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INFINITE-DIMENSIONAL INFINITE-HORIZON
MULTIOBJECTIVE OPTIMAL CONTROL IN DISCRETE TIME

NAILA HAYEK

ABSTRACT. This paper studies multiobjective optimal control problems in the
discrete time framework and in the infinite horizon case when the space of states
and the space of controls are infinite-dimensional. The paper generalizes to the
multiobjective case existing results for single-objective optimal control problems
in that framework. The dynamics are governed by difference equations. Neces-
sary conditions of Pareto optimality are presented namely Pontryagin maximum
principles in the weak form.

1. INTRODUCTION

This paper studies multiobjective optimal control problems in the discrete time
framework and in the infinite horizon case when the space of states and the space of
controls are infinite-dimensional. It extends to the multiobjective case results ob-
tained for single-objective optimal control problems in the discrete-time framework
and in the infinite-horizon case when the space of states and the space of controls
are infinite-dimensional. And it extends to the case of infinite-dimensional spaces
of states and controls, results obtained for infinite-horizon multiobjective optimal
control problems in the discrete-time framework when the space of states and the
space of controls are finite-dimensional. Smooth problems are considered.

The first works on infinite-horizon single-objective optimal control problems are
due to Pontryagin and his school [16]. Others followed as Carlson et al [9], Blot and
Hayek [5], [6], Blot [3], [4], [7], Zaslavski [17], [18] and [19].

Bachir and Blot [1], [2] recently extended infinite-horizon single-objective optimal
control problems in the discrete-time framework, to the case of infinite-dimensional
spaces of states and controls. They applied a method of reduction to the finite
horizon applied in the setting of the infinite dimension. This method of reduction
to the finite horizon was used in the setting of the finite dimension in [4] and [5] for
example where an essential difficulty was to extract subsequences of multipliers that
do not converge to zero. But when the spaces of states and controls are infinite-
dimensional, more difficulties arise as Bachir and Blot show in [1] and [2]. These
difficulties are due to the closure of the ranges of linear operators, and to the fact
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that the weak-star closure of the unit sphere is the unit ball and hence contains the
origin. Their works [1] and [2] provide answers to these problems.

Results on infinite-horizon multiobjective optimal control problems in the discrete-
time framework can be found in Hayek [11] and [12], in Ngo-Hayek [15] where they
are obtained by a reduction to a finite-horizon framework and by techniques of in-
finite horizon.

In Hayek [13] these problems are studied in the special case of the bounded processes
and techniques of Banach spaces are used.

In this paper we rely on the results of Bachir and Blot in [1] and [2] to obtain nec-
essary conditions of Pareto optimality under the form of Pontryagin Principles for
infinite-horizon multiobjective optimal control problems in an infinite-dimensional
setting.

The plan of this paper is as follows. In section 2 the problem is presented: a
multiobjective optimal control problem governed by a difference equation when the
space of states and the space of controls are infinite-dimensional, in the discrete-
time framework and in the infinite-horizon case. The notions of Pareto optimality
and weak Pareto optimality are defined. Other notions of optimality are presented.
In section 3 the theorems on necessary conditions of Pareto optimality are stated
namely Pontryagin maximum principles in the weak form. The proofs are provided
in section 4.

2. PROBLEMS AND NOTATION

Let X and U be Banach spaces. For all ¢t € N, let X; be a nonempty subset of X,
U; be a nonempty subset of U, and f; : Xy x Uy — X311 be a mapping. Consider
the following controlled dynamical system:

(De) Ti41 = ft(xtvut)7 teN.

Set z := (21)ien € [[1enXt, u = (ut)ien € [[1enUs-

Multiobjective optimal control problems governed by (De) will be studied. For
n € X let Adm(n) denote the set of all processes (z,u) € [[;enXt X [[;enUs which
satisfy (De) for all ¢ € N and such that zy = 1. These processes are called admissible.
For all t € N, for all j € {1,..,¢}, let (b{ : Xy x Uy — R be a function. For each
joe{1,..,0}, set Ji(z,u) = S0¢ (24, us) and let Dom(J;) denote the set of
all (z,u) € Adm(n) such that the series > ,°% ¢! (24, u;) is convergent in R. The
optimality criterion considered here is defined by using the vector-function J :=
(Ji, .., J¢). The order for this criterion is the natural order in R’. Now, the domain
for the multiobjective optimal control problems with criterion J, is denoted by
DOM(J) := (ﬂleDomJj). Consider the following multiobjective optimal control
problem

(PM?') Maximize J(x,u) when (x,u) € DOM(J).

Definition 2.1.

e A process (&,14) € DOM(J) is called a Pareto optimal solution of Problem
(PM?), if there does not exist a process (x,u) € DOM(J) such that for
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all j € {1,..,4}, Jj(z,u) > J;(Z,4) and for some ¢ € {1,..,¢}, Ji(z,u) >
Ji(Z,4).

e A process (z,u) € DOM(J) is called a weak Pareto optimal solution of
Problem (PM?"), if there does not exist a process (z,u) € DOM(J) such
that for all j € {1,..,0}, J;(z,u) > J;(&,a).

It is clear that a Pareto optimal solution of Problem (PM?!) is a weak Pareto
optimal solution of Problem (PM?").
Consider now the following problems for the cases where the infinite series do not
necessarily converge:
(PM?) Find (2,4) € Adm(n) such that, there does not exist a process
(z,u) € Adm(n) satisfying for all j € {1,...,6},limsup(2?:0 &) (ze,up) —

h—+o00

Z?:o ¢! (2,1;)) > 0 and for some i € {1,...,¢}, limsup(Z?zO (g, up) —
h—+o00

h s -
1= 91 (&1, 1)) > 0.
€ Adm(n) such that, there does not exist a process

m(n) satisfying for all 7 € {1,... ,6},}1iminf(2?:0 &l (24, ur) —
—+o0

0 and for some € {1,...,/}, liminf;H+oo(Z?:0 B (g, up)—

—~
E
«@
=
]
o,
—
>
>
~— >
Mm

Adm(n) such that, there does not exist a process
(z,u) € Adm(n) satisfying for all j € {1,...,8},}Liminf(2?:0 &7 (xe,up) —
—+00

Yt @1 (&1, 1)) > 0.

Let T' be a fixed number in N, set (xT,uT) := ((zt)1<t<r, (ut)o<t<r) and set
JI(xT,uT) = S8l (2, ug) and JT = (JT, .., JF). Consider the following re-
duced problem

Maximize J7(xT,uT)
(FMT) Tyl = ft(xt,ut),Vt S {0,,T}
To =1, TT41 = Tr41.
Definition 2.2.
o (XT,47) is called a Pareto optimal solution of Problem (FM7), if there does
not exist any (xT,uT) admissible for Problem (FM7) such that for all j €
T (T 47T T(4T &T ~ T (4T 7T
{1,..6}, Jj (x*,u’) > J; (%%,0%) and for some i € {1,... ¢}, J; (x*,u™) >
JI(&T,aT).
o (XT,47) is called a weak Pareto optimal solution of Problem (FMT), if
there does not exist any (xT,uT) admissible for Problem (FM7T) such that
for all j € {1,..,¢}, J]T(XT,uT) > JjT(icT,ﬁT).

Here admissibility means that all the constraints, including the dynamical system,
the initial and final conditions, are satisfied. Then we have the following result :
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Lemma 2.3.

e Let (2,1) be a Pareto optimal solution of Problem (PM?') (respectively, so-
lution of (PM?), (PM?3)) and let T € N*. Then the restriction (XT,aT) is
a Pareto optimal solution of the finite-horizon problem (FMT).

o Let (£,1) be a weak Pareto optimal solution of Problem (PM?") (respec-
tively, solution of (PM?), (PM?®)) and let T € N*. Then the restriction
()”(T,ﬁT) is a weak Pareto optimal solution of the finite-horizon problem
(FMT).

The proof of this lemma is analogous to the proof given in [11] for the finite-
dimensional case.

3. THE MAIN THEOREMS

Theorem 3.1. Let (2,4) be a weak Pareto optimal solution of Problem (PM*')
(respectively, a solution of (PM?), (PM?®)). We assume that the following as-
sumptions are fulfilled

(i) For allt € N, Xy is a nonempty open convez subset of X, Uy is a nonempty
conver subset of U.
(ii) X s separable. A
(iii) For allt € N, for all j € {1,...,£}, ¢} are Fréchet-differentiable at (&4, ;)
and fi is continuously Fréchet-differentiable at (Zy,Uy).
(iv) For allt € N, ImDs fy(Z¢, 1) is closed and its dimension is finite
or
(v) For allt € N, ImDy f(Z,U¢) is closed and its codimension is finite.
Then, for allT € N, T > 2, there ezist (07 ,..,07) € R®, (o] )1<t<r+1 € (X*)THL,
satisfying the following conditions.
(a) (07,07, (i} )i<e<r11) # (0,..,0)
(b) GT >0 forallje{l,...,0}.
(c) pf = pt+1 o let(a:t,ut) + ZJ 1 05 T D¢ (&4, 1), for all t € {1,...,T}.
) <

(d Z] 19; D2¢t($t,ut) + pliq © Dofi(@e, @), u — Gy > <0, f07’ all t €
{0,..., T}, for all uy € Uy.
Theorem 3.2. Let (£,1) be a weak Pareto optimal solution of Problem (PM*)
(respectively, a solution of (PM?), (PM?)). We assume that all assumptions of
Theorem 3.1 are satisfied together with the following assumptions :
(vi) For allt € N, the partial differential Dy fi(Z, 1) is invertible.

(vii) The tangent cone of Uy at the point 41, denoted by Ty, (41), is a vector
space.
(Viii) Ilefl(ii‘l,ﬁl) C Dgfl(i'l,ﬁl)(TUl (ﬁl))
Then, there exist 01,..,0, € R, (p)ien, € (X*)N«, satisfying the following condi-
tions.

(a) (91, ..,Hg,pl) 7'5 (0, .. .,0,0)
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(b) 8; >0 forall j € {1,...,¢}. A

(©) Pt = P10 Difu(de, w) + > 61 05016 (4, 11y), for all t € N,.

(d) < Z§:1 0. D2t (2, tx) +prs1 0 Do fo(@t, ), up — 4 > < 0, for allt €N, for
all up € Uy.

Following Bachir and Blot in [2] for the single-objective case, one can weaken
some assumptions of Theorem 3.2 as follows:

Theorem 3.3. Let (£,1) be a weak Pareto optimal solution of Problem (PM*)
(respectively, a solution of (PM?), (PM?3)). We assume that all assumptions of
Theorem 3.1 are satisfied together with the following assumptions :
(ix) for all t € N, 0 € int[Dfi(&,0:)((X X Ty, (4:)) N Bxxy)] where Bxxu
denotes the closed unit ball of X x U.
(x) there exists s € N such that Ay = Dafs(Zs,Us)(Ty, (Gs)) contains a closed

convez subset K with ri(K) # () and such that Af f(K) is of finite codimen-
sion in X.

Then, there exist 01, ..,00 € R, (pt)ten, € (X*)N, such that

(a) (01,..,00,pt) #(0,...,0,0), for all t > s
and conclusions (b), (c¢) and (d) of Theorem 3.2 are satisfied.
Remark. Notice that the invertibility of the partial differential D f;(Z¢, u¢) (con-
dition (vi) of Theorem 3.2 ) is avoided in this theorem and replaced by condition
(iz) of Theorem 3.3 which is weaker. And notice that conditions (viz) and (viii) of
Theorem 3.2 are replaced by condition (z) of Theorem 3.3 which is weaker. Condi-

tion (z) is satisfied and is included in condition (v), whenever there exists an s € N
such that Ty, (4s) = X, in particular, if @4 belongs to the interior of Us.

4. PROOFS OF THE MAIN THEOREMS

4.1. Proof of Theorem 3.1. The following lemmas will be useful in the proof.

Lemma 4.1. Under assumption (iii) of theorem 8.1 , JT is Fréchet-differentiable
at (xT,a7T) and

DJE (T, aT)(6xT, 6uT) = (DJF (T, aT)(6xT, 6u™), ..., DJF &Y, aT)(6xT, ouT))
where
DJI(&T,aT)(0xT, 6uT) = > " Di¢](d, t)dm + > Dag] (&1, dle)Suy
t=0 t=0

Proof. For all j = 1,... ¢, JJT is Fréchet-differentiable at (XT,aT) as a sum of
Fréchet-differentiable mappings that are compositions of Fréchet-differentiable map-
pings. Hence J7 is Fréchet-differentiable at (XT,a7T) O

Define H/ : Hthl X x HtT:o U; — X111 by setting:
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—x1 + fo(n,uo) if t=0
Ht ( T T) —Ti41 + ft(xt,ut) ifo<t<T
—.i'T+1 + fT($T, UT) Zf t=T
Define HT : Hthl X; x H? o Ut — H? o Xi+1 by setting
(T, uT) o= (T (5, ), .., R (T, u))
Lemma 4.2. Under assumption (i) of theorem 3.1, HT is of class C* at (XT,a7T)
and

DHT T, aT)(6xT,6u”) = (DHI &T,aT)(6xT,6uT),..., DHEET, aT)(6xT, oul))

a’)
where DHT(f(T ﬁ )(5X suT ) = -0z + DQfo(n,ao)cSuo,
DHt (AT T)( (S ) = —6$t+1 + let(jt7 at)éa:t + Dgft(iﬁt, ﬂt)5ut, fOT 0<t<
T and DHT( )((5XT suT ) leT(jfT, ﬂT)émT + DQfT<i'T, '&T)(S'LLT.

Proof. HT is of class C! as a composition of mappings of class C*. O

Lemma 4.3. Under the assumptions of Theorem 3.1, ImDHT (XT,a7) is closed
in XTH1,

Proof. The proof can be found in [1]. It is done by showing first that
ImD HT(%T,aT) is closed in X7*! and then using assumptions (iv) or (v) to
obtain that ImDHT( T a7T) is closed in X7+ O

We shall use the following theorem for multiobjective abstract optimization in
Banach spaces, which is a reduced form of Theorem 7.4 in Jahn’s book [14].

Theorem 4.4. Let X and Z be real Banach spaces and 'Y a partially ordered normed
space. Let é eX.

Let Cy denote the ordering cone in Y, which is assumed to have a nonempty
interior.

Let S be a nonempty convex subset of X which has a nonempty interior.

Let I : X =Y be Fréchet differentiable até and H : X — Z be continuously
Fréchet differentiable at é

Let S:={¢ €S/ H(¢) =0z} and assume that S is nonempty.

Let ImDH (€) be closed.

If € is a weak solution of the following problem
Minimize I(§) when £ €S
Then there exist y € Cy- and w € Z* with (y,w) # (0,0) such that
(yo DI(E) +wo DH(E)(E—£) >0 forall€ € .

Proof of Theorem 3.1. Since (Z,4) is a weak Pareto optimal solution of Problem
(PM?) (respectively, a solution of (PM?), (PM?%)), Lemma 2.3 implies that the

restriction (XT,4T) is a weak Pareto optimal solution of the finite-horizon problem

(FMT).

Problem (FM7) is in the form of the problem studied in Theorem 4.4 . Set
X = XTxUT+ Yy .= R, 2 .= XTH Oy == RS, S = [[, X x [T, Us,
I:=—-J' H:= —H" and ¢ := (xT,uT). All assumptions of Jahn’s Theorem
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4.4 are satisfied by Lemma 4.1, Lemma 4.2 and Lemma 4.3. So we can apply this
theorem to obtain y = (67,..,07) € R and w = (p/)i<i<r+1 € (X*)TF! non
simultaneously equal to zero such that:
(yo DI(§) +wo DH())(§~£€) 20
for all £, which can be written
(yo DJT(®T,a") +wo DHT(XT,aT) )((xT,uT) — T, 4T)) <0

for all (xT, uT)

Since thl X is open we have

(4.1) (yo D1J' (%T,4T)) + (wo DiHT (RT,0T)) =0
and we have
(4.2) (y o DoJT (%T,a") + wo DoHT (3T, aT))(uT —aT) <o.

(4.1) can be written as

¢ T
D 07> Dig () (wh — &)
=1 =0

(4.3) -
+ Z(PtTHa (D1 fe(@, ) (e — &) — (@441 — Tes1)) = 0,
=0
‘ T
Z ZD1¢t (&, ) (e — T4)
=1 t=0
(4.4) - .
+ Z<pt+1¢D1ft(xtaut Ty — &) Z Pits (Tes1 — 2441)) = 0,
=0 =0
¢ T ‘
D01 Did (e, i) (e — 3)
(4.5) =1 =1

T T
+ > (ptr Dife(@e, ) (e — 20) = Y (0 s (20 — #4)) = 0,

t=1 t=1

For allt € {1,...,T'}, for all z; € X; consider (zs)o<s<7 such that z; = &, for s # ¢
we obtain

¢
07 Dy (a4, i) (4 — 1)
(4.6) ; !

+ (Dl 1. D1fi(Be, ) (we — 84)) — (pf , (w — 1)) = 0,
So

¢
(4.7) ZHJ D1¢t xt,ut) —|—pt+1 olet(xt,ut) t = 0, for all ¢ € {1,...,T}
j=1
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which is conclusion (¢) of Theorem 3.1 .
(4.2) can be written as

T
(4.8) ZHT ZD2¢,: Bey 1) (up — @) + Y (PFyrs Dafi(@r, ) (us — 1)) < 0.
=0

For all t € {0,...,T}, for all u; € Uy consider (us)o<s<r such that us = 44 for
s # t we obtain

y4
(4.9) <Zﬁf%#@mm+ﬁh0%ﬁ@ﬁ%m—m>ﬁﬁ
j=1

for all t € {0,...,T}, for all u; € U; which is conclusion (d) of Theorem 3.1 .

4.2. Proof of Theorem 3.2. The following lemma will be useful in the proof.

Lemma 4.5. Set Z := Ty, (41). Under the hypotheses of Theorem 3.2 we have, for
allT > 2 :

(410) (9,{7 7927 pg’ O-D?fl(i‘h/al”Z) 7é (07 . 70)

Proof. Under the hypotheses of Theorem 3.2, Theorem 3.1 applies and under hy-
pothese (vii) of Theorem 3.2, Z is a closed vector space so a Banach space. We
shall first show that we have, for all T > 2

(4.11) oFf,....0F ph) £ (0,...,0).

So consider conclusion (¢) of Theorem 3.1 :

pi = pliy © Difi(dy, i) 29 D¢ (i, i),

7=1

for all ¢ € {1,...,T}. Assume that there exists T > 2, such that (67, .. 94 ,ph) =

(0,...,0). Then using the invertibility assumption (vi) of Theorem 3.2 and con-

clusion (c) of Theorem 3.1 with + = 1 we obtain pZ = 0. Proceeding similarly for

2 <t < T, weobtain (07,..,0F, (p} )1<t<r41) = (0,.. .,0) which contradicts con-

clusion (a) of Theorem 3.1. So we have for all T > 2, (67,...,67,pT) # (0,...,0).
Now suppose there exists T' > 2, such that

OF,....67, p3 o Dafi(d1,t)|z) = (0,...,0).
Conclusion (c) of Theorem 3.1 with ¢t = 1 gives:

l
pi =p3 o Difi(dr, ) + Y 0] Dig] (i1, ),
j=1
and assumption (viii) of Theorem 3.2 states: ImDs fi(21,11) C Dafi(21,11)(2)
Thus p!" = 0 which contradicts (4.11). So conclusion (4.10) follows. O
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Proof of Theorem 8.2. We now have to prove the existence of multipliers 61, ..,0, €
R, (pt)en, € (X*)N+, satisfying conclusions (a)-(d) of Theorem 3.2.

Theorem 3.1 provides for all T € N, T' > 2, multipliers («9?,...,9{) e R,
(P! )1<i<r+1 € (X*)THL] satisfying conclusions (a)-(d) of Theorem 3.1. Moreover
we obtained in the above lemma that (07,...,07, p} o Do fi(21,41)|7) # (0,...,0).
So we can normalize (07,...,0F, p} o Dafi(21,11)|7) by writing

(4.12) 07 +Ilp5 © Dafi(d1, )|z = 1
j=1

since the set of multipliers is a cone. Hence the Banach-Alaoglu-Bourbaki theorem,
in a separable Banach space [8] provides sequential compactness so there exists
a subsequence, also denoted (67, .. .,0?, Pl o Dafi(#1,71)|z)r>2 that converges
weakly star to a limit (61,...,60¢,q).

Let us first show that (61,...,0¢,q) # (0,...,0). Since Ty, (41) is a vector space,
for all z € Z = Ty, (41), conclusion (d) of Theorem 3.1 applied at ¢ = 1 becomes:

4
(4.13) (o] 0 Dofi(iy, i), 2) = —< > 07 Dag] (i, ), 2).
j=1

Thus,
|{p3 0 Dafi(d1,41),2)]

< IO . DI (D261 (1, 1), 2), - (Do (1, ), 2)) |-
Using (4.14) and applying a result of Bachir and Blot ([2], Lemma 3.3 ) with Z :=

TU1(a1)7 K = TU1(711) =7, (SO Aff(K) = Z)?

Cz = H((DQ(ZS%('%DTA“)? Z)? ) (DQQ%(‘%l?ﬂl)?Z)) H7
a:=0¢€ K and B := Bz(0,1) the closed unit ball of Z,
there exist a positive real number Rp and b € Z such that

(4.15)  [|p3 o Dafi(d1,a)l|z- < Re( 1167 ,...00)|| + (p3 © D2fi(d1,41),b) ).
If (01,...,00,q) = (0,...,0), then taking the limit in (4.15), implies that
Ly oo [|[pY © Dofi(d1,41)|lz«= = 0 which leads to limp_yeo(>2%_, 67

J=17]
+||pt o Dafi(21,71)||z+) = 0. But this contadicts (4.12). So (#1,...,0s,q) #

(0,...,0). Now since pi o Dyfi(#1,41)|z converges weakly star to ¢ and
ImD fi(21,01) C Dafi(21,11)(Z), it follows that p2T o D1 f1(Z1,71) converges
weakly star to some g. By the invertibility of Dy f1(#1, 1) we have
p3 © Dafi(d1, 1) = py o Dy f1(&1,41) o [Dy fi(d4, 1)) " 0 Do fi(d1, 1)
It follows, after taking the weak star limit, that
q =70 [D1fi(2, 1)) " 0 Daf1(21, ).

Clearly (01,...,0¢,q) # (0,..,0) (otherwise (01,...,00,q) = (0,...,0).)
Now using conclusion (c) of Theorem 3.1 at ¢ = 1 with hypothesis (viii) we obtain
that (pI)7>2 converges weakly star to p; where p; =g+ Z§:1 0;.D1¢) (%1,11). So

(4.14)

(HlT,...,HeT,plT)TZQ converges weakly star to (01,...,0y,p1) and (01,...,04,p1) #
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(0,..,0) since (01,...,0,,q) # (0,...,0).

Now using hypothesis (vi) with conclusion (¢) of Theorem 3.1 we have for all
T>2:
é .
Pl =i o [Dife(ee, @)™ =07 Do (&, @) o [Dy fildy, )]~
j=1

and proceeding recursively we obtain that the sequence (pf)TZQ converges weakly
star to a limit p; for all ¢ € N, and so we obtain for all ¢t € N,

Pt = pr1 0 D fe(Be, Ge) + 2521 0j.D1} (2, ),

and

<Z§:1 0;. Do} (4, 11y) + per1 © Dafo(dy, i), ue — ) <0, for all uy € U,
which are conclusions (¢) and (d) of Theorem 3.2. Notice that conclusion (a) of
Theorem 3.2 was obtained above and conclusion (b) of Theorem 3.2 is satisfied.

Indeed for all j =1,...,¢, 6; > 0 since 9? >0 forall T > 2. O

4.3. Proof of Theorem 3.3. The following Lemma generalizes Lemma 4.7 of [2].

Lemma 4.6. Under the assumptions of Theorem 3.1 together with assumption (iz),
for all T € N, T > 2, there exist (0,..,07) € RY, (pI)i<t<r11 € (X*)TTL, which
satisfy the following conditions.
(a) For all T > 2, for all s € {1,...,T} and all 1 < t < T + 1 there exist
at, by > 0 such that |[pf || < a:||(67, ... 67)[| + be| [pY
(b) (0%, ..,9{,])?) #(0,...,0,0), for alls <T
(c) for all s € {1,...,T} and all v € Dafs_1(Zs—1,0s—1)(Tr, ,(ts—1)) there
exist d, € R such that for all T > 2, pI'(v) < d,||(67,..,00)]|

Proof. Applying Theorem 3.1 and adding conclusions (¢) and (d) of Theorem 3.1
gives for all t € {1,...,T}, for all h € X and for all u; € Uy:

(Pti1s Dufe(@e, i) (h) 4 Dafi(@e, ). (up — i)

¢
+ 3 07 (D] (e, @) (k) + Do (G, ). (e — )] < pf (B)

j=1
which can be written : for all t € {1,...,T}, for all (h,k) € X x Ty, (u:)
¢
(phi1, Dfe(&e,de)(hok)) < pf (h) = > 0T Dl (dy, ) (h, k)
j=1

Hence for all t € {1,...,T}, for all (h,k) € X x Ty, (i)

¢
(F41s D fele ) (b)) < (07 || [IRllx + Y 67 1D, (e, )| [ (hs B)lIx xv
j=1

Using (iz) we have for all t € N, 0 € int[D fi(&¢, ty) (X X Ty, (4:)) N Bx xu7)] so there
exists a constant r, > 0 such that Bx(0,7;) C D fi(&, ) (X x Ty, (4e)) N Bxxv),
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thus

[ S Hpt ||+Z€T||D¢J (e, )l])

(Hpt 1+ 11T s 0D (IDS] (e, @), - - 1D (&, )] ]) 1]

Moreover, using (c¢) of Theorem (3.1 ) we obtain:

| /\

L
17 1] < 11pEall- D fele )l + Y 67 [1D16] (e, )|

j=1
< Pt |l 1D1 fo(@e, )|
+ 1167 - OO DG (&, @)l - - (1D (&, )] ) ||
Combining the two inequalities garantees conclusion (a) of Lemma 4.6.
To prove conclusion (b) of Lemma 4.6, suppose that there exists s € {1,...,7'} such
that (67, ..,07,pI') = (0,...,0,0), then by conclusion (a) of Lemma 4.6, p/ = 0 for
allt € {1,...,T+1} which contradicts conclusion (a) of Theorem 3.1. So conclusion

(b) of Lemma 4.6 is proved.
Now using conclusion (d) of Theorem 3.1 we can write for an arbitrary s

J4
<pzoD2fsfl(-%sflaasfl)yusfl_asfﬁ < _< ZOJTD2¢i71(CE8717ﬂsfl)ausfl_ﬂsfl>
j=1
Forallve A, = Dgfsfl(ifsfl,’&sfl)(TUsil (’LALS 1)) by definition of TU 1(’&8 1),
there exist (u?* ), € UN, and (ag)r € (RT)Y such that y, = limp_, oo (ag(u?* | —

ﬂsfl)) and v = D2fsfl(i‘sflaasfl)-yv-
Lettig k — +o00 in the inequality gives:

¢
psT(U) < _< Z 9J'TD2¢L1(@—1, as—l)’ yv>

j=1
Set d), := —(Da¢’ | (&5_1,1s_1),y,) and obtain
l
pi(v) < Y 67dl <d|(67,...67)]]
7j=1
where d, := ||(d}, ..., d")|| which proves conclusion (c) of Lemma 4.6. O

Proof of Theorem 3.3. The proof is in the spirit of the proof of [2]. Assumption (x)
implies that there exists s € N such that Ay = Dafs(Zs, us)(Ty, (4s)) contains a
closed convex subset K with 7i(K) # () and such that Af f(K) is of finite codimen-
sion in X. Since the set of multipliers of a maximization problem is a cone, using
the above conbequences of Lemma 4.6 we can normalize (67 ,...,0F, pT) # (0,...,0)
by writing ZZ L0 + ||IpT||x~ = 1. Now using the above Iemma and Propos1t10n
3.9 of [2] we get a strictly increasing map k — T} from N into N, (61, ..,0,) € RY,
and (p¢)ien, € (X*)N+ such that
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o (0 0™ = (61,..,6,) > (0,...,0) when k — +oo.

e for each t € N, pETk) —v" p, when k — +00.

o (01,..,00,ps) #(0,...,0,0).
By letting k£ — +o00 in conclusions (¢) and (d) of Theorem 3.1 we obtain conclusions
(c) and (d) of Theorem 3.3. The first point implies (b) of Theorem 3.3. Now if
there exists ¢ > s such that (6y,..,0¢,p:) = (0,...,0,0), we use (¢) and proceed

recursively to obtain that (61, ..,0¢,ps) = (0,...,0,0) which is a contradiction. So
(a) of Theorem 3.3 is satisfied. O

Remark: In the single-objective case, Bachir and Blot [2] provided an abstract
result (Lemma 3.3 of [2]) which allows to avoid the Josefson-Nissenzweig phenome-
non [10] which states that in an infinite dimensional Banach space Z, there always
exists a sequence (py ), in the dual space Z* that is weak null and inf,en ||pn|| > 0.
They looked for conditions on a sequence of norm one in Z* such that this sequence
does not converge to the origin in the weak star topology. Proposition 3.9 of [2] is
a consequence of Lemma 3.3 of [2].
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