
f(yn)−f(xn)

d(yn,xn)

)
n∈N

∈ l∞ converges to zero, then condition (∗) is satisfied. □

For Lipschitz functions on open sets in normed linear spaces, this implies that
the gradient is zero, as we shall prove now:

Proposition 5.4. Let (E, ∥ · ∥E) be a real normed vector space, U ⊂ E an open
subset, x0 ∈ U, and f ∈ Lip(U, d), where the metric d on U is induced by the norm.
If D(f) = 0 holds for every D ∈ Derx0(Lip(U, d)) then f ∈ Lip(U, d) is Fréchet

differentiable at x0 ∈ X and its differential vanishes, i.e., df
∣∣∣
x0

= 0.

Proof. Let us assume that the function f ∈ Lip(U, d) is not differentiable in x0 ∈ U.

Then for every l ∈ E
′
there exists an εl > 0 such that for all δ > 0 there exists a

vector hδ ∈ E with ∥hδ∥E ≤ δ and

|f(x0 + hδ)− f(x0)− l(hδ)| > εl∥hδ∥E .
For the special case l = 0 ∈ E

′
and δ = 1

n we get with hn := hδ that there exists an
ε0 > 0 such that for n ∈ N

|f(x0 + hn)− f(x0)|
∥hn∥E

> ε0.

Now choose a subsequence (nk)k∈N such that for all k ∈ N the nominator f(x0 +
hnk

)− f(x0) has a constant sign, for instance f(x0 + hnk
)− f(x0) > 0.

For the sequence
ŵ := (x0, x0 + hnk

)k∈N ∈ Wx0

holds then
Dŵ(f) = LIM(Tŵ(f)) > ε0,

since every translation invariant Banach limit of a bounded sequence is greater or
equal then the lower limit of this sequence. Hence there exists a point derivation at
x0 ∈ U with Dŵ(f) ̸= 0, which is a contradiction. □

In the case of Lipschitz functions, the algebraic characterization of a critical is
stronger than the critical point concept of Bonnisseau and Cornet [2] and of Clarke
[3]. For instance the function f : R −→ R defined by f(x) := x2 sin 1

x for x ̸= 0 and
f(0) = 0 is differentiable in x0 = 0 with f ′(x0) = 0, but x0 = 0 is not a critical
point in the algebraic sense.

6. Conclusion

From the coordinate free characterization of Newns and Walker [6] of critical
points of C∞-functions, we derive for Lipschitz functions on metric space a char-
acterization of critical points, which is stronger than the concept of Clarke [3].
According to this charaterization one has for a nonisolated point x0 ∈ X of a metric
space (X, d) the following condition:
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Namely, a Lipschitz function f ∈ Lip(X, d) has an algebraic critical point in x0 ∈ X
if and only if for every point sequence w := (xn, yn)n∈N ⊂ (X ×X) \∆ = {(s, t) ∈
X ×X | s ̸= t } which converges to the point (x0, x0), the corresponding sequence

of slopes of f given by Tw(f) :=
(
f(yn)−f(xn)

d(yn,xn)

)
n∈N

∈ l∞ converges to zero.
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