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FEEDFORWARD OPTIMAL CONTROL FOR PRECISE

DISPLACEMENT OF A RIGID BODY: MINIMAL ELECTRICAL

ENERGY

ILYA IOSLOVICH, PER-OLOF GUTMAN, AND RAPHAEL LINKER

Abstract. The problem of optimal control for the precise movement of a rigid
body with state and control constraints is considered. An important criterion for
an optimal feedforward trajectory solution is the electrical energy consumption.
This criterion is significant from the economical and technological points of view
in the electronic industry and in industrial automation. The structure of the
solutions is found and investigated for different cases. Algorithmic solutions are
provided.

1. Introduction

An important criterion for an optimal feedforward trajectory solution is the elec-
trical energy consumption, whose simple characterization is the copper loss, ex-
pressed as the quadratic function J =

∫
u2/2dt where u is the driving force, propor-

tional to the electrical current in the motor. This criterion is significant for factory
automation and industrial electronics. Note that motion control systems consume
about 65% of the electricity used in industry, [9]. Another important reason to min-
imize electrical energy in industrial electronics is to reduce the temperature around
the wafer and other electronic hardware. The theoretical description of the solution
for the generic case (case 2) was presented in [4]. The solution for an alternative
objective, kinetic energy, was presented in [5], and the solution for the minimal time
criterion without friction was presented in [3], and with friction, respectively, in [1].

The generic solution is a solution where all the state constraints (velocity, upper
and lower driving force) are active at some points or intervals in time. It consists of
7 time intervals, namely three with increasing velocity, one with constant velocity,
and three with decreasing velocity. During the intervals no. 3 and 5 the control
jerk (derivative of the driving force) is decreasing, on the intervals 1 and 7 the jerk
is increasing, and on the intervals 2, 4, and 6 jerk is zero. The plot of the velocity
for this case with all constraints occasionally active for the minimal electric energy
criterion is compared with the plot for the minimal time in Fig. 1.
If some of constraints are non-active, then the corresponding intervals disappear,
and there are other cases that are considered below.
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Figure 1. Velocities for minimal electrical energy and time optimal (red)

The numerical values of the parameters used for testing the algorithms, and gener-
ating the figures, are found in Table 1. The Table 2 summarizes definition of cases

Table 1. Parameter values for optimal profile generation for posi-
tion control of the experimental X-Y stage

Parameter Value units
j̄ 1625 N/s jerk
ū 32.5 N driving force max
v̄ 0.2 m/s velocity max
m 13 kg moving mass of the body
k 4 N Coulomb friction coefficient
c 5.4 N·s/m viscous friction coefficient
x0 0 m initial position
xf 0.1 m final position
k1 20 N stiction threshold = initial value of the force
uf −20 N final value of the force
tf 0.6 s final time

and sub-cases.

1.1. Fixing the final time. In general the electrical energy consumed will be less
if the fixed final time is larger. However the possible final time has a lower bound,
and can be postulated to have an upper bound. The lower bound is the minimal
time found from the solution of the corresponding minimal time problem. The
upper bound is set to the time which has a solution with a marginal structure, i.e.
some of the intervals become zero or equivalently some of the constraints cease to
be active.
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Table 2. Definition of cases and sub-cases. 1- active constraint, 0
inactive constraint, v̄ = upper velocity, ū = upper force constraint,
−ū = lower force constraint. Note that the lower velocity constraint
is zero and is active at the initial and final time points.

v ū −ū case/subcase Number of intervals
0 0 0 1.2 2
0 0 0 1.3 3
1 1 1 2 7
1 0 0 3.1 4
1 0 0 3.2 5
0 1 1 4 6
0 1 0 5.1 3
0 1 0 5.2 4
1 1 0 6.1 5
1 1 0 6.2 6

2. Statement of the problem

The dynamic equations have the form:

mdv
dt = u(t)− k · sign (v(t))− c · v(t)(2.1)

dx
dt = v(t)(2.2)
du
dt = j(t)(2.3)

Here m [kg] is the mass of the plant, x(t) [m] is the position, u(t) [N] is the driving
force proportional to the electrical current in the motor, v(t) [m/sec] is the velocity,
j(t) [N/sec] is the driving force time derivative (called jerk for brevity), k [N] is the
Coulomb friction, and c [N·sec/m] is the viscous friction coefficient. Note that we
consider only non-negative velocities, so the function sign will be omitted below.
x(t), v(t) and u(t) are the state variables, and j(t) is the control variable.

The following constraints are taken into account:

0 ≤ v(t) ≤ v̄ [m/sec](2.4)

−ū ≤ u(t) ≤ ū [N ](2.5)

−j̄ ≤ j(t) ≤ j̄ [N/sec](2.6)

where v̄, ū and j̄ are constants.
We consider in this section only the generic case (case 2) when all the state

constraints are active at some interval(s) on the optimal trajectory. However this
case is the most important because other cases can be obtained from this solution
when parts of the trajectory vanish corresponding to constraints that cease to be
active.

The minimal electrical energy problem can be formulated as follows. Starting
from the initial conditions

(2.7) x(0) = x0, v(0) = 0, u(0) = u0,
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reach the required final point with final conditions

(2.8) x(tf ) = xf , v(tf ) = 0, u(tf ) = uf

within the given time tf [sec] which exceeds the corresponding minimal time value,
and minimize the cost function

(2.9) J =

tf∫
0

u2

2
dt → min .

Here uf is a force whose absolute value does not exceed the minimal threshold k1
(Table 1) of the break-away force (stiction). The value u0 is equal to this threshold,
and we shall show below that uf = −k1 is obtained in the solution. We also assume
that k ≤ k1 such that when u > k1 it holds that dv/dt > 0 when v = 0.

3. Optimization and analysis

According to the Pontryagin Maximum principle (PMP), [8], the Hamiltonian
must be formed and then maximized with respect to the control variable. The
state constraints with corresponding Lagrange multipliers should be subtracted from
the Hamiltonian, to yield the augmented Hamiltonian, see e.g. [7], [2]. Here the
augmented Hamiltonian has the form

H = pv
(u− k − cv)

m
+ pxv + puj −

− λ̄v(v − v̄)− λv(−v)−
− λ̄u(u− ū)−
− λu(−u+ ū)− u2/2.(3.1)

The non-negative Lagrange multipliers λ̄v, λv, λ̄u, λu can be non-zero only when the
corresponding state constraint is an equality, i. e. when the constraint is active and
the trajectory follows the constraint. Upper (lower) bars in the multiplier symbol
denote multipliers related to the upper (lower) bounds.

The costate equations, [8], are

dpx
dt = −∂H

∂x
= 0,

dpv
dt = −∂H

∂v
= −px + cpv/m+

+ λv − λv,

dpu
dt = −∂H

∂u
= −pv/m+ u+ λu − λu.(3.2)

It follows that px is constant.
The condition of maximizing the augmented Hamiltonian (3.1) with respect to

the control gives

(3.3) j = j̄ · sign(pu), for pu ̸= 0; j ∈ [−j̄, j̄] for pu = 0.

When pu = 0, dpu/dt = 0 there is a singular arc, where the control j cannot
be determined by the maximization of the augmented Hamiltonian. The most
important step is to make an assumption on the structure of the optimal solution.
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Our initial assumption, that turns out to be correct (sic!), is as follows. This
structure is based on the qualitative analysis of the state and costate equations.

4. Structure of optimal solution - generic case 2

(1) Interval 1. On the time interval [0, t1] we have px > 0, pv > 0, pu > 0, j = j̄,
u increases to u = ū, x and v increase, dpu/dt < 0, dpv/dt < 0, costates pv
and pu decrease.

(2) Interval 2. At the time moment t = t1 we have u = ū, pu = 0, pv/m >
ū, dpv/dt < 0. Then we have λ̄u > 0, dpu/dt = 0. On the interval [t1, t21]
we have pu = 0, and, accordingly, j = 0. Costate pv decreases, x and v
increase.

(3) Interval 3. At the moment t = t21 we have pv/m = ū, and then on the
interval [t21, t2] we have pv/m = u, j = (dpv/dt)/m < 0, and v decreases.
pu = 0, dpu/dt = 0, λ̄u = 0, and u decreases along the new singular arc
until the moment t = t2 when we get u = us, v = v̄, dv/dt = 0, pv = us.
Here we use the notation us = k + c · v.

(4) Interval 4. On the interval [t2, t3] we have dpv/dt = 0, λ̄v > 0, dpu/dt =
0, pu = 0, pv/m = us, u = us, j = 0. The velocity v follows its upper
bound.

(5) Interval 5. On the interval [t3, t31] we have λ̄v = 0, dpv/dt < 0, j =
dpv/dt/m < 0, dpu/dt = 0, pu = 0, u = pv/m. The trajectory again follows
a singular arc. Here v, pv and u are decreasing.

(6) Interval 6, On the interval [t31, t4] we have a point t = t31 where u = −ū.
Then

dpu/dt = −pv/m− ū− λu = 0,

λu > 0, pu = 0, j = 0, dpv/dt < 0, pv and v are decreasing.
(7) Interval 7. At the point t = t4 the singular arc stops, and on the interval

[t4, tf ] we have pu > 0, j = j̄, λu = 0, dpu/dt = −pv/m + u > 0, dv/dt <
0, du/dt > 0. The variables x, u, v attain their fixed final values at the fixed
time t = tf . Note that when j at t = t4 switches to j = j̄ we have d2pu/dt

2 >
0 and thus pu from pu = 0 increases to be pu > 0.

For the singular arcs on the intervals [t21, t2] and [t3, t31] it should be noted that
the augmented Hamiltonian has the form

(4.1) H = H0 + jH1,

with H1 = pu. The second order necessary condition by Kelley, for a singular arc,
[6], is

(4.2) (−1)q
∂

∂j

d2qH1

dt2q
≤ 0.

The parameter q is a so-called degree of singularity, a value of q in this formula
should be increased until the control variable will appear implicitly in the resulting
expression for d2qH1/dt

2q. We see here that q = 1 and in the Kelley condition we
have

−[∂{d2pu/dt2}/∂j] = −[∂{−dpv/dt+ j}/∂j] = −1 ≤ 0.

Thus the Kelley condition is satisfied.
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It is important however to note that along the singular arc the condition −j̄ ≤
dpv/dt must be satisfied on the intervals [t21, t2] and [t3, t31] in order to keep the
equality j = dpv/dt. The opposite case means that the case 2 is not feasible for
current initial and final data.

We see that similarly to the minimal time solution, [1], there are 7 different time
intervals, but on the intervals 3 and 5 there are singular arcs with intermediate
negative values of jerk control j.

4.1. Final value of the driving force. The final value of the driving force uf
must be such that the movement at the time t = tf when v(tf ) = 0 will switch from
the slip mode to the stick mode. It means that −k1 ≤ uf ≤ k1. thus potentially
there are three options:
1. uf is not fixed and −k1 ≤ uf ≤ k1,
2. uf = k1,
3. uf = −k1.
If the value uf is not fixed (option 1) we shall have the transversality condition
pu(tf ) = 0. This is unfeasible if the interval 7 exists because at the interval 7 we
have pu > 0, dpu/dt > 0.
However if the final interval 7 is missing and interval 6 is also missing (means
u > −ū, then the option 1 is feasible and will correspond to subcases x.1. Note that
in these subcases we should have at the end the transversality condition pu = 0.
In case of the option 2 we have u(tf ) = k1 and thus dv/dt > 0, because v(tf ) =
0, k1 > k. Thus there is a small interval [t, tf ] where v(t) < 0. This contradicts our
assumption that we always have v(t) ≥ 0.
We can formulate a Theorem (proved above):
The option 1 is possibly feasible only if the intervals 6, 7 are missing.

5. Description of algorithms for different cases and subcases

We are using the original problem-oriented algorithms that are less computa-
tionally expensive then the shooting method. The programs for different cases and
subcases have the main script that invokes the function to minimize residuals. Usu-
ally the matlab optimization function fminsearch is used. The names of scripts and
functions for each case-subcase are shown in Table 3.

6. Case 1, subcases 1.2 and 1.3

6.1. Subcase 1.2. In subcase 1.2 we have no active constraints for state variables
v, u and thus intervals 2, 4, 6 vanished. At the interval 1 costate pu is positive and
decreased to zero at the end point of this interval denoted as t1. From there the
singular solution with pu = 0 holds. Intervals 3, 4, 5 merged and the intervals 2, 6, 7
vanished. Starting from the moment t1 the control j is negative with intermediate
value. At the singular solution we have

(6.1)
dpu
dt

= −pv
m

+ u = 0,
pv
m

= u;
dpv
dt

= −px + c ∗ pv/m.
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Table 3. Names of scripts and functions for all cases and sub-cases

Case/subcase Script Function
1.2 mm electro 12 mm el 12
1.3 mm electro 13 mm el 13
2 mm electro 2 mm el 2
3.1 mm electro 31 mm el 31
3.2 mm electro 32 mm el 32
4 mm electro 4 mm el 4
5.1 mm electro 51 mm el 51
5.2 mm electro 52 mm el 52
6.1 mm electro 61 mm el 61
6.2 mm electro 62 mm el 62

From there it follows that

(6.2)
du

dt
= (−px + c ∗ u)/m

We use 3 inputs for the function mm el 12: px, t1, tfa, where tfa should be equal to
the fixed final time value (denoted as tff . From t = 0 to t = t1 the estate equations
are integrated with j = j̄ and we obtain u(t1) = u1, x(t1) = x1, v(t1) = v1. Then we
integrate state equations from t = t1 to t = tfa using equation (6.2) for the singular
arc and get final values x(tfa) = x2, v(tfa) = v2, u(tfa) = u2. The residuals are
(tfa − tff)2, (xf − x2)2, v22. They should be zero as result of optimization. If
we obtain u2 > −k1 and state constraints are satisfied then this solution is optimal
because it has no state constraints and less final constraints, otherwise we should try
case 1.2. The value of the objective is shown in variable u2tl. The plot of the force
u for tff = 0.6, xf = 0.1 is shown in Fig. 2. and the plot for the corresponding
velocity is shown in Fig.3
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Figure 2. Driving force u for the case 1.2 with tff = 0.6, xf = 0.1
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Figure 3. Velocity v for the case 1.2 with tff = 0.6, xf = 0.1

6.2. Subcase 1.3. In the subcase 1.3 we have additional final time interval with
j = j̄ when the driving force u must increase to the final value u(tff) = −k1
in order to prevent the slide movement in the opposite direction after the stop.
This subcase slightly differs from the subcase 1.2 and the function mm el 13 has
an additional 3rd input t4. This is a length of the final time interval. On the final
time interval state equations are integrated with control j = j̄ and the final values
are denoted as x3, v3, u3. The minimized residuals are (tff − tfa − t4)2, (xf −
x3)2, −min(0, v2), v32, (u3 + k1)

2. Altogether there are 3 inputs: px, tfa, t4 and 3
time intervals: 1 with j = j̄, 2 with singular arc and j < 0 and 3 with j = j̄. The
plot of the driving force u for tff = 0.46, xf = 0.1 is shown in Fig. 4. and the plot
for the corresponding velocity is shown in Fig.5
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Figure 4. Driving force u for the case 1.3 with tff = 0.46, xf = 0.1
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Figure 5. Velocity v for the case 1.3 with tff = 0.46, xf = 0.1

The value of the objective significantly depends of the fixed final time. The
objective J for tff = 0.42 is equal to J = 146.07 N2s, for T = 0.46 is equal 111.56,
for tff = 0.5 we have J = 88.03 N2s, for tff = 0.55 we have J = 67.92 N2s and
for tff = 0.6 we have J = 54.22 N2s. The plot for these values is shown in Fig.6
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Figure 6. Objective
∫
u2/2dt vs final time, xf = 0.1 m

7. Case 2

In this generic case we have 7 time intervals and singular arcs of different nature
appeared on intervals 2 and 6. At the interval 2 we have j = 0 and u = ū, and at
the interval 6 we have j = 0 and u = −ū, and also on the interval 4 where j = 0 and
v = v̄, u = us. Another type of the singular arcs appeared on intervals 3 and 5 where
j has a negative intermediate value according to u that satisfies equation (6.2). The
only unknown input value is parameter px that has to be found by minimization
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of residuals in the function mm el2. The residuals are: (tfa − tff)2 where tfa is
a calculated time of the process to the end point; −min(0, t210) where t210 is a
time length of the interval 2; −min(0, t22) where t22 is a time length of the interval
3;−min(0, t23) where t23 is a time length of the interval 4; −min(0, t33) where
t33 is a time length of the interval 5; −min(0, t310) where t310 is a time length
of the interval 6; −min(0, v21) where v21 is a calculated value of the velocity at
the beginning of the interval 3; −min(0, v31) where v31 is a calculated value of the
velocity at the end of the interval 5.
Note that for the case 2 we have final condition uf = −k1 (option 3) because at the
interval 7 we have u = −ū < k1, thus option 1 is unfeasible.
Our procedure uses the known structure of the solution.

Recall that px is constant. We know that u(0) = u0 = k1, and u(t1) = ū, thus
we can easily find time point t = t1 from the equation

t1 =
ū− u0

j̄
.

Then the values x(t1), v(t1) can be found from the state equations with u = u0+t· j̄.
At the moment t = t21 at the beginning of the interval 3 we have pv/m = ū , and
at the moment t = t2 we have pv/m = us, look at the description above. Note
that the costate variable pv is monotonously decreasing here, so we can use it as
an independent variable for integration of the state equation for v backwards from
v = v̄ to v(t21. The time interval t22 = t2 − t21 can be found by integration of the
equation dt/dpv, and thus also the value v(t21) can be determined. Now the time
interval t210 = t21− t1 can be found by integration of the state equation dv/dt with
u = ū. Thus we have found t21, t2 and all the state variables at these points.

Next we should make similar calculations starting from the point t = tf back-
wards. The value of time interval tf − t4 is determined from the equation

tf − t4 =
ū+ uf

j̄
.

Then we can find v(t4), (xf −x4) by integrating the state equations backwards with

u(t) = uf − (tf − t)j̄

from the point v(tf ) = 0, x(tf ) = xf .
At the point t = t31 we have that pv/m = −ū and at the point t = t3 we have

pv/m = us. Thus we can use pv as an independent variable and integrate dt/dpv to
find the value of the time interval t31 − t3. We can integrate dv/dpv on the same
interval with starting point v(t3) = v̄ to find v(t31), and then x(t31)− x(t3).

Now we know x3−x2 and we can find the value of the interval t3−t2 = (x3−x2)/v̄.
We computed value of the unknown px by using the Matlab procedure fminsearch
to minimize a weighted sum of residuals.
For different integrations there are used functions dtpv1, dtpv1a, dtvp3, testt2, t65
and also functions testV 12, testX12, testV 65, testX65 that were generated by the
Matlab Symbolic Toolbox.
The plot of the driving force u for tff = 0.59, xf = 0.1 is shown in Fig. 7, and the
plot for the corresponding velocity is shown in Fig.8.
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Figure 7. Driving force u for the case 2 with tff = 0.59, xf = 0.1
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Figure 8. Velocity v for the case 2 with tff = 0.59, xf = 0.1

8. Case 3, subcases 3.1 and 3.2

In case 3 we have the only active state constraint v ≤ v̄. The intervals 2 and
6 related to the upper and lower bounds of u are missing. In subcase 3.1 also the
interval 7 with j = j̄ is missing.

8.1. Subcase 3.1. In this subcase we have 4 intervals: 1, 3, 4, 5. For the interval
1 we have j = j̄, for the interval 4 we have v = v̄, j = 0, and for the intervals
3, 5 we have j < 0 and the singular arc were the equation 6.2) holds. The function
mm el 31 is used to minimize the residuals. There are 3 input values: px, t1, t310
where px is a constant costate for x, t1 is a time length of the interval 1, and t310 is a
time length of the interval 5. The values of the increments of a distance for intervals
1, 3, 5 is calculated and then compared with xf . The difference is a distance length
of the interval 4. More detailed description is as follows. First the state equation
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are integrated on the interval 1 with j = j̄ during time t1. Thus values x1, v1, u1
are found. On the interval 3 the costate pv is changed from u1 ∗ m to the value
us ∗ m. Thus we have used pv as the independent variable and integrate dt/dpv
in order to find t22 - the time length of the interval 3. Next we integrate state
equations on the known length of the interval 3 using equation (6.2) and get values
of x2, v2. Note that we must have v2 = v̄. Note that in the programs we denote
vm = v̄. In this program (and also for the case 3.2) we denote v21 = v2− vm and
this value should be zero. The value v212 is one of the residuals. In the program
v̄ is denoted as vm. On the interval 5 we integrate state equations with equation
(6.2) and get v3, u3, x3 where x3 is an increment of the distance during interval 5.
After that we can calculate x23 for the interval 4. The difference v21 = vm − v2
must be zero. he total time of the process is calculated and denoted as tfa. The
residuals to be minimized are (tfa− tff)2;−min(0, t23), v32, v212.
The plots for the driving force and velocity for tff = 0.65 and xf = 0.1 for subcase
3.1 are shown in Fig. 9 and Fig. 10 respectively.

Time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
or

ce

-20

-15

-10

-5

0

5

10

15

20

25

30

Figure 9. Driving force u for the case 3.1 with tff = 0.65, xf = 0.1

8.2. Subcase 3.2. For the subcase 3.2 we have 5 intervals, namely 1, 3, 4, 5, 7. The
optimization function mmel 32 has 4 inputs, namely px, t1, t310, t4. We have to
satisfy additional end condition u4 + k11 = 0. Here additional input t4 is a
time length of the interval 7 with j = j̄. We know all the initial values for
the interval 7 and thus can integrate state equations with known control j = j̄
without difficulty. Values v4, u4 are the correspondent values of the state vari-
ables at the end of the interval 7. The residuals to be minimized are (tfa −
tff)2;−min(0, t23),−min(0, v3), v212, v42, (u4− k11)2.
The plots for the driving force and velocity for tff = 0.57 and xf = 0.1 for subcase
3.2 are shown in Fig. 11 and Fig. 12 respectively.
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Figure 10. Velocity v for the case 3.1 with tff = 0.65, xf = 0.1
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Figure 11. Driving force u for the case 3.2 with tff = 0.57, xf = 0.1

9. Case 4

The case 4 is rather similar to the case 2 but here the upper constraint for
velocity is not active and thus the interval 4 is missing. Intervals 3 and 5 we
consider separately though they are merged and the control j is continuous at the
point of their junction where v has the maximum value. The algorithm is the same
as for the case 2 but the maximal value of the velocity is not known and is added
as an additional input to the function mm el 4. Similarly to the parameter px it
should be found in the process of minimization of residuals. Note that the value t23
is not a residual because the interval 4 is missing. The plots for the driving force
and velocity for tff = 0.42 and xf = 0.1 for case 4 are shown in Fig. 13 and Fig.
14 respectively.
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Figure 12. Velocity v for the case 3.2 with tff = 0.57, xf = 0.1
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Figure 13. Driving force u for the case 4 with tff = 0.42, xf = 0.1

10. Case 5, subcases 5.1 and 5.2

10.1. Subcase 5.1. In the subcase 5.1 we have only active state constraint for the
upper limit of the driving force u and the final interval 7 with j = j̄ is also missing.
Accordingly the intervals 4, 6 are missing and the interval 5 is merged with the
interval 3. The maximal value of the velocity vm is unknown and is added to the
inputs of the function mm el − 51. We have 3 inputs: px, vm, t310, where t310
is a time length of the interval 5 and is added for the technical reasons. We have
used the Matlab optimization function fmincon for constrained optimization with
nominal minimized function mm el 5 f which is empty. The weighted equality
constraints are the final velocity is zero, v3 = 0, the final distance is equal to xf ,
xf − x2 − x3 = 0, and the final time is reached, tf = t3, t3 = t2 + t310. The
inequality constraint is t210 > 0 for the non-negativity of the time length of the
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Figure 14. Velocity v for the case 4 with tff = 0.42, xf = 0.1

interval 2.
The plots for the driving force and velocity for tff = 0.518 and xf = 0.1 for subcase
5.1 are shown in Fig. 15 and Fig. 16 respectively.
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Figure 15. Driving force u for the case 5.1 with tff = 0.518, xf = 0.1

10.2. Subcase 5.2. The case 5.2 comparing to subcase 5.1 has an additional final
time interval 7 with time length t4. The inputs to the function mm el 52 are the
same as for the function mm el 51. The value t4 is determined as tff − t3. During
the time t4 we have j = j̄. The function mm el 51 used Matlab optimization
procedure fminsearch to minimize residuals. The residuals are v42, (xf − x4 −
x3 − x2)2,−min(0, t210), (tff − t3 − t4)2, (k11 + u4)2. Here the value k11 is the
program notation for the Karnopp threshold k1 and the last residual is needed to
prevent the movement in the opposite direction at the final point.
The plots for the driving force and velocity for tff = 0.48 and xf = 0.1 for subcase
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Figure 16. Velocity v for the case 5.1 with tff = 0.518, xf = 0.1

5.2 are shown in Fig. 17 and Fig. 18 respectively.
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Figure 17. Driving force u for the case 5.2 with tff = 0.48, xf = 0.1

11. Case 6, subcases 6.1 and 6.2

11.1. Subcase 6.1. In subcase 6.1 we have intervals 1, 2, 3, 4, 5 of non-zero length
and intervals 6, 7 missing. The matlab function mm el61 has inputs px, t310. The
values related to the intervals 1, 2, 3 have to be found similarly as for the case 2, and
the values related to the interval 5 have to be found by integration from the end of
the interval 4 with the use of equation (6.2) with initial values v = vm;u = us. Thus
the increment of the distance on the interval 5, namely x3, has to be found. Then
the interval x23 related to the interval 4 have to be found as x23 = xf − x2 − x3,
and the value t23 = x23/vm. The residuals are v32 - final value of the velocity;
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Figure 18. Velocity v for the case 5.2 with tff = 0.48, xf = 0.1

−min(0, t210) - time length of the interval 2, −min(0, x23) - length of the increment
of the distance on the interval 4, and (tff − t3)2 - the satisfaction of the equality
constraint for the fixed final time. Here we have t3 = t2 + t310 + t23. The plots
for the driving force and velocity for tff = 0.58 and xf = 0.1 for subcase 6.1 are
shown in Fig. 19 and Fig. 20 respectively.
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Figure 19. Driving force u for the case 6.1 with tff = 0.58, xf = 0.1

11.2. Subcase 6.2. The subcase 6.2 is very similar to the subcase 6.1 but it has
additionally nonzero interval 7 with j = j̄. Accordingly the function mm el 62
has additional input t4. The residuals are v42 - the final value of the velocity,
−(min(0, t210) - the time length of the interval 2 must be non-negative, (xf −x4−
x23−x3−x2)2 - the final distance xf must be achieved, (tff − t3− t4)2 - the final
time must be equal to the fixed tff value, and (k11 + u4)2) - the final value of the
driving force must be equal to the value of the Karnopp threshold with sign minus.
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Figure 20. Velocity v for the case 6.1 with tff = 0.58, xf = 0.1

The plots for the driving force and velocity for tff = 0.58 and xf = 0.1 for subcase
6.2 are shown in Fig. 21 and Fig. 22 respectively.

Figure 21. Driving force u for the case 6.2 with tff = 0.58, xf = 0.1

12. Conclusion

We have presented the optimal control solution for the precise rigid body dis-
placement with Coulomb and viscous friction for all possible cases of the active and
non-active constraints. The objective functional, namely minimal electrical energy
consumed, was found to be sensitive to the final fixed time of the process. With
combination of the minimal time solutions these results are useful for design of
the suitable feedforward system. The original algorithms are less computationally
expensive then the shooting method.
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Figure 22. Velocity v for the case 6.2 with tff = 0.58, xf = 0.1

Acknowledgement

This research was partially supported by METRO 450 project from the Office of
the Chief Scientist [OCS] in the Ministry of Economy, Israel.

References

[1] A. Berger and I. Ioslovich and P. O. Gutman, Time optimal trajectory planning with feedfor-
ward and friction compensation, in: American Control Conference (ACC 2015) proceedings,
Chicago, IL, USA, 2015, pp. 4143–4148.

[2] R. Hartl, S. Sethi and R. Vickson, A survey of the maximum principles for optimal control
problems with state constraints, SIAM Review 2 (1995), 181–218.

[3] I. Ioslovich and P. O. Gutman, Time-optimal control of wafer stage positioning using simplified
models, Contemporary Mathematics 619 (2014), 99–107.

[4] I. Ioslovich,P. O. Gutman, R. Linker and S. Moshenberg, Optimal rigid body precise displace-
ment - minimization of electrical energy, in: The 20th IFAC 2017 World Congress, Preprints,
Toulouse, France, 2017, pp. 776–780.

[5] I. Ioslovich,P. O. Gutman and S. Moshenberg, On energy-optimal and time-optimal precise
displacement of rigid body with friction, J. Optim. Theory Appl. 172 (2017), 466–480.

[6] J. Kelley, R. E. Kopp and H. G. Moyer, Singular extremals, in: Topics in optimization, G.
Leitmann (ed), Academic press, NY, 1967, pp. 63–101.

[7] M. M. Khrustalev, Necessary and sufficient dynamic programming conditions for optimal con-
trol problem with state constraints, Lecture Notes in Control and Information Sciences, H.-J.
Sebastian and K. Tammer (eds), Springer Berlin Heidelberg, 1990, pp. 311–320.

[8] L.S. Pontryagin and V. G. Boltyansky and R. Gamkrelidze and E. F. Mischenko, Mathematical
Theory of Optimal Processes, Wiley-Interscience, 1962.

[9] E. Worrell, L. Bernstein, J. Roy and J. Harnisch, Industrial energy and climate change miti-
gation, Energy Efficiency 2 (2009), 109–123.

Manuscript received October 10 2017

revised November 27 2017



316 I. IOSLOVICH, P.-O. GUTMAN, AND R. LINKER

I. Ioslovich
Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa,
Israel

E-mail address: agrilya@technion.ac.il

P.-O. Gutman
Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa,
Israel

E-mail address: peo@technion.ac.il

R. Linker
Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa,
Israel

E-mail address: linkerr@technion.ac.il


