


390 NOBUSUMI SAGARA

utility”. This implies that given an additional element X in a σ-algebra Σ, the util-
ity function ν on Σ given by a probability measure satisfies ν(A∪X)−ν(A) = ν(X)
for every A ∈ Σ that is disjoint from X, which reveals that the marginal utility is
independent of A. Obviously, this is a severe restriction on preference relations
that is difficult to justify from an economics point of view. Thus, the reasonable
conditions under which the preferences of each individual can have nonadditive rep-
resentations should be addressed for fair division problems. For earlier attempts to
axiomatize the preference relations on a finite measure space with their continuous
representation by means of a nonadditive measure, see [8, 44].

The purpose of this paper is twofold. First, we axiomatize preference relations
on a σ-algebra of a finite measure space represented by a vector measure and fur-
nish a utility representation in terms of a nonadditive measure that satisfies the
appropriate requirement of continuity and convexity, which presents a different ap-
proach from [8, 44] with a numerical representation of preference relations by means
of a nonatomic finite measure. The axioms we introduce here guarantee that the
utility functions on a σ-algebra are continuous quasiconcave transformations of a
vector measure with values in a Banach space, which lays the axiomatic foundation
for nonadditive utility functions exploited in [17, 18, 20, 39] for fair division prob-
lems. In particular, if the underlying measure space is “saturated” as formulated
in [13, 16, 22], then such a utility representation is always viable in a separable
Banach space along with the Lyapunov convexity theorem in infinite dimensions es-
tablished in [24, 26, 27]. This utility representation has a great advantage because
the preference relations on a σ-algebra have a continuous convex extension to the
set of measurable functions with values in the unit interval. We characterize the
saturation of measure spaces in terms of the continuous extensions of preference
relations on σ-algebras.

Second, we investigate the fair division problems in which each individual has non-
additive preferences on a σ-algebra invoking our utility representation result. If the
preferences of each individual are represented by a nonatomic probability measure,
then the classical Lyapunov convexity theorem [30] guarantees the compactness and
convexity of the utility possibility set and thereby makes it possible to establish the
existence of solutions with respect to efficiency and fairness; see [4, 11, 50]. In con-
sideration of nonadditive utility functions on σ-algebras, such favorable properties
are no longer valid. For the clarification of the role of the nonatomicity hypothesis
in the fair division problems with additive utility functions on σ-algebras, see the
survey article [41].

To overcome the difficulty with nonadditive utility functions on σ-algebras, as in
[1, 7, 20], we subsume partitions of an economy in which the preferences of each
individual are represented by a continuous transformation of a vector measure into
allocations of its extended economy with the commodity space of L∞ in which
the preferences of each individual on a σ-algebra are continuously extended to the
subset of functions in L∞ with values in the unit interval. We clarify the role of
saturation of the underlying measure space to formulate the indifference relation for
each individual between partitions and allocations, which provides another charac-
terization of saturation. Under the saturation hypothesis, we show the existence of
individually rational Pareto optimal partitions without any convexity assumption
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on the preferences of each individual and the existence of Walrasian equilibria, core
partitions, and Pareto optimal envy-free partitions under the convexity assumption.

The paper is organized as follows. After the brief introduction of saturated
measure spaces and the Lyapunov convexity theorem in separable Banach spaces
in Section 2, the axiomatization for the preference relations on a σ-algebra is given
in Section 3. The fair division problems are framed in Section 4 and the existence
results on fair partitions are provided under the saturation hypothesis. Lastly, an
open question is stated in Section 5 as a concluding remark.

2. Preliminaries

2.1. Lyapunov Convexity Theorem in Saturated Measure Spaces. Through-
out this paper, we always assume that (Ω,Σ, µ) is a finite measure space. A measure
space (Ω,Σ, µ) is said to be essentially countably generated if its σ-algebra can be
generated by a countable number of subsets together with the null sets; (Ω,Σ, µ) is
said to be essentially uncountably generated whenever it is not essentially countably
generated. Let ΣX = {X ∩ A | A ∈ Σ} be the σ-algebra restricted to X ∈ Σ. De-
note by L1(X,ΣX , µ) the space of µ-integrable functions on the measurable space
(X,ΣX) whose elements are restrictions of functions in L1(Ω,Σ, µ) to X. An equiv-
alence relation ≡ on Σ is given by A ≡ B ⇐⇒ µ(A△B) = 0, where A△B is
the symmetric difference of A and B in Σ. The collection of equivalence classes

is denoted by Σ(µ) = Σ/ ≡ and its generic element Â is the equivalence class of

A ∈ Σ. The metric ρ on Σ(µ) is defined by ρ(Â, B̂) = µ(A△B). Then (Σ(µ), ρ)
is a complete metric space (see [2, Lemma 13.13]) and (Σ(µ), ρ) is separable if and
only if L1(Ω,Σ, µ) is separable (see [2, Lemma 13.14]). The density of (Σ(µ), ρ) is
the smallest cardinal number of the form |U|, where U is a dense subset of Σ(µ).

Definition 2.1. A finite measure space (Ω,Σ, µ) is saturated if L1(X,ΣX , µ) is
nonseparable for every X ∈ Σ with µ(X) > 0. We say that a finite measure space
has the saturation property if it is saturated.

Saturation implies nonatomicity and several equivalent definitions for saturation
are known; see [13, 14, 16, 22]. One of the simple characterizations of the saturation
property is as follows. A finite measure space (Ω,Σ, µ) is saturated if and only if
(X,ΣX , µ) is essentially uncountably generated for every X ∈ Σ with µ(X) > 0.
The saturation of finite measure spaces is also synonymous with the uncountability
of the density of ΣX(µ) for every X ∈ Σ with µ(X) > 0; see [14, 331Y(e)]. An
inceptive notion of saturation already appeared in [21, 31].

Let E be a Banach space. For a vector measure m : Σ → E, a set N ∈ Σ is
said to be m-null if m(A ∩N) = 0 for every A ∈ Σ. A vector measure m : Σ → E
is said to be µ-continuous (or absolutely continuous with respect to µ) if every µ-
null set is m-null. Let S := {f ∈ L∞(Ω,Σ, µ) | 0 ≤ f ≤ 1}, which is a weakly∗

compact, convex subset of L∞(Ω,Σ, µ), and define m(S) := {
∫
fdm ∈ E | f ∈ S}.

Since the integration operator Tm : L∞(Ω,Σ, µ) → E defined by Tm(f) :=
∫
fdm is

continuous with respect to the weak∗ topology of L∞(Ω,Σ, µ) and the weak topology
of E (see [10, Lemma IX.1.3]), the set m(S) is weakly compact and convex in E.

The saturation property and the Lyapunov convexity theorem in separable Ba-
nach spaces are a major apparatus in this paper.
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Proposition 2.2 ([24]). Let E be a separable Banach space. If (Ω,Σ, µ) is satu-
rated, then for every µ-continuous vector measure m : Σ → E, its range m(Σ) is
weakly compact and convex with m(Σ) = m(S). Conversely, if every µ-continuous
vector measure m : Σ → E has the weakly compact convex range, then (Ω,Σ, µ) is
saturated whenever E is infinite dimensional.

Remark 2.3. The significance of the saturation property lies in the fact that it is
necessary and sufficient for the weak compactness and the convexity of the Bochner
integral of a multifunction as well as the Lyapunov convexity theorem; see [24, 25,
26, 27, 37, 49]. For the further generalization of Proposition 2.2 to nonseparable
locally convex spaces, see [15, 26, 27, 43]. Another intriguing characterization of
saturation in terms of the existence of Nash equilibria in large games is found in
[22].

3. Vector representation of preference relations on σ-algebras

3.1. Axioms for Preference Relations. Let (Ω,Σ, µ) be a finite measure space.
A binary relation on the σ-algebra Σ is a subset of the product space Σ × Σ.
The preference relation ≿ on Σ is a complete transitive binary relation on Σ. We
denote by A ≿ B the relation (A,B) ∈ ≿. The indifference and strict preference
relations are defined respectively by A ∼ B ⇐⇒ A ≿ B and B ≿ A and by
A ≻ B ⇐⇒ A ≿ B and A ̸∼ B. A real-valued function ν : Σ → R is called a utility
function representing ≿ if for every A,B ∈ Σ: ν(A) ≥ ν(B) ⇐⇒ A ≿ B. A set
function ν : Σ → R is called a nonadditive measure if ν(∅) = 0.

Axiom 3.1 (vector representation). There exist a Banach space E and a µ-contin-
uous vector measure m : Σ → E such that m(A) = m(B) implies A ∼ B.

The axiom enables one to define the preference relation R on m(Σ) by

(3.1) ∀x, y ∈ m(Σ) : xR y
def⇐⇒ A ≿ B with x = m(A) and y = m(B).

A preference relation on Σ satisfying Axiom 3.1 is said to admit a vector repre-
sentation in E. A vector representation for ≿ is not unique because any scalar
multiplication of m is consistent with Axiom 3.1. In addition, the observation that
≿ may admit a vector representation in another Banach space motivates one to
introduce the following axiom. (In what follows, we assume that ≿ admits a vector
representation in a Banach space E via a µ-continuous vector measure m : Σ → E.)

Axiom 3.2 (commutativity). If≿ admits another vector representation in a Banach
space F via a µ-continuous vector measure n : Σ → F , then there exists a unique
continuous linear operator T : E → F such that n = T ◦m.

By the symmetric treatment of E and F , the axiom guarantees that there exists
a unique continuous linear operator U : F → E such that m = U ◦ n. Then
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(U ◦T )m = m and (T ◦U)n = n. The situation is illustrated in the diagram below:
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A preference relation on Σ satisfying Axiom 3.2 is said to admit commutativity in
E. Commutativity guarantees that the vector representation for ≿ is unique up to
the equivalence in the following sense. Let V(Σ, µ) be the set of µ-continuous vector
measures on Σ with values in any Banach space. A typical element in V(Σ, µ) is
denoted by (m,E) to distinguish explicitly the range spaces of vector measures.

Define the equivalence relation on V(Σ, µ) by (m,E) ≃ (n, F )
def⇐⇒ there exists

a unique pair of continuous linear operators T : E → F and U : F → E such
that n = T ◦ m and m = U ◦ n. As defined in (3.1), the commutativity for ≿
yields an induced preference relation Q on n(Σ). Thus, for every x, y ∈ m(Σ):
xR y ⇐⇒ TxQ Ty and for every v, w ∈ n(Σ): vQw ⇐⇒ UvR Uw.

Axiom 3.3 (monotonicity). For every A,B ∈ Σ with A ⊃ B and m(A \ B) ̸= 0,
we have A ≻ B.

The axiom is equivalent to the monotonicity of R on m(Σ): for every x, y ∈ m(Σ)
with x+ y ∈ m(Σ) and y ̸= 0, we have x+ yR x, but not xR x+ y. A preference
relation on Σ satisfying Axiom 3.3 is said to admit a monotone representation in
E.

Axiom 3.4 (continuity). For every A,B ∈ Σ: Ak ≿ B for each k ∈ N with
m(Ak) → m(A) as k → ∞ implies A ≿ B and A ≿ Bk for each k ∈ N with
m(Bk) → m(B) implies A ≿ B.

The axiom is equivalent to the continuity of R on m(Σ): for every x ∈ m(Σ), both
the upper contour set {y ∈ m(Σ) | yR x} and the lower contour set {y ∈ m(Σ) |
xR y} are closed in m(Σ). A preference relation on Σ satisfying Axiom 3.4 is said
to admit a continuous representation in E.

Axiom 3.5 (convexity). Suppose that m(Σ) is convex. For every A ∈ Σ, the set
m({B ∈ Σ | B ≿ A}) is convex.

The axiom is equivalent to the convexity of R on m(Σ): for every x ∈ m(Σ),
the upper contour set {y ∈ m(Σ) | yR x} is convex. A preference relation on
Σ satisfying Axiom 3.5 is said to admit a convex representation in E. Note that
the convexity of m(Σ) is not automatic even when m is nonatomic because of
the well-known failure of the Lyapunov convexity theorem in infinite dimensions
(for counterexamples in which the Lyapunov convexity theorem fails in infinite
dimensions, see [10, Examples IX.1.1 and IX.1.2]).
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3.2. Utility Functions on Σ. Axioms 3.1, 3.2, and 3.4 guarantee the unique rep-
resentation of ≿ in terms of a nonadditive measure on Σ given by a continuous
transformation of a vector measure. If, moreover, Axiom 3.5 is imposed, then the
representation is a quasiconcave transformation of a vector measure.

Theorem 3.6. A preference relation ≿ on Σ admits a continuous (and convex) rep-
resentation in a separable Banach space E if and only if there exist a µ-continuous
vector measure m : Σ → E (with m(Σ) being convex) and a continuous (and quasi-
concave) function φ : m(Σ) → R with φ(0) = 0 such that:

(3.2) ∀A,B ∈ Σ : A ≿ B ⇐⇒ φ(m(A)) ≥ φ(m(B)).

If, furthermore, ≿ admits commutativity, then the continuous (and convex) repre-
sentation via (m,E) ∈ V(Σ, µ) is unique up to the equivalence classes in V(Σ, µ)/ ≃.

Proof. Suppose that ≿ admits a continuous (and convex) representation in a sepa-
rable Banach space E. Then there exists a µ-continuous vector measure m : Σ → E
(with m(Σ) being convex) such that (3.1) holds. Since the induced preference rela-
tion R on m(Σ) is continuous (and convex) and E is separable, by the celebrated
theorem of [9], there exists a continuous (and quasiconcave) function φ : m(Σ) → R
representing the preference relation R on m(Σ), that is, xR y ⇐⇒ φ(x) ≥ φ(y).
Therefore, φ◦m is a utility function on Σ representing the preference relation ≿ on
Σ. By replacing φ(x) with φ(x) − φ(0) if necessary, without loss of generality one
may assume that φ(0) = 0. The converse implication is obvious without assuming
the separability of E. □

Denote by L1
E(Ω,Σ, µ) the space of E-valued Bochner integrable functions on Ω.

A Banach space E has the Radon–Nikodym property (RNP) for a finite measure
space (Ω,Σ, µ) if for every µ-continuous vector measure m : Σ → E of bounded
variation, there exists u ∈ L1

E(Ω,Σ, µ) such that m(A) =
∫
A udµ for every A ∈ Σ.

Note that for every Banach space E, given a Bochner integrable function u ∈
L1
E(Ω,Σ, µ), the vector measure mu : Σ → E defined by the indefinite integral

mu(A) :=
∫
A udµ for A ∈ Σ is of bounded variation; see [10, Theorem II.2.4]. This

observation yields the following result.

Corollary 3.7. A preference relation ≿ on Σ admits a continuous (and convex)
representation in a separable Banach space E with the RNP for (Ω,Σ, µ) if and
only if there exist a Bochner integrable function u ∈ L1

E(Ω,Σ, µ) (with mu(Σ) being
convex) and a continuous (and quasiconcave) function φ : mu(Σ) → R with φ(0) = 0
such that:

∀A,B ∈ Σ : A ≿ B ⇐⇒ φ

(∫
A
u(ω)dµ

)
≥ φ

(∫
B
u(ω)dµ

)
.

Example 3.8. Let (Ω,Σ, µ) be a nonatomic finite measure space and f ∈ L1(Ω,Σ, µ)
be a nonnegative integrable function. If ≿ is such that for every A,B ∈ Σ: A ≿
B

def⇐⇒
∫
A fdµ ≥

∫
B fdµ, then ≿ admits a vector representation in the real field R

via the µ-continuous nonatomic finite measure ν defined by ν(A) :=
∫
A fdµ and sat-

isfies Axioms 3.1, 3.3, 3.4, and 3.5. Conversely, if ≿ admits a vector representation in
R via the µ-continuous σ-finite measure ν and satisfies Axioms 3.1, 3.3, 3.4, and 3.5,
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then by Theorem 3.6, there exists a continuous quasiconcave function φ : ν(Σ) → R
with φ(0) = 0 such that for every A,B ∈ Σ: A ≿ B ⇐⇒ φ(

∫
A fdµ) ≥ φ(

∫
B fdµ),

where f ∈ L1(Ω,Σ, µ) is a Radon–Nikodym derivative of ν. In this specific case,
≿ admits a continuous convex representation with a quasiconcave integral transfor-
mation on Σ.

Remark 3.9. Note that the proof of Theorem 3.6 demonstrates that if (Ω,Σ, µ)
is a nonatomic finite measure space, then ≿ admits a continuous (and convex)
representation in Rl if and only if there exist a µ-continuous vector measure m :
Σ → Rl with its range m(Σ) being compact and convex and a continuous (and
quasiconcave) function φ : m(Σ) → R with φ(0) = 0 satisfying (3.2). This is an
immediate consequence of the classical Lyapunov convexity theorem in view of the
nonatomicity of m.

3.3. Continuous Extensions to S. Denote by χA the characteristic function of
A ∈ Σ. Then χA ∈ S for every A ∈ Σ. A preference relation ≿⋄ on S is a complete
transitive binary relation on S. A preference relation ≿⋄ is said to be continuous if
for every f ∈ S both the upper contour set {g ∈ S | g≿⋄ f} and the lower contour
set {g ∈ S | f ≿⋄ g} are weakly∗ closed in S; ≿⋄ is said to be convex if for every
f ∈ S the upper contour set {g ∈ S | g≿⋄ f} is convex; ≿⋄ is said to be monotone if
f ≥ g with f ̸= g imply f ≻ g; ≿⋄ is called an extension of the preference relation
≿ on Σ if for every A,B ∈ Σ: χA≿⋄ χB ⇐⇒ A ≿ B.

If ≿ is represented by a utility function of the form φ ◦ m on Σ, where m is a
µ-continuous vector measure with values in a Banach space E (with m(Σ) being
convex) and φ is a continuous (and quasiconcave) function on m(Σ) with a contin-
uous (and quasiconcave) extension φ⋄ to m(S), then the continuous (and convex)
extension ≿⋄ of ≿ to S is given by:

(3.3) ∀f, g ∈ S : f ≿⋄g
def⇐⇒ φ⋄

(∫
Ω
f(ω)dm

)
≥ φ⋄

(∫
Ω
g(ω)dm

)
.

The continuous (and convex) extension ≿⋄ defined in this way is called a (quasi-
concave) integral transformation on S. Then the utility function ν⋄ : S → R defined
by ν⋄(f) := φ⋄(

∫
fdm) is weakly∗ continuous (and quasiconcave) on S in view of

the fact that the integration operator Tm is continuous with respect to the weak∗

topology of L∞(Ω,Σ, µ) and the weak topology of E, as noted above.

Theorem 3.10. Let (Ω,Σ, µ) be a saturated finite measure space. Then every
preference relation ≿ on Σ with a continuous representation in a separable Banach
space has a continuous extension ≿⋄ to S with an integral transformation such that
for every f ∈ S there exists A ∈ Σ satisfying f ∼⋄ χA.

Proof. Let ≿ be a preference relation on Σ that admits a continuous representation
in a separable Banach space E. By Theorem 3.6, ≿ has a utility function of the
form φ ◦ m, where m is a µ-continuous vector measure with values in a separable
Banach space E and φ is a continuous function on m(Σ). In view of Proposition
2.2, m(Σ) = m(S), and hence, the desired extension ≿⋄ of ≿ to S is given by the
formula (3.3) with φ = φ⋄. □
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The converse of Theorem 3.10 is true in the following sense, which provides
another characterization of saturation.

Theorem 3.11. A finite measure space (Ω,Σ, µ) is saturated if every preference
relation ≿ on Σ with a continuous representation in an infinite-dimensional Banach
space and its continuous extension ≿⋄ to S with an integral transformation are such
that for every f ∈ S there exists A ∈ Σ satisfying f ∼⋄ χA.

Proof. Suppose that (Ω,Σ, µ) is not saturated. Then for every infinite-dimensional
Banach space E, there exists a µ-continuous vector measure m : Σ → E such that
its range m(Σ) is not convex; see [37, Lemma 4] and [49, Remark 1]. Then there
exist x, y ∈ m(Σ) and t ∈ (0, 1) such that tx + (1 − t)y ̸∈ m(Σ). Let C,D ∈ Σ

be such that x = m(C) and y = m(D) and define f̂ := tχC + (1 − t)χD ∈ S. Let
φ⋄ : m(S) → R be a continuous function with φ⋄(0) = 0 that attains the maximum

at the unique point x̂ :=
∫
f̂dm ∈ m(S) (such a function can be simply given by, for

instance, the strictly concave continuous function φ⋄(z) = ∥x̂∥ − ∥x̂ − z∥). Define
the preference relation ≿⋄ on S via (3.3) and denote its restriction to Σ by ≿. Then
≿ admits a continuous representation in the Banach space E by Theorem 3.6 (the
separability of E is unnecessary here) and ≿⋄ is a continuous extension of ≿ with

an integral transformation. Hence, there exists A ∈ Σ such that f̂ ∼⋄ χA. This
means that φ⋄(x̂) = φ⋄(m(A)), and hence, x̂ = tx + (1 − t)y = m(A) ∈ m(Σ), a
contradiction. □

Remark 3.12. The continuous extension of nonadditive measures on Σ to S with
an integral transformation explored in Theorem 3.10 is a further improvement of
[19] under the saturation hypothesis incorporating infinite dimensional vector rep-
resentation. An alternative formulation of the convexity of preference relations on
σ-algebras and their representation in terms of a nonadditive measure with the
quasiconcavity-like property based on the Lyapunov convexity theorem in finite di-
mensions were studied in [44]. For continuous concave extensions of nonadditive
measures to L∞(Ω,Σ, µ) based on Choquet integrals and the support functionals of
the cores of exact games, see [42].

4. Fair division in saturated measure spaces

4.1. Extensions of Economies. The problem of dividing a heterogeneous com-
modity among a finite number of individuals is formulated as partitioning in a
finite measure space (Ω,Σ, µ). Here, the set Ω is a heterogeneously divisible com-
modity, the σ-algebra Σ of subsets of Ω denotes the collection of possible pieces
of Ω, and the finite measure µ describes an objective evaluation for a cardinal
attribute of each piece in Σ. There are n individuals and the set of individuals
is denoted by I = {1, 2, . . . , n}, each of whom is indexed by i ∈ I, whose pref-
erence relation ≿i is defined on a common consumption set Σ. Each individual
possesses an initial endowment Ωi ∈ Σ, for which Ωi ∩ Ωj = ∅ for each i ̸= j and∪n

i=1Ωi = Ω. A partition of Ω is an ordered n-tuple (A1, . . . , An) of mutually dis-
joint sets A1, . . . , An in Σ whose union is Ω, where each Ai is a share of the divisible
commodity Ω given to individual i ∈ I. Thus, (Ω1, . . . ,Ωn) is an initial partition
of Ω. An economy E = {(Ω,Σ, µ), (≿i,Ωi)

n
i=1} consists of the commodity space
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(Ω,Σ, µ), the common consumption set Σ, on which a preference relation ≿i is
defined for each i ∈ I, and the initial endowment Ωi of each individual.

Following [1, 7, 19], we subsume economies with commodity space (Ω,Σ, µ) into
ones with commodity space L∞(Ω,Σ, µ). If each≿⋄

i is a preference relation on S that
is an extension of ≿i given an economy E , then E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1}

is called an extended economy of E , which consists of the commodity space
L∞(Ω,Σ, µ), the common consumption set S, on which a preference relation ≿⋄

i
is defined for each i ∈ I, and the initial endowment χΩi ∈ S of each individual.
If ≿i is represented by a utility function of the form φi ◦ mi on Σ, where mi is a
µ-continuous vector measure and φi is a continuous (and quasiconcave) function
on mi(Σ) (with mi(Σ) being convex) that has an continuous (and quasiconcave)
extension φ⋄

i to mi(S), then a continuous (and convex) extension ≿⋄
i to S with a

(quasiconcave) integral transformation of the preference relation ≿i on Σ is given
by the formula (3.3). In this case, E⋄ is called an extended economy of E with a
(quasiconcave) integral transformation. An ordered n-tuple (f1, . . . , fn) of functions
in L∞(Ω,Σ, µ) is called an allocation of χΩ if

∑n
i=1 fi(ω) = 1 for every ω ∈ Ω and

fi ∈ S for each i ∈ I. Every A ∈ Σ is identified with its characteristic function χA

in S. Note that (A1, . . . , An) is a partition of Ω if and only if (χA1 , . . . , χAn) is an
allocation of χΩ.

Definition 4.1. An allocation (f1, . . . , fn) of χΩ is said to be:

(i) individually rational if fi ≿⋄
i χΩi for each i ∈ I;

(ii) Pareto optimal if there is no allocation (g1, . . . , gn) such that gi ≿⋄
i fi for each

i ∈ I and gj ≻⋄
j fj for some j ∈ I;

(iii) envy-free if fi ≿⋄
i fj for each i, j ∈ I.

A nonempty subset of I is called a coalition. The family of coalitions is denoted
by I with its typical element denoted by S ∈ I. For a coalition S ∈ I, an ordered
n-tuple of functions (f1, . . . , fn) in L∞(Ω,Σ, µ) is called an S-allocation if

∑
i∈S fi =∑

i∈S χΩi . Then an I-allocation is nothing but an allocation of χΩ.

Definition 4.2. A coalition S ∈ I is said to improve upon an allocation (f1, . . . , fn)
of χΩ if there exists an S-allocation (g1, . . . , gn) such that gi ≻⋄

i fi for each i ∈ S.
An allocation of χΩ that cannot be improved upon by any coalition is called a core
allocation.

Let ba(Σ, µ) be the space of finitely additive signed measures vanishing on µ-null
sets, which is the price space for the heterogeneously divisible commodity (Ω,Σ, µ).
A price p ∈ ba(Σ, µ) is said to be positive if p(A) ≥ 0 for every A ∈ Σ and p ̸= 0.
The dual space of L∞(Ω,Σ, µ) is ba(Σ, µ), whose duality relation is denoted by
⟨p, f⟩ =

∫
fdp for p ∈ ba(Σ, µ) and f ∈ L∞(Ω,Σ, µ). Given price p ∈ ba(Σ, µ), the

budget set of each individual is given by B⋄
i (p, χΩi) := {f ∈ S | ⟨p, f⟩ ≤ ⟨p, χΩi⟩}.

Definition 4.3. A price-allocation pair (p, (f1, . . . , fn)) is called a Walrasian equi-
librium if fi is a maximal element for ≿i on B⋄

i (p, χΩi) for each i ∈ I.

Denote by P the set of partitions of Ω, by PIR the set of individually rational
partitions, by PPO the set of Pareto optimal partitions, by PEF the set of envy-
free partitions, by PC the set of core partitions, and by PWE the set of Walrasian
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equilibrium partitions respectively in E . Then the inclusion PWE ⊂ PC ⊂ PIR∩PPO

is trivial by definition. Denote by A the set of partitions of χΩ, by AIR the set
of individually rational partitions, by APO the set of Pareto optimal partitions,
by AEF the set of envy-free partitions, by AC the set of core allocations, and by
AWE the set of Walrasian equilibrium allocations respectively. Then the inclusion
AWE ⊂ AC ⊂ AIR ∩ APO is trivial by definition. For every economy E and its
extended economy E⋄, the inclusions P ⊂ A, PIR ⊂ AIR, and PEF ⊂ AEF are
automatic.

In what follows, we assume that each ≿i admits a continuous representation
in a separable Banach space Ei. In view of Theorem 3.6, each ≿i is represented
by a utility function φi ◦ mi on Σ, where mi : Σ → Ei is a µ-continuous vector
measure and φi : mi(Σ) → R is a continuous function. The utility function of
this form means that each individual evaluates any measurable subset A of the
heterogeneously divisible commodity (Ω,Σ, µ) in terms of the subjective cardinal
attribute mi(A) with a vector representation in Ei. When Ei = Rli , there are li
cardinal attributes for the heterogeneously divisible commodity that is significant
to individual i, which is the specification modelled in [17, 18, 19, 39].

Remark 4.4. Since an extended economy E⋄ of E is nothing but a standard ex-
change economy with commodity space L∞(Ω,Σ, µ), the existence of Walrasian
equilibria for E⋄ simply follows from exactly the same argument as in [5] if one
imposes Mackey continuity and convexity on each ≿⋄

i . In the proof of Theorem
4.10 below, we demonstrate the existence of Walrasian equilibria for E⋄ in a more
specific setting.

4.2. A Characterization of Saturation. The power of saturation is exemplified
in the indifference relation between partitions in E and allocations in the extended
economy E⋄ of the original economy E . The proof presented here is based on the
Lyapunov convexity theorem in separable Banach spaces (Proposition 2.2) and the
extreme point argument in the weakly∗ compact subset of L∞ inspired by a func-
tional analytic approach originated in [29] and then explored in [1, 19].

Theorem 4.5. Let (Ω,Σ, µ) be a saturated finite measure space. Then every econ-
omy E = {(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous representa-

tion in a separable Banach space has its extended economy E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄
i

, χΩi)
n
i=1} with an integral transformation such that for every allocation (f1, . . . , fn)

in E⋄, there exists a partition (A1, . . . , An) in E satisfying fi ∼⋄
i χAi for each i ∈ I.

Proof. Let E = {(Ω,Σ, µ), (≿i,Ωi)
n
i=1} be an economy satisfying the hypothesis of

the theorem. In view of Theorem 3.6, each ≿i is represented by a utility function
of the form φi ◦ mi, where mi is a µ-continuous vector measure with values in
a separable Banach space Ei and φi is a continuous function on mi(Σ). Since
mi(Σ) = mi(S) for each i ∈ I by Proposition 2.2, E possesses its extended economy
E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} with an integral transformation determined by

the formula (3.3). Then as demonstrated in [20, Lemma 3.2], by the Banach–
Alaoglu theorem [12, Corollary V.4.4], A is weakly∗ compact in the n-fold product
space [L∞(Ω,Σ, µ)]n of L∞(Ω,Σ, µ). Take any (f1, . . . , fn) ∈ A and let

A(f1, . . . , fn) := {(g1, . . . , gn) ∈ A | gi ∼⋄
i fi ∀i ∈ I} .
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Since each ≿⋄
i is continuous, the set A(f1, . . . , fn) is nonempty and weakly∗ compact

in [L∞(Ω,Σ, µ)]n. According to the Krein–Milman theorem [12, Lemma V.8.2],
A(f1, . . . , fn) has an extreme point (g1, . . . , gn). We claim that each of gi is a
characteristic function. Suppose, to the contrary, that gj is not a characteristic
function for some j. By virtue of the fact that

∑n
i=1 gi = 1 and gi ≥ 0 for each

i ∈ I, we may assume without loss of generality that there exist ε > 0 and A ∈ Σ
with µ(A) > 0 such that ε < g1, g2 < 1 − ε on A. Define the µ-continuous vector
measure m : Σ → R×

∏n
i=1Ei by m := (µ,m1, . . . ,mn). It follows from Proposition

2.2 that there exists a measurable subset B ⊂ A such that m(B) = m(A)/2. Set
h = ε(χA − 2χB). Then h ̸= 0, 0 ≤ g1 ± h, g2 ± h ≤ 1, and

∫
hdm = 0. Since

φi(
∫
(gi ± h)dmi) = φi(

∫
gidmi) = φi(

∫
fidmi) for i = 1, 2, we have (g1 ± h, g2 ∓

h, g3, . . . , gn) ∈ A(f1, . . . , fn). This yields:

(g1, . . . , gn) =
1

2
[(g1 + h, g2 − h, g3, . . . , gn) + (g1 − h, g2 + h, g3, . . . , gn)] ,

which means that (g1, . . . , gn) is a convex combination of two distinct elements
(g1+h, g2−h, g3, . . . , gn) and (g1−h, g2+h, g3, . . . , gn) in A(f1, . . . , fn), an obvious
contradiction to the fact that (g1, . . . , gn) is an extreme point in A(f1, . . . , fn). □
Corollary 4.6. If E has its extended economy E⋄ with an integral transformation,
then the inclusions PPO ⊂ APO and PC ⊂ AC hold whenever (Ω,Σ, µ) is saturated.

Proof. To demonstrate the first inclusion, take any Pareto optimal partition
(A1, . . . , An) in E . If (χA1 , . . . , χAn) is not a Pareto optimal allocation in E⋄, then
there exists another allocation (f1, . . . , fn) such that fi ≿⋄

i χAi for each i ∈ I and
fj ≻⋄

j χAj for some j ∈ I. It follows from Theorem 4.5 that there exists a partition

(B1, . . . , Bn) in E such that fi ∼⋄
i χBi for each i ∈ I, which yields Bi ≿i Ai for each

i ∈ I and Bj ≻j Aj for j, a contradiction to the Pareto optimality of (A1, . . . , An)
in E .

To demonstrate the second inclusion, take any core partition (A1, . . . , An) in E .
If (χA1 , . . . , χAn) is not a core allocation in E⋄, then some coalition S ∈ I improves
upon (χA1 , . . . , χAn), and hence, there exists an S-allocation (f1, . . . , fn) such that
fi ≻⋄

i χAi for each i ∈ S. It follows from Theorem 4.5 that there exists a partition
(B1, . . . , Bn) in E such that fi ∼⋄

i χBi for each i ∈ I, which yields Bi ≻i Ai for each
i ∈ S, a contradiction to the fact that (A1, . . . , An) is a core partition in E . □

The following converse of Theorem 4.5 yields an intriguing characterization of
saturation in terms of the interplay between the economy E with preference relations
with a continuous representation in a Banach space and its extended economy E⋄

with an integral transformation.

Theorem 4.7. A finite measure space (Ω,Σ, µ) is saturated if every economy
E = {(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous representation

in an infinite-dimensional Banach space and its extended economy E⋄ =
{L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} with an integral transformation are such that for ev-

ery allocation (f1, . . . , fn) in E⋄ there exists a partition (A1, . . . , An) in E satisfying
fi ∼⋄

i χAi for each i ∈ I.

Proof. Suppose that (Ω,Σ, µ) is not saturated. As noted in the proof of Theorem
3.11, for every infinite-dimensional Banach space E, there exists a µ-continuous
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vector measure m : Σ → E such that its range m(Σ) is not convex. Then there
exist x, y ∈ m(Σ) and t ∈ (0, 1) such that tx + (1 − t)y ̸∈ m(Σ). Let C,D ∈ Σ
be such that x = m(C) and y = m(D) and define f1 := tχC + (1 − t)χD ∈ S and
fj := (n − 1)−1(1 − f1) ∈ S for j = 2, 3, . . . , n. By construction,

∑n
i=1 fi = 1.

Let φ⋄
1 : m(S) → R be a continuous function with φ⋄

1(0) = 0 that attains the
maximum at the unique point x1 :=

∫
f1dm ∈ m(S). For j = 2, 3, . . . , n, take

any continuous function φ⋄
j : m(S) → R with φ⋄

j (0) = 0, define the preference

relation ≿⋄
i on S via the formula (3.3), and denote its restriction to Σ by ≿i for

each i ∈ I. Then E = {(Ω,Σ, µ), (≿i,Ωi)
n
i=1} is an economy for which each ≿i

admits a continuous representation in the common Banach space E by Theorem
3.6 and E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} is an extended economy of E with

an integral transformation. Since (f1, . . . , fn) is an allocation in E⋄, there exists
a partition (A1, . . . , An) in E such that fi ∼⋄

i χAi for each i ∈ I. This means
that φ⋄

1(x1) = φ⋄
1(m(A1)), and hence, x1 = tx + (1 − t)y = m(A1) ∈ m(Σ), a

contradiction. □
4.3. Existence Results. We present four existence results on partitions in E . We
first show under the saturation hypothesis the existence of individually rational
Pareto optimal partitions without any convexity assumption on the preferences of
each individual.

Theorem 4.8. If (Ω,Σ, µ) is saturated, then for every economy E =
{(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous representation in a

separable Banach space, there exists an individually rational Pareto optimal parti-
tion in E.
Proof. It follows from Theorem 4.5 that the economy E has its extended economy
E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} with an integral transformation such that for

every allocation (f1, . . . , fn) in E⋄, there exists a partition (A1, . . . , An) in E satisfy-
ing fi ∼⋄

i χAi for each i ∈ I. Since each ≿⋄
i is represented by the form (3.3), where

mi : Σ → Ei is a µ-continuous vector measure with values in a separable Banach
space Ei and φ⋄

i : mi(S) → R is a continuous function, and A is weakly∗ compact in
[L∞(Ω,Σ, µ)]n, so is AIR. Then there exists a solution to the maximization problem:

(P) max

{
n∑

i=1

φ⋄
i

(∫
Ω
fi(ω)dmi

)
| (f1, . . . , fn) ∈ AIR

}
.

The individual rationality of a solution (f1, . . . , fn) to (P) is obvious. If (f1, . . . , fn)
is not Pareto optimal, then there is another allocation (g1, . . . , gn) such that gi ≿⋄

i fi
for each i ∈ I and gj ≻⋄

j fj for some j ∈ I. This means that
∑n

i=1 φ
⋄
i (
∫
gidmi) >∑n

i=1 φ
⋄
i (
∫
fidmi), a contradiction to the fact that (f1, . . . , fn) is a solution to (P).

Therefore, any partition (A1, . . . , An) satisfying fi ∼⋄
i χAi for each i ∈ I is an

individually rational Pareto optimal partition in E . □
For the existence of core partitions, the convexity of preferences of each individual

are imposed additionally.

Theorem 4.9. If (Ω,Σ, µ) is saturated, then for every economy E =
{(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous convex representa-

tion in a separable Banach space, there exists a core partition in E.
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Proof. It follows from Theorem 4.5 that the economy E has its extended economy
E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} with a quasiconcave integral transformation

such that for every allocation (f1, . . . , fn) in E⋄, there exists a partition (A1, . . . , An)
in E satisfying fi ∼⋄

i χAi for each i ∈ I. Since each ≿⋄
i is represented by the form

(3.3), wheremi : Σ → Ei is a µ-continuous vector measure with values in a separable
Banach space Ei and φ⋄

i : mi(S) → R is a continuous quasiconcave function, the
utility function ν⋄i : S → R defined by ν⋄i (f) := φ⋄

i (
∫
fdmi) is weakly∗ continuous

and quasiconcave on S.
The market game V : I → 2R

n
with nontransferrable utility (NTU) for the

extended economy E⋄ is a set-valued mapping defined by:

V (S) =

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣ ∃S-allocation (f1, . . . , fn) ∈ A:
xi ≤ ν⋄i (fi) ∀i ∈ S

}
.

By construction, V (S) is the subset of the utility possibility set of the individuals
in which payoff vectors are attainable via some coalition S ∈ I. The core C(V ) of
the NTU game V is given by:

C(V ) = {(x1, . . . , xn) ∈ V (I) |̸ ∃(S, y) ∈ I × V (S) : xi < yi ∀i ∈ S} .
By the celebrated theorem of [47], C(V ) is nonempty if V is comprehensive below
and balanced, V (S) is closed and bounded from above for every S ∈ I, and x =
(x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ V (S) and xi = yi for each i ∈ S imply
x ∈ V (S). We show that V satisfies these conditions.

It is easy to see that each V (S) is comprehensive from below, i.e., x =
(x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ V (S) and xi ≤ yi for each i ∈ I imply
x ∈ V (S). Since each ν⋄i is weakly∗ continuous, and hence, bounded on the weakly∗

compact set S, for each S ∈ I there exists MS ∈ R such that xi ≤ MS for every
x ∈ V (S) and i ∈ S.

We shall show that V is a balanced game. To this end, let B be a balanced family
of I with balanced weights {λS ≥ 0 | S ∈ B} and let Bi = {S ∈ B | i ∈ S}. We
then have

∑
S∈Bi

λS = 1 for each i ∈ I. Define:

χS
i =

{
1 if S ∈ Bi,

0 otherwise
and tS =

1

n

∑
i∈I

λSχS
i .

Then, we have: ∑
S∈B

tS =
1

n

∑
S∈B

∑
i∈I

λSχS
i =

1

n

∑
i∈I

∑
S∈Bi

λS = 1.

Choose any x = (x1, . . . , xn) ∈
∩

S∈B V (S). Then, for every S ∈ B, there exists an S-

allocation (fS
1 , . . . , f

S
n ) such that xi ≤ ν⋄i (f

S
i ) for each i ∈ S. Let fi =

∑
S∈B tSfS

i
for each i ∈ I. Then, (f1, . . . , fn) is an allocation because A is convex. Since
xi ≤ ν⋄i (fi) for each i ∈ I by the quasiconcavity of ν⋄i , we have x ∈ V (I). Therefore,∩

S∈B V (S) ⊂ V (I), and consequently, V is balanced.

We finally show that V (S) is closed for every S ∈ B. Let {xk}k∈N be a sequence
in V (S) converging to x ∈ Rn. Then, there exists an allocation (fk

1 , . . . , f
k
n) such

that xki ≤ ν⋄i (f
k
i ) for each i ∈ S and k ∈ N. Since A is weakly∗ compact, the

sequence {(fk
1 , . . . , f

k
n)}k∈N contains a subsequence that is weakly∗ convergent to
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(f1, . . . , fn) ∈ A. Then we have xi ≤ ν⋄i (fi) for each i ∈ S by the weak∗ continuity
of ν⋄i . It is easy to verify that (f1, . . . , fn) is an S-allocation. Thus, we obtain
x ∈ V (S), and hence, V (S) is closed.

Since C(V ) is nonempty, one can choose an element (x1, . . . , xn) in C(V ). Then
there exists an I-allocation (f1, . . . , fn) such that xi ≤ ν⋄i (fi) for each i ∈ I. Sup-
pose that (f1, . . . , fn) is not a core allocation in E⋄. Then there exists an S-
allocation (g1, . . . , gn) such that ν⋄i (fi) < ν⋄i (gi) for each i ∈ S. Then we have
(ν⋄1(g1), . . . , ν

⋄
n(gn)) ∈ V (S) and xi < ν⋄i (gi) for each i ∈ S, which contradicts the

fact that (x1, . . . , xn) is in C(V ). Let (x1, . . . , xn) be in C(V ) and define the set
A(x1, . . . , xn) by:

A(x1, . . . , xn) = {(f1, . . . , fn) ∈ A | xi ≤ ν⋄i (fi) ∀i ∈ I} .

It follows from the above argument that A(x1, . . . , xn) is a nonempty subset of AC.
Since A(x1, . . . , xn) is nonempty and weakly∗ compact in
[L∞(Ω,Σ, µ)]n, according to the Krein–Milman theorem, A(x1, . . . , xn) has an ex-
treme point (g1, . . . , gn). Precisely in the same way with the proof of Theorem 4.5,
we can show that each gi is a characteristic function. Therefore, there exists a par-
tition (A1, . . . , An) of Ω such that (χA1 , . . . , χAn) ∈ A(x1, . . . , xn). This means that
(A1, . . . , An) is a core partition in E . □

For the existence of Walrasian equilibrium partitions with a positive price, the
monotonicity of preferences of each individual are imposed further.

Theorem 4.10. If (Ω,Σ, µ) is saturated, then for every economy E =
{(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous convex monotone

representation in a separable Banach space, there exists a Walrasian equilibrium
partition in E with a positive price.

Proof. By Proposition 2.2 and Theorem 3.6, the economy E has its extended econ-
omy E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄

i , χΩi)
n
i=1} with a quasiconcave integral transforma-

tion such that each ≿⋄
i is represented by the form (3.3), where mi : Σ → Ei is a

vector measure with values in a separable Banach space Ei and φ⋄
i : mi(S) → R

is a continuous quasiconcave function. Since S is weakly∗ closed in L∞(Ω,Σ, µ)
and each utility function defined by ν⋄i (f) = φ⋄

i (
∫
fdmi) is weakly∗ continuous

and quasiconcave on S satisfying [5, Monotonicity Assumption], and hence, all the
assumptions of [5, Theorem 1] are met for E⋄. Then there exists a Walrasian equi-

librium (p̂, (f̂1, . . . , f̂n)) with positive price p̂ in E⋄. Define the set of Walrasian
allocations associated with the equilibrium price p̂ by:

AW (p̂) =

{
(f1, . . . , fn) ∈ A

∣∣∣∣ fi is a maximal element for ≿i

on B⋄
i (p̂, χΩi) ∀i ∈ I

}
.

Then AW (p̂) is nonempty and weakly∗ compact in [L∞(Ω,Σ, µ)]n. According to
the Krein–Milman theorem, AW (p̂) has an extreme point (g1, . . . , gn). Precisely in
the same way as the proof of Theorem 4.5, we can show that each gi is a charac-
teristic function. Therefore, there exists a partition (Â1, . . . , Ân) of Ω such that

(χÂ1
, . . . , χÂn

) ∈ AW (p̂). This means that the price-partition pair (p̂, (Â1, . . . , Ân))
is a Walrasian equilibrium with positive price p̂ in E . □
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Under the same assumption as Theorem 4.10 the existence of Pareto optimal
envy-free partitions is guaranteed.

Theorem 4.11. If (Ω,Σ, µ) is saturated, then for every economy E =
{(Ω,Σ, µ), (≿i,Ωi)

n
i=1} for which each ≿i admits a continuous convex monotone

representation in a separable Banach space, there exists a Pareto optimal envy-free
partition in E.

Proof. Let E⋄ = {L∞(Ω,Σ, µ),S, (≿⋄
i , χΩi)

n
i=1} be an extended economy of E with

a quasiconcave integral transformation such that for every allocation (f1, . . . , fn) in
E⋄, there exists a partition (A1, . . . , An) in E satisfying fi ∼⋄

i χAi for each i ∈ I. Con-

sider the extended economy E⋄ = {L∞(Ω,Σ, µ),S,
(≿⋄

i )
n
i=1, n

−1χΩ} in which each individual possesses the equal initial endowment

n−1χΩ ∈ S. Then a Walrasian equilibrium (p̄, (f̄1, . . . , f̄n)) with positive price p̄ in
E⋄ exists as proved in Theorem 4.10. The Walrasian allocation (f̄1, . . . , f̄n) is Pareto
optimal in E⋄ (because of the the first welfare theorem) and in view of the equal
budget set among all individuals, it is evidently envy free in E⋄. Take any partition
(Ā1, . . . , Ān) in E satisfying f̄i ∼⋄

i χĀi
for each i ∈ I. If (Ā1, . . . , Ān) is not Pareto

optimal in E , then there exists another partition (A1, . . . , An) such that Ai ≿i Āi

for each i ∈ I and Aj ≻j Āj for some j ∈ I. This means that χĀi
≿⋄

i f̄i or each

i ∈ I and χĀj
≿⋄

j f̄j for j, a contradiction to the Pareto optimality of (f̄1, . . . , f̄n)

in E⋄. Hence, (Ā1, . . . , Ān) is a Pareto optimal partition in E . If (Ā1, . . . , Ān) is
not envy free in E , then Āj ≻i Āi for some i ̸= j. This implies that f̄j ≻⋄

i f̄i, a
contradiction to the fact that (f̄1, . . . , f̄n) is envy free in E⋄. □

Remark 4.12. To obtain a countably additive equilibrium price in Theorem 4.10,
the same argument as in [5], which uses the Yosida–Hewitt decomposition in ba(Σ, µ),
is valid. In particular, if the extended economy E⋄ is such that each ≿⋄

i is monotone
and has a Mackey continuous extension to the positive cone of L∞(Ω,Σ, µ) preserv-
ing monotonicity, then [5, Theorem 2] is applicable to the proof of Theorem 4.10,
and thereby, p̂ can be taken in L1(Ω,Σ, µ).

Remark 4.13. For an economy E in which each ≿i admits a continuous representa-
tion in Rli , the existence of Walrasian equilibria (see [18]), the nonemptiness of the
core (see [17, 39]), the nonemptiness of the fuzzy core and the existence of support-
ing prices (see [19]), and the existence of Pareto optimal α-fair partitions (see [41])
were established under the convexity hypothesis on ≿i. Under the alternative con-
tinuity hypothesis on ≿i, the existence of Pareto optimal envy-free partitions was
given in [20] without any convexity hypothesis on ≿i. For other solution concepts
regarding the fair division problems, see [40, 41, 45, 46].

5. Concluding remarks

We conclude this paper by raising an open problem. We leave aside the existence
of supporting prices for Pareto optimal partitions under the convexity assumption.
The existence of supporting prices in L1(Ω,Σ, µ) was obtained in [19] with a finite-
dimensional vector representation of preference relations. The problem is a standard
application of the separation theorem in L∞(Ω,Σ, µ). It should be noted that thanks
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to Theorem 4.5, supporting prices in an extended economy are automatically the
ones in the original economy. As demonstrated in Theorem 4.8, however, for the
existence of Pareto optimal partitions, the convexity assumption is unnecessary.
Thus, the challenging problem is instead to demonstrate the second fundamental
theorem of welfare economics for economies without any convexity assumption. For
nonconvex production economies with an infinite-dimensional commodity space, [28]
derived a price system in the Clarke normal cone that is consistent with a Pareto
optimal allocation, and their result covers the commodity space of L∞(Ω,Σ, µ). It
is well-known that in the presence of nonconvexity Clarke normal cones are strictly
larger than Mordukhovich normal cones (see [35]), so that price systems in the
latter are called for to derive sharper necessary conditions for Pareto optimality. It
is [23] who first introduced Mordukhovich normal cones to obtain the second welfare
theorem into finite-dimensional nonconvex production economies. For the extension
of [23] to Banach or Asplund spaces of commodities, see [3, 32, 33, 34, 36]. The
second welfare theorem without convexity assumptions specific to optimal partitions
based on Mordukhovich normal cones is still unknown.
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