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NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL
CONTROL PROBLEMS SUBJECT TO HESSENBERG
DIFFERENTIAL ALGEBRAIC EQUATIONS OF ARBITRARY
INDEX AND MIXED CONTROL-STATE CONSTRAINTS

BJOERN MARTENS AND MATTHIAS GERDTS

ABSTRACT. The paper studies optimal control problems subject to mixed control-
state constraints and differential-algebraic equations (DAEs) with Hessenberg
structure of arbitrary index. We derive necessary optimality conditions in terms
of a local minimum principle and establish second order sufficient conditions.
The latter involves a coercivity condition and a Riccati equation that needs to
have a bounded solution.

1. INTRODUCTION

The paper aims to establish necessary and sufficient conditions for a class of
nonlinear optimal control problems subject to mixed control-state constraints and
differential-algebraic equations (DAEs) of arbitrary index. The DAE is supposed
to have Hessenberg structure, which frequently occurs in mechanical engineering
and path following problems. While the investigation of necessary and sufficient
conditions is well-established for optimal control problems subject to ordinary dif-
ferential equations (ODEs), only a few results are available for DAEs, especially for
higher index DAEs and for nonlinear problems. Up to the knowledge of the authors,
a systematic treatment of Hessenberg DAEs of arbitrary index in terms of neces-
sary and especially sufficient conditions has not been performed as yet. While the
authors are not aware of sufficient conditions for optimal control problems subject
to nonlinear higher index DAESs, there exist some results regarding sufficiency for
linear-quadratic DAE optimal control problems, compare [23, 24, 12, 14, 1].

Necessary conditions have been studied for semi-explicit index-1 DAEs with set
constraints on the controls in [25] and with pure state and mixed control-state
constraints in [4], for semi-explicit index-2 DAEs in [7], for Hessenberg-type DAEs
up to index 3 DAEs in [29], and for arbitrarily structured DAEs in [13]. An overview
on necessary conditions with further references can be found in the survey paper
[9].

In contrast to optimal control problems subject to DAEs there is a comparatively
rich literature for ODEs. First and second order sufficient optimality conditions for
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infinite dimensional programming problems are discussed in [21]. The results are
applied to optimal control problems subject to ODEs with pure state constraints.
A coercivity condition for the second derivative of the Lagrangian is derived, tak-
ing the two-norm discrepancy into account. Furthermore they present sufficient
conditions of Riccati-type. [20] analyze first and second-order necessary as well as
sufficient optimality conditions for infinite-dimensional programming problems and
utilize the results to derive second-order sufficient conditions for optimal control
problems subject to ODEs with mixed control-state and pure state constraints us-
ing the Hamilton-Jacobi inequality. They also introduce a Legendre-Clebsch and
Riccati-type condition. In [31] first and second-order sufficient conditions for op-
timal control problems with control constraints are obtained. Second-order suffi-
cient conditions for cone-constrained optimization problems are acquired by [16].
They apply the results to optimal control problems for affine systems subject to
state-space constraints. [5] make use of three different norms to obtain second or-
der sufficient conditions for infinite dimensional optimization problems, which are
utilized to derive sufficient conditions for optimal control problems with endpoint
constraints, and equality and inequality constraints on the controls. In [22] second
order sufficient conditions for optimal control problems subject to state and con-
trol constraints are discussed. Second order sufficient conditions for optimal control
problems subject to mixed control-state constraints as well as pure state constraints
of order one are analyzed by [19]. [2] investigate second-order conditions for optimal
control problems with pure state constraints of arbitrary order and mixed control-
state constraints.

In this paper we aim to extend some of the results for ODEs to DAE optimal
control problems. In particular we discuss necessary and second-order sufficient
conditions for optimal control problems subject to DAEs in Hessenberg form of
index k € N. Herein, the derivation of sufficient conditions is a new contribution up
to the knowledge of the authors, while the statement of necessary conditions builds
on existing results and formalizes it for problems with arbitrary index. We consider
the following optimal control problem (OCP) on a fixed and compact time interval

[to,tf] :
Minimize
@ (z1(ty), xa(ty), .- xr—1(ty))
with respect to
1 € WSk ([to,tf)) w2 € Wy'22 ([to,t4]) - w1 € Wbl ([to, ),
y € Lad ([to, ty]) ,u € LY ([to, t4])
subject to the Hessenberg DAE

(1.1) i1(t) = f1(za(t), m2(t),. .., p—1(t), y(t), u(t)),
(1.2) ia(t) = fa(z1(t),m2(t),. .. 2k-1(2)),
(1.3) i3(t) = f3(xa(t),23(t), . zK-1(1)),
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(1.4) Tp1(t) = feo1 (we—2(t), 2p—1(1)),
(1.5) 0 = g(zr(t),

the initial conditions

0 = Dy (zp_1(to) —2)_4),
and the mized control-state constraints

c(zi(t),x2(t), ..., xp—1(t),y(t),u(t)) <O0.

Herein, n, := Zf;ll ng, is the dimension of the differential state vector function
x = (x1,29,...,T5_1) ",y is the algebraic state vector function, and u is the control
vector function. The DAE consists of the differential equations (1.1)-(1.4) and the
algebraic constraint (1.5), which can be interpreted as a pure state constraint that is
active for every t € [to,t¢]. The particular structure of the DAE (1.1)-(1.5) is called
Hessenberg structure. Please note the smoothness properties of the differential

state components x; € W;lig([to,tf], j =1,...,k — 1, where the Banach spaces

W, 2 ([to, ] will be defined in Section 2.

The functions
p: R"™ 5 R,
f1: R™ x R™ x R™ — R,
fo: R™ — R™2,
f3: R"=7 @1 — RMs
f1: RM=7Ne17Ney _y RM2g

k—3
Jr—1: R"=~2i=1 Mo —y R™@k-1
n
g: R™k-1 5 R,
c: R™ x R™ x R™ — R",

and the matrices
D; € R(eg—my)xna; 9 g q

are supposed to be given. It is well known for DAEs of type (1.1)-(1.5) that not
only the algebraic constraint in (1.5) has to be satisfied, but also its derivatives with
respect to time up to order (k—1) impose so-called hidden constraints. These hidden
constraints are obtained by repeated differentiation of (1.5) and substitution of (1.1)-
(1.4). To this end we introduce the following notation for the hidden constraints,
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which read as follows:

0=g(xr-1())
= gr—1 (Tp—1(1))

0= %gk*l (@1-1(1) = Gr1,0p, @r—1(t)) fr1 (wr—2(t), 25-1(1))
=: k-2 (Th-2(t), Tp—1(t))

d Gr—2 (Tp—2(t), T—1(t))

0= —
dt
= k2., @h—2(t), Tp_1(t)) fo—2 (Tp—3(t), Tp—2(t), Tp1(t))
+ Gk om0, @h2(t), p1(t)) fe1 (xr—2(t), Tp_1(t))
=: g3 (p—3(t), Tp—2(t), -1 (1))
d
0= a g1 (SUl(t),.TQ(t), ey l‘k_l(t))

B
=D Gig, (@) w2(t), -z (1) fi@j—a (1), -z (8)
=2

+ gll,:z:l (xl(t>7 1‘2(t>, s 7xk*1(t)) fl(xl (t)v o 7xk*1(t)a y(t)’ u(t))
=: g0 (x1(t),z2(t),. .., xx—1(t),y(t), u(t)).

This paper is organized as follows: In Section 2 we introduce important notations
and assumptions. Necessary conditions for (OCP) are derived in Section 3. Section
4 deals with sufficient conditions for (OCP) and an illustrative example is presented
in Section 5.

2. PRELIMINARIES

We denote the Banach-space, which consists of all essentially bounded functions
v [to, ty]) = R™ by (L% ([to,tf]),] - [|) and the Banach-space, which consists of
functions v : [to, ty] — R" with bounded derivatives up to order m € Nin L ([to,ty])
by (Wrz,p ([t07tf]) ) ” ’ Hm,p)’ with
|Vllmp = maxj=1, .m {||v(i)||p}7 where v is the i-th derivative of v and p = 2, cc.
For a Banach-space (X, || - || x) we denote the dual-space by X*.
Furthermore we make use of the following abbreviations:

i) i
m(i)(_) — IEH}(') , i=1,...,k—1, z°:= x:z )
wk—.l(') xg_l
()

z():=aW(), =()= yg-) :
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Ny Ny Ny
X =Wy 2k ([t tr]) x W2 ([to, tg]) x .. x W23 ([tos trl)
s Nz Nz —
X =Wy 5" ([to, tr]) x Was® ([tos ty]) x ... x W 205 ([to, ty])
xT T Ny,
Y = L (fto, t)) x W22 ([to.ty]) x .. x Wbl ([to. t]) .

k—2,00
D= 0 D ’
: 0
0 0 Dy

fi(z() g1 (z())

fa (@D(-)) g (?())

f (z()) = f3 (;U(Q)(.)) . g (ZD()) — g3 (m(3)(.))
o1 (mik_z)(‘)) Gk—1 (:c(.k_l)('))

and equip the space X and X with the norms

el = _max {lill oo}

_max {flil; )

Throughout this paper we assume the following:

]| % -

(A1) The optimal control problem (OCP) has a weak local minimizer
(@,9,1) € X x LaZ ([to, t7]) x L ([to, s]) -

(A2) The initial value is consistent, i.e., the matrix

b < 7 (e(to) )

has full rank.

(A3) The DAE has index £, i.e., the Jacobian g; , (Z(t), 9(t), 4(t)) is non-singular
almost everywhere on [to, ] and the inverse is essentially bounded.

(A4) The functions f; are i + 1 times Fréchet differentiable and the respective
derivatives are continuous in all arguments. c is twice Fréchet differentiable
and the respective derivatives are continuous in all arguments and g is k+1
times Fréchet differentiable and the respective derivatives are continuous in
all arguments.

We denote partial derivatives with a subscript and derivatives at an optimal point

as functions of time ¢ with squared brackets, e.g.,
f{ [t] — 8f1(ﬁ:(t)7g(t)7ﬂ(t))
, L1 :

ox1

A€ R™™ and rank (A) = n by At := AT (AAT)™".

. Furthermore we denote the pseudo-inverse of a matrix



368 B. MARTENS AND M. GERDTS

3. NECESSARY CONDITIONS

To derive a local minimum principle for (OCP) we consider the optimal con-
trol problem as an infinite optimization problem and apply first order necessary
conditions of Fritz John type. (OCP) is equivalent with the infinite optimization
problem

(P): Minimize J(z) wrt. ze€Z st H(z)=0, G(z) € K,
where
Z = X x L& ([to, ts]) x L ([to, t5])
Z = X X Lgy ([t()?tf]) X Lgu ([t07tf])>
V=Y x Wiy ([to,tg]) x R~y
W= L ([to, t4])
J:Z R, H:Z—>V, G:ZW
J(z) = ¢ (x(ty)),
f(z()) - ( )
H(z):= gk 1 (CU( )) )
~D (x(to) — ")
G(z) := —c(2()),
K:={0eW|9(t)>0ae. in [ty,tf]}.

and equip the spaces Z and Z with the norms

|12]| 7 := max {[[& x [/l lello } 5
2]l 7 == max {[lz]l ¢ . lyll, llull,} -

Note that the mappings J, H, and G are Fréchet differentiable, if Assumption (A4)
holds. Moreover, if assumptions (A1) - (A4) hold, then H' (2) : Z — V is a
surjective operator, which can be proven similarly to [8, Lemma 3.1.4] and by using
similar arguments as in Equations (3.5) - (3.14) below.

Under these assumptions, the first order necessary Fritz John conditions hold,
compare [8, Theorem 2.3.24], and yield the existence of non-trivial multipliers

ly>0, XeV* newr
such that
(3.1) 0= 1o 7' (2)(2) — M (H' (2) (=)~ (& (2) (=)
0=n"(G(2), neK"
holds for all z € Z, where KT is the positive dual cone of K. We define

A ::( 5N ;H), A= (Ag, AL 07)

For every = € X, every y € Lod ([to, ts]), and every u € L% ([to, ts]) the variational
equation (3.1) yields

(32)  0=Xf"(2() = follz()) = 2] (ghr[12()) + 0" ([]2()),



NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONTROL PROBLEMS 369

+ol D x(to) + 4o QD/ :I:(tf)) .’B(tf)
(3:3)  0=—=A"(f[1y() + 7" (¢ [1y()
(34)  0=-=Ag"(fullu()) +n* (c,[]u()).

We intend to derive explicit representations of the multipliers Ag*, Ay and n*. For
arbitrary h € Y, by € W', __ ([to,ts]) and hjy1 € L7 ([to,ts]) we consider the
linear system

(3.5) @(t) = Ap(t) x(t) + By(t) y(t) + Cp(t) u(t) + h(t),
(3.6) 0= gh10lt]2(t) + hi(t),

(3.7) hi1(t) = Ac(t) 2(t) + Be(t) y(t) + Ce(t) u(?),

(3.8) 0= Dx(to),

where

By differentiating the algebraic equation (3.6) & — 1 times we obtain the linear
System

(3.9) &(t) = Ap(t) z(t) + B (t) y(t) + Cr(t) u(t) + h(t)
(3.10) 0= Ay(t)x(t) + By(t) y(t) + Cy(t) u(t) + q (h(t))
dk—l
+ gy h(t)

(A1) hper(t) = Act) () + Bult) y(t) + Colt) u(t)
(3.12) 0= Ez(to) + qq (h(to)) + Po (hx(to))
where

a1 (h(t))

g2 (h(t)) =
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S (2 g (h(1)
)

‘t:to
_ i—1
Zf:lg <gti—1 qi+2 (h(t>) ‘

t=to

a0 (h(t)) == | YL, (;f;‘iq#k—ﬂ’t(’f)))\ ’

t=to

Po (hi(to)) == (% hk(t)) ‘t—to ’

Ag(t) = goglth  Bg(t) = goyltl, Cylt) := gpult]

For convenience we assume mnk( ) = ny + n. for almost every

By(t) Cylt)
Be(t)  Ce(t)
bounded. Later we will introduce a weaker condition, because this condition is often
too strong, e.g. it does not hold for some box constraints. With this assumption
we are able to solve (3.10), (3.11) for (y,u):

(16)- (5 &8)
() (3 =)

Inserting into (3.9) gives us the linear ODE
(3.13) &(t) = A(t) x(t) + h(t),
0= E=(to) + qo (h(to)) + po (hr(to))

Jr
t € [to,ty] and the pseudo-inverse ( ) is supposed to be essentially

with

N
A(t) = Ap(t) — (By(t), Cr (1)) ( %’83 ggg; > ( igg )
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.(&@ %@)*(—mmm—ﬁimw>_
BC(t) CC(t) hk+1(t)
We denote the solution of the initial value problem
b(t) = A(t) @(t), @(to) =1
by ®4(-). The solution of (3.13) then reads as follows
(3.14) 2(t) = @a(t) (B (go (h(t0)) + po (hi(t0))))
t ~
+ D) / B a(r)~ h(r) dr.
to

Please note that E is non-singular owing to assumption (A2). Adding (3.2) - (3.4)
and exploiting (3.5) - (3.8), and (3.14) yields

0=Ap"(&() = Ar()z(-) = By () y() = Cr(-) u())
N (Geralx()) + 0" Da(to) + Lo [ty] 2(ty)
+ 7" (Ac() 2() + Be(-) y() + Ce(-) u(-))
(h(")

= A" (h() + A5 (ha () + 0" (heya ()
(3.15) +o ' Da(to) + o @[t z(ty)
= A (R() + Ay (hie()) + 1% (hiesa (4) + 07 D a(to)
+ Lot Palty) (E" (g (h(t0)) + po (hi(t0))))

ty -
+e0<p[tf]q>,4(tf)/ (7)1 h(r) dr.
to
We introduce the notations

ET = —{y go'[tf] @A(tf) E_l,
Apt)T = ot @alty) Da(t) ™,

and insert these expressions into (3.15) to get

AT (R()) + A5 (hi() + 0" (P (1) =
iy ty
— ¢ qq (h(t)) - t Ap(t) " h(t) dt — t A(t) " g (h(1)) di

t k—1
— €y (elte)) — [ 207 S el

tf T
+/7m>mﬂww
to
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Thus, from this we obtain the following explicit representation of the multipliers:
¢

f
(3.16) A (R()) = =€ qq (h(to)) = [ As(t)" h(t)dt,

to

[ 007 o) ar,
t k—1
B A e0) =€ m o) — [ 007 S el

319 e = | O s (8 dt

for arbitrary h € Y, hy, € W:_ylpo ([to.tf]) and hyq1 € L2 ([to, t¢]). We define the
(augmented) Hamilton function by

H:R™ x R™ x R™ x R™ x R™ x R" — R,
H(z,y,u,Ap, Ag,n) = A" F(@,y,u) +A) go(z,y,u) +n' cl(x,y,u).

Next we investigate the variational equations (3.2) - (3.4) by using the representation
of the multipliers (3.16) - (3.18). For (3.2) we get

0=X¢" (2(-) = foll=() = X; (Ghorl]2() + 0" ([]2())
+o Da(t) + Lo’ (&(ty)) x(ty)
Ly

= &7 qo (Fltola(to) —a(to)) + [ Ap()T (Fpltlm(t) —a(t)) dt

to

[gi2lt] (F2lt](t) — 2(t))] dt

. tf ~ k-1 diq
t P dti=

ty k—1
FE7 P (dhraltol 20) + [ A0 S (Ghooli @) dt

+/tf ()" ) 2(t)dt + 0" Da(to) + Lo’ (&(ty)) 2(t)

= —£" (qo (Fhlto] z(to) — (to)) + Po (k_1.2lto] T(t0)))
+ Ap(to) " @(to) — Ag(tp) " x(ty)

+ /tf Ap ()" Foltla(t) + Ap(t) " @(t) dt

to

[0 gtz [ )" e a

+o Dx(to) + Lo’ (2(ty)) x(ty)

= /tf (Ar)T +#501]) w(t) i+ (Lo (@(t) = As(tp) T ) (ty)

to

(T a0+ () i)
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where we exploited the following equality

k=l i1 k-1
> i ol (P20~ #0)] + Gy (s l120)
k=2 di—l
= ol (el () — (1)
=1
k—1 k—2
+ (Gt sl @) ) + G loh1ald] (Falflalt) - o(0)]
k=2 i1
= T ol (el 2() — (1))
=1
k—2
+ s | (G Ghrald) + sisald £210) o(0)]
k=2 gie1 k-2
= dti1 [g;,a:[t] (fiv[t] x(t) - {E(t))] + W [9272,33[15] :B(t)]
=1
— (5 (hal) +hald 2210 (0

Similarly we obtain

ao (Flol2lt0) ~ &(00) + 2o (6 1alto () = (947 ) o)

With this (3.3) gives us
0==X¢" (F,11y0) + 0 (¢ [1y())
— €7 qo (£} lto] y(to)) + / VO ACRIOL

+ /f M) g (Fyly() dt+ /f n(t)" [t y(t) dt
= [T s [ a0 man £ v a
' /f 0 &l y(t) de
= [T aT s [0 wuli

+ / n(t)" ¢, (1] y(t) di

373
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= ! Hy [t] y(t) dt

to

and analog for (3.4) we get
0= —Xs" (Ful]u() +n* (c,[]u())

tf
= H [t u(t) dt.

to

Using a variational Lemma (see [8, p.115f]) we proved the following local minimum
principle, which is the first main result of this paper.

Theorem 3.1. Let Assumptions (A1)-(A4) be satisfied, and let rank

g()/y[t] go/,u[t] = ny+nc almost everywhere in [to, t¢] and let the pseudo-inverse
clt]  clt]
goult] goult] |
fid 7 be essentially bounded. Then there exist multipliers
clt]  cult]

leR, ApeWie (fots]). A€ L (totf)), ne Ll (totsl), AocR™
such that the following conditions hold:

(1) 60 > 0? (EOa Af: )‘ganv AO) ?é 0
(ii) Adjoint DAE: For almost every t € [tg,t] we have

Ap(t) = —H (®(2),9(8), @), Ap (£), Ag (), (D) ",
0 = Hy, (&(1), (1), alt), Mg (1) Mg (), n(t)) -
(iii) Transversality conditions:
Ap(to) = =X E,
Ap(ty)' =o' (&(tg)).
(iv) Stationarity of the Hamilton function: For almost every t € [to,tf] we have
0 = H, (&(1), (1), a(t), Mg () Ag(t),m(1)) -
(v) Complementarity conditions: For almost every t € [to,tf] we have
n(t) 20 and n(t)" c(&(t),§(t),a(t)) = 0.
Remark 3.2. As noted before, the rank condition

gO,y[t] gO,u[t] _
rank ( C;[t] 4 1t] = ny + ne¢
is often too strong. By interpreting the algebraic equation gg[t] = 0 as active
constraints, one can show similarly to [18], that it is sufficient to assume there exist
0> 0 and a > 0 such that

By(t) Cy(t) \'
H(Bﬁ(t) i) )

>a||d|| forall d e R e® andae. te [to, ty]
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where

I'={1,2,...,n.}, I,(t):= {zeI]c,[]> —o}, i(t) = |I,(t)],

C (t [ ]zelg

4. SUFFICIENT CONDITIONS

In this section we derive second order sufficient conditions for (OCP) in form of
a Riccati equation. To this end we assume the following;:

(A5) There exists a KKT point
(Ii}, g? /I:”a Xf7 j‘g) ﬁ? X07 EO) )
which satisfies the local minimum principle in Theorem 3.1 with @0 =1.

This assumption holds if some constraint qualifications are satisfied (see e.g. [8,
p.148]). Furthermore we introduce the Lagrange function

L(x,y,u, Ag, Ag, 1, Xo) := ¢ (x(t ))_|_)\0 < ( (to)) )>

[ H @), 5(0),ul). Ap (0. g (0.0(0) — Ap(D)T @(0)

to

Our goal is to find sufficient conditions such that the coercivity condition
5 5. % A 2
£ (225, A0, 20) (2,2) 2 7 |21
holds for some v > 0. To this end we introduce the set of active indices

L) :={iel|af] =0}, ia(t):=|L)

and the set of indices of those active constraints where the strict complementarity
condition holds

Lo(t) = {i € L(t) | :(t) > 0}

We introduce the following abbreviations
Ag(t) = [c;,a: [t]]iela(t) ) Bg(t) = [C;,y[t]]iela(t) ) Cg(t) = [Cg,u[t]]iela(t) )

A: (t) = [C;,:I: [t]]’iELL(t) Y Bj(t) = [C/i7y[tHiEI+(t) 9 Cj (t) = [C;’“[t]]ief+(t) N
Furthermore we assume

(A6) There exists some « > 0 such that
By(t)  Cy(t) By(t) Cy(t) \'
< B(t) Ce) Bi(t) Co) ) = Inyria forae t€lto,tyl.

(A7) The strengthened Legendre Clesch condition is satisfied, namely there exists
some [ > 0 such that

o) (Gl ) () 2312

2
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for almost every ¢ € [to,tf] and for all
dy By(t)  Cy(t)
(%)em(aw>¢m
We define the function
T
K (20,21, Xo) = ¢ (Tf) + Ao ( D (gflﬁg O)wo) > '

The next step is to derive a suitable Riccati equation. To this end we consider
the following parametric mathematical program depending on the parameter { =
(x,Af) € R™ x R":

(MP(¢))
Minimize )\fT f(z,y,u)
Wi, <y>eRWMH
u

st. go(x,y,u) =0,

c(x,y,u ) < 0.
For ((t) ( ) the problem (MP(((t))) has the solution and multipliers
( (), a(t), Ay (t g(t ) n(t )) by virtue of (A6) and (AT7). Using the sensitivity result

from [28] we get the following: There exists a p > 0 such that for all ¢ € [tg, ] and
every

ge{ceRnwa%

¢ =< <}

there exists a locally unique solution (y(¢),u(¢)) of (MP(()) and unique associated
multipliers (\,(¢),7n?(¢)) € R™ xR%®). Furthermore (y(¢),u(¢)) and (Ay(¢), n%(C))
are Fréchet differentiable functions with respect to ¢ at ¢ (t). For arbitrary increment
d € R" x R™ the differentials

we(C(1)) N W) i)
(w@@))dER | <naam )dER

are given as the solution and the associated multipliers of the following linear qua-
dratic mathematical program:

(LQRaq(1))
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o (s @) (o)« (3 o) o=

The necessary conditions yield the solution and multipliers

WE0)
Wl | e
Acle) | 47 RO TOK0 ) d,
ne(C(t)
where
HIE] Mot By(t)T Bt)"
arm | HI HELE C,)T Co)T
FO=\"Bn cn o 0|
Bi(t) Cg(t) 0 0
el By(1)]
s = | el | ke = | )
A%(1) ’

with Ra(t) e R(ny+nu+ny+ia(t))><(ny+nu+ny+ia(t))7Sa(t) e R(ny+nu+ny+ia(t))><nm and
Ko(t) € Rwtnutnytia®))xne  GQince d € R™ x R™ was arbitrarily chosen we
obtain the partial derivatives

= —R(t)H 5°(t),

= —RY(t)"L K¢).

Next we consider the following linear quadratic optimal control problem:
Min 5 [ 2(t)T HL [t 2(t) dt

5 (@(t)T K, (k) + 2(t0) T i 2 (00) )

wrt. ze€”Z

st @) = Apt)x(t) + By(t) y(t) + Cp(t) u(t),
0 = Ag(t)x(t) + By(t) y(t) + Cy(t) ult),
0 = A(t)z(t) + Be(t) y(t) + CEt) u(?),
0 = Eib(to).

Since the matrix E is non-singular by assumption (A2), we can deduce that x(tg) =
0 and therefore consider the equivalent problem
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(LQOCP)
Min 3 [ z(t)T HL ) 2(t) dt + Ja(ty) " Kl o @(ts)
wrt. z€Z

st w(t) = Ap(t)®(t) + Bp(t) y(t) + Cp(t) u(t),
0 = Ag(t)a(t) + By(t) y(t) + Cy(t) ult),
8 = Ag(t))w(t)+Bf}(t)y(t)+03(t) u(t),

= X t() .

Our goal is to derive sufficient conditions under which the objective function of
(LQOCP) is coercive on the feasible set. According to [26, ch.III] the associated
Riccati equation to (LQOCP) looks as follows:

(4.1) P(t) = —P(t) Ag(t) = Ap(t) T P(t) = Hy[t]
+ (P K0T +5°0)7) R (K*(t) P() + $(1)).
(4.2) P(ty) =tz

where P(t) € R"*"= is symmetric. To prove that there exists a v > 0 such that
the coercivity condition

(4.3) £ (225 201 20 (2,2) 2 7 |21

holds for all feasible z = (x,y,u), we assume the following:
(A8) The Riccati equation (4.1), (4.2) has a bounded solution P(-).

z = (x,y,u) satisfies the linear differential equation
0= (t) — As(t) 2(t) — By()y(t) — Cs(t) u(t)

Multiplying by —2x(t)" P(t) from the left, using integration by parts, exploiting
the differential equations for  and P, and rearranging terms yields

0=2 [ () P(6) (Ar(t) 2(t) + By(2)yle) + Cy(t) ult) () s

to

=/fmeP@AAwaw+mmTquwa@

+2x(t)" P(t) (Bp(t) y(t) + Cp(t)u(t)) +x(t)" P(t)x(t) dt

8
—x(ly) Ky, o(tf)

ty
=/ 22()" P(t) (By(t)y(t) + Cp(t) u(t)) — 2(1) " Haglt] 2(t)

to

YON (P(t) Kot)T + S“(t)T> RA(#)™! (K%(t) P(t) + S°(t)) z(t) dt

T
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Adding this equality to
£ (22020 120 (2,2) = / T ML 20 dt+ alt) K, alt))
0
and performing some lengthly but basic calculations yields
ﬁgz (2’ 5‘f7 5‘_(]7 7?XO) (Zv Z) = /;tf 'Ua(t)—r Ra(t) ’Ua(t) dt,
0

where

==

ve(t) := R(t)~ (K%t) P(t) + S%t)) x(t) +

o O

Next we want to prove, that

(4.4) ve(t) € ker( gggg i)

We consider the equalities

and

With this we get

(4.4) implies

which gives us
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Now we choose a sufficiently small 5 > 0 such that assumption (A7) is satisfied
and the Riccati-equation, where we replace R%(t) by

I 00
arn . pa 0 I 0
0 00O

o OO

has a bounded solution Pg(-), which is possible by an extension of a basic result for
Volterra integral equations, see [30, p. 103]. Taking the same steps as before we
obtain

PN . ty
24 (220 A iiho) (2:2) = 8 @l = [ o507 RO 03(0)de > 0

to

with

y(t)
a a -1 a a u(t)
v(t) = RE(6)7 (K(2) Ps(t) + 5°()) () + |
0
which gives us the inequality
£ (22020 130 (2,2) 2 8 (g, )3
[11, Lemma 3.3.4] prove the following inequality
[ @, (t) a,(s) IH <e”Af” (=)
which we exploit to get a bound for &, namely
2
2l = [ | [ a0, Brocson (U0 ) ar| ar
2 to A A e u(r)
0
2
<" [ e ) @4, (7)" (Bs(7),C y(7) dr dt
< Ay Ay )" (Bs(7),Cr (1)) u(T) T
to to

<[] (o ysgepi, |(43)]) ara
2

§H<Bﬁ0f>\oo<ezuAfH (tr—t0) _ H( )
2 1471l

2

B:,C . .
We define the constant g := W ( 2[|Af]l o (tr=t0) _ 1). For & we obtain
Moo

)
[E1lE 2/: HAf(t)a:(t)+(Bf(t),cf(t)) < ZE’;; >
)

< (HAfnoo lelly + 1By, Cpllug H( >

Y
< (Isle VA 1B l) |




NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONTROL PROBLEMS 381

and we define the constant & := (||Ay|| /0o + H(Bf,Cf)HOO)2. We introduce the

notation
fi (wzi_(l';(‘)g
, . fiv1 (2\9(4) A af(i)
() (i-1) /. - (4) Yy
£ (2079()) - : L AP = .
feo1 (2F72(1))
The derivative of (2 with respect to ¢ then reads as follows
&(t) = AP (1) (1),

Derivation with respect to t yields

() = (;t Agcz)(t)> M (1) + Agg)(t)d;(l)(t).

so we get the estimate

[l - [ [ (Gao) <0+ 470200

<(|(&a2)| 1=l + a2 Je],) |
< (|Graro)| vl va) |(4)

2
and we define d9 := (H <% )H Voo + HA H > Similarly we get an

upper bound 45 for the third derivative of 3, a bound d, for the fourth derivative
of £ up to d;_; for the (k—1)-st derivative 2*~1. Altogether we have the bound

()

with ¢ := max {dg, 41, d2,...,0k_1, 1}, which finally gives us the coercivity condition

i s a3 8
£ (2 A8 01 30) (2.2) 2 8 (0,03 = 5 1213

We thus proved the following sufficient condition for (OCP), which is the second
main result of this paper:

:u

2
2
Izl <o

2

Theorem 4.1. Let the conditions (A2) - (A8) for a KKT point (2, j\f, j\g, 7, 5\0>
be satisfied. Then there exist x > 0 and € > 0 such that
2 5112
(4.5) J(z) 2 J(2) +x |z — 2|l
for all feasible z € {v € Z ||v — ||, < €}.

Proof. Since the coercivity condition (4.3) holds, according to [21, Thm. 3.5]
there exist x > 0 and ¢ > 0 such that (4.5) holds for every feasible z €
{veZ||lv-2|, <€} O
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5. EXAMPLE

We consider the following index 3 problem equivalent to the Minimum-Energy
Problem (see e.g.: [8, p. 4]):

Minimize
) 000
ST [ 01 0 | 2(1)+(0,3,1) 21(1)
2 00 0

with respect to
21 € Wi o ([0,1]) 29 € W5 ([0,1]) ,y € L, ([0,1]) ,u € L, ([0,1])

subject to
u(t) — y(t
Su(t)?

. 0 -1 0 0 0
To(t) = 1 0 o0 xl(t)+<1 O)l‘Q(t),
0 = (0,1) xo(t
and the initial conditions
0
010
O_(001> 71(0) - (1) ’

0 = (1,0) (m(())—((l’)).

We obtain the hidden constraints by differentiating the algebraic equation twice
with respect to time ¢, namely

0= g1 (z1(t), 22(t)) = (1,0,0) 21(t) + (1,0) 22(t),

0 = go (z1(t), z2(t), y(t), u(t)) = (0, =1,0) z1(t) — y(t) + u(?).
Assumptions (A2) and (A3) are satisfied, since gg , (1,72,y,u) = —1 holds for
every (z1,72,y,u) € R3 x R2 x R x R and the matrix

&

Il
N

Q

8

—

8

~—

(aw]

N~—

SN—
~

Il
oo o

—

o
OO O
oo~ O

—_
)

0 00

has full rank. To derive the necessary conditions for this problem we introduce the
Hamilton function

H ('xla xr2,Y,u, )‘f,h )‘f,27 )\g)

u—-y
T . 0 -1 0 0 0

QU
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+ A0 ((0,=1,0) &1 —y +u)
g ) b 1 y *

This yields the adjoint DAE

0 -1 0
/\f’l(t) = ( 1 0 )\f@(t) + 1 )\g(t),
0 0 0
A= (0 ) Mat)
0=(=1,0,0) Ap1(t) = Ag(2),

and the stationarity of the Hamilton function
0= (1,1,a(t)) Ara(t) + Ag(t).
For £y = 1 we get the solution

—t? 4+t

. . 2 —t
$1(t): _2t+1 ) x?(t): 1 ’
2t
gty =2t—3, a(t) = -2,
~ O ~ 0 N
=2 ). Aa0=(7 ) Wo-o
1
. 0 . -1
Aol = 0 ; )\02=<0>
—2

Next we want to confirm that this KKT-point is a (local) minimizer for our problem,
by proving, that the coercivity condition (4.3) holds. To that end we consider the
second derivative of the Lagrange function at the KKT-point

L7, (9?1i2,5\f,175\f,275\g75\0,1, ;\0,2> (z,2)
0 O
1 0
0 O

0 1
=z.(1)" 8 x1(1)+/0 ()| dt
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and the linearized system

io= | 0 Jyo+| 1 ]

0 = (0,-1,0) z1(t) — y(t) + u(t),
1‘1(0) = 0,
x2(0) = 0.

Our goal is to find a constant v > 0, such that
L"/z/z (-fijlu 5727 gu ﬁ/, 5\f,17 5‘f,27 ;\gv X0) (Z, Z) Z v HZHQZ

for every z = (w1, z2,y,u) satisfying the linearized system with the norm ||z||, :=

max {[|z1 1,2, [lz2ll2,2, [yll2, [ull2}-
Solving the algebraic equation for y(¢) and inserting into the differential equation

gives us the system

010 0
T = 0 0 0 | zi(t)+ 1 u(t),
0 0 0 -2
. 0 -1 0 0 0
Ty = (1 0 0>x1(t)+<1 O>x2(t),
xl(O) = 0,
:L'Q(O) = 0.
The differential equation for x; has the solution
t t—T
x1(t) :/ 1 u(T) dr
0 -2

and the norm satisfies

t—T1 2

1 t
Ha:ngz/ / 1 u(r)dr|| dt
o [|Jo _9

1t
g/ / ((t—=7)%+5) lu(r)|]® drdt
o Jo
< 6 ull3-
For y(t) = (0,—1,0) z1(t) + u(t) we get the estimate
lyl13 < (11 (0,=1,0) @1l2 + fJull2)
(lz1ll2 + flul2)®
1

<
<12 [lull3.
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Using the original equation for & yields

1 2
a3 < (SR K
-2 9
< (Ilylls + V6 Hu\lz)
< 36 Jull3

Now we consider the differential equation for xo, namely

do(t) = ( (1) _01 8 ) z1(t) + ( (1) 8 > z2(t),

which has the solution

x2(t):/0t<t_17- (1)> (? o 8>$1(7)d7
// <2T—t_s>u(8)d$d7'.

(7 )t

We get the estimate

sl = /
<9 HU\lz-
Furthermore we have

.12 0 -1 0
< (|(9 5 0) =

2
< (J1lly + ll2ll5)
< 30 [|ulf3-

2
dt

)

00
oG-

The second derivative of xo satisfies the equation

@(t):(? " 8)x’1(t)+<(1) 8)@@)

:<8 —01 8)951(’5)*(_01>y(t)+<_11>u(t)
so we get

e (|(o 50 )=l )05 ) ol +]C5)
< (ferll + e + V3 lull2)
< 54 ul}
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2 2 2 1 2
5 < bdflull, so flully = 55 =117
bound for the second derivative of the Lagrange function, namely

‘C/z,z (‘%1’ T2,9,u, 5\f,la 5\f72, j\g, 5\0) (Z, Z)

1
— [1(0,1,0) 1 (1)) + /0 ()2 dt

Summing up we have ||z Finally we get a lower

1
> ul > £ |1

2
5
6. CONCLUSIONS

The paper establishes first order necessary optimality conditions in terms of a
local minimum principle and sufficient conditions for a class of nonlinear DAE op-
timal control problems subject to mixed control-state constraints and Hessenberg
DAEs of arbitrary index. Such DAEs typically occur in mechanical engineering and
path planning problems. The application of the presented results to such problems
will be the subject of future research. To this end, it would be important to extend
the results to problems with pure state constraints. Likewise, a generalization to
more general DAEs or even arbitrarily structured DAEs would be desirable.
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