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local minimizers is larger than the class of L1 local minimizers. On the other hand,
the latter are more natural in the OC problems setting. The sufficient conditions
developed here can be said to filter in a better way more interesting minimizers.

We introduce some notation that will be used throughout the paper. The closed
unit ball in Rn, centred at the origin, is denoted by B̄. The Euclidean norm of a
point x and the inner product between x, y are denoted by |x| and ⟨x, y⟩. The norm
| · |p means the Lp-norm, with 1 ≤ p ≤ ∞. The set of nonnegative real numbers
is represented by R+ and C([a, b];D) denotes the set of continuous functions f :
[a, b] → D. Given a matrix A, the transpose of A is represented by A∗ and the
identity matrix is represented by I. The Lebesgue measure of a given set C is
denoted by meas(C).

2. Problem formulation and background notes

We consider the following optimal control problem (P ), as we will call it from
now on:

ϕ(x(T )) → inf,(2.1)

ẋ = f(t, x) + g(t, x)u,(2.2)

u ∈ U,(2.3)

x(0) = x0,(2.4)

where T is fixed and x0 is a given point in Rn. Here, and throughout the paper,
ϕ : Rn → R, f : [0, T ]×Rn → Rn and g : [0, T ]×Rn → Rn×m are twice continuously
differentiable functions. The set U ⊂ Rm is a bounded polyhedron, i.e., U = {x ∈
Rm : ⟨x, ci⟩ ≤ αi, i = 1, k}, where ci is a fixed vector in Rm and αi is a fixed real
constant, for every i = 1, k. We denote by ω̄ the diameter of U , i. e., a positive
constant such that maxu1,u2∈U |u1 − u2| = ω̄.

As usual in the optimal control framework, a control function u(·) is a measurable
function u : [0, T ] → Rm that satisfies u(t) ∈ U, a.e.. A state trajectory x(·) corre-
sponding to u(·) is an absolutely continuous function that satisfies the differential
equation ẋ = f(t, x) + g(t, x)u(t), a.e.. A control process (u(·), x(·)) (some times
referred simply as process and/or represented for shortness by (u, x)) comprises a
control function u(·) and a state trajectory x(·). An optimal process is a control
process that minimizes the cost over all admissible processes. Here, we also make
reference to a local minimum with respect to L∞ norm in the space of controls.
Such minimum was designated in [4] by weak local minimum and it is associated to
a control process (û(·), x̂(·)) that minimizes the cost when compared with admissible
processes (u(·), x(·)) satisfying |u(·) − û(·)|∞ < ϵ, for some ϵ > 0. Changing that
norm by the L1 norm, we obtain a definition for local minimizer with respect to L1

norm, in the space of controls.
Well known existence theorems in optimal control theory guarantee the exis-

tence of solution to problem (P ). The Pontryagin maximum principle establishes
necessary conditions of optimality for an optimal process. When applied to (P ), it
asserts that if (û, x̂) is an optimal process, then there exists an absolutely continuous
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function p : [0, T ] → Rn such that,

−ṗ(t) = (∇x(f(t, x̂) + g(t, x̂)û))∗ p(t)(2.5)

max
u∈U

⟨p(t), g(t, x̂(t))u⟩ = ⟨p(t), g(t, x̂(t))û(t)⟩ a.e. t ∈ [0, T ](2.6)

−p(T ) = ∇ϕ(x̂(T )).

Observe that the cost multiplier is set to 1. This is a normal form of the MP
which is valid in our setting. In [4] the above conditions were scrutinized with the
aim of analysing the information that could be extracted for an admissible process
that satisfies them. Take an admissible process (û(·), x̂(·)) and let ū be a measurable
function such that û(t) + αū(t) ∈ U , a.e. t ∈ [0, T ], α ∈ [0, α0], for some α0 > 0. It
was proved that if the maximum principle uniquely defines the control, i.e.,

(2.7) ⟨p(t), g(t, x̂(t))u⟩ < ⟨p(t), g(t, x̂(t))û(t)⟩, u ∈ U, u ̸= û(t),

then, û(·) is a directional minimizer, in the sense that

ϕ(x(T, αū(·))) > ϕ(x̂(T ))

for all α > 0 sufficiently small. Here, x(·, ū(·)) denotes the solution to the Cauchy
problem

(2.8) ẋ = f(t, x) + g(t, x)(û+ ū), x(0) = x0.

The conditions of the MP where then enforced in order to guarantee local optimality
of û and not merely directional optimality. Condition (2.7) was supplemented in
such a way that some extra regularity on the adjoint variable p(·) is present. Suffi-
cient conditions of optimality were then deduced for a local minimum with respect
to L∞ norm in the space of controls. We now adjust this result and derive sufficient
optimality conditions with respect to L1 norm in the space of controls. This will be
done with a more demanding enforcement of condition (2.7).

We proceed with some estimates that will be of use.
Let (û, x̂) be a process for (P ). Using the definition of x(·, ū(·)) given in (2.8),

the trajectory x̂(·) can be expressed as x(·, 0). Now, define x̄(·) as the solution to
the Cauchy problem

(2.9) ˙̄x = (∇xf(t, x̂) +∇x(g(t, x̂)û))x̄+ g(t, x̂)ū, x̄(0) = 0.

Taking a general solution of (2.8), we can write

(2.10) x(t, ū(·)) = x̂(t) + x̄(t) + r(t, ū(·)),

for some difference function r : [0, T ]×Rm → Rn. For this function r, the Filippov
theorem [3] asserts that

(2.11) |r(t, ū(·))| ≤ C1

∫ T

0
ρ(t, ū(·))dt,

where C1 = e
∫ T
0 k1(t) dt and k1(t) is the Lipschitz constant associated to the function

F (t, x) = f(t, x) + g(t, x)(û + ū). The function ρ(t, ū(·)) represents the following
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distance

ρ(t, ū(·)) = | ˙̂x(t) + ˙̄x(t)− f(t, x̂(t) + x̄(t))− g(t, x̂(t) + x̄(t))(û(t) + ū(t))|

≤ 1

2
max |∇2

xf(t, x)||x̄(t)|2 +
1

2
max |∇2

xg(t, x)||x̄(t)|2(|û(t)|+ |ū(t)|)

+ max |∇xg(t, x)||x̄(t)||ū(t)|.

We assume that x is in some tube around x̂, i.e., the graph of x is in a set Ω =
{(t, x) : x ∈ x̂(t) + ωB̄, t ∈ [0, T ]}, for some ω > 0.

Analysing now the solutions of (2.9), Gronwall’s inequality allow us to deduce
that

(2.12) |x̄(t)| ≤ C2

∫ T

0
|ū(t)|dt,

where

C2 = e
∫ T
0 k2(t) dt max

|v|≤1

0≤t≤T

|g(t, x̂(t))v|, k2(t) = |∇xf(t, x̂) +∇x(g(t, x̂)û(t))|.

Going back to ρ(t, ū(·)), we can write

ρ(t, ū(t)) ≤ L1|x̄(t)|2 + L2|x̄(t)|.|ū(t)|+ L3|x̄(t)|2

≤ (L1 + L3)C
2
2

(∫ T

0
|ū(t)| dt

)2

+ L2C2|ū(t)|
∫ T

0
|ū(t)| dt

where

L1 =
1

2
max |∇2

xf(t, x)|, L2 = max |∇xg(t, x)|

L3 =
1

2
max |∇2

xg(t, x)|(|û(t)|+ |ū(t)|).

The above maximums are taken on a closed tube around x̂ with radius C2 · ω̄T
which is an upper bound for |x̄(t)|.

Therefore, from (2.11), we have

(2.13) |r(t, ū(·))| ≤ C3

(∫ T

0
|ū(t)|dt

)2

,

where

C3 = C1(L1 + L3)C
2
2T + C1L2C2.

The above estimates can be used to compare the cost function at x̂ and related
points. Since

ϕ(x(T, ū(·))) = ϕ(x̂(T )) + ⟨∇ϕ(x̂(T )), x̄(T ) + r(T, ū(·))⟩+

+
1

2
⟨x̄(T ) + r(T, ū(·)),∇2ϕ(xθ)(x̄(T ) + r(T, ū(·)))⟩,

where xθ = (1− θ)x̂(T ) + θx(T, ū(·)) for some θ ∈ [0, 1], we conclude that

(2.14) ϕ(x(T, ū(·))) ≥ ϕ(x̂(T )) + ⟨∇ϕ(x̂(T )), x̄(T )⟩ − c

(∫ T

0
|ū(t)|dt

)2

,
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where

(2.15) c ≥ C3 |∇ϕ(x̂(T ))|+ (C2
2 + C2

3 ) max
x∈x̂(T )+(C2+C3T ω̄)T ω̄B̄

|∇2ϕ(x)|.

3. Main result

We start this section with the definition of the strengthened maximum principle.

Definition 3.1. Strengthened maximum principle.
Let c > 0 and ω̄ > 0. We say that the control process (û(·), x̂(·)) satisfies a

strengthened maximum principle, if there exists an absolutely continuous function
p : [0, T ] → Rn such that,

−ṗ(t) = (∇x(f(t, x̂) + g(t, x̂)û))∗ p(t)(3.1)

−p(T ) = ∇ϕ(x̂(T ))(3.2)

and there exist a non-negative measurable function σ : [0, T ] → R+ and a constant
a0 > 0, such that

(1) maxu∈U (⟨g(t, x̂(t))(u− û(t)), p(t)⟩+ σ(t)|u− û(t)|) ≤ 0;
(2) meas{t ∈ [0, T ] | σ(t) < 2ca} < a/ω̄, whenever a ∈]0, a0],
(3) meas{t ∈ [0, T ] | σ(t) = a} = 0, whenever a > 0.

Observe that condition (1) in the above definition implies the maximum principle
condition

(3.3) max
u∈U

(⟨g(t, x̂(t))(u− û(t)), p(t)⟩ ≤ 0.

Recall that the MP establishes necessary conditions of optimality for the control
process (û(·), x̂(·)), defined by (3.1), (3.2) and (3.3). The strengthened maximum
principle we propose here is an enforcement of condition (3.3) which is replaced by
conditions (1), (2) and (3) of Definition 3.1. As we shall prove in Theorem 3.3, this
strengthened maximum principle is a sufficient condition for optimality in L1 norm,
in the space of controls.

The following lemma is homologous with Lemma 3.2 from [4]. It provides an
inequality which will be of particular relevance to prove sufficient conditions of
optimality in Theorem 3.3.

Lemma 3.2. Let σ, c and ω̄ be as in the strengthened maximum principle condition
in Definition 3.1. Then

(3.4)

∫ T

0
σ(t)w(t)dt− c

(∫ T

0
w(t)dt

)2

≥ 0,

for all w(·) such that
∫ 1
0 w(t) dt < ϵ, w(t) ∈ [0, ω̄], whenever ϵ is sufficiently small.
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Proof. Consider the following optimal control problem

Minimize

∫ T

0
σ(t)w(t)dt− cy2(T )

over processes (w, y) satisfying

ẏ = w, w ∈ [0, ω̄],

y(0) = 0, y(T ) ≤ ϵ.

Known existence theorems for optimal control problems guarantee that an op-
timal solution to the above problem exists. Denote the optimal process by (ŵ, ŷ).
Since (w, y) = (0, 0) is an admissible process with cost function equal to zero, the
minimum cost must be non positive. Assume that the optimal control ŵ(·) is dif-
ferent from zero. Then, ŷ(T ) > 0. Moreover, if ŷ(T ) < ϵ, we can reset ϵ = ŷ(T ).
In fact, observe that ŷ(T ) < ϵ implies that the set of admissible processes for the
problem with the constraint y(T ) ≤ ŷ(T ) is a subset of the corresponding set for the
problem with the constraint y(T ) ≤ ϵ and (ŵ, ŷ) is admissible for both. So, (ŵ, ŷ)
is still an optimal process when ϵ is replaced by ŷ(T ). Without loss of generality,
assume then that ŷ(T ) = ϵ. Known necessary conditions applied to this problem
guarantee the existence of λ ≥ 0, µ ≥ 0 and an absolutely continuous function ψ(·)
such that

ψ̇ = 0, ψ(T ) = 2λcŷ(T )− µ, µ(ŷ(T )− ϵ) = 0;

max
w∈[0,w̄]

(ψ(t)− λσ(t))w = (ψ(t)− λσ(t))ŵ(t),

λ+ ||ψ(·)||∞ > 0.

If λ = 0, then ψ(t) ≡ ψ(T ) = −µmust be negative. From the maximum condition
we deduce that in such case ŵ = 0 and so ŷ = 0, a contradiction.

Set λ = 1. Then, we have

ψ(t) ≡ 2cŷ(T )− µ,

and

ŵ(t) =

{
ω̄ if 2cŷ(T )− µ− σ(t) > 0,

0 if 2cŷ(T )− µ− σ(t) < 0.

Now, observe that Γ1 = {t : 2cϵ − µ > σ(t)} ⊆ Γ2 = {t : σ(t) < 2cϵ}. Moreover,
from the properties of σ, we obtain meas (Γ2) < ϵ/ω̄ and meas {t : σ(t) = 2cϵ−µ} =
0. Thus, we have

ϵ = ŷ(T ) =

∫ T

0
ŵ(t) dt = meas (Γ1) · ω̄ ≤ meas (Γ2) · ω̄ <

ϵ

ω̄
· ω̄ = ϵ,

a contradiction. □

We now present our main result stating that the strengthened maximum principle
in Definition 3.1 is sufficient for optimality.

Theorem 3.3. Let (û(·), x̂(·)) be an admissible control process for problem (P ),
satisfying the strengthened maximum principle, with c given by (2.15) and ω̄ being
the diameter of U .
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Then (û(·), x̂(·)) is a local minimizer in L1 norm, in the space of controls, i.e.,
there exists ϵ > 0 such that, for any admissible control process (u(·), x(·)) satisfying∫ T
0 |u(t)− û(t)| dt < ϵ, the inequality ϕ(x(T )) ≥ ϕ(x̂(T )) holds.

Proof. Let (u, x) be an admissible process. Set ū = u− û. Recall that x(·, ū) and x̄
denote the solution of the Cauchy problem (2.8) and (2.9).

If Φ represents the fundamental matrix of the system

ẏ(t) = (∇xf(t, x̂) +∇x(g(t, x̂)û))y(t)

then

x̄(t) =

∫ t

0
Φ(t, s)g(s, x̂(s))ū(s) ds

and

p(t) = Φ∗(T, t)p(T ).

From (2.14), (3.1), (3.2) and the strengthened maximum principle we have

ϕ(x(T, ū(·))) ≥ ϕ(x̂(T )) + ⟨∇ϕ(x̂(T )), x̄(T )⟩ − c

(∫ T

0
|ū(t)|dt

)2

= ϕ(x̂(T ))−
∫ T

0
⟨p(T ),Φ(T, t)g(t, x̂(t))ū(t)⟩ dt− c

(∫ T

0
|ū(t)|dt

)2

= ϕ(x̂(T ))−
∫ T

0
⟨Φ∗(T, t)p(T ), g(t, x̂(t))ū(t)⟩ dt− c

(∫ T

0
|ū(t)|dt

)2

= ϕ(x̂(T ))−
∫ T

0
⟨p(t), g(t, x̂(t))ū(t)⟩dt− c

(∫ T

0
|ū(t)|dt

)2

≥ ϕ(x̂(T )) +

∫ T

0
σ(t)|ū(t)|dt− c

(∫ T

0
|ū(t)|dt

)2

.

Applying Lemma 3.2, we obtain the result. □

The strengthened maximum principle is crucial for sufficiency in L1 norm. We
recover an example in [4] where, under the weaker conditions of the refined maximum
principle established in [4] (see, there, Theorem 3.3), we can guarantee optimality
in the L∞ norm but not in the L1 norm:

x1(1)− x22(1) → min,

ẋ1 = x2,

ẋ2 = u,

u ∈ [0, 1],

xi(0) = 0, i = 1, 2.

The zero control process satisfies the refined maximum principle and its optimality
in the L∞ sense is then deduced (see [4]). However, if we take the control functions
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sequence

un(t) =

{
0, t ∈ [0, 1− 1/n[
1, t ∈ [1− 1/n, 1],

then
∫ 1
0 |un(t)− 0| dt = 1

n and for the corresponding trajectories, we have

x1(1)− x22(1) =

∫ 1

1−1/n

∫ t

1−1/n
dsdt−

(∫ 1

1−1/n
dt

)2

= − 1

2n2
.

The zero control process is not optimal in the L1 norm.

The following result establishes conditions that are useful to verify properties (1)-
(3) in Definition 3.1 of the strengthened maximum principle. Let U = co{u1, . . . , uM},
0 = t0 < t1 . . . < tL = T , û(t) = uml

, t ∈]tl, tl+1[, l = 0, L− 1, q(t) = (g(t, x̂(t)))∗p(t),

Ml = {m | ⟨q(tl), um⟩ = maxu∈U ⟨q(tl), u⟩}, l = 0, L.

Lemma 3.4. Assume that q(·) is a continuous and piece-wise continuously differ-
entiable function, that the maximum principle uniquely defines the control û(·) (in
the sense that ⟨q(t), u− uml

⟩ < 0, ∀t ∈]tl, tl+1[,∀u ∈ U , u ̸= uml
), and

max
m/∈Ml

⟨q(tl), um − uml
⟩ < −6cω̄L|um − uml

|, l = 0, L− 1,(3.5)

max
m∈Ml
m̸=ml

⟨q̇(tl + 0), um − uml
⟩ < −6cω̄L|um − uml

|, l = 0, L− 1,(3.6)

min
m∈Ml

m̸=ml−1

⟨q̇(tl − 0), um − uml−1
⟩ > 6cω̄L|um − uml

|, l = 1, L.(3.7)

where c and ω̄ are as in Theorem 3.2.
Then properties (1)-(3) in Definition 3.1 of the strengthened maximum principle

are satisfied for some non-negative measurable function σ : [0, T ] → R+ and some
constant a0 > 0.

Proof. Observe that

(3.8) ⟨q(tl), uml
− uml−1

⟩ = 0, ∀l = 0, L− 1,

(3.9) max
u

⟨q(tL), u⟩ = ⟨q(tL), umL−1⟩.

(3.10) ⟨q(tl), um − uml
⟩ = 0, for m ∈ Ml, l = 0, L− 1,

and

(3.11) ⟨q(tl), um − uml
⟩ < 0 for m /∈ Ml, l = 0, L− 1.

The function σ of the strengthened maximum principle will now be constructed.
To do that some analysis of ⟨q(t), u(t)−û(t)⟩ is done in three different cases. In right
neighbourhoods and in left neighbourhoods of tl and also in the interval ]tl, tl+1[.

Let 0 ≤ l ≤ L− 1, ∆t > 0, u =
∑M

m=1 λmum, u ̸= uml
, λm ≥ 0,

∑M
m=1 λm = 1.
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Using (3.6) and (3.10) we can write,

⟨q(tl +∆t), u− uml
⟩ = ⟨q(tl +∆t),

∑
m̸=ml

λm(um − uml
)⟩

=
∑

m∈Ml
m̸=ml

λm⟨q(tl +∆t), um − uml
⟩

+
∑

m/∈Ml

λm⟨q(tl +∆t), um − uml
⟩

=
∑

m∈Ml
m ̸=ml

λm(⟨q(tl), um − uml
⟩+∆t⟨q̇(tl + 0), um − uml

⟩+o(∆t))

+
∑

m/∈Ml

λm⟨q(tl +∆t), um − uml
⟩

≤ −
∑

m∈Ml
m̸=ml

λm∆t

(
6cω̄L|um − uml

| − o(∆t)

∆t

)

+
∑

m/∈Ml

λm⟨q(tl +∆t), um − uml
⟩

≤ −4cω̄L∆t
∑

m∈Ml
m̸=ml

λm|um − uml
|

+
∑

m/∈Ml

λm⟨q(tl +∆t), um − uml
⟩.

for ∆t small enough. From (3.11) and the continuity of q, we also deduce that

⟨q(tl +∆t), um − uml
⟩ < −τ1, ∀∆t < δ1, l = 0, L− 1, m /∈ Ml

for some τ1 > 0, δ1 > 0. Reducing δ1, if necessary, to have

4cω̄L|um − uml
|∆t

τ1
< 1, ∀m /∈ Ml,∀∆t < δ1,

we can write

⟨q(tl +∆t), u− uml
⟩ ≤ −∆t4cω̄L

 ∑
m∈Ml
m̸=ml

λm|um − uml
|+

∑
m/∈Ml

λm|um − uml
|


= −4cω̄L

∣∣∣∣∣∣
∑

m ̸=ml

λm(um − uml
)

∣∣∣∣∣∣∆t
= −4cω̄L|u− uml

|∆t.

In conclusion,

(3.12) ⟨q(tl +∆t), u− uml
⟩ ≤ −4cω̄L|u− uml

|∆t, ∀∆t < δ1, l = 0, L− 1.
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Following similar arguments, using now (3.7), we can write

(3.13) ⟨q(tl −∆t), u− uml−1
⟩ ≤ −4cω̄L∆t|u− uml−1

|, ∀∆t < δ2, l = 1, L

for some δ2 > 0.
Let us now proceed to define σ of the strengthened maximum principle. Taking

δ = min{δ1, δ2}, we have (3.12) and (3.13) satisfied when ∆t < δ. Besides that, in
each interval Il = [tl + δ, tl+1 − δ], l = 0, L− 1, we have

⟨q(t), u− uml
⟩ =

M∑
m=1

λm⟨q(t), um − uml
⟩ < −τ2

∑
m̸=ml

λm,

where
τ2 = − max

t∈Il,m ̸=ml,l=0,L−1
⟨q(t), um − uml

⟩ > 0.

Since
|u−uml

|
2ω̄ < 1, ∀u ∈ U , we can write

⟨q(t), u− uml
⟩ < − τ2

2ω̄

∑
m̸=ml

λm|um − uml
|

< − τ2
2ω̄

∣∣∣∣∣∣
∑

m ̸=ml

λm(u− uml
)

∣∣∣∣∣∣
= − τ2

2ω̄
|u− û(t)|

< − τ2
2ω̄

t− tl
maxl(tl+1 − tl)

|u− û(t)|.(3.14)

Hence, σ(t) can be defined in the following way:

σ(t) =



4cω̄L|t− tl| if t ∈]tl − δ, tl + δ[, l = 1, L− 1,

4cω̄Lt if t ∈ [0, δ[,

4cω̄L(T − t) if t ∈]T − δ, T ],

τ2
2ω̄

t−tl
maxl(tl+1−tl)

if t ∈ [tl + δ, tl+1 − δ], l = 0, L− 1.

This function satisfies conditions (1)-(3) in Definition 3.1 of the strengthened
maximum principle. Condition (1) results from (3.12), (3.13) and (3.14). Condition
(3) is satisfied since here the set {t ∈ [0, T ] | σ(t) = a} is a finite set. In what
concerns condition (2), choose a0 defined by

a0 =
τ2δ

2ω̄maxl(tl+1 − tl)
.

Then, for a < a0, we have

meas{t ∈ [0, T ] | σ(t) < 2ca} = meas{t ∈ [0, T ] | 4cω̄L|t− tl| < 2ca}
and

meas{t ∈ [0, T ] | |t− tl| < a/(2ω̄L)} =
a

ω̄
.

□
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4. Example

Consider the optimal control problem:

−(x1(1)− a)2 − (x2(1)− b)2 → min,

ẋ1 = x2,

ẋ2 = u,

u(t) ∈ [0, 2],

xi(0) = 0, i = 1, 2.

where a = −196 and b = 795
8 . This problem is nonconvex.

Put

û(t) =

{
2 0 ≤ t ≤ 1/2

0 1/2 < t ≤ 1

x̂1(t) =

{
t2 0 ≤ t ≤ 1/2

t− 1/4 1/2 < t ≤ 1
x̂2(t) =

{
2t 0 ≤ t ≤ 1/2

1 1/2 < t ≤ 1

The pair (û(·), x̂(·)) is optimal in the sense described in Theorem 3.2, i.e., it
is a local minimizer with respect to the L1 norm, in the space of controls. That
follows from Lemma 3.3 and Theorem 3.2. Next we present some calculus justifying
application of those results.

Let p : [0, 1] → R2 be such that

−ṗ(t) = (0, p1(t)) ⇔ p1(t) = p1(0), ∀t and p2(t) = p2(0)− p1(0)t

p1(1) = 2(x̂1(1)− a), and p2(1) = 2(x̂2(1)− b).

Verification of conditions of Lemma 3.4. In this case we have:

• q(t) = g(t, x̂(t))∗p(t) = p2(t) = 2(x̂2(1)− b) + 2(x̂1(1)− a)(1− t).

• U = co{u1, u2}, where u1 = 0 and u2 = 2.

• L = 2, um0 = 2 for t ∈]0, 1/2[ and um1 = 0 for t ∈]1/2, 1[.

• M0 = {2}, M1 = {1, 2}, M2 = {1}.

Take c = 9 (see (2.15)). We have

• ∇ϕ(x̂(1)) = (−2(x̂1(1)− a),−2(x̂2(1)− b)),

• max|v|≤1 |v∗∇2ϕ(x)v| = 2,

• 1
2 |x̄(1)|

2max|v|≤1 |v∗∇2ϕ(x)v| ≤ 9
2 · 2 = 9,



216 M. M. A. FERREIRA AND GEORGI V. SMIRNOV

and the conditions of Lemma 3.4 can be translated in:

(1) ⟨q(0), um − 2⟩ < −6cω̄L|um − 2|, m /∈ M0

⇔ p2(0) > 24c ⇔ (x̂2(1)− b) + (x̂1(1)− a) > 12c,

(2) ⟨q̇(1/2 + 0), um − 0⟩ < −6cω̄L|um − 0|, m ∈ M1,m ̸= m1

⇔ q̇(1/2 + 0).2 < −6cω̄L2 ⇔ x̂1(1)− a > 12c,

(3) ⟨q̇(1/2− 0), um − 2⟩ > 6cω̄L|um − 2|, m ∈ M1,m ̸= m0

⇔ −2 (x̂2(1)− b+ x̂1(1)− a) (−2) > 48c

⇔ x̂2(1)− b+ x̂1(1)− a > 12c.

So, we must have

(1− b) +

(
3

4
− a

)
> 12c and

3

4
− a > 12c.

For a = −196, b = 795
8 and c = 9 these inequalities are satisfied.

The assumptions of Lemma 3.4 are satisfed, so (û, (x̂1, x̂2)) is optimal in the sense
of Theorem 3.3.
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