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developed. For example, there are existence theorems, results on the differentia-
bility of the parameter-to-solution map, stability aspects, error analysis, etc. On
the other hand, most of these issues have not been adequately addressed for the
inverse problems in variational inequalities. Furthermore, although there are dif-
ferent optimization formulations for inverse problems in variational equations, the
only available optimization framework for variational inequalities is through the
well-known output least-squares objective.

Before discussing our main contribution, in the following, we briefly review some
of the related research. A significant inverse problem in variational inequalities
appears in the elastohydrodynamic lubrication problem (EHL). The EHL problem
results in a variational inequality in which the unknown is the pressure u, and the
coefficient a is known. However, due to the major theoretical and computational
difficulties in solving the EHL problem, an efficient two-step procedure is typically
designed. In this process, the first step comprised of an inverse problem of param-
eter identification in a variational inequality where the sought parameter is in the
main operator and on the right-hand side of the inequality, see [3]. Inspired by the
EHL problem, Hintermüller [22] studied the inverse problem of parameter identifi-
cation for a certain variational inequality and besides a rigorous treatment of the
analytical aspects, also presented a detailed computational framework. In the same
vein, Gonzalez [15] explored the inverse problem of identifying multiple parameters
in an elliptic variational inequality and provided an existence result. In an ear-
lier work, Hasanov [20] presented useful results for the boundary inverse problem
for elliptic variational inequalities. In another contribution [36], the authors gave
a detailed numerical treatment of the inverse elasticity problem with Signorini’s
condition. In [35], the authors focused on the theoretical aspects of the identifica-
tion inverse problem in a nonlinear variational inequality. Recently, Kupenko and
Manzo [31] investigated the inverse problem of parameter identification for a vari-
ational inequality with anisotropic p-Laplacian. We also note that K. H. Hoffmann
and J. Sprekels [23] were among the first ones to study parameter identification in
variational inequalities. However, in [23], in contrast to the most papers on inverse
problems where an optimization framework is a preferred choice, the authors de-
veloped an iterative scheme that is based on the construction of certain regularized
time-dependent problems containing the original problem as the asymptotic steady
state. Finally, we note that recently in [17], we studied identification in a quasi-
variational inequality and in a variational inequality which is a particular case of
the variational inequality studied here. There are many interesting articles on the
optimal control of variational inequalities which rely on similar techniques as used
in the inverse problem, see [1, 7, 6, 16, 18, 21, 30], and the cited references.

Motivated by some of the gaps discussed above in the available literature, in
this work, we develop an abstract framework to identify variable parameters in
variational inequalities. The main contributions of this research are as follows:

(1) We consider a general variational inequality and develop an abstract frame-
work for identifying variable parameters appearing at three different places,
namely, in the primary operator, on the right-hand side, and in the func-
tional.
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(2) Resorting to optimization formulations, we pose two optimization problems.
The first approach is based on using the classical output least-squares (OLS)
objective and another proposing a new energy norm based modified output
least-squares (MOLS); its analog for variational equations have been studied
extensively in recent years.

(3) We give existence results for the considered optimization problems. We
penalize the variational inequality to obtain a variational inequality which
is defined on the whole space and consider analogs of the two optimiza-
tion problems with the new variational inequality as the constraint. We
introduce smoothing of the penalty map and study differentiability of the
parameter-to-smooth map for the penalized variational equation. We then
consider the two optimization problems with the smooth penalized equation
as the constraint and derive necessary optimality conditions depending on
the penalty parameter. By a limit process sending the penalty parameter to
zero, we recover necessary optimality conditions for the original optimization
problems.

(4) Using a finite element based discretization approach, we devise a computa-
tion framework and present a numerical example showing the feasibility of
the approach.

We organize this paper into seven sections. In Section 2, we introduce the inverse
problem and propose two optimization formulations to derive an estimation of the
solution. We also study the penalization of the variational inequality. Smoothing of
the penalty map and its consequences are given in Section 3. We provide optimality
conditions for the OLS approach in Section 4 and optimality conditions for the
MOLS approach in Section 5. We give a numerical example in Section 6, and the
paper concludes with some remarks.

2. Optimization frameworks for the inverse problem

Let B be a real Banach space, let S ⊂ B be an open set, let A ⊂ S be a closed
and convex set, and let ℓ : S → B, with ℓ(S) ⊆ A, be a continuously differentiable
map which is bounded on A. To prove the existence of some derivatives, we will
also assume that A has a nonempty interior. Let V be a real Hilbert space which
we identify with its topological dual V ∗. We denote the strong convergence and the
weak convergence by → and ⇀, respectively. By ∥·∥N , we denote the norm of space
N. Let K ⊂ V be a closed and convex set with 0 ∈ K, and let m(a) := Ma +m,
where M : B → V ∗ is a linear and continuous map and m ∈ V ∗. Let Φ : B×V → R
be a nonnegative functional which is linear and continuous in the first argument,
and convex and continuous in the second argument with Φ(a, 0) = 0, for each a ∈ B.
Let T : B×V ×V → R be a trilinear form with T (·, u, v) symmetric in u, v. Assume
that there are constants α > 0 and β > 0 such that the following continuity and
coercivity conditions hold

T (a, u, v) ≤ β∥a∥B∥u∥V ∥v∥V , for all u, v ∈ V, a ∈ B.(2.1)

T (a, u, u) ≥ α∥u∥2V , for all u ∈ V, a ∈ A.(2.2)
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Consider the variational inequality: Given a ∈ A, find u = u(a) ∈ K with

(2.3) T (ℓ(a), u, v − u) ≥ ⟨m(a), v − u⟩V +Φ(a, u)− Φ(a, v), for all v ∈ K.

Variational inequality (2.3), which is uniquely solvable by standard arguments
(see [33]), is the direct problem in this study. Our goal, however, is on the iden-
tification of the parameter a from a measurement z of u(a). As typically done, to
study this inverse problem, we will resort to an optimization framework.

In some applications, in (2.3), it is advantages to have different parameters in T ,
m, and Φ which belong to different function spaces. Such modifications, however,
require minor changes and for the sake of simplicity in presentation, are not pursued.

It is well-known that inverse problems are ill-posed and a regularization is needed.
For this, let H be a real Hilbert space compactly embedded in B with A ⊂ H. With
this preparation, we consider the following two regularized optimization problems:

Find a ∈ A by the output least-squares (OLS) minimization problem

(2.4) min
a∈A

Ĵκ(a) :=
1

2
∥u(a)− z∥2Z +

κ

2
∥a∥2H .

Find a ∈ A by the modified output least-squares (MOLS) minimizaing problem

(2.5) min
a∈A

Jκ(a) :=
1

2
T (a, u(a)− z, u(a)− z) +

κ

2
∥a∥2H .

In the above optimization problems, κ > 0 is the regularization parameter, u(a) is
the unique solution of (2.3), z is a measurement of u(a), and Z is a Hilbert space
with V ⊂ Z. The OLS functional (2.4) attempts to minimize the gap between the
computed and the observed solution in the norm of the observation space Z, whereas
the MOLS functional (2.5) aims to minimize the energy associated to the trilinear
form. Evidently, (2.5) requires that z ∈ V. The MOLS objective has been used
extensively in the inverse problem of identifying variable parameters in variational
equations, see [12, 13, 14, 19, 25, 24, 24, 26].

We have the following existence result for the regularized optimization problems:

Theorem 2.1. Optimization problems (2.4) and (2.5) have nonempty solution sets.

Proof. We will only prove the solvability of (2.5), and the solvability of (2.4) can
then be shown by analogous arguments. For every a ∈ A, Jκ(a) is bounded from
below, and hence there is a minimizing sequence {an} in A such that lim

n→∞
Jκ(an) =

inf{Jκ(a)| a ∈ A}. Due to the regularizer in the definition of Jκ, it follows that
sequence {an} is bounded in ∥·∥H , and due to the compact embedding of H into B,
{an} has a strongly convergent subsequence in B. Keeping the same notation for
the subsequences as well, let {an} be the subsequence converging to some ā ∈ B.
Since A is closed, we have ā ∈ A. Let {un} be the sequence of solutions of (2.3) for
{an}, that is, un = u(an). By the definition of un, for all v ∈ K, we have

(2.6) T (ℓ(an), un, v − un) ≥ ⟨m(an), v − un⟩V +Φ(an, un)− Φ(an, v).

We set v = 0 in the above inequality, use the positivity of Φ and the fact that
Φ(an, 0) = 0 to get α∥un∥2V ≤ ∥m(an)∥V ∗∥un∥V which confirms that {un} is
bounded, and hence contains a weakly convergent subsequence. Using the same
notation for the subsequences as well, assume that {un} is the subsequence that
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converges weakly to some ū ∈ V. We claim that ū = u(ā). For this, we consider
(2.6) (for the subsequence) and rearrange it as follows

T (ℓ(ā), v, v − un) + T (ℓ(an)− ℓ(ā), v, v − un)

≥ T (ℓ(an), un − v, un − v) + ⟨m(an), v − un⟩V +Φ(an, un)− Φ(an, v)

≥ ⟨m(an), v − un⟩V +Φ(an, un)− Φ(an, v)

by using the ellipticity of T . We pass the above inequality to the limit n → ∞ to
obtain

T (ℓ(ā), v, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v), for every v ∈ K.

We set v := ū+ t(v − ū) ∈ K, for t > 0, in the above and use the convexity of Φ to
obtain

tT (ℓ(ā), ū, v − ū) + t2T (ℓ(ā), v − ū, v − ū) ≥ t⟨m(ā), v − ū⟩V + t[Φ(ā, ū)− Φ(ā, v)]

which implies that

T (ℓ(ā), ū, v − ū) + tT (ℓ(ā), v − ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v).

We now pass the above inequality to the limit t → 0 to obtain

T (ℓ(ā), ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v),

which, in view of the fact that v ∈ K was chosen arbitrarily, confirms that ū solves
(2.3). However, since variational inequality (2.3) is uniquely solvable, we conclude
that ū = u(ā).

It turns out that indeed {un} converges strongly to ū. For this we note that (2.6),
taking v = ū, yields

T (ℓ(an), un, ū− un) ≥ ⟨m(an), ū− un⟩V +Φ(an, un)− Φ(an, ū),

or equivalently

T (ℓ(an), un − ū, un − ū) ≤ T (ℓ(an), ū, ū− un)− ⟨m(an), ū− un⟩V
+Φ(an, ū)− Φ(an, un)

which, in view of the ellipticity of T, confirms that ∥un − ū∥V → 0 as n → ∞.
To prove the continuity of the MOLS functional, let {an} and {un} be the se-

quences such that an → ā and un → ū = u(ā). The following rearrangement of
terms

T (ℓ(an),un − z, un − z) = T (ℓ(an), un − ū, un − z) + T (ℓ(an), ū− z, un − ū),

+ T (ℓ(an)− ℓ(ā), ū− z, ū− z) + T (ℓ(ā), ū− z, ū− z),

due to the properties of T yields T (ℓ(an), un− z, un− z) → T (ℓ(ā), ū− z, ū− z) and
n → ∞.
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Consequently,

Jκ(ā) =
1

2
T (ℓ(ā), ū− z, ū− z) +

κ

2
∥ā∥2H

≤ lim
n→∞

1

2
T (ℓ(an), un − z, un − z) + lim inf

n→∞

κ

2
∥an∥2H

≤ lim inf
n→∞

{
1

2
T (ℓ(an), un − z, un − z) +

κ

2
∥an∥2H

}
= inf {Jκ(a) | a ∈ A} ,

which confirms that ā is a solution of (2.5). The proof is complete. □

We now replace the constraint (2.3) for the optimization problems (2.4) and
(2.5) by a variational inequality defined on the whole space V . This new variational
inequality, under some smoothness hypothesis on the data, will then be converted
to an operator equation to derive optimality conditions. We define a penalty map
P : V → V ∗ which is bounded, hemi-continuous and monotone map with

(2.7) K = {v ∈ V | P (v) = 0}.
A simple example is constituted by P = (I − PK), where I is the identity map and
PK is the projection map defined from V onto K.

For a penalty parameter ε > 0 and the penalty map P , we consider the following
penalized variational inequality: Given a ∈ A, find uε = uε(a) ∈ V such that for
every v ∈ V, we have

(2.8) T (ℓ(a), uε, v−uε)+
1

ε
⟨P (uε), v − uε⟩V ≥ ⟨m(a), v−uε⟩V +Φ(a, uε)−Φ(a, v).

In view of the ellipticity of T and monotonicity of P, for any a ∈ A, variational
inequality (2.8) has a unique solution uε(a).

We now consider analogues of (2.4) and (2.5) where the constraint variational
inequality (2.3) has been replaced by variational inequality (2.8) which is defined
on the whole space.

Find a ∈ A by solving the following penalized OLS based optimization problem:

(2.9) min
a∈A

Ĵσ(a) =
1

2
∥uε(a)− z∥2Z +

κ

2
∥a∥2H ,

where κ > 0 is the regularization parameter, ε > 0 is the penalization parameter,
and for a ∈ A, the element uε(a) solves (2.8). Find a ∈ A by solving the following
penalized MOLS based optimization problem:

(2.10) min
a∈A

Jσ(a) =
1

2
T (ℓ(a), uε(a)− z, uε(a)− z) +

κ

2
∥a∥2H ,

where κ > 0 is the regularization parameter, ε > 0 is the penalization parameter,
and for a ∈ A, the element uε(a) solves (2.8).

We give the following existence and convergence result:

Theorem 2.2. For every ε > 0, optimization problem (2.10) has a solution aε.
Furthermore, there exists a sequence {(aε, uε)}, where uε = uε(aε) is the unique
solution of penalized variational inequality (2.8), such that for ε → 0, we have
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aε → ā in B, and uε → ū in V, where ā is a solution of (2.5) and ū = u(ā) is the
unique solution of (2.3).

Proof. For a fixed ε > 0, the solvability of optimization problem (2.10) follows
by repeating the arguments used in the proof of Theorem 2.1. Furthermore, the
sequence {aε} ⊂ A of solutions of (2.10) is uniformly bounded in H. Therefore, due
to the compact embedding, there is a subsequence, denoted by the same notation,
that converges strongly to some ā ∈ A. Let uε be the sequence of solutions of (2.8)
corresponding to {aε}. By taking v = 0 in (2.8), and using the coercivity, we notice
that {uε} remains bounded as well. Therefore, there is a subsequence {uε} (again
keeping the same notation), which converges weakly to some ū ∈ V. We claim that
ū ∈ K. It follows from (2.8) that

⟨P (uε),uε − v⟩V
≤ ε [Φ(aε, v)− Φ(aε, uε) + ⟨m(aε), uε − v⟩V − T (ℓ(aε), uε, uε − v)] ,

which yields

lim sup
ε→0

⟨P (uε), uε − v⟩V ≤ 0.

Furthermore, by using the monotonicity of the penalty map P , for every v ∈ V, we
have

0 ≤ lim sup
ε→0

⟨P (v)− P (uε), v − uε⟩V ≤ ⟨P (v), v − ū⟩V .

By setting v := ū + tz, where t > 0, and z ∈ V is arbitrary, we get that ⟨P (ū +
tz), z⟩V ≥ 0, and, by passing t → 0, it follows from the hemicontinuity of P that
⟨P (ū), z⟩V ≥ 0. Since z ∈ V is arbitrary, we have P (ū) = 0 which confirms that
ū ∈ K.

From (2.8), for every v ∈ K, we have

T (ℓ(aε), uε, v − uε) +
1

ε
⟨P (uε), v − uε⟩V ≥ ⟨m(aε), v − uε⟩V

+Φ(aε, uε)− Φ(aε, v),

or equivalently,

T (ℓ(aε), uε, v − uε)−
1

ε
⟨P (v)− P (uε), v − uε⟩V +

1

ε
⟨P (v), v − uε⟩V

≥ ⟨m(aε), v − uε⟩V +Φ(aε, uε)− Φ(aε, v),

and by using the monotonicity of P and the fact that P (v) = 0, for any v ∈ K, we
deduce that for all v ∈ K, we have

(2.11) T (ℓ(aε), uε, v − uε) ≥ ⟨m(aε), v − uε⟩V +Φ(aε, uε)− Φ(aε, v).

By using the ellipticity of T , it follows from (2.11) that

T (ℓ(aε), v, v − uε) ≥ T (ℓ(aε), v − uε, v − uε) + ⟨m(aε), v − uε⟩V
+Φ(aε, uε)− Φ(aε, v)

≥ ⟨m(aε), v − uε⟩V +Φ(aε, uε)− Φ(aε, v),
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which further implies that

T (ℓ(ā), v, v − uε) + T (ℓ(aε)− ℓ(ā), v, v − uε) ≥ ⟨m(aε), v − uε⟩V
+Φ(aε, uε)− Φ(aε, v),

and by passing to the limit ε → 0, we obtain

T (ℓ(ā), v, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v),

and since v ∈ K is arbitrary, the above inequality holds for every v ∈ K. To obtain
(2.3) from this inequality, we set v = ū+ t(v − ū) ∈ K, where t ∈ (0, 1] and obtain

T (ℓ(ā), ū, v − ū) + tT (ℓ(ā), v − ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v),

and by taking t → 0, we get

(2.12) T (ℓ(ā), ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v), for every v ∈ K,

verifying that ū = u(ā).
Let ã ∈ A be an arbitrary solution of (2.5) and let ũ = u(ã) be the corresponding

unique solution of (2.3). For ã, let ũε := uε(ã) be the unique solution of the
variational inequality such that for each v ∈ V, we have

T (ℓ(ã), ũε, v − ũε) +
1

ε
⟨P (ũε), v − ũε⟩V ≥ ⟨m(ã), v − ũε⟩V +Φ(ã, ũε)− Φ(ã, v).

Note that, firstly, ũε ⇀ ũ as ε → 0, and secondly, (ã, ũε) is feasible for (2.10). For
the time being assume that ũε → ũ. Then, we have

Jκ(ā) =
1

2
T (ℓ(ā), ū− z, ū− z) +

κ

2
∥ā∥2H

≤ lim
ε→0

1

2
T (ℓ(aε), uε − z, uε − z) + lim inf

ε→0

κ

2
∥aε∥2H

= lim inf
ε→0

(
1

2
T (ℓ(aε), uε − z, uε − z) +

κ

2
∥aε∥2H

)
≤ lim

ε→0

(
1

2
T (ℓ(ã), ũε − z, ũε − z) +

κ

2
∥ã∥2H

)
= Jκ(ã),

and since ã ∈ A was chosen arbitrarily, we deduce that ā ∈ A solves (2.5).
By now we know that {uε} converges weakly to ū. We conclude this proof by

showing that {uε} converges strongly to ū. Note that by the definition of uε, we
have

T (ℓ(aε), uε, ū− uε) +
1

ε
⟨P (uε), ū− uε⟩V ≥ ⟨m(aε), ū− uε⟩V

+Φ(aε, uε)− Φ(aε, ū),

and because the above inequality can be written as follows

T (ℓ(aε), uε, ū− uε) +
1

ε
⟨P (uε)− P (ū), ū− uε⟩V ≥ ⟨m(aε), ū− uε⟩V

+Φ(aε, uε)− Φ(aε, ū),
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we obtain by the monotonicity of P and the ellipticity of T that

α ∥uε − ū∥2V ≤ T (ℓ(aε), uε − ū, uε − ū) +
1

ε
⟨P (uε)− P (ū), uε − ū⟩V

≤ T (ℓ(aε)− ℓ(ā), ū, ū− uε) + T (ℓ(ā), ū, ū− uε) + ⟨m(aε), uε − ū⟩V
+Φ(aε, ū)− Φ(aε, uε),

and by passing the above inequality to limit ε → 0 and using the properties of the
trilinear map T , and the fact that uε ⇀ ū, we deduce that ∥uε− ū∥V → 0 and hence
proving the desired strong convergence. The proof is complete. □

3. Smoothness of the parameter-to-solution map

We now additionally assume that for every a ∈ B, the map Φ(a, ·) : V → R is
second-order Fréchet differentiable and that the derivative

∂2Φ(·, v)
∂a∂u

:= ∂2
(a,u)Φ(·, v) : B → V

exists and is linear and continuous.
Given a ∈ A, we recast (2.8) as a variational equation of finding uε ∈ V such that

T (ℓ(a), uε, v) +
1

ε
⟨P (uε), v⟩V + ⟨∂uΦ(a, uε), v⟩V = ⟨m(a), v⟩V , for all v ∈ V.

We now take the penalty map to be P (u) = (I − PK) (u) and approximate it by
a family of smooth penalty maps Pε : V → V satisfying the following conditions:

(1) For every ε > 0, the map Pε is bounded, monotone, and hemi-continuous
such that K = {v ∈ V |Pε(v) = 0}. Moreover, for any v ∈ V, Pε(v) → P (v),
as ε → 0, and for any sequence {uε} converging weakly to some u, the
following inequality holds

(3.1) ⟨P (u), v⟩V ≤ lim inf
ε→0

⟨Pε(uε), v⟩V , for every v ∈ V.

(2) For each ε > 0, Pε has a derivative at each v ∈ V such that⟨
P ′∗
ε (u)v, v

⟩
V
≥ 0, for every u, v ∈ V.(3.2) ⟨

P ′∗
ε (u)v, PK(u)

⟩
V
= 0, for every u, v ∈ V.(3.3)

The above conditions are motivated by Bayada and Talibi [3] where a concrete
example can be found.

For a penalty parameter ε > 0 and a family of smooth penalty maps Pε, we
consider the smooth penalized variational equation: Given a ∈ A, find uε := uε(a) ∈
V such that for every v ∈ V, we have

(3.4) T (ℓ(a), uε, v) +
1

ε
⟨Pε(uε), v⟩V + ⟨∂uΦ(a, uε), v⟩V = ⟨m(a), v⟩V .

Due the ellipticity of T and the monotonicity of Pε and ∂uΦ, for any ε > 0, the
penalized variational equation (3.4) has a unique solution uε(a).

The next result sheds some light on the smoothness of the parameter-to-solution
map:
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Theorem 3.1. For a fixed ε > 0, the map a → uε(a) is differentiable at any point a
in the interior of A. For any direction δa, the derivative δauε := Dauε(a)(δa) exists
and is the unique solution of the variational equation

T (ℓ(a), δauε, v) +
1

ε

⟨
P ′
ε(uε)δauε, v

⟩
V
+
⟨
∂2
(u,u)Φ(a, uε)δauε, v

⟩
V

= ⟨Mδa, v⟩V − T (Dℓ(a)(δa), uε, v)

−
⟨
∂2
(a,u)Φ(a, uε)δa, v

⟩
V
, for all v ∈ V.(3.5)

Proof. For differentiability, we apply the implicit function theorem to the map G :
A× V → V given by

(a, u) → ⟨T (ℓ(a), u)−m(a), ·⟩V +
1

ε
⟨Pε(u), ·⟩V + ∂uΦ(a, u),

where T (ℓ(a), u) is viewed as the associated dual element given by the Riesz repre-
sentation theorem. The derivative DuG(a, u) : V → V is given by

DuG(a, u)(δu) = T (ℓ(a), δu, ·) + 1

ε

⟨
P ′
ε(u)(δu), ·

⟩
V
+ ∂2

(u,u)Φ(a, u)δu.

By hypotheses (2.2), (3.2), and the convexity of Φ(a, ·), the map

T (ℓ(a), ·, ·) + 1

ε

⟨
P ′
ε(u)(·), ·

⟩
V
+ ∂2

(u,u)Φ(a, u)(·)

is coercive. Therefore, for every w ∈ V , the operator equation

T (ℓ(a), δu, ·) + 1

ε

⟨
P ′
ε(u)(δu), ·

⟩
V
+
⟨
∂2
(u,u)Φ(a, u)δu, ·

⟩
V
= ⟨w, ·⟩V

is uniquely solvable. The map DuG(a, ·)(u) : V → V is surjective and the differ-
entiability follows from the implicit function theorem. By differentiating (3.4) with
respect to a, for every v ∈ V, we get

T (ℓ(a),δauε, v) +
1

ε

⟨
P ′
ε(uε)δauε, v

⟩
V
+

⟨
∂2
(u,u)Φ(a, uε)δauε, v

⟩
V

= ⟨Mδa, v⟩V − T (Dℓ(a)(δa), uε, v)−
⟨
∂2
(a,u)Φ(a, uε)δa, v

⟩
V
,

by recalling that m(a) := Ma+m. From the convexity of Φ, ∂2
(u,u)Φ(a, uε) is positive

semi-definite, and as a consequence (3.5) is uniquely solvable. The proof is complete.
□

Remark 3.2. In the following, relying on perturbation arguments, we will assume
that the closed and convex set A of feasible parameters, remains in the interior
of the set on which the above differentiability result holds. This will permit us
to use a variational inequality as a necessary optimality condition for optimizing
OLS/MOLS.

4. Optimality conditions for the OLS formulation

We consider the following perturbed regularized optimization problem: Find aε ∈
A by solving

(4.1) min
a∈A

Ĵσ(a) =
1

2
∥uε(a)− z∥2Z +

κ

2
∥a∥2H .
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where for a ∈ A, the element uε(a) solves the smooth penalized variational equation
(3.4). Here κ > 0 is the regularization parameter, ε > 0 is the penalization as well
as the smoothing parameter.

The following result gives an optimality condition for the above optimization
problem:

Theorem 4.1. For each ε > 0 and κ > 0, (4.1) has a solution. Moreover, for any
solution aε ∈ A of (4.1), there is an element pε ∈ V, uniformly bounded in V with

T (ℓ(aε), pε, v) +
1

ε

⟨
P ′
ε(uε)

∗pε, v
⟩
V
+
⟨
∂2
(u,u)Φ(aε, uε)pε, v

⟩
V
= ⟨z − uε, v⟩Z ,(4.2)

T (Dℓ(aε)(a− aε), uε, pε) +
⟨
∂2
(a,u)Φ(aε, uε)(a− aε), pε

⟩
V

+κ⟨aε, a− aε⟩H − ⟨M∗pε, a− aε⟩V ≥ 0,(4.3)

for every v ∈ V, for every a ∈ A.

Proof. Let ε > 0 be fixed. The existence of a solution aε of (4.1) follows by the argu-
ments used above. A necessary condition for the optimality of aε is the variational
inequality

(4.4) DĴε(aε)(a− aε) + κ ⟨a− aε, aε⟩H ≥ 0, for every a ∈ A,

where

Ĵε(a) :=
1

2
∥uε(a)− z∥2Z ,

DĴε(a)(δa) = ⟨δauε, uε(a)− z⟩Z ,
δauε := Duε(aε)(δa).

We now define the adjoint equation (associated to (4.1)): Find pε ∈ V , such that
for every v ∈ V, we have

(4.5) T (ℓ(aε), pε, v) +
1

ε

⟨
P ′
ε(uε)

∗pε, v
⟩
V
+
⟨
∂2
(u,u)Φ(aε, uε)pε, v

⟩
V
= ⟨z − uε, v⟩Z .

Evidently, (4.5) is uniquely solvable, and let pε ∈ V be its unique solution. Then,

⟨δauε, uε − z⟩Z = −T (ℓ(aε), pε, δauε)−
1

ε

⟨
P ′
ε(uε)

∗pε, δauε
⟩
V

−
⟨
∂2
(u,u)Φ(aε, uε)pε, δauε

⟩
V

= −T (ℓ(aε), δauε, pε)−
1

ε

⟨
P ′
ε(uε)δauε, pε

⟩
V

−
⟨
∂2
(u,u)Φ(aε, uε)δauε, pε

⟩
V
,

where we used properties of trilinear form T , and the fact that ∂2
(u,u)Φ(aε, ūε) is

symmetric, ∂2
(u,u)Φ(aε, uε)

∗ = ∂2
(u,u)Φ(aε, uε). Using the derivative formula (3.5),

we have

DĴε(aε)(a− aε) = T (Dℓ(aε)(a− aε), uε, pε)

+
⟨
∂2
(a,u)Φ(aε, ūε)(a− aε)−M(a− aε), pε

⟩
V
,
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and (4.3) follows by substituting this expression in (4.4).
We still need to show that {pε} is uniformly bounded. For this we take v =

pε in adjoint equation (4.2). Now, by ellipticity of T, (3.2) and positiviness of
∂2
(u,u)Φ(aε, ·), we obtain

α ∥pε∥2V ≤ T (ℓ(aε), pε, pε) +
1

ε

⟨
P ′
ε(uε)

∗pε, pε
⟩
V
+
⟨
∂2
(u,u)Φ(aε, uε)pε, pε

⟩
V

= ⟨z − uε, pε⟩Z
≤ c1 ∥pε∥V ∥z − uε∥Z ,

and hence ∥pε∥V ≤ c, where c, c1 are constants. The proof is complete. □

For the next result, we assume that the derivatives ∂2
(u,u)Φ(·, ·), and ∂2

(a,u)Φ(·, ·)
are continuous, that is, for every sequence {(an, vn)} ⊂ A × V converging to some
(a, v), we have

∂2
(u,u)Φ(an, vn) → ∂2

(u,u)Φ(a, v), (4.6a)

∂2
(a,u)Φ(an, vn) → ∂2

(a,u)Φ(a, v). (4.6b)

We have the following optimality conditions:

Theorem 4.2. There exist a solution ā of (2.4) and elements ū ∈ V , p̄ ∈ V, λ ∈ V ∗

such that for every a ∈ A, we have

T (ℓ(ā), p̄, v) +
⟨
∂2
(u,u)Φ(ā, ū)p̄, v

⟩
V
+ λ(v) = ⟨z − ū, v⟩Z , v ∈ V,(4.7)

T (Dℓ(ā)(a− ā), ū, p̄) +
⟨
∂2
(a,u)Φ(ā, ū)(a− ā), p̄

⟩
V
+ κ⟨ā, a− ā⟩H

≥ ⟨M∗p̄, a− ā⟩V ,(4.8)

T (ℓ(ā), ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v), v ∈ K,(4.9)

λ(ū) = 0.(4.10)

Proof. For ε > 0, let aε ∈ A be a sequence of solutions (4.1), let uε be the solutions
of (3.4), and let pε be the solutions of (4.2). By the definition of uε, for every v ∈ K,
we have

(4.11) T (ℓ(aε), uε, v − uε) ≥ ⟨m(aε), v − uε⟩V +Φ(aε, uε)− Φ(aε, v).

Using similar arguments as used in the proof of Theorem 2.2, we can show that the
sequence {aε} converges strongly to ā, and the sequence {uε} converges strongly to
ū as ε → 0. As before, passing (4.11) to limit ε → 0, we obtain

T (ℓ(ā), ū, v − ū) ≥ ⟨m(ā), v − ū⟩V +Φ(ā, ū)− Φ(ā, v), for every v ∈ K.

Furthermore, since the sequence {pε} ⊂ V is bounded, there exists a weakly conver-
gent subsequence. By keeping the same notation for subsequences as well, let {pε}
be a subsequence that converges weakly to some p̄ ∈ V . We define two functionals
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λε, λ : V → R by

λε(v) :=
1

ε

⟨
P ′
ε(uε)

∗pε, v
⟩
V

(4.12)

= ⟨z − uε, v⟩Z − T (ℓ(aε), pε, v)−
⟨
∂2
(u,u)Φ(aε, uε)pε, v

⟩
V
,

λ(v) := ⟨z − ū, v⟩Z − T (ℓ(ā), p̄, v)−
⟨
∂2
(u,u)Φ(ā, ū)p̄, v

⟩
V
.(4.13)

Clearly, the above functionals are well defined, linear, and continuous, and hence
λε, λ ∈ V ∗. Furthermore, due to the facts that aε → ā and uε → ū, we have

λ∗
ε(v) = ⟨z − uε, v⟩Z − T (ℓ(aε), pε, v)−

⟨
∂2
(u,u)Φ(aε, uε)pε, v

⟩
V

→ ⟨z − ū, v⟩Z − T (ℓ(ā), p̄, v)−
⟨
∂2
(u,u)Φ(ā, ū)p̄0, v

⟩
V

= λ(v)

as ε → 0, where we applied properties of T and (4.6).
Since this convergence holds for every v ∈ V , we deduce that the sequence {λε}

converges weakly to λ. By taking v = PK(uε) in (4.12) and using (3.3), we get

λε(PK(uε)) =
1

ε

⟨
P ′
ε(uε)

∗pε, PK(uε)
⟩
V
= 0.

By using the continuity of the projection map, we get 0 = λε(PK(uε)) → λ(ū) for
ε → 0, and consequently, λ(ū) = 0. For (4.8), by using (4.3), we have

T (Dℓ(aε)(a− aε), uε, pε) + ⟨∂(a,u)Φ(aε, uε)(a− aε), pε⟩V + κ⟨aε, a− aε⟩H
≥ ⟨M∗pε, a− aε⟩V ,

for every a ∈ A. By using the properties of T, continuity of M , and property (4.6)
of Φ, we can take limits ε → 0 to obtain

T (Dℓ(ā)(a− ā), ū, p̄) + ⟨∂(a,u)Φ(ā, ū)(a− ā), p̄⟩V + κ⟨ā, a− ā⟩H ≥ ⟨M∗p̄, a− ā⟩V ,

for every a ∈ A. The proof is complete. □

5. Optimality conditions for the MOLS functional

We consider the following MOLS-based regularized optimization problem: Find
aε ∈ A by solving

(5.1) min
a∈A

Jσ(a) :=
1

2
T (ℓ(a), uε(a)− z, uε(a)− z) +

κ

2
∥a∥2H ,

where for a ∈ A, the element uε(a) solves the penalized variational equation (3.4).
Here κ > 0 is the regularization parameter, ε > 0 is the penalization as well as the
smoothing parameter.

For this case we have the following result:

Theorem 5.1. For each ε > 0, optimization problem (5.1) has a solution. More-
over, for any solution aε ∈ A of (5.1), there exists qε ∈ V, uniformly bounded in V,
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such that for every a ∈ A and for every v ∈ V, we have

T (ℓ(aε), qε, v) +
1

ε

⟨
P ′
ε(uε)

∗qε, v
⟩
V
+ ⟨∂2

(u,u)Φ(aε, uε)qε, v⟩V(5.2)

= T (ℓ(aε), z − uε, v).

1

2
T (Dℓ(aε)(a− aε), uε − z, uε − z) + T (Dℓ(aε)(a− aε), uε, qε)+⟨

∂2
(a,u)Φ(aε, uε)(a− aε), qε

⟩
V
+ κ⟨aε, a− aε⟩H ≥ ⟨M∗qε, a− aε⟩V .(5.3)

Proof. We shall follow the scheme of Theorem 4.1. For a fixed ε > 0, let aε ∈ A be
a solution of (5.1), and uε be the corresponding solution of the penalized equation.
Then,

DJ(aε)(a− aε) + κ ⟨a− aε, aε⟩H ≥ 0, for every a ∈ A,

where J(a) := 1
2T (ℓ(a), uε(a)− z, uε(a)− z).

Evidently, by using the notation δauε := Dauε(aε)(a− aε), we have

(5.4) DJε(aε)(a−aε) =
1

2
T (Dℓ(aε)(a−aε), uε− z, uε− z)+T (ℓ(aε), δauε, uε− z).

We consider the adjoint equation: Find qε ∈ V such that for all v ∈ V, we have

T (ℓ(aε), qε, v) +
1

ε

⟨
P ′
ε(uε)

∗qε, v
⟩
V
+
⟨
∂2
(u,u)Φ(aε, uε)qε, v

⟩
V

= T (ℓ(aε), z − uε, v).(5.5)

Clearly, (5.5) is uniquely solvable, and let qε be its unique solution. Then,

T (ℓ(aε), uε − z, δauε) = −T (ℓ(aε), qε, δauε)−
1

ε

⟨
P ′
ε(uε)

∗qε, δauε
⟩
V

−
⟨
∂2
(u,u)Φ(aε, uε)qε, δauε

⟩
V

= −T (ℓ(aε), δauε, qε)−
1

ε

⟨
P ′
ε(uε)δauε, qε

⟩
V

−
⟨
∂2
(u,u)Φ(aε, uε)qε, δauε

⟩
V

= T (Dℓ(aε)(a− aε), uε, qε)

+
⟨
∂2
(a,u)Φ(aε, uε)(a− aε), qε

⟩
V
− ⟨a− aε,M

∗qε⟩V ,

by using Theorem 3.1. Combining this with (5.4), we have

DJε(aε)(a− āε) =
1

2
T (Dℓ(aε)(a− aε), uε − z, uε − z)

+ T (Dℓ(aε)(a− aε), uε, qε) +
⟨
∂2
(a,u)Φ(aε, uε)(a− aε), qε

⟩
V

− ⟨a− aε,M
∗qε⟩V ,

which when combined with (5.4), results in the desired inequality
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In order to prove that {qε} is uniformly bounded, let us take v = qε in adjoint
equation (5.2). Now, by ellipticity of T, (3.2) and positivity of ∂2

uΦ(aε, ·), we obtain

α ∥qε∥2V ≤ T (ℓ(aε), qε, qε) +
1

ε

⟨
P ′
ε(aε)

∗qε, qε
⟩
V
+
⟨
∂2
(u,u)Φ(aε, uε)qε, qε

⟩
V

= T (ℓ(aε), z − uε, qε)

≤ c1 ∥qε∥V ∥z − uε∥V
≤ c2 ∥qε∥V ,

and therefore ∥qε∥V ≤ c, where c, c1, c2 are positive constants. The proof is com-
plete. □

Finally, we have the following optimality conditions for (5.1):

Theorem 5.2. There exists a solution ā of (2.5) and ū ∈ V , q̄ ∈ V, λ ∈ V ∗ with

T (ℓ(ā), q̄, v) +
⟨
∂2
(u,u)Φ(ā, ū)q̄, v

⟩
V
+ λ(v)(5.6)

= T (ℓ(ā), z − ū, v)Z ∀ v ∈ V,

T (ℓ(ā), ū, v − ū) ≥ ⟨m(ā),v − ū⟩V +Φ(ā, ū)− Φ(ā, v), ∀ v ∈ K,(5.7)

1

2
T (Dℓ(ā)(a− ā), ū− z, ū− z) + T (Dℓ(ā)(a− ā), ū, q̄)+⟨

∂2
(a,u)Φ(ā, ū)(a− ā), q̄

⟩
V
+κ⟨ā, a− ā⟩H ≥ ⟨M∗q̄, a− ā⟩V , ∀ a ∈ A.(5.8)

λ(ū) = 0,(5.9)

Proof. The proof follows from the arguments used in the proof of Theorem 4.2. □

6. A numerical example

We now test our theoretical results on the inverse problem of identifying a in the
variational inequality of finding u ∈ K ⊂ V := H1

0 (Ω) such that

(6.1)

∫
Ω
a3∇u∇(v − u) ≥

∫
Ω

da

dx2
(v − u), for every v ∈ K,

where Ω ⊂ R2 is a suitable domain and the constraint set

K := {u ∈ H1
0 (Ω)| u(x) ≥ 0, a. e. in Ω}.

We choose B = L∞(Ω), H = H2(Ω), and for given positive constants a0, a1, define

A := {a ∈ H2(Ω)| 0 < a0 ≤ a ≤ a1 a.e. in Ω}.
The variational inequality that we focus on in our numerical experiment, emerges

from the elastohydrodynamic lubrication problem, see [3, 4] for more details. For
the numerical experiment, we choose Ω = [0, 1]× [0, 1], ℓ(a) = a3 and m(a) = da

dx2
.

The exact solution in this setting is given by

ā(x1, x2) = 1 + 0.5 cos(2πx2)

We use finite element discretization to numerically solve the discrete analogs of
the optimality systems for the OLS and the MOLS objectives. For simplicity, we
keep the iterates for a in the interior of the discrete analog of A, and hence the
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corresponding inequality is replaced by an equation. The discrete optimality system
is solved by using a Damped Gauss-Newton iteration with an Armijo rule line search
(see [28]). We use a suitable complementarity function and smoothing techniques
for solving the nonsmooth equations (see [10, 27, 34]).

Tables 1 and 2 show that the MOLS functional yields slightly better reconstruc-
tion than the OLS functional. Our general framework essentially collapses to the
optimality conditions given in [22] for variational inequality for the OLS approach.
However, in [22] an additional equation in the optimality system was considered
āp̄ = 0. We note that the performance of the OLS approach slightly improves, if we
additionally impose this constraint āp̄ = 0. See the Table 3.

Table 1. Reconstruction Error for the MOLS.

h
∥ah−Ihā∥L2(Ω)

∥Ihā∥L2(Ω)

∥uh−ūh∥
L2(Ω)

∥ūh∥
L2(Ω)

∥ah−Ihā∥L∞(Ω)

∥Ihā∥L∞(Ω)

∥uh−ūh∥
L∞(Ω)

∥ūh∥
L∞(Ω)

0.0707107 0.012 0.009 0.026 0.020
0.0565685 0.011 0.009 0.023 0.017
0.0471405 0.009 0.006 0.021 0.011
0.0404061 0.009 0.006 0.019 0.010
0.0353553 0.008 0.005 0.018 0.008

Table 2. Reconstruction Error for the OLS.

h
∥ah−Ihā∥L2(Ω)

∥Ihā∥L2(Ω)

∥uh−ūh∥
L2(Ω)

∥ūh∥
L2(Ω)

∥ah−Ihā∥L∞(Ω)

∥Ihā∥L∞(Ω)

∥uh−ūh∥
L∞(Ω)

∥ūh∥
L∞(Ω)

0.0707107 0.050 0.147 0.106 0.203
0.0565685 0.062 0.180 0.113 0.220
0.0471405 0.051 0.150 0.096 0.189
0.0404061 0.047 0.139 0.092 0.177
0.0353553 0.042 0.124 0.089 0.172

Table 3. Reconstruction Error for the OLS with the Additional
Constraint āp̄ = 0.

h
∥ah−Ihā∥L2(Ω)

∥Ihā∥L2(Ω)

∥uh−ūh∥
L2(Ω)

∥ūh∥
L2(Ω)

∥ah−Ihā∥L∞(Ω)

∥Ihā∥L∞(Ω)

∥uh−ūh∥
L∞(Ω)

∥ūh∥
L∞(Ω)

0.0707107 0.029 0.090 0.083 0.139
0.0565685 0.041 0.146 0.093 0.177
0.0471405 0.039 0.143 0.088 0.171
0.0404061 0.032 0.123 0.072 0.144
0.0353553 0.026 0.110 0.051 0.144
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Figure 1. h = 0.0353553. The left figure shows the exact coeffi-
cient, the middle figure shows the reconstruction by MOLS, and the
right figure shows the reconstruction by OLS.

7. Concluding remarks

We employed two objective functionals to investigate the inverse problem of pa-
rameter identification in an elliptic variational inequality. We provided necessary
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Figure 2. h = 0.0353553. The left figure shows the exact coeffi-
cient, the middle figure shows the reconstruction by MOLS, and the
right figure shows the reconstruction by OLS.

optimality conditions and gave numerical results. We would like to note that in most
applications of variational inequalities, the functional Φ is typically nonsmooth and
the assumption on the smoothness of Φ is a simplification. However, the functional
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Figure 3. h = 0.0353553. The left figure shows the exact coeffi-
cient, the middle figure shows the reconstruction by MOLS, and the
right figure shows the reconstruction by OLS.

Φ should be replaced by a sequence of its sufficiently smooth approximations, just
like the smoothing of the projection map. We plan to carry out this in a forthcom-
ing work where we intend to conduct detailed experiments.
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Figure 4. Reconstruction for h = 0.0353553. The left figure shows
the exact solution, the middle figure shows the solution by the MOLS
approach, and the right figure shows the solution by the OLS ap-
proach.
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