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the phenomenon in a similar context were given by [1, 4, 10, 25]. Various applica-
tions of it to topics in linear algebra, optimization and control theory are presented
in [21, 22, 23, 24, 25]

In the present paper, by following the approach introduced by B.T. Polyak, the
study of classes of sets with persistent convexity properties is carried on. More pre-
cisely, the analysis here proposed focusses on the class of uniformly convex subsets
of certain Banach spaces. An interest in similar classes of sets, in connection with
the problem under study, appears already in [22], where strongly convex sets are
actually mentioned. This seems to be rather natural, inasmuch as elements of such
classes share the essential geometrical features of balls in a Hilbert space: nonempty
interior, boundedness and, what plays a crucial role, a uniform rotundity, which im-
plies a boundary consisting of extreme points only. The feature last mentioned is
captured and quantitatively expressed by the notion of modulus of convexity of a
set. In developing the Polyak’s approach, the main idea behind the investigations
exposed in the paper is that, if the modulus of convexity of a given set matches the
smoothness and the regularity property of a given nonlinear mapping, then the per-
sistence of convexity under that mapping can be guaranteed. The understanding of
such a fundamental relation between quantitative aspects of the convexity property
for a set and the quantitative regularity behaviour of a mapping acting on it should
shed light on the general phenomenon under study. Concretely, this leads to enrich
the class of sets interested by the phenomenon. In turn, since the persistence of
convexity under nonlinear transformations is at the origin of a certain qualification
(in terms of solution existence and characterization) observed in optimization prob-
lems with possibly nonconvex data, the result here established allows one to enlarge
the class of problems for which the consequent benefits can be expected.

The contents of the paper are arranged in the next sections as follows. In Sec-
tion 2, the notion of modulus of convexity of a set and of uniformly convexity are
recalled, along with several examples and related facts, useful for the subsequent
analysis. Besides, the regularity behaviour of a nonlinear smooth mapping, namely
its openness at a linear rate, is entered as a crucial tool, along with the related
exact bound. In Section 3, the main result of the paper, which is an extension of
the aforementioned convexity principle due to B.T. Polyak, is established and some
of its features are discussed. In Section 4, some applications of the main result to
nonconvex constrained optimization problems are provided.

2. Notations and preliminaries

The basic notations in use throughout the paper are as follows. R denotes the
real number set. Given a metric space (X, d), an element x0 ∈ X and r ≥ 0,
B (x0, r) = {x ∈ X : d(x, x0) ≤ r} denotes the (closed) ball with center x0 and
radius r. In particular, in a Banach space, the unit ball centered at the null vector
will be indicated by B, whereas the unit sphere by S. The distance of x0 ∈ X from a
set S ⊆ X is denoted by dist (x0, S). If S ⊆ X, B (S, r) = {x ∈ X : dist (x, S) ≤ r}
denotes the (closed) r-enlargement of S. The diameter of a set S ⊆ X is defined
as diamS = sup{d(x1, x2) : x1, x2 ∈ S}. By intS, clS and bdS the topological
interior, the closure and the boundary of a set S are marked, respectively. If S is a
subset of a Banach space (X, ∥·∥), extS denotes the set of all extreme points of S, in
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the sense of convex analysis, 0 stands for the null element of X and [x1, x2] denotes
the closed line segment with endpoints x1, x2 ∈ X. Given a function h : X −→ Y
between metric spaces and a set U ⊆ X, h is said to be Lipschitz continuous on U
if there exists a constant ℓ > 0 such that

(2.1) d(h(x1), h(x2)) ≤ ℓd(x1, x2), ∀x1, x2 ∈ U.

The infimum over all values ℓ making the last inequality satisfied on U is called
exact bound of Lipschitz continuity of h on U and is denoted by lip(h,U), i.e.

lip(h,U) = inf{ℓ ≥ 0 : inequality (2.1) holds}.

The Banach space of all bounded linear operators between the Banach spaces X
and Y, equipped with the operator norm, is denoted by (L(X,Y), ∥ · ∥L). If, in
particular, it is Y = R, the simpler notation (X∗, ∥ · ∥∗) is used. The null vector in a
dual space is marked by 0∗, whereas the unit sphere by S∗, with ⟨·, ·⟩ marking the
duality pairing a space and its dual. Given a mapping f : Ω −→ Y, with Ω open
subset of X, and x0 ∈ Ω, the Gatêaux derivative of f at x0 is denoted by Df(x0). If
f is Gatêaux differentiable at each point of Ω and the mapping Df : Ω −→ L(X,Y)
is Lipschitz continuous on Ω, f is said to be of class C1,1(Ω).

Remark 2.1. (i) In view of a subsequent employment, let us recall that, whenever
f : Ω −→ Y is a mapping of class C1,1(Ω) between Banach spaces, with Ω open
subset of X and x1, x2 ∈ Ω are such that [x1, x2] ⊆ Ω, the following estimate holds
true (see, for instance, [26, Lemma 2.7])

(2.2)

∥∥∥∥f(x1) + f(x2)

2
− f

(
x1 + x2

2

)∥∥∥∥ ≤ lip(Df,Ω)

8
∥x1 − x2∥2,

where lip(Df,Ω) denotes the exact bound of Lipschitz continuity of Df on Ω.
(ii) It is not difficult to see that, if S ⊆ Ω is a bounded set, i.e. diamS < +∞,

and f ∈ C1,1(Ω), then it must be

sup
x∈S

∥Df(x)∥L < +∞.

Furthermore, if in addition S is convex, then letting βS = supx∈S ∥Df(x)∥L, as an
immediate consequence of the mean-value theorem, one obtains

diam f(S) ≤ βSdiamS,

that is f(S) is bounded too.

2.1. Uniformly convex sets.

Definition 2.2. (i) Let S ⊆ X be a nonempty, closed and convex subset of a real
Banach space. The function δS : [0,diamS) −→ [0,+∞) defined by

δS(ϵ) = sup

{
δ ≥ 0 : B

(
x1 + x2

2
, δ

)
⊆ S, ∀x1, x2 ∈ S : ∥x1 − x2∥ = ϵ

}
is called modulus of convexity of the set S. Whenever the value of diamS is attained
at some pair x1, x2 ∈ S, the function δS will be meant to be naturally extended to
[0,diamS].



430 AMOS UDERZO

(ii) After [20], a nonempty, closed and convex set S ⊆ X, with S ̸= X, is said to
be uniformly convex provided that

δS(ϵ) > 0, ∀ϵ ∈
{

(0,diamS], if diamS is attained on S,
(0,diamS), otherwise.

Since diamS vanishes if S is a singleton, Definition 2.2 (ii) does not exclude such
kind of convex sets. Nevertheless, as singletons are of minor interest in connection
with the problem at the issue, henceforth a uniformly convex set will be always
assumed to contain at least two distinct points.

Example 2.3. (i) Balls in a uniformly convex Banach space may be viewed as a
paradigma for the notion of uniform convexity for sets. Recall that, after [5], a
Banach space (X, ∥·∥) is said to be uniformly convex (or to have a uniformly convex
norm) if

δX(ϵ) = inf

{
1−

∥∥∥∥x1 + x2
2

∥∥∥∥ : x1, x2 ∈ B, ∥x1 − x2∥ = ϵ

}
> 0,∀ϵ ∈ (0, 2].

The function δX is called modulus of convexity of the space (X, ∥ · ∥). In fact, it is
possible to prove that

δB(ϵ) = δX(ϵ), ∀ϵ ∈ (0, 2].

Such classes of Banach spaces as lp and Lp, with 1 < p < ∞, are known to consist
of uniformly convex spaces. In particular, every Hilbert space is uniformly convex.
Since every uniformly convex Banach space must be reflexive (according to the
Milman-Pettis Theorem), the spaces l1, L1, L∞, C([0, 1]) and c0 fail to be. For
p ≥ 2, the exact expression of the modulus of convexity of the spaces lp and Lp is
given by

δlp(ϵ) = δLp(ϵ) = 1−
[
1−

( ϵ

2

)p]1/p
, ∀ϵ ∈ (0, 2].

For more details on uniformly convex Banach spaces and properties of their moduli
the reader may refer to [6, 12, 16]. A useful remark enlightening the connection
between the notions of uniform convexity for sets and uniform convexity of Banach
spaces can be found in [2, Theorem 2.3]: a Banach space can contain a closed uni-
formly convex set iff it admits an equivalent uniformly convex norm. Such class of
Banach spaces have been characterized in terms of superreflexivity in [11]. Through-
out the present paper, the Banach space (X, ∥ · ∥) will be supposed to be equipped
with a uniformly convex norm.

(ii) After [18, 19], given a positive real r, a subset S ⊆ X of a Banach space is
said to be r-convex (or strongly convex of radius r) if there exists M ⊆ X, with
M ̸= X, such that

S =
∩
x∈M

B (x, r) ̸= ∅.

It is readily seen that, if a Banach space (X, ∥ · ∥) is uniformly convex with modulus
δX, then any strongly convex set S ⊆ X with radius r is uniformly convex and its
modulus of convexity satisfies the relation

δS(ϵ) ≥ rδX

( ϵ
r

)
, ∀ϵ ∈ (0,diamS).(2.3)



AN EXTENSION OF POLYAK CONVEXITY PRINCIPLE WITH APPLICATION 431

(iii) Let θ : [0,+∞) −→ [0,+∞) be an increasing function vanishing only at 0.
Recall that, according to [27], a function φ : X −→ R is said to be uniformly convex
with modulus θ if it holds

φ(tx1 + (1− t)x2) ≤ tφ(x1) + (1− t)φ(x2)− t(1− t)θ(∥x1 − x2∥),
∀x1, x2 ∈ X, ∀t ∈ [0, 1].

If, in particular, it is θ(s) = κs2, a uniformly convex function with such a modulus
is called strongly convex. Sublevel sets of Lipschitz continuous uniformly convex
functions are uniformly convex sets. More precisely, given α > 0, if φ is Lipschitz
continuous on X, with exact bound lip(φ,X) > 0, then the set [φ ≤ α] = {x ∈ X :
φ(x) ≤ α} turns out to be uniformly convex with modulus

δ[φ≤α](ϵ) ≥
θ(ϵ)

4lip(φ,X)
, ∀ϵ ∈ (0, diam [φ ≤ α]).(2.4)

Indeed, fixed ϵ ∈ (0, diam [φ ≤ α]), take x1, x2 ∈ [φ ≤ α], with x1 ̸= x2 and
∥x1−x2∥ = ϵ, and set x̄ = 1

2(x1+x2). By the uniform convexity of φ with modulus
θ one has

φ(x̄) ≤ φ(x1) + φ(x2)

2
− θ(∥x1 − x2∥)

4
.

Therefore, for an arbitrary η > 0, by the Lipschitz continuity of φ on X, one finds

φ(x) = φ(x)− φ(x̄) + φ(x̄)

≤ (lip(φ,X) + η)
θ(ϵ)

4(lip(φ,X) + η)
+ α− θ(ϵ)

4
≤ α,

for every x ∈ B
(
x̄, θ(ϵ)

4(lip(φ,X)+η)

)
. Thus, it results in

B

(
x̄,

θ(ϵ)

4(lip(φ,X) + η)

)
⊆ [φ ≤ α],

so

δ[φ≤α](ϵ) ≥
θ(ϵ)

4(lip(φ,X) + η)
.

The estimate in (2.4) follows by arbitrariness of η.

It is not difficult to see that, given two subsets S1 and S2 of X, it is δS1∩S2 ≥
min{δS1 , δS2}. Therefore, the class of uniformly convex sets is closed under finite
intersection. In contrast, unlike the class of convex sets, this class fails to be closed
with respect to the Cartesian product. It is worth noting that, as the intersection
of balls may yield a boundary with corners or a nonsmooth description, uniformly
convex sets may exhibit such kind of pathology.

In the next remark, some known facts about uniformly convex sets are collected,
which will be relevant to the subsequent analysis.

Remark 2.4. (i) Every uniformly convex set, which does not coincide with the
entire space, is bounded (see [2]).

(ii) Directly from Definition 2.2, it follows that every uniformly convex set has
nonempty interior. This fact entails that, while uniformly convex subsets are com-
pact if living in finite-dimensional spaces, they can not be so in infinite-dimensional
Banach spaces.
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(iii) As a consequence of Definition 2.2, if any uniformly convex set S admits a
modulus of convexity of power type 2, i.e. such that

δS(ϵ) ≥ cϵ2, ∀ϵ ∈ (0,diamS),(2.5)

for some c > 0, then it fulfils the following property: for every c̃ ∈ (0, c) it holds

B

(
x1 + x2

2
, c̃∥x1 − x2∥2

)
⊆ S, ∀x1, x2 ∈ S.

It is worth noting that this happens for the balls in any Hilbert space or in the
Banach spaces lp and Lp, with 1 < p < 2, where the following estimate is known to
hold

δlp(ϵ) = δLp(ϵ) >
p− 1

8
ϵ2, ∀ϵ ∈ (0, 2]

(see, for instance, [16]). Such a subclass of uniformly convex sets will play a promi-
nent role in the main result of the paper.

(iv) For every uniformly convex set S, a constant β > 0 can be proved to exist
such that

δS(ϵ) ≤ βϵ2, ∀ϵ ∈ (0, diamS)

(see [2]). Thus, a modulus of convexity of the power 2 is a maximal one.

The next proposition provides a complete characterization of uniform convexity
for subsets of a finite-dimensional Euclidean space in terms of extremality of their
boundary points. Below, a variational proof of this fact is provided.

Proposition 2.5. A convex compact subset S ⊆ Rn, with nonempty interior, is
uniformly convex iff extS = bdS.

Proof. Observe that by compactness of S, it is bdS ̸= ∅. Actually, the Krein-
Milman theorem ensures that extS ̸= ∅ also. Clearly, it is extS ⊆ bdS. To begin
with, assume that S is uniformly convex. Take any x̄ ∈ bdS. If it were x̄ ̸∈ extS,
then there would exist x1, x2 ∈ S\{x̄}, with x1 ̸= x2, such that x̄ = x1+x2

2 . Observe
that, as x̄ ∈ bdS, the inclusion B (x̄, δ) ⊆ S can be true only for δ = 0. Thus
δS(∥x1 − x2∥) = 0, contradicting the fact that S is uniformy convex.

Conversely, assume that the equality extS = bdS holds true. Fix an arbitrary
ϵ ∈ (0,diamS] (under the current hypotheses the value diamS is attained on S).
Notice that, since S is compact, the set

S2
ϵ = {(x1, x2) ∈ S × S : ∥x1 − x2∥ = ϵ}

is still compact. Define the function ϑ : Rn × Rn −→ [0,+∞) by setting

ϑ(x1, x2) = dist

(
x1 + x2

2
,Rn\intS

)
.

Since such a function is continuous on Rn×Rn, it attains its global minimum over S2
ϵ

at some point (x̂1, x̂2) ∈ S2
ϵ , with x̂1 ̸= x̂2 as ∥x̂1− x̂2∥ = ϵ. If it were ϑ(x̂1, x̂2) = 0,

then it would happen that
x̂1 + x̂2

2
∈ bdS.
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The last inclusion contradicts the fact that x̂1+x̂2
2 is an extreme point of S. There-

fore, one deduces that ϑ(x̂1, x̂2) > 0. As it is true that

δS(ϵ) = min
(x1,x2)∈S2

ϵ

ϑ(x1, x2) > 0,

the requirement in Definition 2.2 (ii) turns out to be satisfied. The arbitrariness of
ϵ ∈ (0,diamS] completes the proof. □

Proposition 2.5 can not be extended to infinite-dimensional spaces, where balls
with extB = bdB can exist, yet failing to be uniformly convex (see [6]).

2.2. Openness at a linear rate. In the next definition, some notions and related
results are recalled, which describe quantitatively a certain surjective behaviour of a
mapping. Such a local property, in a synergical interplay with other features (C1,1-
smoothness and uniform convexity) of the involved objects, allows one to achieve
the main result in the paper.

Definition 2.6. Let f : X −→ Y be a mapping between two metric spaces and
x0 ∈ X. The mapping f is said to be open at a linear rate around x0 if there exist
positive reals δ, ζ and σ such that

(2.6) f(B (x, r)) ⊇ B (f(x), σr) ∩ B (f(x0), ζ) , ∀x ∈ B (x0, δ) , ∀r ∈ [0, δ].

The role of a surjection property in preserving convexity of sets should not come
as a surprise: the convexity of the image requires indeed line segments joining points
in the image of a set to belong to the image, that is a certain openness/covering
behaviour of the reference mapping.

It is well known (see, for instance, [9, 14, 17]) that the property of openness at a
linear rate for a mapping f around x0 can be equivalently reformulated as follows:
there exist positive reals δ and κ such that

(2.7) dist
(
x, f−1(y)

)
≤ κd(y, f(x)), ∀x ∈ B (x0, δ) , ∀y ∈ B (f(x0), δ) .

Whenever the inequality (2.7) holds, f is said to be metrically regular around x0.
The infimum over all values κ for which there exists δ > 0 such that (2.7) holds true
is called exact regularity bound of f around x0 and it will be denoted by reg(f, x0),
with the convention that reg(f, x0) = +∞means that f fails to be metrically regular
around x0.

Remark 2.7. (i) It is convenient to note that, whenever f is continuous at x0, the
inclusion defining the openness of f at a linear rate around x0 takes the simpler
form: there exists positive δ and σ such that

(2.8) f(B (x, r)) ⊇ B (f(x), σr) , ∀x ∈ B (x0, δ) , ∀r ∈ [0, δ].

(ii) From the inclusion (2.8) it is clear that, whenever a mapping f is open at a
linear rate around x0 and continuous at the same point, it holds

(2.9) f(intS) ⊆ int f(S),

provided that S ⊆ B (x, δ), where δ is as above. Indeed, if it is x ∈ intS, then for
some r ∈ (0, δ) it must be B (x, r) ⊆ S. Therefore, one gets

B (f(x), σr) ⊆ f(B (x, r)) ⊆ f(S).
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In turn, from the inclusion (2.9), one deduces

f−1(y) ∩ S ⊆ bdS, ∀y ∈ bd f(S).

As the behaviour formalized by openness at a linear rate/metric regularity plays
a crucial role in a variety of topics in variational analysis, it has been widely inves-
tigated in the past decades and several criteria for detecting the occurrence of it are
now at disposal. In the case of smooth mappings between Banach spaces, the main
criterion for openness at a linear rate/metric regularity, known under the name of
Lyusternik-Graves theorem, can be stated as follows (see [9, 14, 17]).

Theorem 2.8 (Lyusternik-Graves). Let f : X −→ Y be a mapping between Banach
spaces. Suppose that f is strictly differentiable at x0 ∈ X. Then, f is open at a
linear rate around x0 iff Df(x0) is onto, i.e. Df(x0)(X) = Y.

The above criterion is usually complemented with the following (primal and dual)
estimates of the exact regularity bound, which are relevant for the present analysis:

reg(f, x0) = sup
∥y∥≤1

inf{∥x∥ : x ∈ Df(x0)
−1(y)}

and

reg(f, x0) =

(
inf

∥y∗∥∗=1
∥Df(x0)

∗y∗∥∗
)−1

= (dist (0∗,Df(x0)
∗(S∗)))−1 ,

where Λ∗ ∈ L(Y∗,X∗) denotes the adjoint operator to Λ ∈ L(X,Y) and the conven-
tions

inf ∅ = +∞ and 1/0 = +∞
are adopted. Remember that Λ ∈ L(X,Y) is onto iff Λ∗ has bounded inverse. It
is worth noting that, when both X and Y are finite-dimensional Euclidean spaces,
the condition on Df(x0) to be onto reduces to the fact that Jacobian matrix of f
at x0 is full-rank. Furthermore, whenever Df(x0) happens to be invertible, one has
reg(f, x0) = ∥Df(x0)

−1∥L.

3. An extension of the Polyak convexity principle

Given c > 0, let us introduce the following subclasses of uniformly convex subsets
of X, with modulus of convexity of power type 2:

UC2
c(X) = {S ⊆ X : δS(ϵ) ≥ cϵ2, ∀ϵ ∈ (0,diamS)}

and
UC2(X) =

∪
c>0

UC2
c(X).

Remark 3.1. In the proof of the next theorem the following fact, which can be
easily proved by an iterative bisection procedure, will be used: any closed subset V
of a Banach space is convex iff y1+y2

2 ∈ V , whenever y1, y2 ∈ V . It is easy to see
that if V is not closed, this mid-point property does not imply the convexity of V .
Consider, for instance, the set V defined by

V =
∞∪
k=0

{
i

2k
: i ∈ {0, 1, 2, 3, . . . , 2k}

}
⊆ [0, 1].
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Since V is countable, as a countable union of finite sets, it is strictly included in
[0, 1]. Therefore V can not be convex, because it contains 0 and 1, even though it
has the mid-point property, as one checks without difficulty.

Below, the main result of the paper is established.

Theorem 3.2. Let f : Ω −→ Y be a mapping between Banach spaces, with Ω open
nonempty subset of X. Let x0 ∈ Ω and c > 0 such that:

(i) f ∈ C1,1(intB (x0, r0)), for some r0 > 0;
(ii) Df(x0) is onto;
(iii) it holds

reg(f, x0) · lip(Df, intB (x0, r0))

8
< c.

Then, there exists ρ ∈ (0, r0) such that, for every S ∈ UC2
c(X), with S ⊆ B (x0, ρ)

and f(S) closed, it is f(S) ∈ UC2(Y).

Proof. The proof is divided into two parts.
First part: Let us show that f(S) is convex. According to the hypothesis (iii),
it is possible to fix positive reals κ and ℓ in such a way that κ > reg(f, x0), ℓ >
lip(Df, intB (x0, r0)), and the following inequality is fulfilled

(3.1)
κℓ

8
< c.

By virtue of hypotheses (i) and (ii), as f is in particular strictly differentiable at x0,
it is possible to invoke the Lyusternik-Graves theorem, ensuring that f is metrically
regular around x0. This means that there exist positive reals κ̃ and r̃ such that

reg(f, x0) < κ̃ < κ, r̃ ∈ (0, r0),

and

(3.2) dist
(
x, f−1(y)

)
≤ κ̃∥y − f(x)∥, ∀x ∈ B (x0, r̃) , ∀y ∈ B (f(x0), r̃) .

Besides, by the continuity of f at x0, corresponding to r̃ there exists r∗ ∈ (0, r0)
such that

f(x) ∈ B (f(x0), r̃) , ∀x ∈ B (x0, r∗) .

Then, take ρ ∈ (0,min{r̃, r∗}). Notice that, in the light of Remark 2.7, up to a
further reduction in the value of ρ, one can assume that for some σ > 0 it holds

(3.3) f(B (x, r)) ⊇ B (f(x), σr) , ∀x ∈ B (x0, ρ) , ∀r ∈ [0, ρ].

Now, take an arbitrary element S ∈ UC2
c(X), with S ⊆ B (x0, ρ) and such that f(S)

is closed. According to Remark 3.1, the convexity of f(S) can be proved by showing
that for every y1, y2 ∈ f(S), with y1 ̸= y2, it holds y1+y2

2 ∈ f(S). To this aim, let
x1, x2 ∈ S be such that y1 = f(x1) and y2 = f(x2). For convenience, set

x̄ =
x1 + x2

2
and ȳ =

y1 + y2
2

Notice that, as y1 ̸= y2, it must be also x1 ̸= x2. Moreover, as S ⊆ B (x0, ρ) ⊆
B (x0, r∗), one has y1, y2 ∈ B (f(x0), r̃) and therefore, by the convexity of a ball,
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one has also ȳ ∈ B (f(x0), r̃). Thus, since x̄ ∈ B (x0, r̃) and y ∈ B (f(x0), r̃), then
inequality (3.2) implies

(3.4) dist
(
x̄, f−1(ȳ)

)
≤ κ̃∥ȳ − f(x̄)∥.

If ȳ = f(x̄) the proof of the convexity of f(S) is complete, because x̄ ∈ S. Otherwise,
it happens that ∥ȳ − f(x̄)∥ > 0, so the inequality (3.4) entails the existence of
x̂ ∈ f−1(ȳ) such that

∥x̂− x̄∥ < κ∥ȳ − f(x̄)∥.
By taking account of the estimate (2.2) in Remark 2.1 (i), as it is [x1, x2] ∈
B (x0, ρ) ⊆ intB (x0, r0), one consequently obtains

∥x̂− x̄∥ < κ
ℓ

8
∥x1 − x2∥2,

that is x̂ ∈ B
(
x̄, κℓ8 ∥x1 − x2∥2

)
. Since S ∈ UC2

c(X) and the inequality (3.1) is in
force, in the light of what observed in Remark 2.4 (iii) it follows

B

(
x̄,

κℓ

8
∥x1 − x2∥2

)
⊆ S,

with the consequence that x̂ ∈ S and hence ȳ = f(x̂) turns out to belong to f(S).
Second part: Let us prove now the assertion in the thesis. According to what noted in
Remark 2.1 (ii), under the above hypotheses f(S) is bounded. Fix ϵ ∈ (0,diam f(S))
and take arbitrary y1, y2 ∈ f(S), with ∥y1 − y2∥ = ϵ. Let ȳ, x1, x2, x̄ and x̂ be as
in the first part of the proof (it may happen that x̂ = x̄). In order to prove that
f(S) ∈ UC2(Y), it is to be shown that, independently of y1, y2 ∈ f(S) and ϵ, there
exists γ > 0 such that B

(
ȳ, γϵ2

)
⊆ f(S). Again recalling Remark 2.1 (ii), it is

possible to define the positive real value

β = sup
x∈S

∥Df(x)∥L + 1 < +∞.

By virtue of inequality (3.1), it is possible to pick η ∈ (0, c− κℓ
8 ) in such a way that

x̂ ∈ B

(
x̄,

κℓ

8
∥x1 − x2∥2

)
⊆ B

(
x̄,

(
κℓ

8
+ η

)
∥x1 − x2∥2

)
⊆ S.

From the last chain of inclusions, it readily follows that

B
(
x̂, η∥x1 − x2∥2

)
⊆ S.

Since, by the mean-value theorem, it is

∥y1 − y2∥ ≤ β∥x1 − x2∥,

one obtains

ϵ2 = ∥y1 − y2∥2 ≤ β2∥x1 − x2∥2,
and hence B

(
x̂, ηϵ2/β2

)
⊆ S. Now, recall that f is open at a linear rate around

x0. Accordingly, as S ⊆ B (x0, ρ), up to a further reduction in the value of η > 0 in
such a way that ηdiam 2f(S)/β2 < ρ, one finds

B

(
ȳ, ση

ϵ2

β2

)
⊆ f

(
B

(
x̂, η

ϵ2

β2

))
⊆ f(S)
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(remember the inclusion (3.3)). Thus, since by construction σ, η and β are inde-
pendent of y1, y2 and ϵ, one can conclude that

δf(S)(ϵ) ≥
ση

β2
ϵ2.

By arbitrariness of ϵ ∈ (0, diam f(S)), this completes the proof. □
A first comment to Theorem 3.2 concerns its hypothesis (iii), which seems to

find no counterpart in the convexity principle due to B.T. Polyak (see [22, Theorem
2.1]). Such hypothesis postulates a uniform convexity property of S, which must be
quantitatively adequate to the metric regularity of f and to the Lipschitz continuity
of Df around x0. Matching this condition is guaranteed for strongly convex sets (in
particular, for balls) with a sufficiently small radius, provided that the underlying
Banach space fulfils a certain uniform convexity assumption. This fact is clarified
by the following

Corollary 3.3. Let f : Ω −→ Y be a mapping between Banach spaces, with Ω open
nonempty subset of X. Let x0 ∈ Ω be such that:

(i) (X, ∥ · ∥) admits a modulus of convexity of power type 2;
(ii) f ∈ C1,1(intB (x0, r0)), for some r0 > 0;
(iii) Df(x0) is onto.

Then, there exists ρ ∈ (0, r0) such that, for every r-convex set S, with r ∈ [0, ρ) and
f(S) closed, it holds f(S) ∈ UC2(Y).

Proof. By virtue of the hypothesis (i), according to Example 2.3 (ii), any r-convex
set S belongs to UC2(X), for every r > 0. More precisely, on account of the
inequality (2.3), one has

δS(ϵ) ≥ rδX

( ϵ
r

)
≥ γ

r
ϵ2, ∀ϵ ∈ (0, 2r],

for some γ > 0. Therefore, in order for the hypothesis (iii) of Theorem 3.2 to be
satisfied, it suffices to take

r <
8γ

reg(f, x0) · lip(Df, intB (x0, r0)) + 1
.

Then, the thesis follows from Theorem 3.2. □
On the other hand, notice that Theorem 3.2 does not make any direct assumption

on the Banach space (X, ∥ · ∥) (nonetheless, take into account what remarked at the
end of Example 2.3 (i)). Furthermore, since any ball B (x0, r) is a r-convex sets, it
should be clear that Corollary 3.3 allows one to embed in the current theory the
Polyak convexity principle and its refinement [26, Theorem 3.2].

Another comment to Theorem 3.2 deals with the topological assumption on the
image f(S). Of course, whenever X is a finite-dimensional Euclidean space, f(S) is
automatically closed, because S is compact and f is continuous on S. In an infinite-
dimensional setting, the same issue becomes subtler. The closedness assumption
thus appears also in the formulation of other results for the convexity of images
of mappings between infinite-dimensional spaces (see [1, Theorem 2.2]). It is clear
that, whenever Df(x0) not only is onto but, in particular, is invertible, f turns out
to be a diffeomorphism around x0. As a consequence, for a proper r0 > 0, any



438 AMOS UDERZO

closed set S ⊆ B (x0, r0) has a closed image. Nevertheless, in the general setting
of Theorem 3.2, to the best of the author’s knowledge, the question of formulating
sufficient conditions on f in order for f(S) to be closed is still open. The next
proposition, which is far removed from providing a solution to such a question,
translates the topological assumption on the image f(S) into variational terms.

Proposition 3.4. Let f : Ω −→ Y be a mapping between Banach spaces, with Ω
open nonempty subset of X, and let x0 ∈ Ω. Suppose that:

(i) f is continuous in B (x0, r0), for some r0 > 0;
(ii) the function x 7→ dist

(
x, f−1(y)

)
is weakly lower semicontinuous, for every

y ∈ B (f(x0), r0);
(iii) (X, ∥ · ∥) is reflexive;
(iv) f is metrically regular around x0.

Then, there exists ρ ∈ (0, r0) such that, for every closed convex set S ⊆ B (x0, ρ),
f(S) is closed.

Proof. Since by the hypothesis (iv) f is metrically regular around x0, there exist
positive real r ∈ (0, r0) and κ such that

(3.5) dist
(
x, f−1(y)

)
≤ κ∥f(x)− y∥, ∀x ∈ B (x0, r) , ∀y ∈ B (f(x0), r) .

By the continuity of f at x0, there exists ρ ∈ (0, r) such that

f(x) ∈ B (f(x0), r) , ∀x ∈ B (x0, ρ) .

Thus, whenever S ⊆ B (x0, ρ), one has f(S) ⊆ B (f(x0), r).
Now, suppose that S ⊆ B (x0, ρ) is a closed convex set and take an arbitrary

y ∈ cl f(S) ⊆ B (f(x0), r). Let (yn)n be a sequence in f(S), such that yn −→ y as
n → ∞. As yn ∈ f(S), there exists a sequence (xn)n in S such that yn = f(xn),
for each n ∈ N. Notice that, since xn ∈ S ⊆ B (x0, ρ) ⊆ B (x0, r) and y ∈ cl f(S) ⊆
B (f(x0), r), the inequality (3.5) applies, namely

(3.6) dist
(
xn, f

−1(y)
)
≤ κ∥f(xn)− y∥ = κ∥yn − y∥, ∀n ∈ N.

This shows that dist
(
xn, f

−1(y)
)
−→ 0 as n → ∞ and therefore

inf
x∈S

dist
(
x, f−1(y)

)
= 0.

As a closed convex set, S is also weakly closed. Moreover, as a bounded subset of
a reflexive Banach space, S is weakly compact. Thus, since y ∈ B (f(x0), r0), by
virtue of the hypothesis (ii), there must exist x̃ ∈ S such that

dist
(
x̃, f−1(y)

)
= 0.

Since f is continuous, the last inequality entails that x̃ ∈ f−1(y). This leads to
conclude that y ∈ f(S), thereby completing the proof. □

The hypothesis (ii) in Proposition 3.4 happens to be always satisfied if f is a
linear mapping. In the nonlinear case, the situation is expected to be much more
complicate.
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Let C ⊆ Y be a closed convex cone with apex at 0 and let S ⊆ X be nonempty
and convex. Recall that a mapping f : S −→ Y is said to be convex-like on S with
respect to C if for every x1, x2 ∈ S and t ∈ [0, 1], there exists xt ∈ S such that

(1− t)f(x1) + tf(x2) ∈ f(xt) + C.

Convex-likeness is a generalization of the notion of C-convexity of mappings taking
values in partially ordered vector spaces. It should be evident that, when Y = R,
C = [0,+∞) and xt = (1−t)x1+tx2, the above inclusion reduces to the well-known
inequality defining the convexity of a functional. The class of convex-like mappings
has found a large employment in optimization and related topics. For instance, if Rm

and C = Rm
+ it is readily seen that this class includes all mappings f = (f1, . . . , fm),

having each component fi : S −→ R, i = 1, . . . ,m convex on a convex set. For a
detailed discussion about the notion of convex-likeness of mappings, its variants
and their impact on the study of variational problems, the reader can refer to [15].
The next corollary, which can be achieved as a direct consequence of Theorem 3.2,
reveals that any C1,1 smooth mapping behave as a convex-like mapping on uniformly
convex sets of class UC2

c(X) near a regular point.

Corollary 3.5. Let f : Ω −→ Y be a mapping between Banach spaces, x0 ∈ Ω and
c > 0. If f , x0 and c satisfy all hypotheses of Theorem 3.2, then there exists ρ > 0
such that, for every S ∈ UC2

c(X), with S ⊆ B (x0, ρ) and f(S) closed, and every
cone C ⊆ Y, the mapping f : S −→ Y is convex-like on S with respect to C.

Proof. The thesis follows at once by Theorem 3.2, from being

(1− t)f(x1) + tf(x2) ∈ f(S) ⊆ f(S) + C, ∀x1, x2 ∈ S, ∀t ∈ [0, 1].

□

4. Applications to optimization

Throughout this section, applications of Theorem 3.2 will be considered to the
study of constrained optimization problems, having the following format

(P) min
x∈S

φ(x) subject to g(x) ∈ C,

where φ : X −→ R and g : X −→ Y are given functions between Banach spaces,
S ⊆ X and C ⊆ Y are given (nonempty) closed and convex sets. Such a format
is frequently employed in the literature for subsuming under a general treatment a
broad spectrum of finite and infinite-dimensional extremum problems, with various
kinds of constraints. The feasible region of problem (P) will be henceforth denoted
by R, i.e. R = S ∩ g−1(C).

According to a long-standing approach in optimization, now recognized as ISA
(acronym standing for Image Space Analysis), the analysis of several issues related
to problem (P) can be performed by associating with (P) and with an element
x0 ∈ R the mapping fP,x0 : X −→ R× Y, which is defined by

fP,x0(x) = (φ(x)− φ(x0), g(x))

(see, for instance, [13] and references therein). It is natural to believe that the
mapping fP,x0 inherits certain structural features of the given problem. Such issues
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as the solution existence, optimality conditions, duality, and so on, can be investi-
gated by studying relationships between the two subsets of the space R×Y, namely
fP,x0(S) and Q = (−∞, 0)× C, associated with (P).

Remark 4.1. Directly from the above constructions, it is possible to prove the
following well-known facts:

(i) x0 ∈ R is a global solution to (P) iff fP,x0(S) ∩Q = ∅;
(ii) x0 ∈ R is a local solution to (P) iff there exists r > 0 such that fP,x0(S ∩

B (x0, r)) ∩Q = ∅.

The above facts have been largely employed as a starting point for formulating
optimality conditions within ISA. Another relevant property connected with opti-
mality is openness at a linear rate. Its presence, indeed, has been observed to be
in contrast with optimality (see, for instance, the so-called noncovering principle in
[14]). Below, a lemma related to this phenomenon, which will be exploited in the
proof of the next result, is presented in full detail.

Lemma 4.2. With reference to a problem (P), suppose that the mapping fP,x0 is
open at a linear rate around x0 ∈ R and x0 ∈ intS. Then, x0 is not a local solution
to (P).

Proof. By the hypothesis, according to Definition 2.6 there exist positive constants
δ, ζ, and σ such that, if taking in particular x = x0 in inclusion (2.6), it holds

fP,x0(B (x0, r)) ⊇ B (fP,x0(x0), σr) ∩ B (fP,x0(x0), ζ) , ∀r ∈ [0, δ].

Notice that, if r < ζ/σ, then the above inclusion reduces to

(4.1) fP,x0(B (x0, r)) ⊇ B (fP,x0(x0), σr) = B ((0, g(x0)), σr) .

Since x0 ∈ intS, there exists r0 > 0 such that B (x0, r0) ⊆ S. Now, fix an arbitrary
r ∈ (0, min{r0, ζ/σ}) and pick t ∈ (0, σr). Then, on the account of inclusion (4.1),
there exists xr ∈ B (x0, r) such that

fP,x0(xr) = (−t, g(x0)) ∈ B ((0, g(x0)), σr) ,

that is
φ(xr)− φ(x0) = −t < 0 and g(xr) = g(x0) ∈ C.

This means that xr ∈ S ∩ g−1(C) and φ(xr) < φ(x0), what contradicts the local
optimality of x0 for (P), by arbitrariness of r. □

The next theorem, which extends a similar result established in [26, Theorem
3.2], provides an answer to the question of solution existence for problem (P) and,
at the same time, furnishes an optimality condition for detecting a solution. In order
to formulate such a theorem, let us denote by N(C, ȳ) = {y∗ ∈ Y∗ : ⟨y∗, y − ȳ⟩ ≤
0, ∀y ∈ C} the normal cone to C at ȳ in the sense of convex analysis. Besides,
let us denote by L : Y∗×X −→ R the Lagrangian function associated with problem
(P), i.e.

L(y∗, x) = φ(x) + ⟨y∗, g(x)⟩.
The proof, whose main part is given for the sake of completeness, adapts an argu-
ment already exploited in [26]. It derives solution existence from the weak com-
pactness of the problem image and the optimality condition by a linear separation
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technique. In both the cases, convexity is the geometrical property that makes this
possible.

Theorem 4.3. Given a problem (P), let x0 ∈ g−1(C) and let c be a positive real.
Suppose that:

(i) (Y, ∥ · ∥) is a reflexive Banach space;
(ii) φ, g ∈ C1,1(intB (x0, r0)), for some r0 > 0 and DfP,x0(x0) is onto;
(iii) it holds

(4.2)
reg(fP,x0 , x0) · lip(DfP,x0 , intB (x0, r0))

8
< c.

Then, there exists ρ ∈ (0, r0) such that, for every S ∈ UC2
c(X), with x0 ∈ intS ⊆

B (x0, ρ) and fP,x0(S) closed, one has

(t) there exists a global solution x̄S ∈ R to (P);
(tt) x̄S ∈ bdS and hence x̄S ∈ bdR;
(ttt) there exists y∗S ∈ N(C, g(x̄S)) such that

L(y∗S , x̄S) = min
x∈S

L(y∗S , x).

Proof. (t) Under the hypotheses (ii) and (iii), one can apply Theorem 3.2. If ρ > 0
is as in the thesis Theorem 3.2, fix a set S ∈ UC2

c(X) satisfying all requirements in
the above statement. Then its image fP,x0(S) turns out to be a convex, closed and
bounded subset of R×Y, with nonempty interior. The existence of a global solution
to (P) will be achieved by proving that an associated minimization problem in the
space R× Y does admit a global solution. To do so, define

τ = inf{t : (t, y) ∈ fP,x0(S) ∩Q}.
Notice that x0 ∈ R. Since DfP,x0(x0) is onto, by the Lyusternik-Graves theorem
the mapping fP,x0 too is open at a linear rate around x0. Thus, since x0 ∈ intS,
in the light of Lemma 4.2 x0 must fail to be a local (and hence, a fortiori, global)
solution to (P). Consequently, according to what observed in Remark 4.1 (i), it
must be

fP,x0(S) ∩Q ̸= ∅.

This implies that τ < +∞. Furthermore, if setting

(4.3) τ̄ = inf{t : (t, y) ∈ fP,x0(S) ∩ clQ},
it is possible to see that actually it is τ̄ = τ . Indeed, since x0 is not a solution to
(P), there exists x̂ ∈ R such that φ(x̂) − φ(x0) < 0, and so fP,x0(x̂) = (φ(x̂) −
φ(x0), g(x̂)) ∈ fP,x0(S) ∩ Q. As fP,x0(S) ∩ Q ⊆ fP,x0(S) ∩ clQ, it follows that
τ̄ ≤ τ ≤ φ(x̂) − φ(x0) < 0. Hence, for any ϵ ∈ (0,−τ̄) there exists (tϵ, yϵ) ∈
fP,x0(S) ∩ clQ such that tϵ < τ̄ + ϵ < 0. Noting that clQ = (−∞, 0] × C, this
implies that (tϵ, yϵ) ∈ fP,x0(S) ∩ Q and consequently that τ̄ ≤ τ ≤ tϵ < τ̄ + ϵ < 0.
Letting ϵ → 0+, one obtains τ̄ = τ .

Now, as the set fP,x0(S) is closed, convex and bounded, so is its subset fP,x0(S)∩
clQ. The boundedness of the latter implies that τ̄ > −∞. Moreover, by virtue of the
hypothesis (i), fP,x0(S)∩ clQ turns out to be weakly compact. Since the projection
mapping ΠR : R × Y −→ R, given by ΠR(t, y) = t is continuous and convex, it is
also weakly l.s.c., with the consequence that the infimum defined in (4.3) is actually
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attained at some (t̄, ȳ) ∈ fP,x0(S) ∩ clQ. This means that there exists x̄S ∈ S such
that

τ = τ̄ = t̄ = φ(x̄S)− φ(x0) and ȳ = g(x̄S) ∈ C.

Let us show that x̄S is a global solution to (P). Assume to the contrary that there
is x̂ ∈ R such that φ(x̂) < φ(x̄S). Then, one finds

t̂ = φ(x̂)− φ(x0) = φ(x̂)− φ(x̄S) + φ(x̄S)− φ(x0)

< φ(x̄S)− φ(x0) = t̄ = τ̄ = τ.

Since it is x̂ ∈ R, then x̂ ∈ S and ŷ = g(x̂) ∈ C, wherefrom one has (t̂, ŷ) ∈
fP,x0(S) ∩Q, which contradicts the definition of τ .

(tt) To prove that x̄S belongs to bdS, notice that (t̄, ȳ) = fP,x0(x̄S) ∈ bd fP,x0(S).
Then, by recalling what mentioned in Remark 2.7 (ii), this assertion follows from
the openness at a linear rate of fP,x0 around x0.

(ttt) Again remembering Remark 4.1 (i), by the global optimality of x̄S , it results
in

(4.4) fP,x̄S
(S) ∩Q = ∅.

As one readily checks, it holds

fP,x̄S
(S) = fP,x0(S) + (φ(x0)− φ(x̄S),0),

that is to say fP,x̄S
(S) is a translation of fP,x0(S). Therefore, fP,x̄S

(S) too is a
closed, bounded, convex subset of R × Y, with nonempty interior. Since (4.4) is
true, the Eidelheit theorem makes it possible to linearly separate fP,x̄S

(S) and clQ.
In other terms, this means the existence of a pair (γ, y∗) ∈ (R × Y)\{(0,0∗)} and
α ∈ R such that

γ(φ(x)− φ(x̄S)) + ⟨y∗, g(x)⟩ ≥ α, ∀x ∈ S,

and
γt+ ⟨y∗, y⟩ ≤ α, ∀(t, y) ∈ clQ = (−∞, 0]× C.

The rest of the proof relies on a standard usage of the last inequalities and does not
need to devise any specific adaptation. □

Theorem 4.3 describes the local behaviour of a nonlinear optimization problem
(P) near a point x0 ∈ (intS) ∩ g−1(C), around which the condition (4.2) linking
the modulus of convexity of S, the regularity behaviour of fP,x0 and the Lipschitz
continuity of its derivative happens to be satisfied: (P) admits a global solution,
which lies at the boundary of the feasible region and can be detected by minimizing
the Lagrangian function. The reader should notice that globality of a solution and
its characterization as a minimizer of a the Lagrangian function are phenomena
typically occurring in convex optimization. Instead, they generally fail to occur in
nonlinear optimization, where optimality conditions are usually only necessary or
sufficient, and frequently expressed in terms of Lagrangian stationary by means of
first-order derivative.

Another typical phenomenon arising in convex optimization is the vanishing of
the duality gap, i.e. the vanishing of the value

gap (P) = inf
x∈S

sup
y∗∈C⊖

L(y∗, x)− sup
y∗∈C⊖

inf
x∈S

L(y∗, x),
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where C
⊖
= {y∗ ∈ Y∗ : ⟨y∗, y⟩ ≤ 0} is the dual cone to C. Such a circumstance,

which can be proved to take place in convex programming under proper qualification
conditions, is known as strong (Lagrangian) duality. In the current setting, it can
be readily achieved as a consequence of Theorem 4.3, without the need of extra
assumptions, apart from the cone structure now imposed on the set C.

Corollary 4.4. Given a problem (P), suppose that C is a closed convex cone.
Under the hypothesis of Theorem 4.3, it holds

gap (P) = 0

and there exists a pair (y∗S , x̄S) ∈ C
⊖ ×R, which is a saddle point of L, i.e.

L(y∗, x̄S) ≤ L(y∗S , x̄S) ≤ L(y∗S , x), ∀(y∗, x) ∈ C
⊖ × S.

Proof. Let x̄S and y∗S be as in the thesis of Theorem 4.3. Since C is a closed convex
cone, 2g(x̄S) and 0 belong to C. By recalling that y∗S ∈ N(C, g(x̄S)), one has

⟨y∗S , y − g(x̄S)⟩ ≤ 0, ∀y ∈ C.

By replacing y with 2g(x̄S) and 0 in last inequality, one easily shows that ⟨y∗S , g(x̄S)⟩ =
0 and hence y∗S ∈ C

⊖
. The rest of the thesis then follows at once. □

The above applications of Theorem 3.2 demonstrate that, even in the absence of
convexity assumptions on the functional data of problem (P), some good phenomena
connected with convexity may still appear.

Example 4.5. With reference to the problem format (P), let X = R2, Y = R,
C = {0}, and let φ : R2 −→ R and g : R2 −→ R be defined respectively by

φ(x) = x21 − x22, g(x) = x21 + x22 − 1.

Take x0 = (1/
√
2, 1/

√
2) ∈ g−1(0) = S and S = B(x0, r). With the above choice

of data, the problem falls out of the realm of convex optimization: the objective
function φ is evidently not convex as well as the feasible region R = S∩S, for every
r > 0. Throughout the present example, R2 is supposed to be equipped with its
Euclidean space structure, so that

δR2(ϵ) ≥
ϵ2

8
, ∀ϵ ∈ (0, 2].

Therefore, S = B(x0, r) ∈ UC2(R2) and, according to the estimate in (2.3), one
finds

δB(x0,r)(ϵ) ≥ rδR2

( ϵ
r

)
=

ϵ2

8r
,

that is B (x0, r) ∈ UC2
1/8r(R

2), for every r > 0. Clearly, the function fP,x0 : R2 −→
R2, which is given in this case by

fP,x0(x) =

(
x21 − x22

x21 + x22 − 1

)
,

satisfies the smoothness hypothesis of Theorem 4.3. In particular, since it is

DfP,x0(x) =

(
2x1 −2x2
2x1 x2

)
,
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it results in

reg(fP,x0 , x0) = ∥DfP,x0(x0)
−1∥L =

∥∥∥∥ 1

2
√
2

(
1 1

−1 1

)∥∥∥∥
L
=

1

2
.

On the other hand, since the mapping DfP,x0 : R2 −→ L(R2,R2) is linear in this
case, one finds

lip(DfP,x0 ,R2) = ∥DfP,x0∥L = max
u∈S

∥DfP,x0(u)∥L

= max
u∈S

max
v∈S

∥DfP,x0(u)v∥ = 2
√
2.

Consequently, the condition (4.2) becomes

1
2 · 2

√
2

8
<

1

8r
.

Thus, for every r < 1/
√
2, by virtue of Theorem 4.3 assertions (t)− (ttt) hold. In

particular, it is not difficult to check (for instance, by means of a level set inspection)
that for every S = B(x0, r), with r < 1/

√
2, the unique (global) solution x̄S of the

related problem lies in bdS. Notice that this fails to be true if r >
√

2−
√
2 =

∥(0, 1)−x0∥ > 1/
√
2, in which case the solution x̄S = (0, 1) belongs to intB (x0, r) =

intS.
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