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K −Min
x∈X

F (x)(PK)

and

Q−Min
x∈X

F (x).(PQ)

It is important to mention that the solution concepts based on the vector approach
in [10, 11] are given by a domination map K : Y ⇒ Y , where Y is the image
space of the set-valued objective map F : X ⇒ Y , whereas the domination map
Q : X ⇒ Y in [7, 19, 20] is acting between the same spaces like the objective map F .
In addition, [19, 20] have followed the set approach to derive characterizations for
many kinds of solutions for problem (PK) by using suitable scalarizing functionals.

In the literature, necessary optimality conditions for solutions of set optimization
problems based on vector approach are derived (see [3, 7] and references therein).
Although the solution concept based on vector approach is of mathematical interest,
it cannot be often used in practice. A solution x̄ given by the vector approach
depends on only one certain special element ȳ of the image set F (x) and other
elements of F (x) are ignored, see Definition 3.8 in this paper. In other words, this
definition does not care how elements in the set F (x̄)\{ȳ} perform. The aim of our
paper is to derive necessary optimality conditions for solutions of set optimization
problems (PK) based on set approach using corresponding results for solutions of
set optimization problems (PQ) defined by the vector approach (see [7]). For this
reason we show relationships between the solution concepts given by the vector
approach and by the set approach.

Recently, these relationships are investigated in [18] for the case that K(·) and
Q(·) are fixed-cone valued mappings. Eichfelder and Pilecka [11, 12] have derived
some of these relationships in which the vector approach is equipped with a domina-
tion structure acting onto the image space of the objective function. Furthermore,
Eichfelder and Pilecka [12, Theorem 5.1] have presented necessary optimality con-
ditions working on primal spaces where derivative concepts for set-valued maps are
used. Moreover, necessary optimality conditions for solutions of set-valued opti-
mization problems are shown by Dempe and Pilecka in [4, 5].

Our paper is organized as follows: The following section prepares the notions
which will be used in the sequel. In the subsequent section, we recall six binary
relations to compare two sets and some properties of them. These relations are
equipped with a domination structure not necessarily given by a cone-valued map.
This section is also concerned with the set approach and the vector approach to
define solutions of a set-valued problem. In the subsequent part, we derive some
results concerning relationships between these solution concepts based on two given
approaches. The final section deals with finding optimality conditions for solutions
of the set-valued problem based on the set approach. By means of the results
given in the previous sections and the optimality conditions for solutions of set-
valued problems with variable domination structure given in [7], we derive necessary
conditions for solutions w.r.t. lower set relations (≼K

l ,≼K
cl, and ≼K

pl). Furthermore,
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we obtain necessary optimality conditions for solutions w.r.t. the upper set relations
(≼K

u , ≼K
cu) by means of coderivatives in Asplund spaces.

2. Preliminaries

Let X,Y be Banach spaces over the real field R. We denote the open ball with
center x ∈ X and radius ε > 0 by BX(x, ε), and by SY ∗ the unit sphere of Y ∗. P(Y )
denotes the set of all nonempty subsets of Y . X∗ is the topological dual space of X
and w∗ is the weak star topology on X∗. For x ∈ X, we denote by V(x) the system
of the neighborhoods of x. Let C ⊂ X, we denote by clC and intC the closure and
interior of C, respectively. C is a cone if for each c ∈ C, λ ≥ 0 it holds that λ c ∈ C.
C is pointed if C ∩ (−C) = {0}. In addition, C is proper if C ̸= X and C ̸= {0}.
For a cone C, we set C+ := {y∗ ∈ Y ∗ | ∀y ∈ C : y∗(y) ≥ 0} for the positive dual
cone of C.
Let A ⊆ X be given. We denote the smallest cone containing A by cone(A), that
is,

cone(A) :=
∪
t≥0

tA.

Let A ⊆ X be given, A ̸= ∅. The algebraic interior of A is denoted by core(A)
and given as follows

core(A) := {a ∈ A | ∀ x ∈ X, ∃ δ > 0,∀ λ ∈ [0, δ] : a+ λx ∈ A}.
It is stated in [27], if A is convex, then the following assertion holds true

core(A) := {a ∈ A| cone(A− a) = X}.
Let K : Y ⇒ Y and F, Q : X ⇒ Y be set-valued maps. As usual, we denote by
GrF and DomF the graph and the domain of F , respectively. They are defined as
follows

DomF := {x ∈ X| F (x) ̸= ∅},
and

GrF := {(x, y) ∈ X × Y | y ∈ F (x)}.
If S ⊆ X, we denote the image of S under F by F (S) :=

∪
x∈S

F (x) and the inverse

set-valued map of F is F−1 : Y ⇒ X given by (y, x) ∈ GrF−1 if (x, y) ∈ GrF.

In this paper, we are dealing with the dual approach and derive necessary opti-
mality conditions by means of Mordukhovich’s coderivative (see the book [22] by
Mordukhovich for more details). We now introduce the mains objects we use in the
sequel.

Definition 2.1. Let Ω be a nonempty subset of a normed space X and let x̄, x ∈ Ω,
ε ≥ 0.

(i) The set of ε− normals to Ω at x is defined by

N̂ε(Ω, x) :=

{
x∗ ∈ X∗| lim sup

u
Ω−→x

x∗(u− x)

∥u− x∥
≤ ε

}
,(2.1)
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where u
Ω→ x means that u → x and u ∈ Ω. If ε = 0, we call elements

of (2.1) Fréchet normals and their collection, denoted by N̂(Ω, x), is the
Fréchet normal cone to Ω at x.

(ii) The basic (or limiting, or Mordukhovich) normal cone to Ω at x̄ is defined
as

N(Ω, x̄) := {x∗ ∈ X∗| ∃εn ↓ 0, xn
Ω−→ x̄, x∗n

w∗
−−→ x∗, x∗n ∈ N̂εn(Ω, xn) (n ∈ N)}.

Remark 2.2. If X is an Asplund space (i.e., a Banach space where every convex
continuous function is generically Fréchet differentiable, see [22] for more details),
and Ω is closed around x̄ (i.e., there is a neighborhood V of x̄ such that Ω ∩ clV is
closed), the formula for the basic normal cone looks as follows:

N(Ω, x̄) = {x∗ ∈ X∗ | ∃xn
Ω→ x̄, x∗n

w∗
→ x∗, x∗n ∈ N̂(Ω, xn) (n ∈ N)}.

Correspondingly, two concepts of coderivatives for set-valued maps are introduced
in the following definition.

Definition 2.3. Let F : X ⇒ Y be a set-valued map and (x̄, ȳ) ∈ GrF .

(i) The Fréchet coderivative of F at (x̄, ȳ) is the set-valued map D̂∗F (x̄, ȳ) :
Y ∗ ⇒ X∗ defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ N̂(GrF, (x̄, ȳ)}.
(ii) The normal coderivative of F at (x̄, ȳ) is the set-valued map D∗F (x̄, ȳ) :

Y ∗ ⇒ X∗ given by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ N(GrF, (x̄, ȳ)}.

A main tool for the proof of the necessary optimality conditions in terms of Mor-
dukhovich’s coderivative is the incompatibility between openness and optimality.
Here, we introduce the corresponding notations.

Definition 2.4. F : X ⇒ Y is said to be open at linear rate L > 0 (or L−open)
around (x̄, ȳ) ∈ GrF if there exist two neighborhoods U ∈ V(x̄), V ∈ V(ȳ) and
a positive number ε > 0 such that, for every (x, y) ∈ GrF ∩ (U × V ) and every
ρ ∈ (0, ε),

BY (y, ρL) ⊆ F (BX(x, ρ)).

F is said to be open at linear rate L > 0 or (L−open) at (x, y) if there exists a
positive number ε > 0 such that, for every ρ ∈ (0, ε),

BY (y, ρL) ⊆ F (BX(x, ρ)).

It is necessary to mention that the openness at linear rate is a stronger property
than the openness. We say that F is open at (x̄, ȳ) ∈ GrF if the image through F
of every neighborhood of x̄ is a neighborhood of ȳ.

Now, we are concerned with some compactness requirements related to a subset
of an Asplund space and a set-valued map.

Definition 2.5. Let X, Y be Asplund spaces, Ω be a subset of Y and Q : X ⇒ Y
be a set-valued map. Let (x̄, ȳ) ∈ GrQ and ū ∈ Ω be given.
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(i) Ω is said to be sequentially normally compact (SNC) at ū, if

[yn
Ω−→ ū, y∗n

w∗
−−→ 0, y∗n ∈ N̂(Ω, yn)] =⇒ y∗n → 0.

(ii) Q is said to be partially sequentially normally compact (PSNC) at (x̄, ȳ), if

(xn, yn)
GrQ−−−→ (x̄, ȳ), x∗n

w∗
−−→ 0, y∗n → 0, (x∗n, y

∗
n) ∈ N̂(GrQ, (xn, yn))

implies x∗n → 0.

Observe that, if C is a proper, closed, convex cone and intC ̸= ∅ then C is (SNC)
at 0, see [7] for more details.

In order to show necessary optimality conditions in terms of Mordukhovich’s
coderivative, we need certain assumptions concerning the alliedness of sets (for
more details, see [24, 25] and the references therein).

Definition 2.6. (Allied sets) Let S1, S2, ..., Sk be closed subsets of a normed vector

space Z, z̄ ∈
∩k

i=1 Si. One says that they are allied at z̄ whenever (zin) ⊂ Si,

(zin) → z̄, z∗in ∈ N̂(Si, zin), the relation
∑k

i=1 z
∗
in → 0 implies (z∗in) → 0 for all

i = 1, . . . , k.

Notice that Definition 2.6 is equivalent to the definition of η-regularity introduced
and characterized in [21, Definition 7, Proposition 10]: The sets S1, S2, . . . , Sk are
η-regular at z̄ ∈ S1 ∩ · · · ∩ Sk if there exist γ, δ > 0 such that

∥
k∑

i=1

z∗i ∥ ≥ γ

k∑
i=1

∥z∗i ∥,

for every zi ∈ B(z̄, δ) ∩ Si, z∗i ∈ N̂(Si, xi), i = 1, . . . , k. In addition, these notions
also imply the metric inequality of (S1, . . . , Sk) at z̄ [8, Theorem 4.1], which is used
as a main tool to establish chain rules for the limiting Fréchet subdifferentials [23].

In order to derive optimality conditions for set optimization problems based on
set approach, we will concern the alliedness property of two sets given by

C1 := {(x, y, k) : (x, y) ∈ GrF, k ∈ Y },
and C2 := {(x, y, k) : (x, k) ∈ GrQ, y ∈ Y }.

Definition 2.7 (Lower semicontinuous mapping [1, Definition 1.4.2]). The set-
valued map F : X ⇒ Y is called lower semicontinuous (lsc, for short) at x̄ ∈ DomF
if for any y ∈ F (x̄) and for any sequence (xn) → x̄ there exists a sequence (yn) → y
with yn ∈ F (xn). F is said to be lower semicontinuous if it is lower semicontinuous
at any point x̄ ∈ DomF.

Remark 2.8. As shown in [1, Pages 40 and 42], if DomF is closed then F is lsc
if and only if the core of any closed subset is closed. We also have that F is lsc at
x ∈ DomF if and only if F (x) ⊆ lim infx′→x F (x′).
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3. Solution onsepts for set-valued optimization problems

3.1. SET RELATIONS. In this part, we will introduce different solution concepts
for set-valued optimization problems. For doing this, we recall some concepts from
the theory of ordered sets that will be used.

Definition 3.1. Let A,B,C ∈ P(Y ) and a binary relation ≼ be given. ≼ is said
to be

(i) reflexive, if A ≼ A.
(ii) transitive, if A ≼ B, B ≼ C implies A ≼ C.
(iii) symmetric, if A ≼ B implies B ≼ A.
(iv) antisymmetric, if A ≼ B, B ≼ A implies A = B.

In the following, we recall the definition of several set relations given in [11].
Notice that we do not require the domination structure K : Y ⇒ Y to be a cone-
valued map.

Definition 3.2. Let A,B ∈ P(Y ), K : Y ⇒ Y be a set-valued map. We define the
binary relations on P(Y ) w.r.t. K as follows:

(i) The variable generalized lower less relation (≼K
l ) is defined by

A ≼K
l B ⇐⇒ B ⊆

∪
a∈A

(a+K(a)).

(ii) The variable generalized upper less relation (≼K
u ) is defined by

A ≼K
u B ⇐⇒ A ⊆

∪
b∈B

(b−K(b)).

(iii) The variable generalized certainly lower less relation (≼K
cl) is defined by

A ≼K
cl B ⇐⇒ B ⊆

∩
a∈A

(a+K(a)).

(iv) The variable generalized certainly upper less relation (≼K
cu) is defined by

A ≼K
cu B ⇐⇒ A ⊆

∩
b∈B

(b−K(b)).

(v) The variable generalized possibly lower less relation (≼K
pl) is defined by

A ≼K
pl B ⇐⇒ B ∩

∪
a∈A

(a+K(a)) ̸= ∅.

(vi) The variable generalized possibly upper less relation (≼K
pu) is defined by

A ≼K
pu B ⇐⇒ A ∩

∪
b∈B

(b−K(b)) ̸= ∅.

We derive the following proposition by directly using Definition 3.2.

Proposition 3.3. Let A,B ∈ P(Y ) and consider the relations (i)-(vi) given by
Definition 3.2 . The following assertions hold true.

(i) A ≼K
u B ⇐⇒ B ≼−K

l A.

(ii) A ≼K
cu B ⇐⇒ B ≼−K

cl A.
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(iii) A ≼K
pu B ⇐⇒ B ≼−K

pl A.

(iv) A ≼K
cl B =⇒ A ≼K

l B =⇒ A ≼K
pl B.

(v) A ≼K
cu B =⇒ A ≼K

u B =⇒ A ≼K
pu B.

Remark 3.4. Each of the above relations has its own meaning in practical prob-
lems. For example, in uncertain optimization problems ≼K

l is used by a decision
maker who is interested in minimizing the best case, and when the worst case is
concerned, he will choose the relation ≼K

u .

In order to derive some properties of the relations given in Definition 3.2, some
of the following properties of the domination structure given by a set-valued map
K : Y ⇒ Y will be used:

∀y ∈ Y : 0 ∈ K(y);(3.1)

∀y ∈ Y : K(y) +K(y) ⊆ K(y);(3.2)

∀y ∈ Y, d ∈ K(y) : K(y + d) ⊆ K(y);(3.3)

∀y ∈ Y, d ∈ K(y) : K(y − d) ⊆ K(y);(3.4)

∀y ∈ Y : K(y)
∩

(−K(y)) = {0}.(3.5)

Obviously, if K(y) is a convex, pointed cone in Y for all y ∈ Y , then K satisfies the
properties (3.1), (3.2) and (3.5).
The relations given in Definition 3.2 satisfy the following properties.

Proposition 3.5. The following statements hold true:

(i) If K satisfies property (3.1), then the binary relations ≼K
l and ≼K

u are re-
flexive.

(ii) If K satisfies properties (3.2) and (3.3), then the relations ≼K
l and ≼K

cl are
transitive.

(iii) If K satisfies properties (3.2) and (3.4), then the relations ≼K
u and ≼K

cu are
transitive.

(iv) If K satisfies K(Y ) ∩ (−K(Y )) = {0}, then the relations ≼K
cl and ≼K

cu are
antisymmetric.

The proof of Proposition 3.5 is similar to that one in [11, Lemma 2.1] for a
cone-valued map K.

From now on, we denote by ≼K
t one of the relations (i)− (vi) given in Definition

3.2, t ∈ {l, u, cl, cu, pl, pu}. If A,B ∈ P(Y ) such that A ≼K
t B and B ≼K

t A, we will
write A ∼ B. Let A be a family of sets in P(Y ). We recall some minimality notions
of A w.r.t. ≼K

t , which are used in the next sections.

Definition 3.6. Let A be a family of nonempty subsets of Y , K : Y ⇒ Y be a
set-valued map and t ∈ {l, u, cl, cu, pl, pu}.

(a) A set Ā ∈ A is called a minimal element of A w.r.t. ≼K
t if

A ∈ A, A ≼K
t Ā =⇒ Ā ≼K

t A.

(b) A set Ā ∈ A is called a strongly minimal element of A w.r.t. ≼K
t if

∀ A ∈ A \ {Ā} : Ā ≼K
t A.
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(c) A set Ā ∈ A is called a strictly minimal element of A w.r.t. ≼K
t if

A ∈ A, A ≼K
t Ā =⇒ Ā = A.

We denote respectively by MinY (A,≼K
t ), SoMinY (A,≼K

t ) and SiMinY (A,≼K
t ) the

sets of all minimal, strongly minimal and strictly minimal elements of A w.r.t. ≼K
t ,

t ∈ {l, u, cl, cu, pl, pu}. The index ”Y ” in MinY , SoMinY , SiMinY is used to mark
that we consider concepts of minimality in the image space Y . In Definition 3.9, we
introduce additionally corresponding concepts in the pre-image space X.

Remark 3.7. Let t ∈ {l, u, cl, cu, pl, pu}. We note the following properties by
taking into account the definition of the sets MinY (A,≼K

t ), SoMinY (A,≼K
t ) and

SiMinY (A,≼K
t ).

(i) It is clear that if ≼K
t is transitive and Ā ∈ MinY (A,≼K

t ), then for all B such
that B ∼ Ā, it holds that B ∈ MinY (A,≼K

t ).
(ii) Obviously, we have the inclusions SoMinY (A,≼K

t ) ⊆ MinY (A,≼K
t ) and

SiMinY (A,≼K
t ) ⊆ MinY (A,≼K

t ).
(iii) We have that

Ā ∈ SoMinY (A,≼K
cl) ⇐⇒ ∀ A ∈ A \ {Ā} : Ā ≼K

cl A

Proposition 3.3
=⇒ ∀ A ∈ A \ {Ā} : Ā ≼K

l A

=⇒ Ā ∈ SoMinY (A,≼K
l ).

Therefore, we get that SoMinY (A,≼K
cl) ⊆ SoMinY (A,≼K

l ). Similarly, we

can obtain that SoMinY (A,≼K
l ) ⊆ SoMinY (A,≼K

pl).

In addition, it yields from Definition 3.6(c) that

Ā ∈ SiMinY (A,≼K
pl) ⇐⇒ ∀ A ̸= Ā : A ̸≼K

pl Ā

Proposition 3.3
=⇒ ∀ A ̸= Ā : A ̸≼K

l Ā

⇐⇒ Ā ∈ SiMinY (A,≼K
l ).

Thus, SiMinY (A,≼K
pl) ⊆ SiMinY (A,≼K

l ).

Similarly, we have that SiMinY (A,≼K
l ) ⊆ SiMinY (A,≼K

cl).

For the relations ≼K
u , ≼K

cu, and ≼K
pu the following assertions also hold true:

SoMinY (A,≼K
cu) ⊆ SoMinY (A,≼K

u ) ⊆ SoMinY (A,≼K
pu)

and

SiMinY (A,≼K
pu) ⊆ SiMinY (A,≼K

u ) ⊆ SiMinY (A,≼K
cu).

3.2. SOLUTION CONCEPTS BASED ON VECTOR APPROACH AND
SET APPROACH FOR SET OPTIMIZATION PROBLEMS. First, we
consider the problem (PQ), where the domination map Q : X ⇒ Y is acting between
the same spaces as the set-valued objective map F : X ⇒ Y . Furthermore, we
assume that for all x ∈ X : F (x) ̸= ∅. We define solutions of (PQ) by using the
vector approach as follows.
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Definition 3.8. Let F : X ⇒ Y and Q : X ⇒ Y be two given set-valued maps,
and (x̄, ȳ) ∈ X × Y with ȳ ∈ F (x̄).

(i) (x̄, ȳ) ∈ GrF is called a nondominated solution of the problem (PQ) w.r.t.
Q if

ȳ /∈
∪
x∈X

(
F (x) + (Q(x) \ {0})

)
.

The set of all nondominated solutions of (PQ) w.r.t. Q is denoted by
ND(F (X),Q).

(ii) (x̄, ȳ) ∈ GrF is called a minimal solution of the problem (PQ) w.r.t. Q if

ȳ /∈ F (X) + (Q(x̄) \ {0}).
We denote the set of all minimal solutions of (PQ) w.r.t. Q by Min(F (X),Q).

Obviously, if (x̄, ȳ) ∈ Min(F (X),Q), then it is also a nondominated solution of

(PQ) w.r.t. Q̃ : X ⇒ Y defined by

∀x ∈ X : Q̃(x) ≡ Q(x̄).

Now, we follow the set approach to define solutions of (PK), K : Y ⇒ Y , w.r.t. the
relation ≼K

t , where t ∈ {u, l, cu, cl, pu, pl}. The solution concepts in the following
definition are given in the pre-image space X, whereas the solution concepts in
Definition 3.6 are formulated in the image space Y .

Definition 3.9 ([11, Definition 5.2]). Let F : X ⇒ Y , K : Y ⇒ Y be two given
set-valued maps and t ∈ {u, l, cu, cl, pu, pl}.

(a) A point x̄ ∈ X is called a minimal solution of (PK) w.r.t. ≼K
t if

x ∈ X,F (x) ≼K
t F (x̄) =⇒ F (x̄) ≼K

t F (x).

We denote by Min(F (X),≼K
t ) the set of all minimal solutions of (PK) w.r.t.

≼K
t .

(b) A point x̄ ∈ X is called a strongly minimal solution of (PK) w.r.t. ≼K
t if

∀ x ∈ X \ {x̄} : F (x̄) ≼K
t F (x).

We denote by SoMin(F (X),≼K
t ) the set of all strongly minimal solutions of

(PK) w.r.t. ≼K
t .

(c) A point x̄ ∈ X is called a strictly minimal solution of (PK) w.r.t. ≼K
t if

x ∈ X, F (x) ≼K
t F (x̄) orF (x) = F (x̄) =⇒ x̄ = x.

We denote by SiMin(F (X),≼K
t ) the set of all strictly minimal solutions of

(PK) w.r.t. ≼K
t .

Remark 3.10. Let t ∈ {l, u, cl, cu, pl, pu}.
(i) Observe that if ≼K

t is transitive and x̄ ∈ Min(F (X),≼K
t ), then it also holds

true for all x ∈ X satisfying F (x) ∼ F (x̄).
If for all x ̸= x′, F (x) ̸= F (x′) holds true, then the Definition 3.9(b) and (c)
are equivalent to F (x̄) ∈ SoMin Y (F (X),≼K

t ) and F (x̄) ∈ SiMin Y (F (X),≼K
t

), respectively.
Let [F (x̄)] := {F (x) ∈ F (X)| F (x) ∼ F (x̄)}. Then, it holds that

x̄ ∈ SiMin(F (X),≼K
t ) =⇒ [F (x̄)] = {F (x̄)}.
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(ii) Definition 3.9 implies that SiMin(F (X),≼K
t ) and SoMin(F (X),≼K

t ) are sub-
sets of Min(F (X),≼K

t ). Furthermore, by using the same lines as in Remark
3.7(iii) the following relationships for the lower relations ≼K

l , ≼K
cl, and ≼K

pl

hold true:

SoMin(F (X),≼K
cl) ⊆ SoMin(F (X),≼K

l ) ⊆ SoMin(F (X),≼K
pl)

and

SiMin(F (X),≼K
pl) ⊆ SiMin(F (X),≼K

l ) ⊆ SiMin(F (X),≼K
cl).

Similarly, we have the following relationships for the upper relations ≼K
u ,

≼K
cu and ≼K

pu:

SoMin(F (X),≼K
cu) ⊆ SoMin(F (X),≼K

u ) ⊆ SoMin(F (X),≼K
pu)

and

SiMin(F (X),≼K
pu) ⊆ SiMin(F (X),≼K

u ) ⊆ SiMin(F (X),≼K
cu).

4. Relationships between solution concepts based on set approach
and vector approach for set optimization problems

In the following, we derive the relationships between solution concepts of (PK),
K : Y ⇒ Y , and (PQ), Q : X ⇒ Y given in Definition 3.8 and Definition 3.9. The

following theorems will use two set-valued maps Q̂ : X ⇒ Y and Q̂′ : X ⇒ Y
respectively determined by:

∀x ∈ X : Q̂(x) :=
∩

y∈F (x)

K(y),(4.1)

and

∀x ∈ X : Q̂′(x) :=
∪

y∈F (x)

K(y).(4.2)

Let us recall a result by Eichfelder and Pilecka [12] about the relationships be-
tween strictly minimal solutions of (PK) w.r.t. the variable generalized possibly
lower less relation (≼K

pl) introduced in Definition 3.2, (v), and nondominated so-

lutions (see Definition 3.8, (i)) of the set-valued optimization problem (PQ) w.r.t.

Q̂.

Theorem 4.1 ([12, Lemma 5.1]). Consider problem (PK) w.r.t. ≼K
pl, K : Y ⇒

Y which satisfies that K(y) is a proper, convex cone for all y ∈ Y , and let some

vector x̄ ∈ SiMin(F (X),≼K
pl) be given. Let Q̂ : X ⇒ Y be given by (4.1). If there

exists ȳ ∈ F (x̄) such that ȳ /∈ F (x̄) + Q̂(x̄) \ {0}, then (x̄, ȳ) ∈ ND(F (X), Q̂).

Now, our intention is to derive a corresponding result for strongly minimal so-
lutions of (PK) w.r.t. the variable generalized lower less relation ≼K

l , introduced
in Definition 3.2, (i), and nondominated solutions of the set-valued optimization
problem introduced in Definition 3.8, (i).
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Theorem 4.2. Consider problem (PK) w.r.t. ≼K
l , K : Y ⇒ Y , and let some vector

x̄ ∈ SoMin(F (X),≼K
l ) be given. Suppose that there is ȳ ∈ F (x̄) such that

∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y).(4.3)

Furthermore, assume that K : Y ⇒ Y satisfies properties (3.1)-(3.3), and (3.5).

Let Q̂ : X ⇒ Y be given by (4.1). Then, (x̄, ȳ) ∈ ND(F (X), Q̂).

Proof. Since x̄ ∈ SoMin(F (X),≼K
l ), it holds that

∀x ∈ X \ {x̄} : F (x̄) ≼K
l F (x).

Furthermore, it holds that

F (x̄) ≼K
l F (x̄),

since 0 ∈ K(y) for all y ∈ Y . Thus, we obtain

∀x ∈ X : F (x̄) ≼K
l F (x),

which is equivalent to

(4.4) ∀x ∈ X : F (x) ⊆
∪

y∈F (x̄)

(y +K(y)).

Suppose by contradiction that (x̄, ȳ) /∈ ND(F (X), Q̂). This means that

∃x ∈ X : ȳ ∈ F (x) + Q̂(x) \ {0}

⇐⇒ ∃x ∈ X, ∃y ∈ F (x) \ {ȳ} : ȳ ∈ y + Q̂(x) \ {0}

⇐⇒ ∃x ∈ X, ∃y ∈ F (x) \ {ȳ} : ȳ ∈ y + Q̂(x) ⊆ y +K(y).(4.5)

From (4.4), taking into account that K satisfies (3.3), we have that

∃ŷ ∈ F (x̄) : y ∈ ŷ +K(ŷ) =⇒ K(y) ⊆ K(ŷ).(4.6)

Therefore, we can conclude

ȳ ∈ y +K(y) ⊆ ŷ +K(ŷ) +K(y)

⊆ ŷ +K(ŷ) +K(ŷ) ⊆ ŷ +K(ŷ)

=⇒ ȳ ∈ y +K(y) ⊆ ŷ +K(ŷ).(4.7)

Taking into account (4.3), we obtain that ȳ = ŷ . By (4.7), we get

y +K(y) ⊆ ŷ +K(ŷ) = ȳ +K(ȳ).

Furthermore,

ȳ ∈ y +K(y) =⇒ K(ȳ) ⊆ K(y).(4.8)

Since (4.6) and (4.8), it holds that K(y) ⊆ K(ŷ) = K(ȳ) ⊆ K(y).
Thus, K(ȳ) = K(y). Taking into account (4.6), (4.8) and ȳ = ŷ, we get that

y − ȳ ∈ K(ȳ) ∩ (−K(ȳ)) = {0}.

This means that y = ȳ. This is a contradiction to y ∈ F (x) \ {ȳ}. Therefore,
(x̄, ȳ) ∈ ND(F (X), Q̂). □
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In the following theorem, we show a result about the relationships between
strongly minimal solutions of (PK) w.r.t. the variable generalized certainly lower
less relation (≼K

cl) introduced in Definition 3.2, (iii), and nondominated solutions
of the set-valued optimization problem introduced in Definition 3.8, (i). It is
shown in Remark 3.10(ii) that SoMin(F (X),≼K

cl) ⊆ SoMin(F (X),≼K
l ), i.e., if x̄ ∈

SoMin(F (X),≼K
cl) then it holds that x̄ ∈ SoMin(F (X),≼K

l ).
Therefore, we present the following corollary without proof since it can be proved
by using the same arguments as in that one of Theorem 4.2.

Corollary 4.3. Consider problem (PK) w.r.t. ≼K
cl, K : Y ⇒ Y and x̄ ∈

SoMin(F (X),≼K
cl). Suppose that there is ȳ ∈ F (x̄) satisfying condition (4.3). Fur-

thermore, assume that K : Y ⇒ Y satisfies properties (3.1)-(3.3), and (3.5). Let

Q̂ : X ⇒ Y be given by (4.1). Then, (x̄, ȳ) ∈ ND(F (X), Q̂).

On the other hand, under some assumptions we can derive a stronger result as
follows.

Theorem 4.4. Consider problem (PK) w.r.t. ≼K
cl, K : Y ⇒ Y , where K satisfies

properties (3.2) and (3.3), and x̄ ∈ SoMin(F (X),≼K
cl) . Assume that there exists

ȳ ∈ F (x̄) satisfying F (x̄) ⊆ ȳ +K(ȳ). Let Q̂′ : X ⇒ Y given by (4.2) such that

∀x ∈ X : Q̂′(x)
∩

(−Q̂′(x)) = {0}.

Then, (x̄, ȳ) ∈ Min(F (X), Q̂′).

Proof. Since x̄ ∈ SoMin(F (X),≼K
cl), it holds that

∀ x ∈ X \ {x̄} : F (x̄) ≼K
cl F (x)

⇐⇒ ∀ x ∈ X \ {x̄} : F (x) ⊆
∩

y∈F (x̄)

(y +K(y))

⇐⇒ ∀ x ∈ X \ {x̄}, ∀ y ∈ F (x̄) : F (x) ⊆ y +K(y).(4.9)

From the assumption F (x̄) ⊆ ȳ + K(ȳ) and taking into account that K satisfies
(3.3), it holds that

∀ y ∈ F (x̄) : y ∈ȳ +K(ȳ) =⇒ K(y) ⊆ K(ȳ).

This implies
y +K(y) ⊆ ȳ +K(ȳ) +K(ȳ) ⊆ ȳ +K(ȳ),

since K satisfies (3.2). Taking into account (4.9), we get

∀x ∈ X \ {x̄}, ∀ y ∈ F (x̄) : F (x) ⊆ y +K(y) ⊆ ȳ +K(ȳ).

In addition, because of F (x̄) ⊆ ȳ +K(ȳ), we obtain

F (X) ⊆ ȳ +K(ȳ) ⊆ ȳ + Q̂′(x̄).

Now, we claim that (x̄, ȳ) ∈ Min(F(X), Q̂′). Indeed, suppose that there is x ∈ X
satisfying

ȳ ∈ F (x) + Q̂′(x̄) \ {0}

=⇒ ∃ y ∈ F (x), t ∈ Q̂′(x̄) \ {0} : ȳ = y + t.(4.10)
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Since F (X) ⊆ ȳ + Q̂′(x̄) and y ∈ F (X), we have that:

∃ t′ ∈ Q̂′(x̄) : y = ȳ + t′.(4.11)

From (4.10) and (4.11), we get that

t = −t′ ∈ Q̂′(x̄) \ {0}
∩

(−Q̂′(x̄)) = ∅, a contradiction.

The proof is complete. □
We illustrate the three theorems above by Figure 1.

Figure 1. Illustration of Theorem 4.1, Theorem 4.2 and Theorem 4.4

In order to derive some relationships between the solution concepts from Defi-
nition 3.9 and Definition 3.8 in the converse direction, it is necessary to introduce
the following concepts of domination property of a family of sets A ⊆ P(Y ). These
concepts are introduced in [11] in order to study relationships between optimal solu-
tions according to the set approach and those ones according to the vector approach,
where the domination structure in the latter one acts onto the output space of the
objective function F .

Definition 4.5. Let a family A ⊆ P(Y ) of nonempty sets and a relation ≼K
t

(t ∈ {u, l, cu, cl, pu, pl}) be given. We say that,

(i) A has the weak domination property w.r.t. ≼K
t if for each set A ∈ A there

exists a family of sets ΓA
A ⊆ A such that ΓA

A ⊆ MinY (A,≼K
t ) and∪

{B : B ∈ ΓA
A} ≼K

t A.

(ii) Ā ⊆ A has the domination property w.r.t. ≼K
t if MinY (Ā,≼K

t ) ̸= ∅ and for
each set A ∈ A there exists a set B ∈ MinY (Ā,≼K

t ) such that B ≼K
t A.



330 E. KÖBIS, TH. T. LE, CHR. TAMMER, AND J.-CH. YAO

Observe that Definition 4.5(i) is weaker than Definition 4.5(ii) which is first in-
troduced in [13, Definition 4.9] for constant ordering cones.

In the next theorem, we discuss the relationships between nondominated solutions
of (PQ) (see Definition 3.8) and minimal solutions of a set-valued optimization
problem where the solution concept is governed by the variable generalized lower
less relation ≼K

l (see Definition 3.2, (i)) with respect to a certain set-valued map K
under the assumption that the set F(X) := {F (x)| x ∈ X} has the weak domination
property w.r.t. ≼K

l .

Theorem 4.6. Consider problem (PQ), Q : X ⇒ Y , and (x̄, ȳ) ∈ ND(F (X),Q).
Let K : Y ⇒ Y be given by

K(y) :=


∩

x∈X:y∈F (x)

Q(x) if y ∈ F (X),

{0} if y ̸∈ F (X).
(4.12)

Suppose that F(X) has the weak domination property w.r.t. ≼K
l . Then, there exists

a minimal solution x′ ∈ Min(F (X),≼K
l ) provided that ȳ ∈ F (x′).

Proof. Since (x̄, ȳ) ∈ ND(F (X),Q), it holds that

ȳ /∈
∪
x∈X

(F (x) + (Q(x) \ {0})).(4.13)

Taking into account the weak domination property of F(X), it holds that there is

a family of sets F̃(X) ⊆ F(X) such that

F̃(X) ⊆ MinY (F(X),≼K
l ),

and ∪
{B : B ∈ F̃(X)} ≼K

l F (x̄).

We suppose that there exists S̄ ⊆ X such that for all x ∈ S̄ : F (x) ∈ F̃(X), i.e., x ∈
Min(F (X),≼K

l ). Let F (S̄) =
∪
{B : B ∈ F̃(X)}. Thus, F (S̄) ≼K

l F (x̄). This is
equivalent to

F (x̄) ⊆
∪

y∈F (S̄)

(y +K(y)).

Taking into account ȳ ∈ F (x̄), there is x′ ∈ S̄ ⊆ X, y ∈ F (x′) such that

ȳ ∈ y +K(y) = y +
∩

{x∈X: y∈F (x)}

Q(x) ⊆ y +Q(x′).(4.14)

(4.13) and (4.14) imply that y = ȳ ∈ F (x′).
In addition, F (x′) ∈ MinY (F (X),≼K

l ), i.e., x
′ ∈ Min(F (X),≼K

l ), and the proof is
complete. □

Furthermore, we explain the relationships between nondominated solutions of
(PQ) (see Definition 3.8) and minimal solutions of a set-valued optimization problem
where the solution concept is governed by the variable generalized certainly lower
less relation ≼K

cl (see Definition 3.2, (iii)) with respect to a certain set-valued map

K under the assumption that F(X) has the weak domination property w.r.t. ≼K
cl.



NECESSARY CONDITIONS FOR SOL. OF SET OPTIMIZATION PROBLEMS W.R.T. V.D.S. 331

Theorem 4.7. Assume that (x̄, ȳ) ∈ ND(F (X),Q), Q : X ⇒ Y . Suppose that
F(X) has the weak domination property w.r.t. ≼K

cl with K : Y ⇒ Y given by (4.12).

Then, there is S̄ ⊆ X such that for all x ∈ S̄ : F (x) = {ȳ} and x ∈ Min(F (X),≼K
cl).

Proof. By using the same arguments as in Theorem 4.6, it holds that there is S̄ ⊆
X such that S̄ ⊆ Min(F (X),≼K

cl) and F (S̄) ≼K
cl F (x̄). Taking into account the

definition of ≼K
cl, we get

F (x̄) ⊆
∩

y∈F (S̄)

(y +K(y)).

This yields

∀x ∈ S̄, ∀ y ∈ F (x) : ȳ ∈ y +K(y) ⊆ y +Q(x).

Taking into account (x̄, ȳ) ∈ ND(F (X),Q), it holds that ȳ = y. This conclusion
holds true for all y ∈ F (x), such that we obtain for all x ∈ S̄ : F (x) = {ȳ}. □

We finish this section by the following figure illustrating Theorem 4.6 and Theo-
rem 4.7.

Figure 2. Illustration of Theorem 4.6 and Theorem 4.7

5. Optimality conditions

This section is devoted to deriving necessary optimality conditions for strongly
and strictly minimal solutions of (PK) w.r.t. ≼K

t , where t∈ {l, pl, cl, u, cu}. The so-
called vector approach for handling set optimization problems is very suitable for
deriving these necessary optimality conditions due to relationships between between
solutions of the vector and set approach. In this section, we will formulate such
optimality conditions based on the derived results from Section 4. Less general
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results, for a fixed domination structure, can be found in [18] under the following
optimality notion, where the spaces X and Y and the map F are defined as in this
paper, and for A,B ∈ P(Y ) and K being a proper, closed, convex cone in Y , we
define

A ≼intK
t B :⇐⇒ A ≼K

t B with K :≡ intK

for t∈ {l, pl}.

Definition 5.1 (Local Minimal Points w.r.t. ≼K
t (≼intK

t )). Let K be a closed,
convex, proper and pointed cone in Y .

(i) x ∈ X is a local minimal point w.r.t. ≼K
t if there is a neighborhood U of x

such that there does not exist x ∈ U \ {x} such that F (x) ≼K
t F (x).

(ii) Let intK ̸= ∅. x ∈ X is a local minimal point w.r.t. ≼intK
t if there is a

neighborhood U of x such that there does not exist x ∈ U \ {x} such that
F (x) ≼intK

t F (x).

Note that for all necessary optimality conditions for a local minimal point w.r.t.
≼K

t and≼intK
t (with t∈ {l, pl}) in Section 4 of [18], the following assumption needs to

be added: For a given x ∈ X, assume that for all y ∈ F (x), (F (x)− y)∩(−K) ⊆ {0},
or (F (x)− y)∩ (− intK) = ∅, respectively. We demonstrate this with the following
result.

Theorem 5.2 ([18, Theorem 4.10]). Let X,Y be Asplund spaces, F : X ⇒ Y be a
closed-graph multifunction, K be a proper, closed, convex cone in Y and x ∈ X be
a local minimal point w.r.t. ≼K

pl . Suppose that K is (SNC) at 0. Assume further

that for all y ∈ F (x), it holds that (F (x) − y) ∩ (−K) ⊆ {0}. Then, there exists
some y ∈ F (x) and some y∗ ∈ K+ \ {0} such that

0 ∈ D∗F (x, y)(y∗).

We discuss the usefulness of the assumption (F (x)− y) ∩ (−K) ⊆ {0}, or
(F (x)− y) ∩ (− intK) = ∅, respectively, for all y ∈ F (x), in the remark below.

Remark 5.3. The relation (F (x)− y)∩(−K) ⊆ {0}, or (F (x)− y)∩(− intK) = ∅,
respectively, for all y ∈ F (x), is useful if the set-valued objective map F at the
point x is given as Pareto frontier of a vector optimization problem. Moreover, it is
possible to generalize our results to the case of so-called minmax-set relations (see
Jahn, Ha [13]), that compare sets based on their minimal or maximal elements in
terms of the vector approach. In this case, the above assumption does not impose
any additional restriction.

Now, we extend our discussion to set optimization problems equipped with a vari-
able domination structure. Before recalling a theorem about necessary optimality
conditions for nondominated solutions of set-valued optimization problems given in
[7], it is necessary to discuss an assumption concerning the domination structure
Q : X ⇒ Y by which the original problem (PQ) is equipped. That is

∀x ∈ X : Q(x) is a closed, convex, pointed, proper cone.
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Note that when K(y) is not necessarily a cone-valued map for all y ∈ Y , this

requirement can be fulfilled for the mappings Q̂ and Q̂′ given respectively by (4.1)
and (4.2). This will be illustrated by the following examples.

Example 5.4. Let F : R2 ⇒ R2 be given as

∀(x1, x2) ∈ R2 : F (x1, x2) := {(d1, d2)| 0 ≤ d1 ≤ |x1|, 0 ≤ d2 ≤ |x2|}

and K : R2 ⇒ R2 be determined by:

∀(d1, d2) ∈ R2 : K(d1, d2) :=

{
{(y1, y2)|y2 ≥ d2

d1
y1} ∪ {(d1, 0)} if d1 ̸= 0,

{(y1, y2)|y1 ≤ 0, y2 ≥ 0} if d1 = 0.

Then, for all (x1, x2) ∈ R2 it holds that

Q̂(x1, x2) =
∩

(d1,d2)∈F (x)

K(d1, d2) = {(y1, y2)| y1 ≤ 0, y2 ≥ 0}.

It is obvious that for all (x1, x2) ∈ R2 we have that Q̂(x1, x2) is a closed, convex,
pointed cone. However, K(y1, y2) is not a cone for all (y1, y2) ∈ R2 \{0}. See Figure
3 for the illustration of this example, where the image spaces of F , K and Q̂ are
combined.

Figure 3. Illustration of Example 5.4

Example 5.5. Let F : R ⇒ R2 be defined as

∀x ∈ R : F (x) = {(d1, d2) ∈ R2| d2 = |x|d1}
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and K : R2 ⇒ R2 be determined by

∀(d1, d2) ∈ R2 : K(d1, d2) :=

{
{(y1, y2)| |d2| ≤ y2 ≤ |d2|

|d1|y1}, if d1 ̸= 0,

{(y1, y2)| y1 ≥ 0, y2 = 0}, if d1 = 0.

Then, it holds that:

∀x ∈ R : Q̂′(x) =
∪

(d1,d2)∈F (x)

K(d1, d2) = {(y1, y2)| 0 ≤ y2 ≤ |x|y1}.

This is a closed, convex and pointed cone. However, K(d1, d2) is not a cone for all
(d1, d2) ∈ F (x) \ {0}. For an illustration, see Figure 4, where the image spaces of

F , K and Q̂′ are combined.

Figure 4. Illustration of Example 5.5

Thus, from now on, we consider the vector approach to define the solution of (PQ)

with the assumption that for all x ∈ X, Q(x) (Q(x) := Q̂(x) or Q(x) := Q̂′(x)) is
a closed, convex, pointed, proper cone in Y .

In the next theorem, we recall a necessary condition for nondominated solutions
of (PQ) (see Definition 3.8) given by Durea, Strugariu and Tammer in [7, Theorem
4.10]. The main idea in the proof of the necessary condition in [7, Theorem 4.10]
is the incompatibility between openness and optimality (previously developed in
[6]). It is interesting to mention that for the proof of [7, Theorem 4.10] Ekeland’s
Variational Principle is involved by the application of sufficient conditions in terms
of coderivatives for the openness of the composition of multifunctions in Durea,
Huynh, Nguyen and Strugariu [8, Theorem 4.2]). A corresponding result is shown
by Bao and Mordukhovich in [3, Theorem 3.8] where the authors derived the result
using the Extremal Principle as the main tool.

Theorem 5.6 ([7, Theorem 4.10]). Let X, Y be Asplund spaces, F, Q : X ⇒ Y
be two set-valued maps such that for all x ∈ X, F (x) ̸= ∅. Consider the set-valued
optimization problem (PQ) and (x̄, ȳ) ∈ ND(F (X),Q). Furthermore, assume that
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GrF and GrQ are closed around (x̄, ȳ) and (x̄, 0), respectively. In addition, suppose
that the following assumptions hold:

(a) The sets C1 = {(x, y, k) : (x, y) ∈ GrF, k ∈ Y } and C2 = {(x, y, k) :
(x, k) ∈ GrQ, y ∈ Y } are allied at (x̄, ȳ, 0);

(b) there is a neighborhood U of x̄ such that
∩
x∈U

Q(x) ̸= {0};

(c) Q is lower semicontinuous at x̄;
(d) F−1 is (PSNC) at (ȳ, x̄) or Q−1 is (PSNC) at (0, x̄).

Then, there exists y∗ ∈ Q(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q(x̄, 0)(y∗).

Now, we are ready to show necessary optimality conditions for minimal solutions
of (PK) based on the set approach.

Necessary optimality conditions for strictly optimal solutions of a set-valued op-
timization problem working on primal spaces (where the Bouligand derivative of a
set-valued map is used) are presented by Eichfelder and Pilecka in [11, Theorem
5.1].

In the following theorems, we derive necessary optimality conditions using gen-
eralized differentiation objects lying in the dual spaces, i.e., we will use Mor-
dukhovich’s coderivative (see Definition 2.3).

First, we show a necessary optimality condition for strongly minimal solutions of
(PK) w.r.t. the variable generalized lower less relation ≼K

l , introduced in Definition
3.2, (i) using Theorem 5.6.

Theorem 5.7. Consider problem (PK) w.r.t. the variable generalized lower less
relation ≼K

l , K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),≼K
l ). Assume that there is an

element ȳ ∈ F (x̄) satisfying

∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y).

Furthermore, suppose that K : Y ⇒ Y satisfies properties (3.1)-(3.3), and (3.5).

Let Q̂ : X ⇒ Y given by (4.1) and assume that the assumptions in Theorem 5.6

hold true for the two multifunctions F, Q̂. Then, there exists y∗ ∈ Q̂(x̄)+ \ {0} such
that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

Proof. Consider x̄ ∈ SoMin(F (X),≼K
l ). Then, from Theorem 4.2, it holds that for

the element ȳ ∈ F (x̄) satisfying ∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y + K(y) that (x̄, ȳ) ∈
ND(F (X), Q̂). Since all assumptions in Theorem 5.6 hold true for F and Q̂, it
holds that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

The proof is complete. □
The following result is an assertion about a necessary optimality condition for

strictly minimal solutions of (PK) w.r.t. the variable generalized possibly lower less
relation ≼K

pl introduced in Definition 3.2, (v).

Theorem 5.8. Consider problem (PK) w.r.t. the variable generalized possibly lower
less relation ≼K

pl, K : Y ⇒ Y , which satisfies that K(y) is a proper, convex cone
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for all y ∈ Y , and x̄ ∈ SiMin(F (X),≼K
pl). Let Q̂ : X ⇒ Y be determined by (4.1).

Suppose that there is ȳ ∈ F (x̄) satisfying ȳ ̸∈ F (x̄) + Q̂(x̄) \ {0}. Assume that the

two multifunctions F, Q̂ satisfy the assumptions given in Theorem 5.6. Then, there
exists y∗ ∈ Q̂(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

Proof. We follow the line of the proof of Theorem 5.7. □

Now, we show a necessary optimality condition for strongly minimal solutions of
(PK) w.r.t. the variable generalized certainly lower less relation ≼K

cl, introduced in
Definition 3.2, (iii).
The following theorem is a consequence of Theorem 5.7. It is proved by directly
applying Collorary 4.3 and Theorem 5.6 and therefore, the proof is skipped.

Theorem 5.9. Consider problem (PK) w.r.t. the variable generalized certainly
lower less relation ≼K

cl, K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),≼K
cl). Assume that there

is an element ȳ ∈ F (x̄) satisfying

∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y).

Furthermore, suppose that K : Y ⇒ Y satisfies properties (3.1)-(3.3), and (3.5).

Let Q̂ : X ⇒ Y given by (4.1) and assume that the assumptions in Theorem 5.6

hold true for the two multifunctions F, Q̂. Then, there exists y∗ ∈ Q̂(x̄)+ \ {0} such
that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

In addition, we obtain a stronger necessary optimality condition for strongly
minimal solutions of (PK) w.r.t. ≼K

cl again using Theorem 5.6 as follows:

Theorem 5.10. Consider problem (PK) w.r.t. the variable generalized certainly
lower less relation ≼K

cl, K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),≼K
cl), where K : Y ⇒ Y

satisfies properties (3.2) and (3.3). Suppose that there exists ȳ ∈ F (x̄) satisfying

F (x̄) ⊆ ȳ +K(ȳ). Let Q̂′ : X ⇒ Y be given by (4.2) such that

∀x ∈ X : Q̂′(x)
∩

(−Q̂′(x)) = {0}.

Assume in addition that the following assumptions are fulfilled:

(i) Q̂′(x̄) ̸= {0} and Q̂′(x̄)is closed ;

(ii) F−1 is (PSNC) at (ȳ, x̄) or Q̂′−1 is (PSNC) at (0, x̄).

Then, there exists y∗ ∈ Q̂′(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗).

Proof. By Theorem 4.4, it holds that (x̄, ȳ) ∈ Min(F (X), Q̂′). Thus, (x̄, ȳ) ∈
ND(F (X), Q̂′

∗), where Q̂′
∗ : X ⇒ Y is defined by

∀x ∈ X : Q̂′
∗(x) := Q̂′(x̄).
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Now, we will prove that F and Q̂′
∗ satisfy all assumptions supposed in Theorem 5.6.

D̂∗Q̂′
∗(u, k)(k

∗) = {x∗ ∈ X∗|(x∗,−k∗) ∈ N̂(Gr Q̂′
∗, (u, k))}

= {x∗ ∈ X∗|(x∗,−k∗) ∈ N̂(X × Q̂′(x̄), (u, k)}

= {x∗ ∈ X∗|(x∗,−k∗) ∈ N̂(X,u)× N̂(Q̂′(x̄), k)}
= {0}.(5.1)

The last equation is obtained by using [26, Proposition 6.41] and N̂(X,u) = {0}.
Therefore, the alliedness property of (C1, C2) trivially holds (see [7]).

We have for all neighborhood U of x̄ that
∩
x∈U

Q̂′
∗(x) = Q̂′(x̄) ̸= {0}, i.e., assumption

(b) in Theorem 5.6 is fulfilled.

Since Q̂′
∗(x̄) = lim inf

x′→x̄
Q̂′

∗(x
′) = Q̂′(x̄), it holds that Q̂′

∗ is lsc at x̄ (Remark 2.8).

Now, we apply Theorem 5.6 and get that there exists y∗ ∈ Q̂′
∗(x̄)

+ \ {0} = Q̂′(x̄)+ \
{0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂′
∗(x̄, 0)(y

∗).

By using the same lines to obtain (5.1), it also holds that D∗Q̂′
∗(x̄, 0)(y

∗) = {0} and
thus we get the desired conclusion as follows:

∃ y∗ ∈ Q̂′(x̄)+ \ {0} such that 0 ∈ D∗F (x̄, ȳ)(y∗).

□

As shown in the previous parts, necessary optimality conditions are derived by
means of the relationships between the minimal solutions of problem (PK) w.r.t.
the lower set less relations (≼K

l ,≼K
cl and ≼K

pl) and solution concepts of problem

(PQ). According results concerning the upper set less relations (≼K
u ,≼K

cu and ≼K
pu)

do not hold true in general, since these relations are related to the ’worst cases’.
On the other hand, the definitions of nondominated and minimal solutions of (PQ)
are given similarly when we concern to the ’best’ cases. Therefore, in the sequel,
we use another approach to obtain necessary optimality conditions for solutions of
problem (PK) w.r.t. the upper set less relations (≼K

u and ≼K
cu ). Now, we briefly

illustrate our method to derive these necessary optimality conditions. It is necessary
to mention that in [7] the authors derive optimality conditions for solutions of
problem (PQ) by means of the sufficient conditions for the openness of a sum valued-
mappings, that is F +Q. However, we are concerning the set-valued problem (PK),
where F : X ⇒ Y and K : Y ⇒ Y , i.e., F and K have different pre-image spaces.
Futhermore, looking at the definitions of the relations ≼K

u and ≼K
cu, we can see that

they are related to composition of multifunctions F and K. For that reason, we
study the sufficient conditions for the openness of a composition of multifunctions
contributed from our objective function F and the variable domination structure
K. These sufficient conditions in terms of Mordukhovich’s coderivative are recently
given by Durea, Huynh, Nguyen and Strugariu in [8].
Let F1 : X ⇒ Y1, F2 : X ⇒ Y2 and G : Y1 × Y2 ⇒ Z be set-valued mappings where
X,Y1, Y2, Z are Asplund spaces. Consider the following composition multifunctions
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H : X ⇒ Z defined as

(5.2) H(x) :=
∪

y2∈F2(x)

y1∈F1(x)

G(y1, y2).

The next theorem gives sufficient conditions in terms of coderivatives for the open-
ness of the composition of set-valued mappings (see [8, Theorem 4.2]), where Eke-
land’s Variational Principle is the main tool in the proof.

Theorem 5.11. [8, Theorem 4.2] Let X,Y1, Y2, Z be Asplund spaces. Suppose that
F1 : X ⇒ Y1, F2 : X ⇒ Y2 and G : Y1×Y2 ⇒ Z are closed-graph multifunctions and
(x̄, ȳ1, ȳ2, z̄) ∈ X × Y1 × Y2 ×Z be such that z̄ ∈ G(ȳ1, ȳ2), (ȳ1, ȳ2) ∈ F1(x̄)× F2(x̄).
Assume that the following sets are allied at (x̄, ȳ1, ȳ2, z̄)

Ĉ1 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : y1 ∈ F1(x)},

Ĉ2 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : y2 ∈ F2(x)},

Ĉ3 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : z ∈ G(y1, y2)}.(5.3)

Suppose that there exists c > 0 such that
(5.4)

c < lim inf

(t1,t2,w)
GrG−−−→(ȳ1,ȳ2,z̄),δ↓0

(u1,v1)
GrF1−−−→(x̄,ȳ1), (u2,v2)

GrF2−−−→(x̄,ȳ2)

{
∥x∗

1 + x∗
2∥ :


x∗
1 ∈ D̂∗F1(u1, v1)(t∗1)

x∗
2 ∈ D̂∗F2(u2, v2)(t∗2)

(z∗1 + t∗1, z
∗
2 + t∗2) ∈ D̂∗G(t1, t2, w)(w∗)

∥w∗∥ = 1, ∥z∗1∥ < δ, ∥z∗2∥ < δ

}
.

Then, for every L ∈ (0, c), H (given by (5.2)) is L-open at (x̄, z̄).

In order to apply the Theorem 5.11 to our problem (PK), it is necessary to
determine appropriate set-valued maps as follows.
Let Y1, Y2 and Z be equal to the space Y , and suppose that the set-valued mappings
F1, F2 : X ⇒ Y and G : Y × Y ⇒ Y are respectively determined by

∀x ∈ X : F1(x) := F (x),

∀ x ∈ X : F2(x) := {0},
∀ (y1, y2) ∈ Y × Y : G(y1, y2) := (I −K)(y1) = y1 −K(y1).

Because G only depends on y1, instead of studying G, we invest the following set-
valued map

Ĝ : Y ⇒ Y

such that
∀ y ∈ Y : Ĝ(y) := (I −K)(y) = y −K(y).

Let Ĥ : X ⇒ Y defined by

Ĥ(x) :=
∪

y∈F (x)

Ĝ(y) =
∪

y∈F (x)

(y −K(y)).

From the setting of F1, F2, Ĝ, the allied property of (Ĉ1, Ĉ2, Ĉ3) in (5.3) becomes
the allied property of (E1, E2) given as

E1 := {(x, y, z) ∈ X × Y × Y : y ∈ F (x)},
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E2 := {(x, y, z) ∈ X × Y × Y : z ∈ Ĝ(y)}.

Proposition 5.12. Consider problem (PK) w.r.t. the variable generalized upper
less relation ≼K

u , K : Y ⇒ Y satisfying (3.1), and x̄ ∈ SoMin(F (X),≼K
u ) and

(x̄, ȳ) ∈ GrF. Suppose that there is a neighborhood U of x̄ such that Ĥ(U)−
∩
x∈U

Ĥ(x)

is a proper cone. Then, Ĥ is not open at (x̄, ȳ).

Proof. Since for all y ∈ Y, 0 ∈ K(y), we get that F (x̄) ≼K
u F (x̄). Taking into account

that x̄ ∈ SoMin(F (X),≼K
u ), it holds that

∀x ∈ X : F (x̄) ≼K
u F (x) ⇐⇒ F (x̄) ⊆

∪
y∈F (x)

(y −K(y)).(5.5)

Let ȳ ∈ F (x̄) be arbitrarily given. Then, (5.5) implies that

∀x ∈ X : ȳ ∈
∪

y∈F (x)

(y −K(y)) = Ĥ(x).

Suppose, by contradiction, that Ĥ is open at (x̄, ȳ). Then, for the given neighbor-

hood U of x̄, there is an open set V (ȳ ∈ V ) such that V ⊆ Ĥ(U), which is equivalent
to

V ⊆
∪

y∈F (U)

(y −K(y)).

Let us choose y ∈ V arbitrarily. Then, there is x ∈ U such that

y ∈
∪

y∈F (x)

(y −K(y)) = Ĥ(x).

Therefore,

y − ȳ ∈ Ĥ(x)− ȳ ⊆ Ĥ(x)−
∩
x∈U

Ĥ(x)

⊆ Ĥ(U)−
∩
x∈U

Ĥ(x).

This implies

V − ȳ ⊆ Ĥ(U)−
∩
x∈U

Ĥ(x).

Since the first set is absorbing and the second one is a cone, it follows that

Y ⊆ Ĥ(U)−
∩
x∈U

Ĥ(x),

contradicting the fact that Ĥ(U)−
∩
x∈U

Ĥ(x) is proper.

□

Now, we show a necessary optimality condition for strongly minimal solutions of
(PK) w.r.t. the variable generalized upper less relation ≼K

u , introduced in Definition
3.2, (ii).
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Theorem 5.13. Let X, Y be Asplund spaces. Consider problem (PK) w.r.t. the
variable generalized upper less relation ≼K

u , K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),≼K
u ).

Suppose (x̄, ȳ) ∈ GrF, F and Ĝ := I − K be closed graph multifunctions. Suppose
in addition that the following assertions hold true:

(i) ∀y ∈ Y : 0 ∈ K(y);

(ii) there is a neighborhood U of x̄ such that Ĥ(U)−
∩
x∈U

Ĥ(x) is a proper cone;

(iii) {E1, E2} are allied at (x̄, ȳ, ȳ);

(iv) F−1 is (PSNC) at (ȳ, x̄) and Ĝ−1 is (PSNC) at (ȳ, ȳ);

(v) D∗Ĝ(ȳ, ȳ)(0) = {0}.
Then, for all ȳ ∈ F (x̄) there exist w∗ ∈ Y ∗ \ {0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) such that

0 ∈ D∗F (x̄, ȳ)(t∗).

Proof. We have from Proposition 5.12 that Ĥ is not open at (x̄, ȳ), hence it is
not linearly open at this point. Since the other conditions from Theorem 5.11 are
satisfied, the condition (5.4) does not hold true. Consequently, there exist sequences

(un, vn)
GrF−−−→ (x̄, ȳ), (tn, wn)

Gr Ĝ−−−→ (ȳ, ȳ), (w∗
n) ⊂ SY ∗ , (x∗n) ∈ X∗, z∗n → 0 such that

(5.6) ∀ n : x∗n ∈ D̂∗F (un, vn)(t
∗
n), z

∗
n + t∗n ∈ D̂∗Ĝ(tn, wn)(w

∗
n) and ∥x∗n∥ → 0.

Now we prove that (t∗n) is bounded. Suppose the contradiction and by z∗n → 0
we get that for every n ∈ N, there exists kn ∈ N sufficiently large such that

n < ∥t∗kn∥+ ∥z∗kn∥.(5.7)

For the reason of keeping the notation simple, we denote the subsequences (t∗kn), (z
∗
kn)

by (t∗n ), (z∗n), respectively. Because of the positive homogeneity of the Fréchet
coderivatives, we have that

x∗n
n

∈ D̂∗F (un, vn)(
t∗n
n
),

and
1

n
(z∗n + t∗n) ∈ D̂∗Ĝ(tn, wn)(

w∗
n

n
).

It yields

(
x∗n
n
,
−t∗n
n

) ∈ N̂(GrF, (un, vn)) and (
z∗n + t∗n

n
,
−w∗

n

n
) ∈ N̂(Gr Ĝ, (tn, wn)).

Thus,

(
x∗n
n
,
−t∗n
n

, 0) ∈ N̂(E1, (un, vn, ȳ)) and (0,
z∗n + t∗n

n
,
−w∗

n

n
) ∈ N̂(E2, (x̄, tn, wn)).

Since w∗
n ∈ SY ∗ , z∗n → 0 and ∥x∗n∥ → 0, it holds that

(
x∗n
n
,
−t∗n
n

, 0) + (0,
z∗n + t∗n

n
,
−w∗

n

n
) = (

x∗n
n
,
z∗n
n
,
−w∗

n

n
) → 0.

Then, the alliedness of the sets (E1, E2) implies 1
n(z

∗
n+ t∗n) → 0, which is impossible

in virtue of relation (5.7).
Consequently, since Y is Asplund and (t∗n) is bounded, we get that there is a sub-
sequence of (t∗n) which weak* converges to t∗ ∈ Y ∗. Also, since (w∗

n) ⊂ SY ∗ , (w∗
n)
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contains a weak* convergent subsequence to an element w∗. For simplicity, we de-
note this subsequence also by (w∗

n).
We claim that t∗ = w∗ = 0 does not hold true. Indeed, suppose that t∗ = w∗ = 0,

i.e., t∗n
w∗
−−→ 0 and w∗

n
w∗
−−→ 0. Taking into account F−1 is (PSNC) at (ȳ, x̄), and

x∗n → 0, it holds that t∗n → 0. From z∗n → 0 we get (t∗n + z∗n) → 0. In addition,

w∗
n

w∗
−−→ 0 and Ĝ−1 is (PSNC) at (ȳ, ȳ), it holds that w∗

n → 0, which contradicts the
fact that (w∗

n) ⊂ SY ∗ .
In addition, taking into account (5.6), it holds that there exist some w∗ ∈ Y ∗ and

t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) satisfying 0 ∈ D∗F (x̄, ȳ)(t∗) .

It is obvious from the assumption D∗Ĝ(ȳ, ȳ)(0) = {0} that if w∗ = 0, then t∗ = 0,
a contradiction. Then, w∗ ̸= 0. The proof is complete. □

Now, we consider the variable generalized certainly upper less relation ≼K
cu.

From Remark 3.10 (ii), we know that x̄ ∈ SoMin(F (X),≼K
cu) implies x̄ ∈

SoMin(F (X),≼K
u ). Therefore, from Theorem 5.13, we have the following result.

Theorem 5.14. Let X, Y be Asplund spaces. Consider problem (PK) w.r.t.
the variable generalized certainly upper less relation ≼K

cu, K : Y ⇒ Y , and x̄ ∈
SoMin(F (X),≼K

cu). Assume (x̄, ȳ) ∈ GrF, F and Ĝ := I −K be closed graph mul-
tifunctions. Suppose in addition that the assumptions (i)-(v) in Theorem 5.13 are

fulfilled. Then, for all ȳ ∈ F (x̄) there exist w∗ ∈ Y ∗ \ {0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗)
such that

0 ∈ D∗F (x̄, ȳ)(t∗).

Proof. Since x̄ ∈ SoMin(F (X),≼K
cu), we get x̄ ∈ SoMin(F (X),≼K

u ). Since all as-
sumptions given in Theorem 5.13 hold true, we follow the same line of its proof to
obtain that: for all ȳ ∈ F (x̄) there exist w∗ ∈ Y ∗ \{0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) such
that

0 ∈ D∗F (x̄, ȳ)(t∗).

□

6. Conclusions

In this work, we investigate very general set relations w.r.t. a variable domination
structure, which is not necessarily given by a cone-valued map. We consider two
approaches to define solutions of a set optimization problem and investigate the
relationships between these two approaches. The main result of this paper consists
in deriving necessary optimality conditions in terms of Mordukhovich’s coderivative
for solutions of set-valued problems w.r.t. to various set relations. Our research
leaves many possibilities for future investigations. The next step is to apply our
results to real-world applications, for example taking into account uncertainties in
economic, radiotherapy treatment and behavioral sciences.
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dations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1990.

[2] T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers for multiobjective problems:
existence and optimality conditions, Mathematical Programming 122 (2010), 301–347.

[3] T. Q. Bao and B. S. Mordukhovich, Necessary nondomination conditions in set and vector
optimization with variable ordering structures, J. Optim. Theory Appl. 162 (2014), 350–370.

[4] S. Dempe and M. Pilecka, Necessary optimality conditions for optimistic bilevel programming
problems using set-valued programming, J. Global Optim. 61 (2015), 769–788.

[5] S. Dempe and M. Pilecka, Optimality conditions for set-valued optimisation problems using a
modified demyanov difference, J. Optim. Theory Appl., DOI 10.1007/s10957-015-0745-5

[6] M. Durea and R. Strugariu, On some Fermat rules for set-valued optimization problems, Op-
timization 60 (2011), 575–591.

[7] M. Durea, R. Strugariu and Chr. Tammer, On set-valued optimization problems with variable
ordering structure, J. Global Optim. 61 (2015), 745–767.

[8] M. Durea, V. N. Huynh, H. T. Nguyen and R. Strugariu, Metric regularity of composition
set-valued mappings: metric setting and coderivative conditions, J. Math. Anal. Appl. 412
(2014), 41–62.

[9] G. Eichfelder, Variable Ordering Structures in Vector Optimization. Springer, Heidelberg,
2014.

[10] G. Eichfelder and T. X. D. Ha, Optimality conditions for vector optimization problems with
variable ordering structures, Optimization 62 (2013), 597–627.

[11] G. Eichfelder and M. Pilecka, Set approach for set optimization with variable ordering struc-
tures part I: set relations and relationship to vector approach, J. Optim. Theory Appl. 171
(2016), 931–946.

[12] G. Eichfelder and M. Pilecka, Set approach for set optimization with variable ordering struc-
tures part II: scalarization approaches, J. Optim. Theory Appl. 171 (2016), :947–963.

[13] J. Jahn and T. X. D. Ha, New order relations in set optimization, J. Optim. Theory Appl.
148 (2011) ,209–236.
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[19] E. Köbis, Th. T. Le, Chr. Tammer and J.-C. Yao, A new scalarizing functional in set opti-
mization with respect to variable domination structures, Appl. Anal. Optim. 1 (2017), 311–326.
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