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fact that they were observed in psoriatic skin in states of hyperproliferation and
abnormally differentiation. Also, the adaptive immune system plays a significant
role in psoriasis, because it is related to the presence of immune cells, such as T-
lymphocytes and dendritic cells (tissues macrophages), in psoriatic skin lesions. The
interaction of these three types of cells triggers a number of mechanisms leading
ultimately to the development of the inflammatory process and the formation of
psoriatic skin lesions ([12, 16, 17]). Adequate treatment of psoriasis is a very difficult
task, and there is no medicine leading to complete cure.

The study of psoriasis depends on the availability of normal and psoriatic human
skin and several preclinical models were developed ([4]). In addition to experimental
studies, computational and mathematical models were created that can explain the
hyperproliferation and abnormally differentiation of keratinocytes, the role of T-
lymphocytes and dendritic cells in psoriasis, the morphology of the normal and pso-
riatic epidermis. In [20], based on the general approaches employed, existing models
are divided into two groups: (i) agent-based models ([9, 10, 29, 33, 37]), and (ii) or-
dinary differential equation-based models ([3, 7, 14, 19, 20, 23, 24, 27, 28, 32, 36]).
Also, we allocate separately the computational model for studying the spatio-
temporal dynamics of epidermis homeostasis under normal and pathological condi-
tions proposed in [39]. This model unites a kinetic model of the central transition
pathway of keratinocyte proliferation, differentiation and apoptosis and an agent-
based model that propagates cell movements and generates the stratified epidermis.

It is important in a psoriasis treatment to apply strategies, which are the best in
one sense or another. Turning to the language of mathematical models, this means
that in such a model a control is introduced and an objective function is added
to it. As a result, an optimization problem arises, to which the optimal control
theory can be applied. For the mathematical models of a psoriasis treatment the
corresponding optimal control problems were considered and solved in [2, 5, 25],
where numerically were found optimal strategies of treatment that minimized the
cumulative concentration of keratinocytes and the cost of treatment. While the ob-
tained results are very interesting, the presence of a square of the control under the
integral of the objective function makes the optimal control problem numerically
simplistic but prohibits the attainment of the optimal analytical solution. Before
solving an optimal control problem numerically, it would be beneficial to investigate
the problem analytically in order to reveal some features and properties of its opti-
mal solutions. Therefore, in this paper we will consider the control model proposed
in [25] with a different objective function.

This paper is organized as follows. In Section 2, on a given time interval a non-
linear control model of a psoriasis treatment, which is a system of three differential
equations describing relationships between the concentrations of T-lymphocytes,
keratinocytes, and dendritic cells (tissues macrophages) is considered. The scalar
bounded control, also included in the model, reflects medication intake. Such prop-
erties of its solutions as positiveness, boundedness, and continuation on a given time
interval are discussed. Section 3 is devoted to the study of the corresponding uncon-
trolled model, that is, the original model, in which control is a constant. For it, the
invariant set is found, the existence of equilibria with non-negative coordinates is
investigated. The permanence of the uncontrolled model is justified in Section 4. In



OPTIMAL STRATEGIES FOR PSORIASIS CONTROL MODEL 221

Section 5, the local asymptotic stability of equilibria, as well as sufficient conditions,
which provide it, are studied. The results of Sections 3 and 5 refine similar results
obtained earlier in [25]. For the original control model in Section 6, the problem
of minimizing the concentration of keratinocytes at the end of the time interval is
stated. The relevance of such a problem, as well as the existence in it of an optimal
solution consisting of the optimal control and the corresponding optimal solutions
of the system of differential equations, are discussed. To analyze the optimal solu-
tion in Section 7, the Pontryagin maximum principle is used. The corresponding
adjoint system, the maximum condition for the optimal control, and the condition
for the constancy of the Hamiltonian on the optimal solution are written. Then, the
system of differential equations for the switching function describing the behavior
of this control and its corresponding auxiliary functions are obtained. In Section 8,
this system of equations allows us to investigate the type of the optimal control:
this function has only a bang-bang type, or in addition to the portions of the bang-
bang type, it also contains singular arc. The relationships between the parameters
of the original control model are found under which the optimal control is of one
type or another. When a singular arc arises, we discuss its order, the fulfillment of
the corresponding necessary optimality condition for it, as well as possible forms of
a concatenation of singular arc and bang-bang type of the optimal control. As a
result, we have the chattering phenomenon for the optimal control. In Section 9,
the obtained results are illustrated by numerical calculations. Section 10 contains
our conclusions.

2. Mathematical model of psoriasis

Let us consider on a given time interval [0, T ] the following nonlinear control
system of differential equations:

(2.1)


l̇(t) = σ − δl(t)m(t)− γ1u(t)l(t)k(t)− µl(t),

k̇(t) = (β + δ)l(t)m(t) + γ2u(t)l(t)k(t)− λk(t),
ṁ(t) = ρ− βl(t)m(t)− νm(t),
l(0) = l0, k(0) = k0, m(0) = m0; l0, k0,m0 > 0,

which describes the interaction of different types of human cells during the drug
therapy of psoriasis. Here, l(t), k(t), m(t) are the phase variables of system (2.1)
specifying the concentrations of T-lymphocytes, keratinocytes and dendritic cells
(tissue microphages), respectively; l0, k0, m0 are their initial conditions. Next,
σ and ρ are the appropriate rates of influx of T-lymphocytes and dendritic cells;
µ, λ, and ν are the per capita removal rates of T-lymphocytes, keratinocytes and
dendritic cells, respectively. Moreover, δ is the rate of activation of T-lymphocytes
by dendritic cells and β is the rate of activation of dendritic cells by T-lymphocytes;
(β + δ) is the proportion at which keratinocytes are stimulated by T-lymphocytes
and dendritic cells. Finally, γ1 is the rate of activation of keratinocytes by T-
lymphocytes and γ2 is the rate of growth of keratinocytes due to T-lymphocytes as
well.

In system (2.1) the function u(t) is the control with the following restrictions:

(2.2) 0 < umin ≤ u(t) ≤ 1.
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Control u(t) is responsible for the medication dosage, which reduces the interaction
of T-lymphocytes and epidermoidal keratinocytes. The set of admissible controls
Ω(T ) is formed by all Lebesgue measurable functions u(t), which for almost all
t ∈ [0, T ] satisfy restrictions (2.2).

We define the following positive constants:

κmin = min {µ;λ; ν} , κmax = max {µ;λ; ν} ,
D0 = ρ

(
1 + δβ−1

)
γ1 + σγ2, D∗ =

(
σ + β−1αρ

)
γ2,

and using them we set the constant:

M0 = γ2l0 + γ1k0 + γ1
(
1 + δβ−1

)
m0 + κ−1

minD0.

Now, we introduce a set:

Λ0 =
{
(l,m, k) : l > 0, m > 0, k > 0,

γ2l + γ1k + γ1
(
1 + δβ−1

)
m < M0

}
.

The boundedness, positiveness and continuation of the solutions for system (2.1)
is established by the following lemma.

Lemma 2.1. Let the inclusion

(2.3) (l0,m0, k0) ∈ Λ0

hold. Then, for any admissible control u(t), the corresponding absolutely continuous
solutions l(t), k(t), m(t) for system (2.1) are defined on the entire interval [0, T ]
and satisfy the inclusion:

(2.4) (l(t),m(t), k(t)) ∈ Λ0, t ∈ (0, T ].

Proof. Let u(t) be an arbitrary admissible control. Then, the corresponding ab-
solutely continuous solutions l(t), k(t), m(t) for system (2.1) are defined on the
interval [0, t0), which is the maximum possible interval for the existence of these
solutions.

From system (2.1) we find the Cauchy problems:{
l̇(t) = −(δm(t) + γ1u(t)k(t) + µ)l(t) + σ,
l(0) = l0 > 0,{
ṁ(t) = −(βl(t) + ν)m(t) + ρ,
m(0) = m0 > 0.

In these Cauchy problems the initial conditions are positive, and the corresponding
differential equations are linear non-autonomous equations with positive inhomo-
geneities. Therefore, we immediately conclude that the inequalities:

(2.5) l(t) > 0, m(t) > 0, t ∈ [0, t0)

are valid. Also, from system (2.1) we have the Cauchy problem:{
k̇(t) = (γ2u(t)l(t)− λ)k(t) + (β + δ)l(t)m(t),
k(0) = k0 > 0.
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As in the previous Cauchy problems, the initial condition is positive in this Cauchy
problem, and the differential equation is also a linear non-autonomous equation
with positive inhomogeneity (see inequalities (2.5)). Hence, we find the inequality:

(2.6) k(t) > 0, t ∈ [0, t0).

Thus, we have established the positivity of the solutions l(t), k(t), m(t) on the
interval [0, t0).

Now, we show the boundedness of these solutions. Let us consider the function:

V (l, k,m) = γ2l + γ1k + γ1
(
1 + δβ−1

)
m,

and calculate for the solutions l(t), k(t), m(t) its derivative by virtue of the sys-
tem (2.1). We have the expression:

dV

dt
(l(t), k(t),m(t)) = D0 − δγ2l(t)m(t)

−
(
µγ2l(t) + λγ1k(t) + νγ1

(
1 + δβ−1

)
m(t)

)
,

which, by (2.5), leads to the inequality:

dV

dt
(l(t), k(t),m(t)) + κminV (l(t), k(t),m(t)) < D0.

Hence, we obtain the relationship:

d

dt

(
V (l(t), k(t),m(t))eκmint

)
< D0e

κmint, t ∈ (0, t0).

Integrating it on the interval [0, t], we find a chain of inequalities:

V (l(t), k(t),m(t)) < V (l0, k0,m0)e
−κmint + κ−1

minD0

(
1− e−κmint

)
< V (l0, k0,m0) + κ−1

minD0, t ∈ (0, t0).

Using the definition of the function V (l, k,m) and inclusion (2.3), we obtain the
inequality:

(2.7) γ2l(t) + γ1k(t) + γ1
(
1 + δβ−1

)
m(t) < M0, t ∈ [0, t0).

Consequently, we have obtained the required boundedness of the solutions l(t), k(t),
m(t) on the interval [0, t0).

If the interval [0, T ] is contained in [0, t0), then the required fact is true. If the
interval [0, t0) ⊂ [0, T ], then, by the proven restrictions (2.5)–(2.7) and Theorem 3.1
([13],Chapter 2), the solutions l(t), k(t), m(t) are continued for the entire interval
[0, T ]. Thus, the inclusion (2.4) is established. The proof is complete. □

Let us introduce the constant:

α = γ−1
2 ((β + γ)γ1 − δγ2),

which implies that

(2.8) α+ δ = γ1γ
−1
2 (β + δ) > 0.

We suppose that in subsequent arguments the following condition holds.

Condition 2.2. Let the constant α be different from zero.
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3. Investigation of equilibria

Let us consider system (2.1) as the uncontrolled system:

(3.1)

 l̇(t) = σ − δl(t)m(t)− γ1ul(t)k(t)− µl(t),

k̇(t) = (β + δ)l(t)m(t) + γ2ul(t)k(t)− λk(t),
ṁ(t) = ρ− βl(t)m(t)− νm(t),

in which control u ∈ [umin, 1] is a constant. It follows from the proof of Lemma 2.1
that any solutions l(t), k(t), m(t) for this system with positive initial conditions:

(3.2) l(0) = l0, k(0) = k0, m(0) = m0

are defined and bounded on the interval [0,+∞).
Now, we introduce a set:

Λ =
{
(l,m, k) : l > 0, m > 0, k > 0,

γ2l + γ1k + γ1
(
1 + δβ−1

)
m < κ−1

minD0

}
.

The following lemma is valid for it.

Lemma 3.1. Set Λ is an invariant set of system (3.1).

Proof. We consider arbitrary solutions l(t), k(t), m(t) for system (3.1), initial con-
ditions (3.2) of which satisfy the inclusion:

(3.3) (l0, k0,m0) ∈ Λ.

Analyzing the proof of Lemma 2.1, we see that these solutions are positive for all t
and only the inequality:

(3.4) γ2l(t) + γ1k(t) + γ1
(
1 + δβ−1

)
m(t) < κ−1

minD0

requires a justification.
In Lemma 2.1, the following inequality was established:

(3.5) V (l(t), k(t),m(t)) < V (l0, k0,m0)e
−κmint + κ−1

minD0

(
1− e−κmint

)
.

Inclusion (3.3) implies the inequality V (l0, k0,m0) < κ−1
minD0. Then, by relation-

ship (3.5), we find the inequality V (l(t), k(t),m(t)) < κ−1
minD0, which means the

validity of the required inequality (3.4). The proof is complete. □

The result, presented in Lemma 3.1, can be strengthened and reformulated as
follows.

Corollary 3.2. The closure of the set Λ is an invariant set of system (3.1).

Now, let us investigate for system (3.1) the existence of equilibria (l⋆, k⋆,m⋆),
coordinates of which are non-negative. These investigations refine the results pre-
viously obtained in [25].

For this, we consider the following system of equations:

(3.6)

 σ − δlm− γ1ulk − µl = 0,
(β + δ)lm+ γ2ulk − λk = 0,
ρ− βlm− νm = 0,
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and study its solutions (l⋆, k⋆,m⋆) that interest us.
We immediately note the absence of solutions (l⋆, k⋆,m⋆) having at least one zero

component. Hence, further we are looking for equilibria (l⋆, k⋆,m⋆) for system (3.1),
coordinates of which satisfy the restrictions:

(3.7) l⋆ > 0, k⋆ > 0, m⋆ > 0.

Now, we define for all m ∈
[
0, ν−1ρ

]
the following quadratic functions:

g1(m) = ανm2−(σβ + νµ+ αρ)m+ µρ,

g2(m) = δνm2−(σβ + νµ− δρ)m− µρ.

From the relationships:

g1(0) = µρ > 0, g1
(
ν−1ρ

)
= −ν−1ρσβ < 0,

g2(0) = −µρ < 0, g2
(
ν−1ρ

)
= ν−1ρσβ > 0,

we conclude that each of the quadratic functions g1(m), g2(m) has exactly one zero
on the interval

(
0, ν−1ρ

)
, respectively:

(3.8) g1
(
m0

1

)
= 0, g2

(
m0

2

)
= 0.

Moreover, the following relationships hold:

(3.9) g1(m)

 > 0 , if 0 ≤ m < m0
1,

= 0 , if m = m0
1,

< 0 , if m0
1 < m ≤ ν−1ρ,

(3.10) g2(m)

 < 0 , if 0 ≤ m < m0
2,

= 0 , if m = m0
2,

> 0 , if m0
2 < m ≤ ν−1ρ.

Next, we show that the zeros m0
1, m

0
2 are related by the inequality:

(3.11) m0
1 < m0

2.

For this, using the definitions of the functions g1(m), g2(m), inequality (2.8), and
the second equality in (3.8), we evaluate the sign of g2

(
m0

1

)
. As a result, we have

the relationships:

g2
(
m0

1

)
= −ν(α+ δ)m0

1(ν
−1ρ−m0

1) < 0 = g2
(
m0

2

)
,

which, by formula (3.10), imply the validity of inequality (3.11).
Now, let us transform the equations of the system (3.6). First, we express the

variable l from its third equation. We have the formula:

(3.12) l =
ρ− νm

βm
.

Then, we multiply the first equation of system (3.6) by γ2, and the second equation
by γ1 and add them. Next, in the resulting expression we substitute formula (3.12).
After performing necessary transformations, we have the formula:

(3.13) k = −γ2
γ1

· g1(m)

λβm
.
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From the analysis of inequalities (3.7), formulas (3.12) and (3.13), and also rela-
tionship (3.9), we find the interval

(
m0

1, ν
−1ρ

)
of variation of the variable m.

Now, we substitute formulas (3.12) and (3.13) into the first equation of sys-
tem (3.6). After performing necessary transformations in the resulting expression,
we find the equation:

(3.14) uγ2(νm− ρ)g1(m)− λβmg2(m) = 0, m ∈
(
m0

1, ν
−1ρ

)
.

Thus, the problem of finding equilibria (l⋆, k⋆,m⋆) for system (3.1), coordinates
of which satisfy restrictions (3.7), is reduced to the problem of determining roots
m⋆ of equation (3.14) on the interval

(
m0

1, ν
−1ρ

)
.

Next, let us rewrite equation (3.14) in a more convenient equivalent form:

(3.15) F (m) =
uγ2(νm− ρ)

λβm
=
g2(m)

g1(m)
= G(m),

and study the existence of its roots on the interval
(
m0

1, ν
−1ρ

)
.

First, we consider the function F (m), which we rewrite in a more convenient
form:

F (m) = uγ2

(
ν

λβ
− ρ

λβm

)
.

This function has the following properties:

(3.16)

F
(
m0

1

)
< 0, F

(
ν−1ρ

)
= 0,

Ḟ (m) =
uγ2ρ

λβm2
> 0, F̈ (m) = −2uγ2ρ

λβm3
< 0.

From the analysis of relationships (3.16) we conclude that the function F (m) is
concave and increases from a certain negative value to zero. Hence, it is negative
everywhere on the interval

[
m0

1, ν
−1ρ

)
.

Now, we consider the function G(m). It has the following properties:

(3.17) G
(
m0

1

)
= +∞, G

(
m0

2

)
= 0, G

(
ν−1ρ

)
= −1,

(3.18) Ġ(m) = −
(α+ δ)

(
ν(σβ + νµ)m2 − 2νµρm+ µρ2

)
(g1(m))2

.

The vertex of the parabola, which is determined by the quadratic function in the
numerator of the fraction in formula (3.18), is given by the relationship:

mG =
µρ

σβ + νµ
∈
(
0, ν−1ρ

)
.

Direct calculations show that the value of this quadratic function for m = mG is
positive. Consequently, it takes positive values everywhere on the interval

(
0, ν−1ρ

)
,

and hence on the interval
(
m0

1, ν
−1ρ

)
. Using (2.8) in formula (3.18), we find that

Ġ(m) < 0 for all m ∈
(
m0

1, ν
−1ρ

)
. From the analysis of relationships (3.17) we

conclude that the function G(m) decreases from a positive infinity to a certain
negative value and vanishes for m = m0

2.
The established properties of the functions F (m) and G(m) lead us to the con-

clusion that equation (3.15), and hence the equation (3.14), has a single root
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m⋆ ∈
(
m0

2, ν
−1ρ

)
. In turn, this fact means that system (3.1) has a single equi-

librium (l⋆, k⋆,m⋆) for control u ∈ [umin, 1], the coordinates of which satisfy the
restrictions (3.7). Moreover, based on formulas (3.12) and (3.13), for these coordi-
nates we have the following relationships:

(3.19) l⋆ =
ρ− νm⋆

βm⋆
, k⋆ = −γ2

γ1
· g1(m⋆)

λβm⋆
, m⋆ ∈

(
m0

2, ν
−1ρ

)
.

Thus, we have established the validity of the following lemma.

Lemma 3.3. For each value of control u ∈ [umin, 1] the uncontrolled system (3.1)
has a unique equilibrium (l⋆, k⋆,m⋆), the coordinates of which are positive and satisfy
the relationships (3.19).

Now, let us consider the equations of system (3.6) to which the coordinates of
the equilibrium (l⋆, k⋆,m⋆) satisfy. We multiply the first equation by γ2, the second
equation by γ1, the third equation by γ1

(
1 + δβ−1

)
. Then, we add them. As a

result, we obtain the expression:

0 = D0 − δγ2l⋆m⋆ −
(
µγ2l⋆ + λγ1k⋆ + νγ1

(
1 + δβ−1

)
m⋆

)
,

from which, by inequalities (3.7), we find a chain of inequalities:

(3.20) D0 > D0 − δγ2l⋆m⋆ ≥ κ
(
γ2l⋆ + γ1k⋆ + γ1

(
1 + δβ−1

)
m⋆

)
.

As a consequence of inequalities (3.7) and (3.20), we have the validity of the following
lemma.

Lemma 3.4. For the equilibrium (l⋆, k⋆,m⋆) the inclusion (l⋆, k⋆,m⋆) ∈ Λ is true.

4. Permanence of the uncontrolled system

Let us show the permanence of system (3.1) for α > 0. For such value of α we
introduce a set:

Π =
{
(l,m, k) : 0 ≤ l ≤ µ−1σ, k ≥ 0, (νµ+ σρ)−1µρ ≤ m ≤ ν−1ρ,

κ−1
maxD∗ ≤ γ2l + γ1k + β−1αγ2m ≤ κ−1

minD∗

}
.

It is easy to see that for considered value of α the inclusion Π ⊆ Λ̄ holds. Here Λ̄ is
the closure of the set Λ. This inclusion means that the set Π is less than Λ̄.

First, we establish that Π is an invariant set for system (3.1). Let us consider
again arbitrary solutions l(t), k(t), m(t) for this system, defined on the interval
[0,+∞), initial conditions (3.2) of which satisfy the inclusion (l0, k0,m0) ∈ Π. The
non-negative invariance of system (3.1) follows from Corollary 3.2. Therefore, the
restrictions l(t) ≥ 0 and k(t) ≥ 0 are valid.

Next, let us consider the third equation of system (3.1). It implies the inequality:

ṁ(t) ≤ ρ− νm(t).

Integrating it on the interval [0, t] with the corresponding initial condition m(0) =
m0, we find the inequality:

m(t) ≤ m0e
−νt + ν−1ρ

(
1− e−νt

)
,

which yields the required restriction m(t) ≤ ν−1ρ.
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Then, we consider the first equation of this system. It also implies inequality:

l̇(t) ≤ σ − µl(t).

Integrating it on the interval [0, t] with the corresponding initial condition l(0) = l0,
we obtain the inequality:

l(t) ≤ l0e
−µt + µ−1σ

(
1− e−µt

)
,

from which the desired restriction l(t) ≤ µ−1σ follows.
Now, we return to the study of the third equation. Using the restrictions found

on the previous two stages, we have the inequality:

ṁ(t) ≥ ρ− µ−1(σβ + νµ)m(t).

Again integrating it on the interval [0, t] with the corresponding initial condition
m(0) = m0, we find the inequality:

m(t) ≥ m0e
−µ−1(σβ+νµ)t + (σβ + νµ)−1µρ

(
1− e−µ−1(σβ+νµ)t

)
,

which yields the required restriction m(t) ≥ (σβ + νµ)−1µρ.
Finally, let us establish the last restriction in the definition of the set Π. To do

this, we introduce a function:

W (l, k,m) = γ2l + γ1k + β−1αγ2m,

and, as in Lemma 2.1, calculate for the solutions l(t), k(t), m(t) its derivative by
virtue of the system (3.1). We have the expression:

dW

dt
(l(t), k(t),m(t)) = D∗ −

(
µγ2l(t) + λγ1k(t) + νβ−1αγ2m(t)

)
.

Using the defined above constants κmin and κmax, we rewrite the last equality as
follows:

D∗ − κmaxW (l(t), k(t),m(t)) ≤ dW

dt
(l(t), k(t),m(t))

≤ D∗ − κmaxW (l(t), k(t),m(t)).

Integrating this expression on the interval [0, t] with the corresponding initial con-
dition W (l(0), k(0),m(0)) =W (l0, k0,m0), we obtain the inequalities:

W (l(t), k(t),m(t)) ≤W (l0, k0,m0)e
−κmint + κ−1

minD∗
(
1− e−κmint

)
,

W (l(t), k(t),m(t)) ≥W (l0, k0,m0)e
−κmaxt + κ−1

maxD∗
(
1− e−κmaxt

)
,

which, by the definition of the function W (l, k,m), imply the desired restriction:

κ−1
maxD∗ ≤ γ2l(t) + γ1k(t) + β−1αγ2m(t) ≤ κ−1

minD∗.

Thus, the invariance of the set Π is established.
Following [34], system (3.1) is permanent if all its solutions l(t), k(t), m(t) with

nonnegative initial conditions (3.2) finally come into the set Π and stay in it. The
second property is actually justified, because we have just shown the invariance
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of this set. The first property is provided by the definition of the set Π and the
following relationships:

(4.1)

ṁ(t)
∣∣∣
m=(σβ+νµ)−1µρ

≥ 0, ṁ(t)
∣∣∣
m=ν−1ρ

≤ 0,

l̇(t)
∣∣∣
l=0

> 0, l̇(t)
∣∣∣
l=µ−1σ

≤ 0, k̇(t)
∣∣∣
k=0

≥ 0,

γ2 l̇(t) + γ1k̇(t) + β−1αγ2ṁ(t)
∣∣∣
γ2l+γ1k+β−1αγ2m=κ−1

maxD∗
≥ 0,

γ2 l̇(t) + γ1k̇(t) + β−1αγ2ṁ(t)
∣∣∣
γ2l+γ1k+β−1αγ2m=κ−1

minD∗
≤ 0.

Moreover, inequalities like (4.1) will also hold for points outside the set Π. They
show the motion of the phase point (l(t), k(t),m(t)) to this set.

Thus, for α > 0 the permanence of system (3.1) is established. We note that
similar results for other systems, also related to psoriasis, are presented in [5, 6].

Finally, the analysis of the equations for system (3.6), to which the coordinates of
the equilibrium (l⋆, k⋆,m⋆) satisfy, gives the important property of the set Π similar
to that stated in Lemma 3.4. Namely, it contains the equilibrium (l⋆, k⋆,m⋆).

5. Stability analysis of the equilibrium

Let us study the local stability of the found above equilibrium (l⋆, k⋆,m⋆). For
this, we linearize system (3.1) in a neighborhood of the point (l⋆, k⋆,m⋆). As a
result, we obtain the corresponding linear system, the matrix of which has the
form:

(5.1)

−(δm⋆ + uγ1k⋆ + µ) −uγ1l⋆ −δl⋆
((β + δ)m⋆ + uγ2k⋆) (uγ2l⋆ − λ) (β + δ)l⋆

−βm⋆ 0 −(βl⋆ + ν)

 .

We simplify some elements of this matrix. For this, we use the equations for sys-
tem (3.6) to which the coordinates of the equilibrium (l⋆, k⋆,m⋆) satisfy. The fol-
lowing equalities are true:

δm⋆ + uγ1k⋆ + µ =
σ

l⋆
, (β + δ)m⋆ + uγ2k⋆ =

λk⋆
l⋆

,

uγ2l⋆ − λ = −(β + δ)
l⋆m⋆

k⋆
, βl⋆ + ν =

ρ

m⋆
.

Substituting them into the corresponding elements of matrix (5.1), we obtain the
following matrix of the considered linear system:

− σ
l⋆

−uγ1l⋆ −δl⋆
λk⋆
l⋆

−(β + δ) l⋆m⋆
k⋆

(β + δ)l⋆

−βm⋆ 0 − ρ
m⋆

 .

Using this matrix, we write the appropriate characteristic equation:

(5.2) θ3 +A1θ
2 +A2θ +A3 = 0,
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where the coefficients A1, A2, A3 are defined by the following formulas:

A1 =

(
σ

l⋆
+

ρ

m⋆

)
+ (β + δ)

l⋆m⋆

k⋆
> 0,

A2 =

(
σρ

l⋆m⋆
− δβl⋆m⋆

)
+ (β + δ)

l⋆m⋆

k⋆

(
σ

l⋆
+

ρ

m⋆

)
+ uλγ1k⋆,

A3 = (β + δ)
l⋆m⋆

k⋆

(
σρ

l⋆m⋆
− δβl⋆m⋆

)
+ uλγ1k⋆

(
ρ

m⋆
− β(β + δ)(l⋆)

2m⋆

λk⋆

)
.

According to the Lyapunov Theorem ([35]), the equilibrium (l⋆, k⋆,m⋆) is locally
asymptotically stable if all the roots of the characteristic equation (5.2) have neg-
ative real parts. In turn, by the Routh-Hurwitz stability criterion ([8]), this fact
takes place if the coefficients A1, A2, A3 of a cubic polynomial in (5.2) satisfy the
inequalities:

(5.3) A3 > 0, A1A2 −A3 > 0.

Let us find a relationship under which these inequalities are satisfied. To do
this, using the formulas of the coefficients A1, A2 and A3, we write the expression
(A1A2 −A3):

A1A2 −A3 =

(
σ

l⋆
+

ρ

m⋆

)[(
(β + δ)

l⋆m⋆

k⋆

)2

+

(
σ

l⋆
+

ρ

m⋆

)(
(β + δ)

l⋆m⋆

k⋆

)
+

(
σρ

l⋆m⋆
− δβl⋆m⋆

)]
+ uλγ1k⋆

(
σ

l⋆
+

(β + δ)l⋆m⋆

λk⋆
· (βl⋆ + λ)

)
.

Analyzing the formulas of A3 and (A1A2 −A3), we see that to achieve the desired
result, the validity of the following inequality is sufficient:

(5.4)
σρ

l⋆m⋆
− δβl⋆m⋆ ≥ 0.

Indeed, by this inequality and inequalities (3.7), the expression (A1A2 −A3) is
positive. Thus, the second inequality in (5.3) is satisfied. Moreover, the first term
in the formula of A3 is nonnegative. Now, we study the second term. Since the
factor in it is positive, it is sufficient to study only the expression in parentheses:

ρ

m⋆
− β(β + δ)(l⋆)

2m⋆

λk⋆
,

or, by the corresponding inequalities in (3.7), the expression:

λρk⋆ − β(β + δ)(l⋆m⋆)
2.

Substituting here the formulas of l⋆ and k⋆ from (3.19), we find the expression:

(5.5) −(β + δ)m⋆(νm⋆ − ρ)2 + ργ−1
1 γ2g1(m⋆)

βm⋆
,

which further we will study.
Let us consider the following function:

H(m) = (β + δ)m(νm− ρ)2 + ργ−1
1 γ2g1(m).

We study its behavior on the interval
[
m0

1, ν
−1ρ

]
.



OPTIMAL STRATEGIES FOR PSORIASIS CONTROL MODEL 231

Using the first equality in (3.8), we find the relationship:

(5.6) H
(
m0

1

)
= (β + δ)m0

1

(
νm0

1 − ρ
)2
> 0.

Applying formula (3.9), we obtain the relationship:

(5.7) H
(
ν−1ρ

)
= ργ−1

1 γ2g1
(
ν−1ρ

)
< 0.

Finally, we estimate the sign of the value H
(
m0

2

)
, where

(5.8) H
(
m0

2

)
= (β + δ)m0

2

(
νm0

2 − ρ
)2

+ ργ−1
1 γ2g1

(
m0

2

)
.

Adding the formulas of the functions g1(m) and g2(m), we have the equality:

g1(m) + g2(m) = (α+ δ)m(νm− ρ),

from which, by the second equality in (3.8), we obtain the value:

(5.9) g1
(
m0

2

)
= (α+ δ)m0

2

(
νm0

2 − ρ
)
.

We substitute (5.9) into formula (5.8). After converting the resulting expression
with using (2.8), we find the relationship:

(5.10) H
(
m0

2

)
= ν(β + δ)

(
m0

2

)2 (
νm0

2 − ρ
)
< 0.

Since H(m) is a cubic polynomial satisfying the limit relationships:

lim
m→−∞

H(m) = −∞, lim
m→+∞

H(m) = +∞,

then inequality (3.11) and relationships (5.6), (5.7) and (5.10) imply the following
inequality:

H(m) < 0, m ∈
[
m0

2, ν
−1ρ

]
.

In turn, this inequality means the positivity of expression (5.5), and therefore the
positivity of the value A3. Thus, inequalities (5.3) are satisfied. Hence, the equilib-
rium (l⋆, k⋆,m⋆) is locally asymptotically stable if inequality (5.4) holds.

Let us find the relationship between parameters of system (3.1), under which in-
equality (5.4) is true. For this, we substitute the first formula from (3.19) into (5.4).
We obtain the inequality:

(5.11) (ρ− νm⋆)
2 ≤ σρβ

δ
.

By the third relationship in (3.19), inequality (5.11) will be satisfied if the following
inequality holds:

(5.12)
β

δ
≥ ρ

σ
.

Thus, if inequality (5.12) is satisfied, the equilibrium (l⋆, k⋆,m⋆) is asymptotically
stable. This fact is demonstrated in Figure 1 by means of the image of the velocity
field of system (3.1) with the following values of its parameters:

σ = 15.0 ρ = 3.6 β = 0.4 δ = 0.005 u = 0.5
µ = 0.01 λ = 0.9 ν = 0.02 γ1 = 0.8 γ2 = 0.05

Also, we note that Figure 1 simultaneously shows the permanence of system (3.1),
because the inequality α > 0 is valid for the considered values of its parameters.
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Figure 1. Velocity field of the uncontrolled system (3.1).

6. Optimal control problem

For system (2.1) on the set of admissible controls Ω(T ) we consider the problem
of minimization of the concentration of keratinocytes at the terminal time T :

(6.1) J(u) = k(T ) → min
u(·)∈Ω(T )

.

We note that the optimal control problem (2.1), (6.1) differs from problems that
are typically considered in the literature on the control of psoriasis models ([2, 5, 25])
in that the functional of (6.1) does not include an integral of the square of the
control u(t), which is responsible for the total cost of the drug dosage. In psoriasis
therapy, in most cases, either a skin cream or an oral medication are used. Both
prescribed medications have regular daily dosage and are not as harmful for patients
as the drugs used in chemotherapy for cancer treatment ([31]). Therefore, the
total cost of psoriasis treatment in the meaning of “harm” to a patient and that
usually mathematically is described by an integral of the square of the control,
can be ignored. Moreover, using the terminal functional in (6.1) instead of the
corresponding integral functional (see [2, 25]), simplifies the subsequent analytical
arguments.

The existence in problem (2.1), (6.1) of the optimal control u∗(t) and the corre-
sponding optimal solutions l∗(t), k∗(t), m∗(t) follows from Lemma 2.1 and Theo-
rem 4 ([15],Chapter 4).
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Using results from [2, 23, 25, 26], we assume that in subsequent arguments the
following condition is true.

Condition 6.1. Let the inequalities be valid:

(6.2) γ1 ̸= γ2, λ > µ, λ > ν.

7. Pontryagin maximum principle

For the analysis of the optimal control u∗(t) and corresponding to it optimal
solutions l∗(t), k∗(t), m∗(t) we will apply the Pontryagin maximum principle ([22]).
First, we define the Hamiltonian:

H̃(l, k,m, u,ψ1, ψ2, ψ3) = (σ − δlm− γ1ulk − µl)ψ1

+ ((β + δ)lm+ γ2ulk − λk)ψ2 + (ρ− βlm− νm)ψ3,

where ψ1, ψ2, ψ3 are the adjoint variables. Second, we evaluate all required partial
derivatives:

H̃ ′
l(l, k,m, u, ψ1, ψ2, ψ3) = uk(γ2ψ2 − γ1ψ1)

−m(δψ1 − (β + δ)ψ2 + βψ3)− µψ1,

H̃ ′
k(l, k,m, u, ψ1, ψ2, ψ3) = ul(γ2ψ2 − γ1ψ1)− λψ2,

H̃ ′
m(l, k,m, u, ψ1, ψ2, ψ3) = −l(δψ1 − (β + δ)ψ2 + βψ3)− νψ3,

H̃ ′
u(l, k,m, u, ψ1, ψ2, ψ3) = lk(γ2ψ2 − γ1ψ1).

Next, by the Pontryagin maximum principle, for optimal control u∗(t) and opti-
mal solutions l∗(t), k∗(t),m∗(t) there exists the vector-function ψ∗(t) = (ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t)),

such that:
• ψ∗(t) is the nontrivial solution of the adjoint system:

(7.1)


ψ̇∗
1(t) = −u∗(t)k∗(t)(γ2ψ∗

2(t)− γ1ψ
∗
1(t))

+m∗(t)(δψ
∗
1(t)− (β + δ)ψ∗

2(t) + βψ∗
3(t)) + µψ∗

1(t),

ψ̇∗
2(t) = −u∗(t)l∗(t)(γ2ψ∗

2(t)− γ1ψ
∗
1(t)) + λψ∗

2(t),

ψ̇∗
3(t) = l∗(t)(δψ

∗
1(t)− (β + δ)ψ∗

2(t) + βψ∗
3(t)) + νψ∗

3(t),
ψ∗
1(T ) = 0, ψ∗

2(T ) = −1, ψ∗
3(T ) = 0.

• the control u∗(t) maximizes the Hamiltonian

H̃(l∗(t), k∗(t),m∗(t), u, ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

with respect to u ∈ [umin, 1] for almost all t ∈ [0, T ], and therefore the following
relationship holds:

(7.2) u∗(t) =

 1 , if L(t) > 0,
∀u ∈ [umin, 1] , if L(t) = 0,
umin , if L(t) < 0,

where, by Lemma 2.1, the function L(t) = γ2ψ
∗
2(t)− γ1ψ

∗
1(t) is the switching func-

tion, which defines the type of the optimal control u∗(t) according to formula (7.2).
• the Hamiltonian

(7.3) H̃(l∗(t), k∗(t),m∗(t), u∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t))
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is constant on the entire interval [0, T ].
Let us introduce the following functions:

(7.4)

a(t) = (α+ δ)m∗(t) + u∗(t) (γ1k∗(t)− γ2l∗(t)) + λ,

b(t) = (α+ δ)γ−1
1 m∗(t) (αm∗(t)− βl∗(t) + (λ− µ))

+ u∗(t)k∗(t) (αm∗(t) + (λ− µ)) ,

c(t) = (m∗(t))
−1

(
α(m∗(t))

2 + (λ− µ)m∗(t)− ρ
)
,

d(t) = (m∗(t))
−1

(
α(λ− ν)(m∗(t))

2 + λ(λ− µ)m∗(t)− ρ(λ− µ)
)
,

e(t) = (α+ δ)γ−1
1 m∗(t) + u∗(t)k∗(t).

Also, we define the auxiliary function:

P (t) = −m∗(t)(βψ
∗
3(t)− αψ∗

1(t)) + (λ− µ)ψ∗
1(t).

Then, using the equations and initial conditions of systems (2.1) and (7.1), we
obtain the system of differential equations for the switching function L(t) and the
functions P (t) and ψ∗

1(t):

(7.5)


L̇(t) = a(t)L(t) + γ1P (t), t ∈ [0, T ],

Ṗ (t) = −b(t)L(t)− c(t)P (t) + d(t)ψ∗
1(t),

ψ̇∗
1(t) = −e(t)L(t)− P (t) + λψ∗

1(t),
L(T ) = −γ2, P (T ) = 0, ψ∗

1(T ) = 0.

By the first initial condition of system (7.5) and the continuity of the switching
function L(t), the following lemma can be stated.

Lemma 7.1. There exists such a value t0 ∈ [0, T ) that for all t ∈ (t0, T ] the
switching function L(t) is negative.

Corollary 7.2. From Lemma 7.1 and formula (7.2) it follows that

u∗(t) = umin, t ∈ (t0, T ].

Now, let us rewrite the constancy of the Hamiltonian on the optimal solution (7.3)
in terms of the functions L(t), P (t) and ψ∗

1(t) as follows:

(7.6)

k̇∗(t)L(t)−
γ2ṁ∗(t)

βm∗(t)
P (t)

+

(
γ2 l̇∗(t) + γ1k̇∗(t) +

γ2ṁ∗(t)

βm∗(t)
(αm∗(t) + (λ− µ))

)
ψ∗
1(t)

= −γ2k̇∗(T ), t ∈ [0, T ).

Finally, formula (7.2) shows us the possible types of the optimal control u∗(t).
It can have a bang-bang type, and switches only between the values umin and 1.
Such type occurs, when at all points where the switching function L(t) vanishes,

its derivative L̇(t) is not zero. Or, in addition to the portions of a bang-bang type
the control u∗(t) can also contain a singular arc (see [30, 38]). This arises, when
the switching function L(t) vanishes identically over some open subinterval of the
interval [0, T ]. The next section relates to finding the relationships between the
parameters of system (2.1) under which the optimal control u∗(t) is of one type or
another.
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8. Investigation of a singular arc

Let us study the existence of a singular arc at the optimal control u∗(t). According
to [30, 38], this means that can the switching function L(t) become zero identically
on some interval ∆ ⊂ [0, T ]? We will examine this question in detail.

Let us assume that it is possible. Then, the following equality holds:

(8.1) L(t) = 0, t ∈ ∆.

We use the first equation of the system (7.5) for finding on the interval ∆ the first
derivative of the function L(t), and then set it equal to zero:

dL

dt
(t)

∣∣∣
L(t)=0

= 0.

This relationship implies the equality:

(8.2) P (t) = 0, t ∈ ∆.

Now, using the second equation of this system, we find the second derivative of
the function L(t), and again equate it to zero:

d2L

dt2
(t)

∣∣∣
L(t)=0, L(1)(t)=0

= 0.

This expression implies the equality:

(8.3) d(t)ψ∗
1(t) = 0, t ∈ ∆.

Equality to zero of the function ψ∗
1(t) on the interval ∆ together with equalities (8.1)

and (8.2) lead to the conclusion that the vector-function ψ∗(t) = (ψ∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

is trivial on this interval, and hence also on the entire interval [0, T ]. This fact is
contradictory. Hence, the function ψ∗

1(t) does not vanish at any point of the interval
∆, and therefore we have the equality:

(8.4) d(t) = 0, t ∈ ∆.

By the formula of the function d(t) from (7.4), we see that the analysis of equal-
ity (8.4) is related to the behavior of the quadratic function:

f(m) = α(λ− ν)m2 + λ(λ− µ)m− ρ(λ− µ).

Its discriminant has the form:

Df = λ2(λ− µ)2 + 4αρ(λ− ν)(λ− µ).

Using inequalities (6.2), we see that depending on the values of α and Df , the
following cases are possible.

Case (a) If α < 0 and Df < 0, then the function f(m) takes negative values
for all m > 0, and equality (8.4) is impossible. Hence, the switching function L(t)
cannot be zero on any subinterval of the interval [0, T ]. Therefore, the optimal
control u∗(t) does not have a singular arc. By formula (7.2), we see that it is
bang-bang control taking the values {umin; 1} on the interval [0, T ]. Next, we can
estimate the number of zeros of the function L(t) and consequently find the estimate
of the number of switchings of the control u∗(t). In more detail these questions are
considered in [11].
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Case (b) If α > 0, then Df > 0. Equation (8.4) has only one positive root m0
sing:

m0
sing =

−λ(λ− µ) +
√
λ2(λ− µ)2 + 4αρ(λ− ν)(λ− µ)

2α(λ− ν)
.

Case (c) If α < 0 and Df > 0, then equation (8.4) has two positive roots m1
sing,

m2
sing and m1

sing < m2
sing:

m1
sing =

−λ(λ− µ) +
√
λ2(λ− µ)2 + 4αρ(λ− ν)(λ− µ)

2α(λ− ν)
,

m2
sing =

−λ(λ− µ)−
√
λ2(λ− µ)2 + 4αρ(λ− ν)(λ− µ)

2α(λ− ν)
.

For simplification of consequent arguments let the following condition be valid.

Condition 8.1. We exclude from consideration the case when α < 0 the equality
Df = 0 holds.

Next, as we see, the second derivative of the switching function L(t) leads to
expression (8.3), which does not contain the control u∗(t). This means that in
Cases (b) and (c) the order q of the singular arc is greater than one (see [30, 38]).

Further, in Cases (b) and (c), we take on the interval ∆ the third derivative of
the switching function L(t), and then equate it to zero:

d3L

dt3
(t)

∣∣∣
L(t)=0, L(1)(t)=0, L(2)(t)=0

= 0.

This formula implies the differentiation of equality (8.3) on the interval ∆. The use
of equality (8.4) in the resulting expression leads to the relationship:

(8.5) (2α(λ− ν)msing + λ(λ− µ))ṁ∗(t)ψ
∗
1(t) = 0, t ∈ ∆.

This expression implies that everywhere on the interval ∆ the following equality
holds:

(8.6) ṁ∗(t) = 0,

which, first, allows us to find the value lsing for variable l on the singular arc:

(8.7) lsing =
ρ− νmsing

βmsing
= Const.

Here, msing is the value of variable m on the singular arc as well. For Case (b) such
value is the value m0

sing, for Case (c) one of the values m1
sing, m

2
sing. Secondly, the

positivity of the value lsing leads to the restriction on the value msing:

(8.8) msing ∈
(
0, ν−1ρ

)
.

Finally, we evaluate on the interval ∆ the fourth derivative of the switching
function L(t), and then equate it to zero:

d4L

dt4
(t)

∣∣∣
L(t)=0, L(1)(t)=0, L(2)(t)=0, L(3)(t)=0

= 0.
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This formula implies the differentiation of equality (8.5) on the interval ∆. By
equality (8.6) in the resulting expression, we obtain the relationship:

(8.9) −βmsing(2α(λ− ν)msing + λ(λ− µ))l̇∗(t)ψ
∗
1(t) = 0, t ∈ ∆,

or in a more detailed form:

− βmsing(2α(λ− ν)msing + λ(λ− µ))

× (σ − δlsingmsing − γ1using(t)lsingksing(t)− µlsing)ψ
∗
1(t) = 0,

where using(t) is control and ksing(t) is the value of variable k on the singular arc.
From the analysis of this formula we can make the following conclusions. First,

the order q of the singular arc equals two. Secondly, the necessary condition of the
optimality of the singular arc (Kelly-Cope-Moyer condition ([38])) has the type:

(2α(λ− ν)msing + λ(λ− µ))ψ∗
1(t) ≤ 0, t ∈ ∆.

As we have already noted, on the interval ∆ the function ψ∗
1(t) is sign-definite, that

is, it takes either only positive or only negative values. Hence, the Kelly-Cope-
Moyer condition is either valid in a strengthened form:

(8.10) (2α(λ− ν)msing + λ(λ− µ))ψ∗
1(t) < 0, t ∈ ∆,

or it is not valid at all, i.e.:

(8.11) (2α(λ− ν)msing + λ(λ− µ))ψ∗
1(t) > 0, t ∈ ∆.

Third, expression (8.9) implies that everywhere on the interval ∆ the following
equality holds:

(8.12) l̇∗(t) = 0,

which allows us to find the formula for the control using(t) and function ksing(t):

(8.13) using(t)ksing(t) =
σ − δlsingmsing − µlsing

γ1lsing
= Const.

Formula (8.7) and the defined above function g2(m) make it possible to rewrite
equality (8.13) as follows:

(8.14) using(t)ksing(t) =
g2(msing)

γ1(ρ− νmsing)
= Const, t ∈ ∆.

The positivity of the product on the left-hand side of this formula, as well as rela-
tionships (3.10) and (8.8), yields the following inclusion:

(8.15) msing ∈
(
m0

2, ν
−1ρ

)
,

which is a necessary condition for the existence of the singular arc.
Let us analyze inclusion (8.15) for considered above Cases (b) and (c).
Case (b) If α > 0, then one of the following situations is possible:

• the value m0
sing /∈

(
m0

2, ν
−1ρ

)
. Therefore, the singular arc is not possible. Optimal

control u∗(t) is bang-bang taking only values {umin; 1}.
• the valuem0

sing ∈
(
m0

2, ν
−1ρ

)
. Then, this value becomes the valuemsing of variable

m on the interval ∆.
Case (c) If α < 0 and Df > 0, then one of the following situations is possible:
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• none of the valuesm1
sing,m

2
sing do not belong to the interval

(
m0

2, ν
−1ρ

)
. Therefore,

the singular arc is not possible. Optimal control u∗(t) is bang-bang taking only
values {umin; 1}.
• only one of the values m1

sing, m
2
sing belongs to the interval

(
m0

2, ν
−1ρ

)
. Then, this

value becomes the value msing of variable m on the interval ∆.
• both values m1

sing, m
2
sing belong to the interval

(
m0

2, ν
−1ρ

)
. Since the expressions

(2α(λ− ν)m1,2
sing + λ(λ− µ)) are opposite in sign:

2α(λ− ν)m1
sing + λ(λ− µ) > 0, 2α(λ− ν)m2

sing + λ(λ− µ) < 0,

and the function ψ∗
1(t) is sign-definite, then for one of them inequality (8.10) will

be satisfied, and for the other inequality (8.11). It means that only one of them
satisfies the necessary condition of the optimality of the singular arc (Kelly-Cope-
Moyer condition). Namely, this value becomes the value msing of variable m on the
interval ∆.

Now, let us return to formula (8.14) and discuss how to find the function ksing(t).
We substitute formula (8.14) into the second equation of the system (2.1), and
then transform the resulting expression with using formula (8.7) and the defined
above functions g1(m) and g2(m). As a result, we obtain a linear autonomous
nonhomogeneous differential equation:

(8.16) k̇sing(t) = −λksing(t)−
γ2
γ1

· g1(msing)

βmsing
, t ∈ ∆.

Adding to the equation (8.16) an initial condition, which can be taken as the value of
the function ksing(t) at a time moment where the singular and non-singular portions
of the optimal solution k∗(t) are concatenated, and then integrating the resulting
Cauchy problem, we find the function ksing(t) on the interval ∆.

Now, let us discuss formula (7.6) of the constancy of the Hamiltonian on the
optimal solution. On the interval ∆ it can be written as follows:

(8.17) γ1k̇sing(t)ψ
∗
1(t) = −γ2k̇∗(T ).

Depending on the value of k̇∗(T ), the following two cases are possible.

• If k̇∗(T ) = 0, then formula (8.17) leads to the equality:

(8.18) k̇sing(t) = 0, t ∈ ∆.

By relationships (8.14) and (8.16), we find the following formulas:

ksing =− γ2
γ1

· g1(msing)

λβmsing
= Const,

using =− λβmsing

γ2(ρ− νmsing)
· g2(msing)

g1(msing)
= Const.

By the inclusion using ∈ [umin, 1], the control u∗(t) = using is admissible on the
interval ∆. Since the coordinates of the point (lsing, ksing,msing) were found from
equalities (8.6), (8.12) and (8.18), then it coincides with the equilibrium (l⋆, k⋆,m⋆)
related to the control u = using and studied in Section 3. Corollary 7.2 shows
that the singular arc of the optimal control u∗(t) is concatenated with non-singular
portion, where it is a bang-bang control. Let τ ∈ (0, T ) be the time moment, when
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such portions are concatenated. Then, as it follows from [31], when using ∈ (umin, 1),
the non-singular portion contains at least the countable number of switchings of
control u∗(t), accumulating to the point τ . This behavior of the optimal control u∗(t)
on non-singular portions is called a chattering phenomenon and will be observed on
both sides of the interval ∆.

• If k̇∗(T ) ̸= 0, then, as in the previous case, from formula (8.17) we conclude that

k̇sing(t) ̸= 0 for all t ∈ ∆. It means that the function ksing(t) is either increasing or
decreasing. By formula (8.14), the corresponding control using(t) is, on the contrary,
either a decreasing or an increasing function. The specific form of the function
ksing(t) depends on the sign of value α, as well as the positivity or negativity of the
function ψ∗

1(t) on the interval ∆. When the inclusion using(t) ∈ (umin, 1) holds for
all t ∈ ∆, the behavior of the control u∗(t) on non-singular portions is similar to
the previous case.

Situations, when using ∈ {umin; 1} for the first case and using(τ) ∈ {umin; 1} for the
second case, are required more complicated and cumbersome arguments. Therefore,
here they are not considered.

Finally, we note that the study of the singular arc conducted in this section differs
from similar studies (see [30, 31], and references therein), which use the Lie brackets
and the switching function

L0(t) = l∗(t)k∗(t)(γ2ψ
∗
2(t)− γ1ψ

∗
1(t))

related to the derivative H̃ ′
u(l, k,m, u, ψ1, ψ2, ψ3) from Section 7. The basis of our

arguments is system (7.5) for the switching function L(t) and the corresponding
auxiliary functions P (t) and ψ∗

1(t). Conducting direct calculations shows that the
results presented above and in [30, 31] are the same. Moreover, in our opinion, they
are obtained in a more concise way.

9. Results of numerical calculations

Here we demonstrate the results of a numerical solution of the minimization
problem (2.1), (6.1), namely, give the graphics of the optimal control u∗(t) and the
corresponding optimal solutions l∗(t), k∗(t),m∗(t) for the two cases considered in the
previous section: Case (a) and Case (b). In both cases the values of the parameters
and initial conditions of system (2.1) and restrictions (2.2) are taken from [25].
Also, numerical calculations were made in Case (c), but there were no qualitative
differences from the results obtained in Cases (a) and (b). Therefore, here we do not
give them. In addition, we want to say that the numerical calculations in Case (a)
supplement and confirm the theoretical results obtained earlier in [11].

It is important to note that the control u(t) is auxiliary. It is introduced into
system (2.1) to simplify analytical analysis. The corresponding physical control v(t)
in the same system is related to the control u(t) by the formula v(t) = 1 − u(t).
Therefore, where the auxiliary optimal control u∗(t) has a maximum value of 1, the
appropriate physical optimal control v∗(t) takes a minimum value of 0, and vice
versa.

In Case (a), when α < 0 and Df < 0, for numerical calculations the following val-
ues of the parameters and initial conditions of the system (2.1) and restrictions (2.2)
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were used:
σ = 15.0 ρ = 12.0 β = 0.12 δ = 0.15
µ = 0.04 ν = 0.05 γ1 = 0.03 γ2 = 0.09
umin = 0.3 T = 100.0
l0 = 100.0 k0 = 40.0 m0 = 50.0

These numerical calculations were conducted using “GPOPS–2.3” ([21]). The cor-
responding results are shown in Figures 2 and 3. Here J∗ is the minimum value of
the functional J(u) from (6.1).

Physical optimal control v∗(t) according to Figures 2 and 3 has one switching
from the minimum value to the maximum value that describes the situation when,
first there is the period of the psoriasis treatment with the lower intensity, and then,
the switching occurs to the period of the treatment with the greatest intensity.

In Case (b), when α > 0, for numerical calculations the following values of the
parameters and initial conditions of the system (2.1) and restrictions (2.2) were
used:

σ = 15.0 ρ = 3.6 β = 0.4 δ = 0.005
µ = 0.01 ν = 0.02 γ1 = 0.8 γ2 = 0.05
umin = 0.3 T = 100.0
l0 = 100.0 k0 = 40.0 m0 = 50.0

These numerical calculations were conducted using “BOCOP–2.0.5” ([1]) and “GPOPS–
2.3” ([21]). Simultaneous use of these softwares was necessary to verify their perfor-
mance in the study of such a complex from the computational point of view of the
phenomenon as chattering. As a result, they have proved themselves well, show-
ing equal opportunities. The corresponding results of the numerical calculations
are shown in Figures 4–7. Here J∗ is the minimum value of the functional J(u)
from (6.1) as well.

Figures 4–7 show that the behavior of the physical optimal control v∗(t) is qual-
itatively different from the previous one. This difference consists in the presence
of a period of the psoriasis treatment with a smooth increase in the dose of used
medication. To the beginning and the end of this period of the psoriasis treatment
there are the periods with increasing number of switchings with lower intensity to
greatest intensity and vice versa, which does not make much sense as a type of
medical treatment. At the same time, the whole process of this treatment ends
with the period with the greatest intensity.

Finally, we would like to emphasize that in all performed numerical calculations,
the optimal concentration of keratinocytes k∗(t) decreases to an acceptable level to
the end T of the psoriasis treatment (see Figures 2–7).

10. Conclusion

Mathematical model of a psoriasis treatment described by a nonlinear system
of three differential equations involving the concentrations of T-lymphocytes, ker-
atinocytes, and dendritic cells (tissues macrophages) was considered. Its invariance
and permanence, the existence of equilibria with nonnegative coordinates, and con-
ditions for their local asymptotic stability were investigated and refined. Then, a
control function as medication intake was introduced into this model, and such con-
trol model was considered on a given time interval. An optimal control problem of
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minimizing the release of keratinocytes at the end of the time interval was stated
and studied using the Pontryagin maximum principle. The corresponding adjoint
system, the maximum condition for the optimal control, and the condition for the
constancy of the Hamiltonian on the optimal solution were written. Then, a sys-
tem of differential equations for the switching function describing the behavior of
this control and its corresponding auxiliary functions was obtained. This system
of equations allowed us to determine the type of the optimal control: this function
has only a bang-bang type, or in addition to the bang-bang type, it also contains
singular arc. The relationships between the parameters of the original control model
were found under which the optimal control is of one type or another. When a sin-
gular arc arose, its order, the fulfillment of the corresponding necessary optimality
condition for it, as well as possible forms of a concatenation of singular arc and
bang-bang type of the optimal control were discussed. The obtained results were
illustrated by numerical calculations, and corresponding conclusions were made.
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Figure 2. Optimal solutions and optimal control for λ = 0.08: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 394.7763.
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Figure 3. Optimal solutions and optimal control for λ = 0.15: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 200.0344.
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Figure 4. Optimal solutions and optimal control for λ = 0.9: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 4.55257.
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Figure 5. Optimal solutions and optimal control for λ = 1.5: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 2.86014.



246 E. V. GRIGORIEVA AND E. N. KHAILOV

0 20 40 60 80 100
t

0

20

40

60

80

100

l ∗
(t
)

0 20 40 60 80 100
t

0

20

40

60

80

k
∗
(t
)

0 20 40 60 80 100
t

0

10

20

30

40

m
∗
(t
)

0 20 40 60 80 100
t

0

0.3

1

u
∗
(t
)

Figure 6. Optimal solutions and optimal control for λ = 0.9: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 4.5527.
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Figure 7. Optimal solutions and optimal control for λ = 1.5: upper
row: l∗(t), k∗(t); lower row: m∗(t), u∗(t). J∗ = 2.8602.


